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Abstract

In nature, sensors evolve to capture relevant information
needed for organisms of a particular species to survive and
reproduce. In this paper we study how sensor layouts may
evolve in different environments and under pressure of dif-
ferent informational constraints. To do this we evolve sen-
sor layouts for different environments and constraints using
a fitness measure with weighted terms for redundancy and
novelty, using, respectively, mutual information and Crutch-
field’s information metric. The results show how different
sensor layouts evolve depending on the structure and com-
plexity of the environment but also how selective pressure for
redundancy or novelty might affect the design.

Introduction

Nature has produced a wide variety of sensory organs that
are well adapted to the specific animals and their respective
environments (Dusenbery, 1992): For example, consider the
amazing echolocation capabilities exhibited by bats, dol-
phins, and some species of whales. Sound waves are emitted
by the animal and it then listens for the echo, which is used
to perceive predators, prey, and objects in the environment.
Another example is some birds and bees that probably can
use the horizontal component of the magnetic force around
the earth to determine their direction. The senses and their
interpretation in the brain can also develop during the life-
time of an individual. One example is humans that for some
reason go blind and then learn to use other senses to navigate
in place of vision.

But how are the different sensoric channels used by a par-
ticular species selected for to begin with and how do they
evolve over time? These are some of the questions pondered
in the field of sensor evolution (Dautenhahn et al., 2001). In
contrast with natural systems, sensors of artificial systems
are often, due to practical and historical reasons, seen as
something that is “given” and fixed. Only recently has there
been a strong research focus on building artificial systems
where the sensors can evolve and adapt, be combined, or
the sensory channels created or selected, as this may lead to
more autonomous, adaptive, and powerful systems as well as

better understanding of how sensors evolve in nature (Cari-
ani, 1998; Dautenhahn et al., 2001; Nehaniv et al., 2002).

In this paper we discuss how the positioning and informa-
tional coverage of similar sensors, for example vision sen-
sors, can evolve and adapt depending on the environment.
This has been studied in for example (Stryker et al., 1978)
where kittens were restricted to seeing either only vertical
or horizontal lines. It was found that the cortical cells se-
lective for orientation in the kittens preferred to fire mostly
in response to the orientation that they had been exposed to.
Evolution of sensory layout in an artificial agent was con-
sidered in (Jung et al., 2001) in relation to learning, where it
was shown that longer learning periods lead to better suited
sensors. In this paper we also consider the selective pres-
sure posed by the trade-off between redundancy and novelty
in sensoric input. If two sensors of the visual system of an
agent are completely uncorrelated it is hard to find structure
that for example can be used to compute optic flow (Gibson,
1986). However, if the sensors are completely correlated
the information they transmit is redundant and one sensor is
enough, unless they are used in an noisy environment where
the redundancy may be used to filter noisy input, and thus
provide robustness. Thus, there is a trade-off between simi-
larity of information and the novelty of information between
pairs and groups of sensors. To study the environmental
impact on sensor layout but also the trade-off between re-
dundancy and novelty, we apply evolution to sensor layouts
where the redundancy and novelty can be weighted to be
more or less important. In the experiment we consider the
evolution of layout of visual sensors in different environ-
ments, ranging from an environment consisting of only ver-
tical lines to a complex environment and a random environ-
ment without structure. The results show that the layout of
the sensors depends on the environment in which the agent
is situated in but also the selective pressure for redundancy
or novelty.

The remainder of this paper is organized as follows. The
next section discusses methods for computing differences
between sensors and especially information-theoretic mea-
sures. One example with real world data from a robot using



the described methods is also discussed. Then we describe
our experimental model, the results, and their interpretation.
Finally we summarize the paper and discuss possible appli-
cations and future directions of the presented work.

Information Distance between Sensors
In order to discuss the effectiveness and layout of sensors
it is fruitful to be able to quantify the functional and infor-
mational distances between sensors. To do this a number of
different methods can used, e.g., the Hamming distance and
frequency distribution distance (Pierce and Kuipers, 1997).
In (Olsson et al., 2004) these distance metrics are compared
with the information metric, which was defined and proved
to be a metric in (Crutchfield, 1990). The distance between
two information sources is there defined in the sense of clas-
sical information theory (Shannon, 1948) in terms of condi-
tional entropies. To understand what the information metric
means we need some definitions from information theory.

Let X be the alphabet of values of a discrete random vari-
able (information source, in this case a sensor) X with a
probability mass function p(x), where x ∈ X . Then the en-
tropy, or uncertainty associated with X is

H(X) = −
∑

x∈X

p(x) log2 p(x) (1)

and the conditional entropy

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x,y) log2 p(y|x) (2)

is the uncertainty associated with the discrete random vari-
able Y if we know the value of X . In other words, how much
more information do we need to fully predict Y once we
know X .

The mutual information is the information shared between
the two random variables X and Y and is defined as

I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X). (3)

To measure the dissimilarity in the information in two
sources Crutchfield’s information metric (Crutchfield, 1990)
can be used. The information metric is the sum of two con-
ditional entropies, or formally

d(X ,Y ) = H(X |Y )+H(Y |X). (4)

Note that X and Y in our system are information sources
whose H(Y |X) and H(X |Y ) are estimated from the time se-
ries of two sensors as described in the next section using (2).

It is worth noting that two sensors do not need to be iden-
tical to have a distance of 0.0 using the information metric.
What an information distance of 0.0 means is that the sen-
sors are completely correlated. As an example, consider two
sine-curves where one is the additive inverse of the other.
Even though they have different values in almost every point

is the distance 0.0 since the value of one is completely pre-
dictable from the other. In this case, the mutual information,
on the other hand, will be equal to the entropy of either one
of the sensors.

Redundancy and Novelty

We will in this paper use mutual information as a measure
of redundancy and the information metric to measure nov-
elty between pairs of sensors. Redundancy can be seen as
robustness to noise while novelty is important to capture as
much different information as possible about the environ-
ment. Thus, there is a trade-off between capturing redundant
and novel information.

An agent may optimize the relation between redundant
sensors and sensors that detect novel things, differently ac-
cording to selective pressure for redundancy or novelty and
the environment. The informational coverage achieved by a
set of sensors S can be used to calculate how sensors should
be selected and is defined as

ic(S) =
∑

X∈S

∑

Y∈S

(wmiI(X ;Y )+wim(H(X |Y )+H(Y |X)))

(5)
where X ∈ S and Y ∈ S are the sensors of individual S , wmi

a weight associated with the mutual information and wim a
weight associated with the information metric. Obviously,
if wim = wmi = 1, then ic(S) =

∑
X∈S

∑
Y∈S H(X ,Y ), since

H(X)−H(X |Y )+ H(X |Y )+ H(Y |X) = H(X)+ H(Y |X) =
H(X ,Y ), which is the joint entropy. The weights wmi and
wim are used to specify how much emphasis that is put on
redundancy and novelty.

As an example, consider Figure 1, which is a scatter plot
with mutual information on the y-axis and the information
distance on the x-axis for all pairs of sensors including the
visual sensors of a SONY AIBO1 robot dog.

The upper left corner of Figure 1 contains sensors with
large mutual information, and hence redundancy, but a small
informational distance. The lower right corner, on the other
hand, is where we find pairs of sensors with a large infor-
mational distance but little redundancy. Finally, the upper
right corner is the interesting part where pairs of sensors
both share a large amount of mutual information but also
have a large informational distance. This is implies that
these sensors must have a high individual entropy. In Fig-
ure 1 the vision sensors are the sensors in the diagonal cloud
where the upper left corner consists of vision sensors that are
physically close together on the AIBO, since neighbouring
pixels have much redundancy. One application of a scat-
ter plot like this is that related sensors can be grouped to-
gether from raw uninterpreted sensor data, in a similar way
to the sensory reconstruction method developed in (Pierce
and Kuipers, 1997) and extended in (Olsson et al., 2004).

1AIBO is a registered trademark of SONY Corporation.



Figure 1: Scatter plot of all sensors and 100 vision sensors
(pixels) from a SONY AIBO. The pixels are the diagonal
linear cloud.

Experimental Model

An individual will have to select and layout sensory channels
so as to maximize robustness and novelty of the information
they provide. On a 200 x 200 pixel environment a 10 x 10
individual can move a maximum of one pixel per time step in
the x-direction and a maximum of 1 pixel in the y-direction
and hence dx and dy ∈ {−1,0,1}, but not both 0 at the
same time. This means that there are 8 possible directions.
Each time step there is a 15% probability that either dx or
dy, or both, change value by -1 or 1. The 10 x 10 body has
100 possible positions to place sensors, numbered starting
with 1 in the upper left corner and 100 in the right lower
corner.

Each sensor saves for each time step the current value
of the underlying pixel, where the value is in the range
[0, ...,255] and then normalized in the range [0.0, ..,1.0].
Thus each sensor has an associated time series, with one el-
ement of data for each time step.

In the experiments four different environments were used,
see Figure 2. The first environment with only vertical stripes
in Figure 2(a) is similar to the experience of the kittens in
(Stryker et al., 1978). The one in Figure 2(b) has stripes in
two perpendicular orientations, while in the third one in Fig-
ure 2(c), each pixel has an equal probability of having any
value in [0, ...,255]. Finally, Figure 2(d) is a realistic image
of some rocks on a beach. This image will give more piece-
wise smooth effects of movement on sensory features than
the other images, something that is important for biological
systems (Gibson, 1986) as well useful when building models
of sensory features in artificial systems (Pierce and Kuipers,
1997; Olsson et al., 2004).

(a) Vertical (b) Cross

(c) Random (d) Rocks

Figure 2: The different environments used to evolve the sen-
sor layouts.

Effects of Environments on Information Distances
between Sensors

To illustrate the effects of environments on the information
distances between sensors we first consider an individual
with 100 sensors placed in a 10 x 10 grid that moves around
in a simple environment like Figure 2(a). After 1000 time
steps, or frames, a metric projection (Olsson et al., 2004)
is created using the information metric to compute the dis-
tance between all pairs of sensors. A metric projection is a
map that represents, in a small number of most relevant di-
mensions (in this case two), the distances between sensors so
that the distance between two sensors is an approximation of
their informational distance. The metric projection is shown
in Figure 3(a). As we can see there are 10 groups of sensors
with 10 sensors in each group. This is due to the fact that in
a simple vertical environment it is not possible to detect ver-
tical movement and since there are ten vertical lines in the
vision layout all sensors in one line will be grouped together
since they always have the same input. Now assume that
after 1000 time steps the agent moves to the more rich envi-
ronment of Figure 2(d). In Figure 3(b) to Figure 3(f) metric
projections are shown after 1400 to 3000 time steps. As the
individual experience more of the complex environment the
informational distance of the sensors increases. After 3000
time steps the real layout of the sensors has been found2.

2Since the raw input data contains no directional information
it is impossible to find the absolute layout, and only the relative
positions can be computed, see (Olsson et al., 2004).
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(a) 1000 frames
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(b) 1400 frames
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(c) 1800 frames
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(d) 2200 frames
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(e) 2600 frames
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(f) 3000 frames

Figure 3: Metric projections of informational distances be-
tween visual sensors. After 1000 time steps the agent moves
to a richer environment from the vertical environment and
the distances between the sensors increase until their layout
has been found.

Evolution of Sensor Layouts

Suppose that an individual in an evolving population has
enough resources to select only ten sensors from amongst
the 100 possible to lay them out as to maximize informa-
tional coverage, where the layout is genetically determined
by the genome. To evolve the layout of the 10 sensors a
Microbial genetic algorithm (GA) (Harvey, 2001) was used,
with a population size of 20, a mutation rate of 5%, and
crossover probability of 50%. The Microbial genetic algo-
rithm uses tournament selection and was chosen for its ex-
treme simplicity, speed, and the fact that it seems to per-
form just as well as many other GAs without much tweak-
ing. Each individual’s body is a 10 x 10 square with 10 sen-
sors placed somewhere on it. The genome thus encodes a list
of 10 positions within that square. The number of possible

genomes with 10 genes in the range [1,..,100] is

n!
k!(n− k)!

=
100!

10!(100−10)!
≈ 6.2∗1019

.

Each position can only be used once in each agent and thus
care is taken during mutation and crossover not to let the
same position occur twice. If this occur during crossover
that particular position is not copied, while in mutation a
new random position is selected.

Each individual i moves around the image for t time steps,
in our experiments t = 4000, and is then evaluated accord-
ing to its informational coverage, Equation (5). Note that
the fitness of one sensor position is dependant on the other
positions in the genome, since the fitness is calculated over
all pairs of sensors in the genome. In the first experiment
the weights were wmi = 2 and wim = 1, which means that the
theoretical maximum value for the mutual information term
and the information metric is the same. In the second exper-
iment wmi = 1 and the information metric weight wim = 4,
to reward novelty more than redundancy.

Figure 4 shows the evolved sensors after 10000 genera-
tions of evolution of a typical run using the Microbial GA.
First consider the case where the mutual information and
information metric is given equal importance, i.e., wmi = 2
and wim = 1, displayed in Figure 4(a), 4(c), 4(e), and 4(g).
In Figure 4(a) all sensors are aligned in a single vertical line.
This is an example of maximizing the mutual information
since all sensors in every time step will extract the same
value from the vertical environment. In general for simple
environments with variation in only one dimension, like this
one, a sensor layout that maximizes the mutual information
between sensors will be a spatial representation of the envi-
ronment.

In Figure 4(c) and Figure 4(g), we find that the sensors
are grouped together in both dimensions. This is due to the
fact that these environments are two-dimensional, where the
environment with only vertical lines informationally can be
seen as a one-dimensional environment. In Figure 4(e) and
Figure 4(f), the random environments, we find that there is
no structure in the sensor layout. An analysis of the fitness
landscapes for this environment reveals that there is no struc-
ture, and almost all configurations have exactly the same fit-
ness. This is an obvious result since each pixel has the same
probability of being in any state, and thus prediction or find-
ing structure is, at least in practice, impossible.

Now consider the case where there is a strong selective
pressure for maximizing the distance between sensors (nov-
elty), the case where wmi = 1 and wim = 4. In Figure 4(b)
the layout is completely different from Figure 4(a). Now the
sensors are all placed in different horizontal positions, with
some redundancy in the vertical positions. By placing each
sensor in a different column the distance between the sen-
sors has been maximized, and the fact is that the position in
different rows does not make a difference at all in this en-
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Figure 4: Evolved sensor layouts for the different environ-
ments. In Figure 4(a), 4(c), 4(e), and 4(g) the weights in the
fitness function are wmi = 2 and wim = 1. In Figure 4(b),
4(d), 4(f), and 4(h) wmi = 1 and wim = 4.

vironment, so that coverage of the dimension giving rise to
novelty is complete. In Figure 4(d) we find that the num-
ber of collinear sensor pairs and the number of horizontal
and vertical lines is maximized by maximizing information
coverage (with a high weight for novelty). In Figure 4(h)
we find that the sensors are spread out over the grid, which
maximizes the informational distance between the sensors.

What would happen if several sensors were allowed in
the same position? In the second case where the informa-
tional distance is important nothing would change. But, if
we consider the case where the mutual information is more
important, we would find that all sensors would be placed on
the same position. This would be the position with the high-
est individual entropy, since the mutual information between
this position and any other position must be lower, due to the
fact that I(X ;Y ) ≤ H(X).

Conclusions
This paper has presented some initial results regarding some
of the trade-offs associated with evolving sensor layouts
and sensory channel selection that an agent can face. We
use formal, information-theoretic, measures of redundancy
(mutual information) and novelty (information distance) be-
tween pairs of sensors. One trade-off is between redun-
dancy, something that might be important in noisy and/or
static environments, and novelty, which is more important
in dynamic and complex environments. Some redundancy is
necessary in vision since vision is a spatial sense, and with-
out any relation between different vision sensors (eye cells)
no spatial information can be found. To study this problem
four visual environments were used. These range in com-
plexity from a very simple one with only vertical stripes to a
realistic image of rocks and a completely random image. In
these environments agents evolve their sensor layout where
the fitness of the agent depends on the weights associated
with mutual information (redundancy) and the informational
distance (novelty) between the sensors. The fitness associ-
ated with one sensor’s position depends on the positions of
the other nine sensors. The results show that the evolved
layouts depend both on the environment and the kind of cov-
erage rewarded (in our studies, a weighted combination of
redundancy and novelty).

One interesting topic that we will consider in our future
work is the relevance of information acquired by a certain
sensor to the agent. This notion of relevant information was
introduced in (Nehaniv, 1999) and formalized in relation to
utility in (Polani et al., 2001) by associating the relevance
of information with the utility for a particular agent acting
in its environment. By measuring the relevant information
acquired by different sensors it should be possible to com-
pute the distance between sensors regarding their relevance
to an agent performing a certain task. Equipped with the
notion of relevant information and a way to measure the
distance between sensors using a metric we expect it to be



easier to design sensoric systems that can adapt to differ-
ent conditions and tasks to be performed, and also to un-
derstand how the selection of sensory channels happens in
nature. This is especially important since using each sen-
sory and effector channel has an associated cost and this has
to be traded against the utility of using that channel (Ne-
haniv, 1999; Polani, 2003). For example, in some cases it
might be more effective from the agent’s point of view to
accept a slight decrease in overall utility depending on the
expenditure for attaining the information. Thus, it is inter-
esting and important to develop a predictive theory of how
an agent can most effectively select, combine, or integrate
channels to solve a certain task.

Finally, is it important to note that what you do in the
world determines what you can distinguish (active percep-
tion). Conversely, the world also to some extent determines
what you can know about your sensors.
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