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Abstract 
In this paper we report experiments designed to find the 
relationship between the different parameters of sparsely 
connected networks of perceptrons with small world 
connectivity patterns, acting as associative memories. 

1 Introduction 
It is possible to build associative memory models from 
networks of simple perceptrons. These networks perform 
much better than the canonical Hopfield model, both in 
terms of capacity and pattern completion.  It is also 
possible to use such networks of perceptrons with sparse 
or diluted connectivity, and the performance is relatively 
robust, even at high rates of dilution.  Of course real 
neural networks have sparse connectivity (for example in 
the cortex of the mouse each neuron is connected to about 
0.1% of the other neurons [1]), which motivates the 
investigation undertaken here.  It is also known that in 
biological systems the networks have a small world 
characteristic [2, 3]. That is they exhibit short path lengths 
(the minimum number of nodes on a path) between any 
pair of neurons, as in a random network, but also show a 
cliquish behaviour, with locally clustered connections.  
The advantage of such clustering is apparent in the mean 
connection length (the average wiring length), which is 
far smaller than in an equivalent random network, see 
Figure 1.  A further benefit is that the wiring complexity 
is much reduced in networks with predominantly local 
connections.  Recent research has shown that a small 
world Hopfield network could be a relatively effective 
associative memory [4]. In our earlier paper [5] we 
showed how the high capacity model could benefit from 
small world connectivity.  Here we investigate the 
detailed relationship between the nature of the connection 
graph, the size of the network and the resulting 
performance.  Sections 2 and 3 describe the background 
and the computational model.  After the performance 
measure is explained in Section 4 the results are given in 
Section 5.  The paper finishes with a discussion. 

2 Background  
The simple small world model of Watts and Strogatz [2] 
consists of a regular N-node ring lattice.  Each node is 
connected to k/2 neighbours on either side, where k is 
typically small compared to N.  The mean path length 
between any pair of random points is therefore high.  A 
fraction, p, of these local connections is then rewired to 
randomly selected nodes, see right diagram in Figure 1.  
They showed that at surprisingly low values of p, the 
mean path length in the network dropped dramatically, 
resulting in a small world regime: highly clustered but 
with low path lengths.  Many real networks have been 
shown to have a small world architecture, including the 
internet, human acquaintance networks and real networks 
of neurons [2].  Theoretical work [6] has now shown the 
detailed relationship between the characteristics of such 
networks. 
Much is known about the effect of sparse connectivity on 
the standard Hopfield neural network.  Some work has 
also been undertaken on diluted Hopfield networks with 
modular and small world connectivity [4, 7-9]. 
For the higher capacity version of the Hopfield network, 
trained using perceptron learning much less is known 
about the effect of connectivity patterns.  It was shown in 
[10] that capacity falls linearly with dilution and in [11] 
that structured local connectivity could help in storing 
locally correlated data.   
The sparse network with only local connectivity can be 
considered as a simple example of a Cellular Neural 
Network and it has been proposed [12] that such networks 
can be used as associative memories. 

 

Fig. 1.  A ring, with random connectivity on the left and small 

world connectivity on the right. 



3 Network Model 
The high capacity models studied here are a modification 
of the standard Hopfield network. The net input, or local 
field, of a unit, is given by: hi = wijS j

j i
 where S ±1( )  is 

the current state and wij  is the weight on the connection 

from unit j to unit i. The dynamics of the network is given 
by the standard update:  S i = (hi) , where  is the 

heaviside function.  Unit states may be updated 
synchronously or asynchronously.  Here we use 
asynchronous, random order updates.  If a training pattern 

µ  is a fixed point of the dynamics then it is successfully 
stored, and is said to be a fundamental memory.  A 
network state is stable if, and only if, all the local fields 
are of the same sign as their corresponding unit, 
equivalently the aligned local fields, hiSi , should be 
positive.  
We examine sparse networks with small world 
connectivity.  The network topology is similar to the 
original Watts and Strogatz model.  We start with an N-
ring regular lattice, with each unit connected to its k 
nearest neighbours, and then rewire with probability p.  
However as a network of perceptrons is not necessarily 
constrained to have symmetric connections we can 
generalize the network to a weighted directed graph (as is 
the case for real neural networks).  The rewiring does not 
therefore maintain the symmetry of connectivity of the 
original regular lattice.  In fact it has been shown [5] that 
for sparse networks of this type, symmetric weights give 
rise to poor performance. 
The networks are trained using the normal perceptron 
training rule: 
 
Begin with zero weights 

Repeat until all local fields are correct 

 Set state of network to one of the p 

 For each unit, i, in turn: 

   Calculate hi
p

i
p.  If this is less than T  

   then change the weights to unit i  
   according to:   

   j i  w ij = wij +
i
p

j
p

k
 

 Where  p  denotes the training patterns, and T is the 

learning threshold which here has the value of 10.  

4 Performance Measure 
We are interested in how well the small world networks 
and random networks, trained using the perceptron style 
learning rule described above, perform as associative 

memories.  The capacity of such networks is determined 
by the number of incoming connections (k) that each 
perceptron has.  For random pattern sets a perceptron can 
learn up to 2k patterns [13].  Assuming roughly regular 
connectivity graphs (as is the case here) the capacity will 
be determined by the level of dilution and not the specific 
pattern of connections, and hence is not subject to 
empirical investigation.  
We use R, the normalised mean radius of the basins of 
attraction, as a measure of attractor performance in these 
networks.  It is defined as: 

  R =
1 m0

1 m1
 

where m0 is the minimum overlap an initial state must 
have with a fundamental memory for the network to 
converge on that fundamental memory, and m1 is the 
largest overlap of the initial state with the rest of the 
fundamental memories.  The angled braces denote a 
double average over sets of training patterns and initial 
states. Details of the algorithm used can be found in [10].  
A value of R = 1 implies perfect performance and a value 
of R = 0 implies no pattern correction.   

5 Results 
In this paper we report experiments designed to find the 
relationship between the different parameters of the 
model.  We summarise these parameters in Table 1. 

Table 1: Parameters of the Model 

N The size of the network 

k The number of connections each unit makes 
 The loading per connection: size of training set / k 

p The proportion of rewired connections 

5.1 Fixed Size Networks 

The first set of experiments fixes the network size, N, at 
1000 units, arranged in a ring as described earlier.  
Initially each unit is connected to its k = 20, 40 or 60 
neighbours.  Random training sets of 1000-ary vectors are 
created.   The number of vectors in the training set is 
determined by the specific values of  and k.  For 
example with  = 0.3, k = 20 implies a training set of 6 
vectors, k = 40 12 vectors and k = 60 18 vectors (as used 
in Figure 3). The attractor performance (R value) is then 
measured as the network is progressively rewired, as 
described above.   All results presented are averages over 
10 runs.   
Figure 2 gives the results.  Considering first the overall 
pattern, it can be seen that, in all cases, as the amount of 
rewiring is increased the performance of the network is 
also improved.  In fact all the networks reach a point at 



which pattern correction behavior is perfect.  It is also 
apparent that higher levels of rewiring are required as the 
loading, , of the networks is raised.   
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k = 60
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Fig. 2.  Networks of size N = 1000.  The attractor performance R 

is reported for different values of connectivity k, and at varying 

loadings, , as the networks are progressively rewired, by 

amount p.  Results are averages over 10 runs. 

Now examining the comparative performance at different 
levels of connectivity it can be seen that, for a given 
loading, the larger the value of k the better the network 

performs.  Figure 3 gives a different view of this, fixing 
the loading at 0.3, and plotting R for different k values on 
the same graph. 
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Fig. 3.  A different view of the results in Figure 2.   is fixed at 
0.3.  It can be seen how the higher values of k give better 
performance. 

5.2 Size Effects 

The next set of results examines how increasing the size 
of the network by an order of magnitude affects the 
performance of the network.  Figure 4 summarises the 
results, here the loading on the networks is fixed at  = 
0.3.  The lower two plots on the graph show the 
performance of networks of sizes N = 1000 and N = 
10,000 with purely local connectivity (p = 0).  As  
observed above increasing the level of (local) 
connectivity improves performance.  The larger network 
has a poorer attractor performance than the N = 1000 
version, although when k reaches 800 a point of good 
performance is reached.  The explanation for both these 
observations is probably that if the size of the network is 
relatively large, when compared to the local 
neighbourhood of each unit, then it is progressively 
harder for information to propagate through the network.  
In other words the more local the connectivity relative to 
the size of the network the more difficult is it to make a 
successful global computation such as pattern correction. 
The upper pair of lines shows the dramatic effect of just 
10% rewiring.  Once again the smaller network initially 
has better performance, but by k = 180 the N = 10,000 
network is performing almost perfectly.  In this 
configuration the network is storing 54 10,000-ary 
vectors, with each unit having only 180, mostly local, 
connections and is still able to perform almost perfect 
pattern completion.  This architecture is extremely 
parsimonious.  The mean wire length is only about 12% 
of that of a random network with the same level of 
connectivity. 
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Fig. 4.  Networks of size N = 1000 and N = 10,000, either with 
local connectivity only p = 0 (lower two plots), or with p = 0.1, 
(upper two plots).  The attractor performance R is reported for 
different values of connectivity k.  In all cases the loading of the 
network is  = 0.3.  Results are averages over 10 runs. 

6 Discussion 
The fully connected models of associative memory, such 
as the standard Hopfield network are difficult to realize in 
VLSI implementations and are not viable as abstract 
models of real neural networks, which have sparse 
connectivity.  Locally connected associative memories 
have been proposed as possible solutions to the first of 
these issues [12].  However as our results show the 
pattern correction ability of networks with only local 
connections is compromised.  In order to restore the 
performance of locally connected networks to that of an 
equivalent random network it is necessary to introduce 
some rewiring – to change the pattern of connectivity to 
one of a small world graph.  The results show that the 
amount of rewiring required is dependant upon both the 
relative level of connectivity and the loading on the 
network. More rewiring is required with either increased 
loading or decreased relative connectivity.  However the 
very large networks of 10,000 units performed very well 
with only 10% rewiring at a loading of 0.3.  In fact 
looking at relative connectivity the 10,000 unit network 
can be thought of as performing better than the 1000 unit 
network, since it produces perfect pattern completion with 
a much lower ratio of connections to network size. 
Perhaps the most interesting feature of these small world 
networks is that they suggest how global computation is 
accomplished in real networks of neurons where distal 
connectivity comes at considerable cost.   
Further work will explore other types of small world 
connectivity patterns, such as scale free networks [8].  We 
are also interested in finding the pattern of connectivity 

that maximizes performance whilst minimizing wiring 
cost.   
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