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Abstract  

The accurate and valid assessment of body composition is essential for the 

diagnostic evaluation of nutritional status, identifying relevant outcome measures 

and for determining the effectiveness of current and future nutritional interventions. 

Developments in technology and understanding of the influences of body 

composition on risk and outcome provide practitioners with new opportunities to 

enhance current practice and lead future improvements in practice. This is the 

second of a two-part narrative review which aims to critically evaluate body 

composition methodology in diverse adult populations, with a primary focus on its 

use in the assessment and monitoring of under-nutrition. Part one focused on 

anthropometric variables (1) and part two focuses on the use of imaging techniques, 

bioelectrical impedance analysis, markers of muscle strength and functional status 

with particular reference to developments relevant to practice.  
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Introduction 

The accurate and valid assessment of body composition is essential for the 

diagnostic evaluation of nutritional status, identifying relevant outcome measures 

and for determining the effectiveness of current and future nutritional interventions. 

Ongoing developments in technology and understanding of the influences of body 

composition on risk and outcome provide practitioners with new opportunities to 

enhance current practice and lead future improvements in practice. In turn, it is 

hoped that this will lead to an increased understanding of the effect of specific 

nutritional interventions on health outcomes and serve to further support the 

effectiveness of the dietitian.  

Much attention has been given to identification and assessment of sarcopenia, 

originally defined as the age related loss of muscle mass (2) . This in turn, has driven 

an increased focus on identifying and using valid methods for the assessment of 

muscle mass. Furthermore, results of longitudinal studies have highlighted that the 

loss of mass and the loss of strength (or conversely gain) does not occur in a linear 

manner, thereby implying a disassociation in the relationship between mass and 

strength (3). For example in ageing it has been suggested that muscle strength is 

lost at a rate 2-5 times faster than muscle mass in men and women (4). Additionally, 

the rate of loss may not be uniform across the body with the rate of loss of lower 

limbs potentially more than twice that of the upper limbs and notable gender and 

ethnic differences have been observed (4, 5). 

Increasingly it has been recognized, that whilst muscle mass is a key influence on 

muscle strength, it is not the sole influence and there are several other important 

factors (6, 7, 8). These include neural factors and factors affecting the functionality of 

the muscle itself, such as: the presence of an underlying disease e.g. myopathy, 

neuropathy, presence of intramuscular adipose tissue (IMAT), inflammation, hypoxia, 

peripheral vascular disease, oxidative stress, electrolyte imbalance and inactivity. In 

addition, particular nutritional factors such as vitamin D or iron deficiencies, disorders 

of fat and glucose metabolism, short or longer term starvation and repletion (feeding) 

(9-13). 

In view of this increased understanding, the term dynapenia meaning ‘poverty of 

strength’ has been proposed (7) to differentiate between reduced muscle mass and 
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reduced muscle strength. Whilst it was proposed that this term be used to refer to 

age related loss of muscle strength, the concept of dynapenia is also likely to be 

applicable to the loss of muscle strength at any age which may be due to factors 

described above (8,11).  

Further to this, it is increasingly being recognized that the functionality of muscle 

mass may be more important than absolute mass in terms of disability risk and 

mortality outcome (4, 8, 14). In terms of outcomes, this suggests that rather than 

solely focusing on changes in muscle mass, it may be more appropriate to aim for 

improvements in muscle strength, be that through the use of novel nutritional and/or 

pharmacological or exercise interventions (14).  

In light of this increased understanding, it could be argued that the assessment and  

monitoring of body composition should increasingly focus on methods that can 

demonstrate impairment and improvement of muscle strength and function.  It is also 

likely that such methods provide valuable early indicators of risk and mortality and 

are more sensitive to nutritional depletion and repletion than methods, which solely 

assess mass (4, 12, 15). However, in order to better understand the relationship 

between and the influences on muscle mass versus muscle function it appears 

prudent to use such methods in a complementary manner (16). 

Computed tomography (CT) and magnetic resonance imaging (MRI)  

The use of imaging technology, particularly computed tomography (CT) and 

magnetic resonance imaging (MRI), for the assessment of body composition, has 

undoubtedly led to an increased understanding of body composition and its influence 

on disease risk and outcome. These methods are considered to be gold standard 

reference technologies for body composition analysis at a tissue level (17). As such, 

they are considered to be valid, accurate, precise and rapid methods that have the 

potential to detect small changes in body composition (17, 18).  These technologies 

have been used to identify ectopic and inter/intramuscular adipose tissue and 

develop an increased understanding of the difference between visceral adipose 

tissue (VAT) and subcutaneous adipose tissue (SAT). Furthermore the technology 

has assisted in elucidating the identification of sub phenotypes in the general 

population whose risks are not comparable to their body mass index (BMI) or waist 

circumference (19). As such, CT and MRI have highlighted the limitations of more 
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traditional methods of body composition assessment and the need to increasingly 

think beyond these.  

The determination of, and distinction between tissues evaluated by CT, is based on 

known differences between tissues in terms of their density (3). CT images consist of 

pixels with assigned Hounsfield units (HU). Hounsfield units are measures of tissue 

attenuation and pre-defined radiation attenuation ranges are used to demarcate 

tissues. Typically, ranges of -190 to -30 HU define subcutaneous adipose tissue, -

150 to -50 HU for visceral adipose tissue and -29 and +150 HU for skeletal muscle 

and more recently a range of -29 to +29HU to define low muscle attenuation 

(reflective of increased levels of fatty infiltration) have been proposed (20). The 

tissue area (cm2) of cross-sectional images is then calculated by multiplying the 

number of pixels for a given tissue by the surface area, which can be determined 

manually or with specific automated software, with the latter considered to improve 

objectivity of the analysis (17, 21). In a manner, similar to CT, MRI is also able to 

quantify and determine adipose and skeletal muscle tissues (22). However, MRI 

differs from CT in how images are acquired. MRI does not involve the use of ionizing 

radiation, but instead relies on the tissue specific properties of proton density (i.e. 

density of hydrogen atoms) and longitudinal (T1) and transverse (T2) relaxation 

times (23). As a result, MRI in comparison to CT is considered to be safer, which has 

allowed whole-body and repeated measurements to be conducted. MRI uses the 

body’s inherent magnetic properties to create detailed images. Hydrogen protons 

within tissues act like magnets and when participants are placed within an MRI 

scanner the protons within tissues align. Pulsed radiofrequency waves are then used 

to activate the atomic protons to absorb energy. (24). When the radiofrequency pulse 

is turned off, the protons release energy which is absorbed in the form of a 

radiofrequency signal. This signal is used to generate cross-sectional images from 

which the type and quantity of tissue can be determined in a manner similar to CT 

(22). 

Although it is possible to perform whole-body CT and MRI scans, this is undesirable 

due to the time involved and the high levels of radiation exposure associated with 

CT. It is therefore common practice to perform regional abdominal single slice scans 

at the 3rd or 4th lumbar vertebra (L3-L4). MRI-derived single slices of the abdomen 

have been shown to have a strong relationship with MRI-derived whole-body 
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composition in younger healthy individuals (25) and CT-derived single slices with 

DXA-derived whole-body composition in a small group of cancer patients (26).  

However, this may not be the case across the spectrum of disease, age and ethnicity 

and may be particularly pertinent to studies of adiposity due to substantial individual 

variations in the volume and patterning of fat stores (27). Furthermore, single slices 

of lower extremities e.g. mid thigh, may be more appropriate when examining the 

effects of disease, ageing and interventions in relation to muscle quality, function, 

disability and nutritional status (28, 29).   

Various CT and MRI-derived cut-offs have been proposed to determine risk. 

Currently there appears to be a lack of universally agreed cut-offs for adiposity that 

take account of differences in age, gender and ethnicity. For example in an American 

study of 233 women (mean age 59+6 years), a visceral adipose cut-off of >106cm2 

was associated with an increased risk of metabolic disease (30) and in another study 

of 11,561 Japanese men and women (mean age 52 +10 years men, 56 +10 years 

women), visceral adipose cut-offs of >102.4 cm2 in men and >69.0 cm2 in women 

were associated with an increased risk of metabolic syndrome (31).   

Until recently, the majority of published cut-offs focused on visceral or subcutaneous 

adipose tissue. However, cut-offs pertaining to muscle are now beginning to emerge. 

For example, Weijs et al., (32) in their study of mechanically ventilated patients, 

using abdominal CT scans, proposed a cut-off of 110cm2 for women and 170cm2 for 

men to be indicative of low muscle area and increased risk. However, further work is 

required in larger and more diverse populations to develop agreed cut-offs for 

regional muscle sites predictive of risk. 

 In addition to quantifying adipose and muscle stores, recent MRI interest has 

focused on magnetic resonance spectroscopy (MRS) which uses a series of scans 

to provide information on the  specific metabolites within tissue, including lipid, 

glycogen and amino acids, using 1H, 13C and 31P (34, 35). This has significance as a 

clinical research tool as MRS is able to identify and quantify lipid within muscles and 

the liver, i.e. intramyocellular and intrahepatic lipid, thus providing insight into insulin 

resistance and metabolic risk (36, 37).  

Whilst CT and MRI are considered to be the most accurate methods for assessing 

body composition at a tissue or organ level, their use is not without concern in 
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clinical practice, not least because they are costly, require skilled personnel, aren’t 

portable and are generally not routinely available for the purposes of body 

composition assessment (17, 22). However, the most significant issue relating to CT 

is the exposure to ionizing radiation. The effective radiation dose for an abdominal 

CT scan has been reported as approximately 5.6mSv, which is the equivalent to 370 

chest x-rays (33). As there is an increased recognition of the risks of unnecessary 

radiation exposure (23), the use of CT for the purposes of body composition 

assessment alone may be difficult to justify. Whilst MRI doesn’t expose individuals to 

radiation, scans generally take longer and those with ferromagnetic implanted 

devices (e.g. pace makers, defibrillators, brain aneurysm clips, intrauterine devices) 

may be unable to undergo an MRI scan (38). Both CT and MRI have limits in terms 

of size and weight, typically scanners have weight limits of up to 200 kg and a fixed 

bore diameter of 70cm, however, newer larger bariatric scanners are now available 

with  weight limits increased to ~300 kg and the bore diameter increased to ~80cm 

(39, 40). Claustrophobia, anxiety and the ability to lie still for a period of time, can 

also preclude the use of CT and in particular MRI. . Furthermore, it has been 

reported that different methods of measurement (e.g. body position, selected 

measurement site) and different machines can provide different results (3). 

Whilst the routine use of MRI and CT for the assessment of body composition 

remains unlikely, there is increasing recognition that CT scans undertaken for 

diagnostic purposes, could be used opportunistically for assessment and monitoring 

purposes (41). This has primarily emerged from developments in oncology, involving 

the use of CT-derived body composition data to predict tolerance and efficacy of 

chemotherapy (42,).Subsequent retrospective and prospective cross-sectional 

studies have also been published in this area 43, 44). Furthermore, the opportunistic 

use of such scans has developed into other areas where the use of diagnostic CT 

scanning can occur, such as liver cirrhosis and transplantation (45, 46, 47), intensive 

care (32) and respiratory failure (48). To date these studies serve to further highlight 

the important relationship between body composition, survival and the limitations of 

current screening and assessment methods. However the utility of this approach in 

determining the influence of nutritional interventions on body composition and 

outcomes requires further exploration. 
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Recent statistics suggest that almost 5 million CT scans were performed in England 

alone in 2012/13 (33), therefore there does appear to be an opportunity to utilise 

these. It is, however, unlikely that all such scans will provide the desired regional 

images (17) .In addition a lack of local knowledge and the non-routine reporting of fat 

and muscle tissues may currently prevent the use of such scans being used for body 

composition purposes (20, 49). 

Dual energy X-ray absorptiometry (DXA) 

DXA, another imaging technique, has been increasingly used for the quantification of 

body composition (17). Initially developed and used for the assessment of bone 

mineral density and is the gold standard in this regard (53). However, advancements 

in technology and software have meant that DXA can now provide estimates of three 

components: bone mineral, fat mass (FM) and fat-free soft tissue mass (FFSTM) 

(sometimes also referred to as bone-free fat-free mass) (17). Furthermore, as well as 

estimating body composition at a whole body level, DXA has the capability of 

providing regional e.g. abdominal, lower versus upper limb, as well as estimates of 

appendicular skeletal muscle. The latter of which are gaining attention particularly in 

relation to sarcopenia (17). However, it is currently unable to differentiate between 

different types of adipose tissue e.g. subcutaneous adipose tissue, visceral adipose 

tissue and intramuscular adipose tissue (17, 50). 

DXA scans use low dose x-rays of two energies (typically 40keV and 70keV) which 

are passed through an individual (51). Estimates of body composition are derived 

based on the principle that the body is a two-compartment model (bone mineral and 

soft tissue) and that bone mineral has higher x-ray attenuation than soft tissue (52). 

Fat mass and fat-free soft tissue mass are then determined by mathematical 

algorithms, based on several assumptions, such as soft tissue overlying bone and 

soft tissue adjacent to bone have the same tissue composition; that there is a linear-

based ratio of fat and fat-free mass in soft tissue and distribution throughout the body 

and a constant hydration of fat-free mass, potassium content and tissue density (52, 

53).  

DXA is considered to be a more accessible, quicker and a less expensive alternative 

to other imaging techniques such as MRI and CT (51). Whole-body scan times have 

decreased with advances in DXA technology and can now be as little as ~ 1 minute 
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for a specific site and ~5 minutes for a whole-body scan (52). DXA does expose 

individuals to radiation, but levels are significantly less than CT scans and 

approximately equate to between 1-10% of the exposure received via a chest x-ray, 

depending on the type of scanner, scanner speed and whether a whole-body or 

regional scan is being undertaken (56). DXA is also considered to provide more 

precise, accurate estimates of fat and fat free mass than those derived from 

anthropometry or bioelectrical impedance analysis (BIA) (28, 40). 

Coefficients of variation for the precision of DXA-derived measurements have been 

reported as ~1.0%  forwhole body lean mass between ~0.8-2.7% for whole-body fat 

mass and ~2.8-4.8% for regional (trunk) measurements (52). In terms of accuracy, 

the majority of DXA validation studies have been conducted in healthy, young fit 

populations. These studies have compared measurements made by DXA, using a 

two-compartment model, with those using a four-compartment model, which typically 

include values of total body mineral derived using DXA as well as total body water 

and density (57). Such studies demonstrate that at a population level DXA generally 

underestimates percentage body fat by ~ 2% and that the underestimation tends to 

be greater in leaner individuals (52). However, at an individual level, greater 

differences have been reported, with one study of 152 healthy adults, aged 18-59 

years, reporting differences of approximately -2.6% to 7.3% body fat,  with an 

observed underestimation in lean individuals and overestimation in those with higher 

levels of body fat (58). Furthermore, validation studies, primarily in athletic and 

weight-loss populations, examining the longitudinal use of DXA to monitor changes 

in body composition, whilst demonstrating non-significant differences in DXA 

measurements at population level, have demonstrated wide limits of agreement. This 

suggests that fat loss may be significantly overestimated and fat gain 

underestimated at an individual level (52). The accuracy of DXA measurements are 

also affected by the anterior posterior thickness of the body (59). Thicknesses of 

>25cm have been reported to alter the attenuation of tissues which can result in an 

overestimation of fat mass in obese individuals (23). Changes in hydration status can 

also affect the accuracy of DXA due to the inherent assumption that the hydration of 

fat-free mass is uniform and fixed at 0.73mL/g (17). This is of particular relevance to 

older adults, and in clinical populations where over hydration is common such as 

renal and liver disease (60). Increases in hydration of >5% have been shown to 
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result in an overestimation of fat-free soft mass and a corresponding underestimation 

of fat mass by ~1-2.5% (61, 62).  

Different DXA machines can provide different results due to variations in software. 

Differences of +7% for fat mass and +4% for fat-free mass have been reported (23), 

which can present some difficulties in determining the validity and reliability of DXA 

or when comparing results from different intervention studies (17). Whole-body DXA 

machines also have upper weight limits and may not be able to accommodate larger 

individuals. Scanner limits have typically been reported as 193-198 x 58-65 cm and 

136 kg (63) limiting the use of DXA in obese individuals. Some researchers have 

addressed this limitation by the use of half body scans in obese individuals (63, 64, 

65). Initial results from such studies suggest small non-significant differences (+1%) 

for the estimation of fat mass and fat-free soft mass, from left or right side half scans 

in comparison to the results of whole-body scans. More recently, newer whole-body 

DXA scanners, which can accommodate larger individuals, have been developed 

(e.g. iDXA, Lunar GE Healthcare). These have wider and extendable bed platforms, 

higher torso thickness limits and weight limits (~200 kg), but the accuracy and 

precision of these newer models for the assessment of body composition, is 

currently limited (52).  

Other practical considerations may also limit the use of DXA. These include lack of 

portability, not being routinely available for body composition purposes, 

contraindication in pregnancy, individuals needing to lie in the supine position, and 

the presence of metallic implants (17). It also requires trained operators and whilst 

radiation exposure is minimal, any non-essential radiation exposure, particularly 

when used for longitudinal purposes, requires justification as frequent indiscriminate 

use is discouraged (66). 

Body composition reference data derived from DXA is also emerging. DXA scans 

were used as part of the 1999-2004 USA National Health and Nutrition Examination 

Survey (NHANES). This work involved the use of whole-body scans using a QDR 

4500A fan beam (Hologic, Inc, Bedford, MA) densitometer and obtained data on a 

large sample (>20, 000) of adults and children (67, 68) which may be useful for 

comparative purposes.  
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In summary, whilst DXA is a considered to be less costly than CT or MRI and a more 

accurate and precise method than anthropometry or BIA, it is apparent that DXA is 

not without limitations and practical difficulties, which  affect its application and use in 

clinical practice. However, the use of DXA scans for the estimation of body 

composition in practice could potentially increase in the future, as there is emerging 

interest in the secondary, opportunistic use of routine regional spine and hip DXA 

scans for body composition purposes (17). Preliminary studies (69, 70) suggest that 

such regional scans and subsequent predictions of whole-body composition are 

similar to those obtained from whole-body scans, but further validation work is 

required in larger more diverse populations before routine utilisation.  

Ultrasound scanning  

 

Ultrasound scanning (USS), another form of imaging, widely available for decades, 

has been used in medical practice , in areas such as pregnancy, cardiovascular 

disease (71) and for the diagnosis of conditions affecting organs and soft tissues 

(72). However, increasingly USS is being used as a method for the clinical 

assessment of body composition (73, 74, 75).  

 

The principle of USS imaging is the reflection of sound waves from the tissue in the 

path of the beam. The level of sound reflected back is dependent on the changes in 

acoustic impedance between tissue interfaces (76). At the interface between tissues, 

some sound waves are reflected back as echoes which are translated into depth 

readings via a transducer. Acoustic impedance is the result of tissue density and 

acoustic velocity. As fat, muscle and bone have different impedance (0.138, 0.170, 

0.78 g.cm-1.s-1 respectively), quantification and differentiation between tissues is 

therefore possible (76). 

 

Brightness (B)-mode ultrasound technologies, at frequencies between 1-10MHz 

have commonly been used for the measurement of tissue thickness, but newer 

commercial type devices using amplitude (A)-mode at a frequency of 2.5MHz are 

also available (75). A-mode uses a narrow beam to scan tissue and produces spikes 

on a graph whereas B-mode uses a linear array (by combining A-mode signals from 

various directions) to produce two dimensional images (76). Tissue depths 
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(thicknesses) are typically determined by the subjective distinction of interfaces, 

followed by the quantification of the thickness of the relevant tissue using electronic 

(digital) calipers, and an average of three measurements (74).  

 

There are many attractions to USS as a technique to assess body composition. It 

has the capability to provide regional information on adipose and muscle 

thicknesses, differentiate between visceral and subcutaneous adipose tissue, and 

provide information on muscle structure and quality (77).  It is also widely available, 

portable, non-invasive, quick (~1-2 minutes per site), doesn’t have limits in terms of 

size and weight, is less costly than other imaging techniques, ,  involves no radiation 

exposure and data can be stored electronically (66, 74, 78, 79). As such, it has 

significant potential for use in clinical settings where assessment of body 

composition is inherently more difficult, e.g. critical care, maternal health and spinal 

cord injury (80, 81).  

 

Until recently, USS has been primarily used for the regional quantification of adipose 

tissue either for the assessment of subcutaneous adipose tissue in manner similar to 

skinfolds (e.g. at triceps, biceps, subscapular, suprailiac sites). It is alsoincreasingly 

used for the assessment of abdominal VAT and SAT (82). Such clinical studies have 

examined differences in subcutaneous fat patterning in pregnancy (81, 83), changes 

in upper and lower limb body composition following bariatric surgery (84) and the 

relationship between USS abdominal fat thicknesses, or indexes (such as abdominal 

wall fat index) with parameters of metabolic risk in diabetic and healthy populations 

(82, 85, 86).  

 

Whilst results from clinical studies are promising, they have not examined the 

accuracy of USS-derived estimates of adiposity against appropriate reference 

methods. Although limited, validation studies are emerging. One such study (87) , 

used USS to measure subcutaneous adipose tissue at five anatomical sites, in 135 

healthy young adults (mean age 22 ±3 years, BMI 25 kg/m2).Body fat was estimated 

using a population-specific prediction equation and results compared to those 

obtained from DXA. Ninety five percent limits of agreement analysis between USS 

and DXA demonstrated individual differences of -3.6% to 3.8% body fat for men and 

-6.2% to 5.4% body fat for women (87). Another such study of 74 older men and 
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women aged 67-76 years examined the agreement between USS and CT measures 

of visceral and subcutaneous abdominal thickness (88). In this instance, 95% limits 

of agreement analysis demonstrated individual differences for visceral thickness of -

2.26 to 2.94 cm in men and of -1.87 to 2.53 cm in women and limits of agreement for 

subcutaneous thickness –0.87 to 1.37 cm in men and -0.61 to 1.99 cm in women.  

Furthermore, it has been suggested that regional USS measurements of 

subcutaneous adipose tissue for predicting percentage body fat are of similar 

accuracy to skinfolds and possibly more sensitive to change over short period of 

times, as well as more reliable and reproducible in obese populations (66, 87).  

Whilst promising, further larger cross-sectional and longitudinal validation studies 

across diverse groups and clinical populations are required to determine the validity 

and reproducibility of USS-derived estimates of body composition.  

 

Increased consideration is also being given to USS as a potential technique for the 

quantification of skeletal muscle thickness and for determining muscle quality (74). 

When used for the quantification of skeletal muscle, measurements taken at various 

regional sites, (e.g. biceps, triceps,  mid thigh (rectus femoris) and calf 

(gastrocnemius)) are suggested to provide more accurate estimates of muscle mass 

than limb circumferences corrected for subcutaneous adipose tissue (89). Clinical 

studies in this area have examined the use of USS to quantify muscle mass in 

postmenopausal women (89); changes in muscle mass response to resistance 

training in chronic obstructive pulmonary disease (90); losses in muscle mass across 

a period of critical illness (80, 91) and following bariatric surgery to quantify and 

examine patterns of muscle versus fat loss (84). However, few studies have 

examined the agreement of USS-derived measurements of muscle with appropriate 

reference methods. One study, conducted in 45 overweight men with coronary artery 

disease (68 ± 6 years) who underwent USS and CT scans of their rectus femoris 

reported 95%limits of agreement of -0.24 to +0.25cm (92), but further larger, more 

diverse, cross-sectional studies and longitudinal studies are needed to explore the 

agreement between of USS with reference methods before routine ultilisation is 

considered (74). 

 

In addition to evaluating muscle mass, USS echo intensities, measured using 

standard USS machines, have emerged as a potential marker of muscle quality. 
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Echo intensities, are however, more difficult to quantify and are determined either by 

visual scoring or by use of computer aided grey scale analysis (77, 93). Changes in 

fibrous tissue, intramuscular fat, and atrophy of muscle, along with inflammation and 

necrosis have been observed to influence echo intensity, with such changes 

resulting in increased echo intensities of muscle (93, 94). Furthermore,  in a small 

study of 184 Japanese men (65-91 years) echo intensity measurements taken at the 

point of the mid thigh demonstrated a significant negative association of moderate 

strength with muscle strength (r = -0.333, p< 0.001) as determined by isometric knee 

extension strength (79). As such, echo intensity could provide a useful tool in the 

assessment of certain conditions such as sarcopenia, but  further work is needed to 

establish the value of echo intensity measurements for quantifying muscle quality 

and for monitoring changes in response to interventions. 

 

Whilst USS reference data, for the purposes of body composition, are currently 

limited, two separate small studies of healthy populations have published normative 

values based on age and gender for muscle thickness and echo intensity at various 

sites, (77). However, it should be noted, that although muscle thickness values can 

be applied independently of the type of USS device, echo intensities are device-

dependent and whilst conversion factors are being developed, this currently limits 

the usefulness of echo intensity reference values. Furthermore, it would appear that 

there is a lack of universally accepted cut-offs for intra-abdominal fat thicknesses, 

with different cut-offs proposed for various risks (96, 97, 98). Therefore further work 

is required to validate USS measurements and develop universally agreed reference 

data, which is cognisant of age, gender and ethnicity.  

 

From the literature, it is apparent that USS is not without several limitations and 

several methodological aspects currently lack definitive answers (Table 1). Training 

and experience can address some of these issues (99, 100), as will future 

developments aimed at the further automation of measurements. In addition, 

Toomey et al., (101) have made suggestions for standardising USS measurements 

as follows: site identification and participant positioning using Internal Society of 

Advancement of Kinanthropometry guidelines, longitudinal scanning of sites, use of  

a high frequency linear transducer, and skin-wound closure strips to guide consistent 

screen measurement of images, close observation of real time imaging and 
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generous use of water soluble transmission gel to ensure minimal compression of 

underlying tissues.  

Despite the current issues regarding validity and reproducibility, the interest in USS 

has been further enhanced by the development of portable commercial ultrasound 

devices. Aimed primarily at the fitness market, one such device (Body-Metrix BX-

2000, Intelametrix, Livermore, CA) calculates regional fat thicknesses using fixed 

and assumed acoustic reflection coefficients of 0.012 for the fat-muscle interface and 

0.22 for the muscle-bone interface (102). It can also predict percentage body fat 

using known skinfold prediction equations and has the apparent capability of 

estimating muscle thickness and differentiating subcutaneous from visceral adipose 

tissue. A recent, small study of this particular device in 47 healthy, young 

overweight/obese adults, demonstrated that the USS prediction of percentage body 

fat (29 ± 7% versus 34 ± 8%) was significantly lower and the USS prediction of fat-

free mass was significantly higher (67 ± 13 versus 62 ± 13 kg) in comparison to air 

displacement plethysmography (75). How much of this error was due to the inherent 

limitations of the prediction equations is unclear. Despite these differences, the 

device demonstrated good reliability (intraclass correlation coefficients of 0.84-0.98), 

which could make it a cost effective method of monitoring longitudinal regional 

changes in response to various interventions (75). Overall, it is important to 

emphasis that whilst an increasing interest in USS is evident, and the technology can 

be applied to clinical practice, further work is required before USS should be 

considered a valid and appropriate body composition method. 

 

Bioelectrical impedance analysis 
 
Bioelectrical impedance analysis (BIA) has been used in public health and clinical 

practice for some considerable time, first being developed to estimate body water, 

then further developed to estimate body composition and latterly to predict disease 

severity and prognosis (103). BIA is considered to be safe, straightforward, minimally 

invasive, relatively inexpensive, and more reproducible (<1%) than skinfold 

measurements. Results are readily available, and several devices are portable, 

making it an attractive bedside method for the clinical assessment of total body water 

and body composition (104, 105). As BIA technology has advanced, several 

methods and devices are available. As these devices have different assumptions 
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and limitations, it is important that health care professionals using these devices 

have sufficient knowledge and understanding of these.  

 
BIA involves the passage of painless low amplitude current through the body, 

allowing the measurement of resistance (R) and reactance (Xc). BIA assumes that 

the resistance of the length of a conductor of homogenous material and uniform 

cross-sectional area is proportional to its length and inversely proportional to its 

cross-sectional area. It also assumes that the resistance to a current is inversely 

proportional to the uniform distribution of total body water (TBW) and electrolytes. 

(106, 107). However, this is seldom true in practice, and it has been suggested that 

measurements are related to TBW by statistical association rather than biophysical 

principles (99). Another significant limitation to the use of BIA in clinical practice is 

the use of linear regression equations to derive body composition data. Published 

equations have largely been derived from healthy, non-obese Caucasian populations 

within a BMI range of 16-34 kg/m2 (108), although others are available. As such, 

significant errors can occur when equations are applied to different populations. For 

example, when applied to ethnically diverse populations this can result in systematic 

bias of up to 3%, due to differences in relative leg and arm lengths, frame size and 

body build (105). 

 
BIA does not determine body composition directly. Resistance and reactance values 

are used to determine body impedance (based on the vector relationship between 

resistance and reactance), then total body water (TBW), body cell mass (BCM) 

extracellular water (ECW), intracellular water (ICW), and phase angle (PA). Fat-free 

mass (FFM) and body cell mass (BCM) can thereafter be estimated by the use of 

linear regression equations, which are usually age- and gender-specific and based 

on the assumption that FFM is on average 73.2% TBW. Once FFM has been 

determined, fat mass (FM) can be estimated by subtracting FFM values from body 

weight (107). BIA can also be used to derive, by use of prediction equations, fat-free 

mass/fat mass indices (104) and appendicular skeletal muscle mass (110). This 

latter rapid non-invasive quantification of appendicular skeletal stores is increasingly 

attractive, and suggested to be more important than that of whole-body FFM stores, 

due to the greater direct link with functionality (104). 
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In controlled studies of healthy individuals, BIA has been reported to provide 

estimates of body composition within 3-5% of those provided by reference methods 

such as DXA (53). However, in clinical populations greater variability isobserved. For 

example, a recent review of different BIA devices in surgical and oncology 

populations, demonstrated significant variability for estimates of TBW from -19% to 

+7%, FFM from -15% to +4% and FM from -16% to +43% (111). The precision of 

BIA to monitor longitudinal changes in body composition has also been questioned 

with suggestions that changes <5 kg should be interpreted cautiously (112). 

Additionally, it has also been questioned as to whether BIA-derived FM, FFM is able 

to predict clinical outcome any better than BMI (113).  

 

The first and most widely used method of BIA is single frequency BIA, (SF-BIA). 

Commonly used at a frequency of 50k Hz, it measures a weighted sum of 

extracellular water and intracellular water resistivity, whichcan be used to estimate 

TBW under normal conditions (101). SF-BIA cannot distinguish between the 

distribution of TBW in ECW and ICW and SF-BIA results are not considered to be 

valid in circumstances where hydration is significantly altered (106). In such 

instances an increase or decrease in TBW e.g. oedema, ascites or dehydration 

could result in a significant over or under estimation of FFM and FM (107, 114).  

 
Traditionally, SF-BIA has involved the use of four electrodes attached to the hand, 

wrist, foot and ankle of one side of the body and requires individuals to be normally 

hydrated, placed in a supine position with measurements taken after a period of rest 

and voiding of urine. Newer SF-BIA monitors have subsequently been developed 

that can undertake whole-body measurements of individuals in the vertical position, 

take simultaneous measurements of both sides of the body from hand to foot and 

provide estimates of skeletal muscle mass of different individual segments of the 

body e.g. upper body (right and left arm) and lower body (right and left leg). 

However, further work is required to determine the utility of these latter 

measurements across diverse clinical populations.  It is also worth noting that 

although the evidence is limited, measurements taken in the vertical versus supine 

position are likely to result in differences in ECW and ICW measurements, but not of 

total body water (115). 
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SF-BIA monitors that measure from foot-to-foot alone (which can also directly 

measure body weight) or, hand-to-hand alone are also available, which ake 

measurements in the vertical position. These devices are generally less costly than 

whole-body devices and are available to purchase and use in clinical and non-clinical 

and home settings. However, the data provided by such devices can be limited (e.g. 

may only provide % fat mass and not provide raw resistance and reactance data), 

and the use of foot-to-foot machines may be limited by manufacturers’ upper weight 

limits. Like whole-body SF-BIA devices, the validity of these devices to accurately 

and reliably predict body composition has been questioned. Whilst, in healthy 

populations, foot-to-foot devices can be considered a useful alternative to whole-

body devices, the validity of hand-to-hand devices has been particularly questioned 

(116) with one study of 81 healthy individuals, demonstrating a significant 

overestimation of percentage body fat in women of approximately 5% leading to 

potential misclassification of nutritional status (117). Furthermore, anecdotally the 

validity of any results obtained in the home setting may be questionable, as 

individuals may not consistently adhere to a standardised measurement process.  

 

Several sources of SF-BIA-derived body composition reference data are available. 

These have mainly been derived from large healthy populations, (118, 119) and as 

such should be used with caution in clinical populations. It should also be recognised 

that values obtained from different devices can differ which may affect comparison 

across studies and the applicability of reference data. 

 
Multi-frequency BIA (MF-BIA), uses multiple low to high frequencies (usually 

between 5-200 kHz) and empirical linear regression models to derive impedance 

values, TBW, ICW, ECW and FFM (106). Whilst MF-BIA is generally not considered 

to improve estimates of body composition, it can provide amore accurate 

determination of ECW and TBW due to the ability of the higher frequencies to 

overcome the capacitance of cell membranes (107). MF-BIA could be of value in 

populations and individuals where disease related alterations in hydration have 

occurred such as critical care, renal and liver disease but evidence to support this 

use is still limited. Developments in MF-BIA technology, as is the case with SF-BIA 

have resulted in the availability of a variety of multi-frequency monitors, which can 

measure individuals in a supine or vertical position, simultaneously measure both 
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sides of the body and provide estimates of individual body segments. However, the 

use and validity of these in clinical practice to date is limited.  

 
Bioelectrical spectroscopy (BIS) is a method, that uses ≥50 frequencies and 

mathematical modelling to calculate the resistance at zero and infinite frequencies to 

allow the determination of impedance values and in turn ECW, ICW. To date, the 

use of BIS has been mainly limited to healthy individuals with no structural or 

hydration abnormalities. There is some suggestion that BIS may significantly over or 

under predict ECW and TBW, in certain clinical populations (120) and a lacks 

sufficient evidence to support its use for the quantification and assessment of body 

composition. From the limited data that does exist , the use of BIS could result in 

estimated differences of ±10 kg FFM in renal populations. It may also significantly 

underestimate FFM in oncology patients who have experienced significant weight 

loss and conversely may overestimate FFM in overweight and obese individuals 

(107,120).  

 

Even though the use of BIA for the assessment of body composition in clinical 

populations has been regularly criticised (113), it is still frequently used due to its 

practicality and relative low cost. Therefore, in a bid to derive more valid 

assessments that directly reflect tissue hydration and integrity, there is increasing 

interest and support for the use of ‘raw’ resistance and reactance data (121). Two 

such variables are phase angle (PA) and bioelectrical impedance vector analysis 

(BIVA). Phase angle is derived from the relation between the direct measurements of 

resistance (R) and reactance (Xc) and calculated as follows: Phase angle (degrees) 

= arctangent (Xc/R) x (180/π) (121).  

 

In healthy participants, PA values usually ranges between 5-7o and whilst the 

physiological meaning of PA is not yet well understood, it is considered to be an 

indicator of intra- and extracellular water distribution and, as such, an indicator of 

cellular health. Higher values are considered to reflect greater cellular integrity and 

function, and it has also been used as an alternative to the gold standard potassium-

40 to predict body cell mass (122).  As PA is calculated independently of regression 

equations, weight and height, it could prove of value  in situations where the use of 
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BIA for the purposes of assessing body composition would be invalid or not 

practically possible e.g in critical care, dialysis or liver disease populations (123).  

 

Studies indicate that PA may be influenced by several factors.  . Men have been 

observed to have higher PA values than women due to greater level of muscle mass 

and PA appears to decrease with increasing age. Furthermore, higher levels of 

physical activity correspond with higher PA levels and whilst PA values appear to 

increase up to a BMI 30 kg/m2 they are observed to decrease >40 

kg/m2..Additionally, higher levels of inflammatory / infection markers have been 

observed to correspond to lower PA values (122, 124). PA is predictive of clinical 

outcome and mortality in a variety of clinical populations including HIV, cirrhosis, 

chronic obstructive pulmonary disease, haemodialysis, sepsis and cancer (118). PA 

has also been shown to correlate, in clinical populations, with functional markers 

(e.g. handgrip), quality of life scores and nutritional risk, although the latter 

relationship has not been consistently found (122, 125). PA has also been used to 

assess wound healing, whereby resistance (R) is considered to be a biomarker of 

cell growth with increases in resistance, suggestive of healing (126). Furthermore, 

when used in the context of pressure ulcers, a low reactance (Xc) along with a low 

serum albumin was found to be a  significant predictor of risk (127). However, 

despite this growing body of evidence, there is insufficient evidence examining 

longitudinal changes in PA in response to therapeutic interventions. 

 

Several reference values for PA, derived from large healthy populations, have been 

published (128, 129). However, as values from different devices can vary, 

comparison between studies and the applicability of reference data to clinical 

populations isdifficult.Reference data are also emerging for clinical populations, with 

proposed cut-off values to predict clinical outcome. In a recent study of 399 oncology 

patients, those who had a PA <5th centile had significantly lower nutritional and 

functional status and impaired quality of life (130). Subsequently it has been 

suggested that the 5th centile could serve as a simple prognostic cut-off across all 

clinical populations (122). 

 

The other variable, which directly uses resistance and reactance data obtained at a 

frequency of 50 kHz, is bioelectrical impedance vector analysis (BIVA). BIVA, in 



Smith & Madden:  Body composition & functional assessment - manuscript as accepted for JHND publication 

21 

 

contrast to PA, provides a more detailed understanding of tissue hydration and body 

cell mass, independent of regression equations and body weight and longitudinal 

changes can be interpreted more reliably than PA (122). BIVA plots impedance 

values as a bivariate vector from the components of R (x axis) and Xc (y axis), after 

being normalised for height,  providing a qualitative measure of soft tissue,  

independent of body size (122). PA remains the arctangent of Xc/R and the 95% 

confidence interval of the mean vector is plotted for a population group to allow 

statistical analysis (121). 

 

Single BIVA measurements can be compared with reference values adjusted for 

age, gender and BMI and are known as tolerance ellipses. Three tolerance ellipses 

have been determined which correspond to the 50th, 75th and 95th centiles for a 

healthy population. Healthy individuals are usually positioned within the 75th centile 

and values out with the 95th centile are considered to be abnormal (131). BIVA 

reference values, from a large population of healthy German adults, standardised for 

height and stratified for age, gender and BMI are available ,(132) as well as USA 

data stratified for age, gender and ethnicity (133). Presently, practical guidance on 

interpretation and use of BIVA is limited and as such the value of this method in a 

clinical populations remains to be established. Of particular interest is the use of 

BIVA to aid the interpretation of changes in body weight and body composition (134) 

and to assist in determining the validity of deriving body composition from BIA (121). 

 

All impedance measurements require  standardisation of the measurement protocol 

and several aspects should be considered. These include the need for the accurate 

measurement of height and weight, body and limb position, resting before 

measurements, controlling for the presence of metal or silicone implants, electrode 

position, timing of measurements, prior physical activity, bladder voiding, diuretics, 

ambient temperature, dietary and fluid intake including caffeine. Pregnancy or the 

presence of pace makers, both precluding the use of BIA (105, 135, 136). The 

majority of these aspects are potentially difficult to standardise in the clinical setting 

and may provide other sources of error or act as barriers to use.  However, some of 

these  aspects may not be as crucial as once thought. For example, a minimum 4-

hour fast prior to measurements has been commonly advocated. However, in a 

recent study of 55 healthy, young adults, of normal body weight demonstrated that 
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although eating and drinking a standardised drink/meal prior to foot-to-foot SF-BIA 

measurements resulted in statistically significant differences in the estimation of 

body composition, the differences were small (median percentage change of 1%) 

and within the imprecision of the BIA technique. This suggests that whilst a fasted 

state is ideal, the adherence to strict protocols may not be necessary (137), except 

when sequential measurements are made. 

 

In summary, despite the advances in BIA and continued use in practice, its use in 

measuring body composition appears to not be without several limitations. Despite 

this, the use of raw BIA data, PA and BIVA, does appear promising and may have 

important applications for practice in the future, (113); particularly if longitudinal 

controlled studies within clinical populations can elucidate how these variables are 

influenced by therapeutic interventions. Other advancements in the wider field of 

impedance technology may also hold future value, for the assessment of muscle 

quality. Electrical impedance myography (EIM), used in the evaluation and 

monitoring of neuromuscular diseases, has the potential to provide non invasive data 

(resistance, reactance and phase) about the quality of specific muscles or muscle 

groups (138, 139)). However, as there is a lack of relevant clinical  studies examining 

reliability, and sensitivity to change as well as the ability to practically interpret and 

apply findings, its clinical usefulness is currently limited(138, 139). 

 

Muscle strength, function and physical performance. 

As outlined in the introduction, there is an increasing need to consider markers of 

muscle strength, function and physical performance within the assessment and 

monitoring of body composition in response to nutritional interventions. Several 

methods are available which can be used within clinical settings to assess strength 

and function, but an understanding of their value, limitations and implications for 

practice is required. One of the most commonly used methods is handgrip 

dynamometry which measures upper extremity grip strength. It is a portable, simple 

and inexpensive method shown to predict post-operative risk, hospitalisation, 

disability (140), cardiovascular and all-cause mortality (141) independently of muscle 

mass (142). There are, however, some difficulties in interpreting results across 

studies due to differences in measurement protocols, participant position and the 
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choice of right or left hand. The American Society of Hand Therapists’ (ASHT) 

protocol, considered by many as the gold standard, recommends grip-strength 

should be  measured in a seated position, with shoulders abducted, elbow flexed at 

90o, forearm in a neutral position and with the mean value of three maximum grip 

efforts of both dominant and non-dominant hands (143). However, as other protocols 

exist which take measurements standing or in a supine position and utilize fewer or 

more handgrip efforts,  the interpretation of data across studies can be difficult (144). 

The type of dynamometer can also influence results. The majority of studies used a 

Jamar dynamometer (Lafayette Instruments, Layfayette IN), considered by ASHT as 

the gold standard, but as it is relatively heavy and requires an initial ~1.6 kg of force 

to move the indicator; it may confound measurements in older or frail populations 

(144). Therefore, alternative lighter dynamometers such as the Takei (Takei 

Scientific Instruments, Tokyo) or pneumatic squeeze dynamometer may be more 

appropriate in certain populations (145). 

Until recently, there has been limited normative handgrip-strength across the life-

course. Commonly, data derived from a meta-analysis of 12 (n=3317 adults, >20 

years of age), primarily USA studies, which conformed to the ASHT protocol and 

used a Jamar dynamometer, has been used (143). However, normative centile 

curves derived from 12 UK studies of 60,803 observations of participants aged 5 to 

90 years are now available (Tables 2a and 2b). Although the studies used varying 

measurement protocols and dynamometers, only maximum values were used to 

produce the centiles. In addition, sensitivity analysis of the data suggests that the 

centile curves accommodate the protocol differences between studies (145). A weak 

grip-strength has been defined as strength at least 2.5 standard deviations below the 

gender-specific peak mean. However the use of reference data to interpret individual 

results should be done with consideration of how handgrip was measured and the 

population the reference data was derived from. Furthermore, grip-strength can be 

affected by psychological factors such motivation, anxiety, depression, cognition, 

sedatives, diseases affecting the hands (e.g. rheumatoid arthritis) and inflammation 

(9), therefore these factors should also be considered when interpreting results. 

As differences in muscle strength and responsiveness to interventions between 

upper and lower limbs have been observed (4, 146, 147), the strength testing of 
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lower versus upper limbs may be relevant. Knee extensor testing is commonly used 

in a range of populations and age groups and has been associated with disability 

and mortality. Various reference values are available. For example, in one large 

study of 2,784 older adults (mean age 74 + 3 years), who were followed up for a 

median of 5.9 years, values of <1.13 Nm/kg for men, and <1.01 Nm/kg for women 

were associated with a high risk of future mobility limitation (148).  

However, knee extensor strength testing can be difficult, costly, time-intensive and 

the equipment required may not be routinely available. Furthermore, whilst 

differences in upper and lower limbs have been observed there is a suggestion that 

in healthy individual’s grip-strength and knee extensor strength share a common 

construct and either could be used to determine muscle strength, with handgrip the 

preferred option due to its simplicity (149). Whether this construct remains valid in 

the presence of disease requires further exploration. 

The consequences of decreased muscle strength are functional impairment and 

reduced ability to perform activities of daily living (150). Functional performance 

tests, appearing to have a stronger relationship with muscle strength than muscle 

mass, can therefore provide valuable proxy assessments (6,151). Such performance 

tests are considered clinically relevant, as they in turn have been associated with 

disability risk and mortality (152). Common performance tests include walking / gait 

speed, 6-minute walk test, stair-climb test, timed up-and-go and chair-rise / sit-to-

stand. All of these are relatively simple and inexpensive tests to perform in the 

clinical setting (153). Various reference data are available (Table 3).  In the main, 

these apply to healthy older adults and further work is needed in more diverse 

populations to establish relevant cut-offs to aid comparison between studies, 

determine the prevalence of impairment and aid the development of targeted 

therapeutic interventions (154).  

Walking / gait speed is of particular interest as this has been found to be predictive of 

adverse outcomes such as future health status, hospitalisation and risk of falling, 

particularly in older individuals (150, 155). Commonly measured as the individual’s 

usual walking pace over a short 4-metre distance, it is a feasible and practical 

assessment within a clinical setting (156).  A usual gait speed <0.6 m/sec has been 

proposed as a diagnostic cut-off for ‘dismobility’ (157) and in chronic kidney disease, 
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it has been demonstrated that each 0.1 m/sec decrease in gait speed is associated 

with a 26% higher risk of mortality (158). Therefore, a change in gait speed could 

serve as a useful outcome measure for assessing interventions, but appropriate cut-

offs in younger and more clinical and ethnically diverse populations are currently 

lacking. 

Self-reported methods provide a more subjective assessment of physical function. 

These include the sickness impact profile (159), the Barthel index (160), the Duke 

activity status inventory (161), the Lawton Instrumental Activities of Daily Living scale 

(162), the World Health Organisation Disability Assessment Schedule (163) or more 

generic questionnaires e.g. the short form 36 (164) and EQ5D (165), which capture 

functional related performance. Additionally, the subjective global assessment and 

the mini nutritional assessment tool which incorporate elements of functional 

assessment could be options for practice (166, 167). It is, however, important to note 

that self-reported functioning does not always correlate with objective measures of 

function (164). This could be because self-reported functioning is considered to be a 

dynamic, non-linear construct (168). In addition, factors such as gender, age, recent 

health problems, personality traits, depression, anxiety, cognitive impairment, pain 

and health literacy can also influence the accuracy of self-reporting (169,170, 171). 

‘Ceiling’ and ‘floor effects’ of a questionnaire have been observed and may also 

influence results (150, 172). 

Whilst these methods are applicable for the assessment and monitoring of muscle 

strength and physical performance per se, future work to elucidate  the influence of 

nutritional interventions versus other interventions, such as exercise, on muscle 

strength and functional performance is required. In doing so, an integrated 

multidisciplinary approach will be necessary. 

Conclusion  

Advances in body composition techniques have undoubtedly led to an increased 

understanding of the role of tissue volume and mass, its quality, patterning, and 

functionality and how these reflect nutritional status and impact on health risk. These 

advances coupled with increasingly outcome-focused healthcare suggest that 

practice needs to evolve and move beyond current approaches (19, 173, 174). 

Although, developments in assessing body composition and function bring 
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challenges associated with limited validation and interpretation, this is an exciting, 

rapidly developing era with many opportunities to apply emerging knowledge and 

techniques to practice and thus influence future interventions and improve health 

outcomes. 
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Table 1: Summary of current methodological issues relevant to ultrasound 

scanning when used for the assessment of body composition in clinical 

populations (66, 73, 74, 76, 80, 93, 99, 101) 

 

• Greater operator dependency than other imaging techniques 

• Requirement for anatomical knowledge to correctly identify interfaces and accurately 

measure tissues of interest  

• Undetermined effects of dehydration and oedema on measurements of muscle thickness 

and echo intensity  

• Undetermined effects of intramuscular fat and connective tissue on estimates of muscle 

thickness  

• Undetermined effect of food and drink consumption, particularly on abdominal 

measurements  

• Undetermined effect of levels of exertion on muscle blood flow and muscle size 

• Undetermined effect of muscle contraction/relaxation on measurements 

• Lack of standardised application of force applied to the transducer- applying maximal force 

can reduce measured thicknesses by 25-37% depending on the site of measurement and 

tissue of interest 

• Lack of standardisation of scanning plane- scans can be made in the longitudinal or 

transverse plane  

• Lack of standardisation of USS mode and frequency 

• Lack of standardised subject positioning- measurements can be taken standing or supine, 

with suggestion that measurements taken in standing position may provide more accurate 

estimates  

• Lack of standardised measurement sites- dimensions can vary with location  
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Table 2a: Male grip-strength values (145) 

Male Centiles (kg) Mean (SD) 

Age (years) 10th  25th 50th 75th  90th   

5 6 7 8 9 10 7.7 (2.9) 

10 12 15 17 20 22 17.2 (4.1) 

15 21 25 29 33 38 29.6 (5.6) 

20 30 35 40 46 52 41.5 (7.3) 

25 36 41 48 55 61 48.8 (8.7) 

30 38 44 51 58 64 51.6 (9.6) 

35 39 45 51 58 64 51.6 (10.1) 

40 38 44 50 57 63 50.3 (10.3) 

45 36 42 49 56 61 48.8 (10.3) 

50 35 41 48 54 60  47.6 (10.1) 

55 34 40 47 53 59 46.2 (9.8) 

60 33 39 45 51 56 44.6 (9.2) 

65 31 37 43 48 53 42.3 (8.6) 

70 29 34 39 44 49 39.1 (8.1) 

75 26 31 35 41 45 35.6 (7.6) 

80 23 27 32 37 42 32.2 (7.3) 

85 19 24 29 33 38 28.5 (7.0) 

90 16 20 25 29 33 24.7 (6.8) 

 

 

 

Table 2b: Female grip-strength values for women (145) 

Female  Centiles (kg) Mean (SD) 

Age (years) 10th  25th 50th 75th  90th   

5 6 7 8 9 10 8 (3.1) 

10 12 14 16 19 21 16.7 (3.8) 

15 17 20 24 27 30 23.9 (4.5) 

20 21 24 28 32 36 28.4 (5.1) 

25 23 26 30 35 38 30.6 (5.6) 

30 24 27 31 35 39  31.4 (6.0) 

35 23 27 31 35 39 31.3 (6.2) 

40 23 27 31 35 39 30.7 (6.3) 

45 22 26 30 34 38 29.9 (6.4) 

50 21 25 29 33 37 28.7 (6.4) 

55 19 23 28 32 35 27.5 (6.4) 

60 18 22 27 31 34 26.5 (6.2) 

65 17 21 25 29 33 25.3 (6.0) 

70 16 20 24 27 31 23.5 (5.7) 

75 14 18 21 25 28 21.4 (5.4) 

80 13 16 19 23 26 19.1 (5.1) 

85 11 14 17 20 23 16.6 (4.7) 

90 9 11 14 17 20 14.2 (4.4) 
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Table 3: Examples of reference values for selected functional performance 

tests  

Performance test Male Female Comments 

Normal walking/gait 
speed over measured 
distance 
(metres/second) 

Age 
 
20-29 
30-39 
40-49 
50-59 
60-69 
70-79 
80-99 

Mean: 
 
1.36 
1.43. 
1.43 
1.43 
1.34 
1.26 
0.97 

Age  
 
20-29 
30-39 
40-49 
50-59 
60-69 
70-79 
80-99 

Mean: 
 
1.08 
1.26 
1.22 
1.10 
0.97 
0.83 
0.56 

Systematic review & 
meta-analysis of 41 
studies involving 23,111 
healthy adults (175) 

Timed up-and-go 
(seconds) 
Time taken to rise from 
a chair, walk three 
metres, turn around, 
walk back to the chair & 
sit down. 

60-99 years: mean 9.4 (95% CI: 8.9-9.9) 
60-69 years: mean 8.1 (95% CI: 7.1-9.0) 
70-79 years: mean 9.2 (95% CI: 8.2-10.2) 

80-99 years: mean 11.3 (95% CI: 10.0-12.7) 
 

Individuals who exceed the upper 95% CI can be 
considered to have worse than average performance 

 
Meta-analysis of 21 
diverse studies (from 
across Europe, 
Australia, USA, Asia & 
Middle East) involving 
4,395 apparently 
healthy individuals (176)   

Sit to stand/chair rise 
(seconds) 
 
5 sit to stand (Time 
taken to undertake 5 sit 
to stand transitions) 

60-69 years 11.4 seconds 
70-79 years 12.6 seconds 
80-89 years 14.8 seconds 

 
Individuals with times exceeding the above can be 

considered to have a worse than average performance  

Meta-analysis of 13 
studies involving 20,617 
community dwelling 
older adults from across 
USA, Australia & Japan 
(177) 

30-second sit-to-stand 
 
(number of sit to stand 
transitions in 30 
seconds)  

 Male  Study of 7,183 (2,135 
men) community 
residing older adults 
across USA, aged 60-94 
years with 65% 
performing moderate 
activity >3 times/week 
(178) 

Age 
 
60-64 
65-69 
70-74 
75-79 
80-84 
85-89 
90-94 

Below 
average 
<14 
<12 
<12 
<11 
<10 
<8 
<7 

Average 
 
14-19 
12-18 
12-17 
11-17 
10-15 
8-14 
7-12 

Above 
average 
>19 
>18 
>17 
>17 
>15 
>14 
>12 

Female 

Age 
 
60-64 
65-69 
70-74 
75-79 
80-84 
85-89 
90-94 

Below 
average 
<12 
<11 
<10 
<10 
<9 
<8 
<4 

Average 
 
12-17 
11-16 
10-15 
10-15 
9-14 
8-13 
4-11 

Above 
average 
>17 
>16 
>15 
>15 
>14 
>13 
>11 
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60-second-sit-to-
stand  
 
(number of sit to stand 
transitions in 60 
seconds) 

Male Centile Cross sectional study of 
6,926 Swiss adults as 
part of nationwide 
health promotion 
campaign (179).  

Age 
(years) 

2.5th 25th 50th 75th 97.5
th
  

20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 

27 
29 
28 
27 
25 
25 
24 
22 
20 
20 
19 
16 

41 
40 
40 
38 
37 
35 
35 
33 
31 
29 
27 
25 

50 
48 
47 
47 
45 
44 
42 
41 
37 
35 
32 
30 

57 
56 
56 
58 
53 
52 
53 
48 
46 
44 
40 
37 

72 
74 
72 
72 
69 
70 
67 
63 
63 
60 
59 
56 

Female Centile 

Age 
(years) 

2.5
th
  25

th
  50

th
  75

th
  97.5

th
  

20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-74 
75-79 

31 
30 
27 
25 
26 
25 
23 
21 
20 
19 
17 
13 

39 
40 
37 
37 
35 
35 
33 
30 
28 
27 
25 
22 

47 
47 
45 
42 
41 
41 
39 
36 
34 
33 
30 
27 

55 
54 
51 
50 
48 
50 
47 
43 
40 
40 
36 
30 

70 
68 
68 
63 
65 
63 
60 
61 
55 
53 
51 
43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


