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ABSTRACT 

This paper describes a series of modular neural network simulations of visual object processing. In a 

departure from much previous work in this domain, the model described  here comprises both 

supervised  and  unsupervised  modules and  processes real p ictorial representations of items from 

d ifferent object categories. The unsupervised  module carries out bottom -up encoding of visual 

stimuli, thereby developing a ‘perceptual’ representation of each presented  picture. The supervised  

component then classifies each perceptual representation accord ing to a target semantic category. 

Model performance was assessed  (i) during learning, (ii) under generalisation to novel instances, and  

(iii) after lesion damage at d ifferent stages of processing. Strong category effects were observed  

throughout the d ifferent experiments, with living things and  musical instruments eliciting greater 

recognition failu res relative to other categories. This pattern derives from within -category similarity 

effects at the level of perceptual representation and  our data support the view that visual crowding 

can be a potentially important factor in the emergence of some category specific impairments. The 

data also accord  with the Cascade model of object recognition since increased  competition between 

perceptual representations resulted  in category-specific impairments even when the locus of damage 

was within the semantic component of the model. Some strengths and  limitations of this modelling 

approach are d iscussed  and  the results are evaluated  against some other accounts of category specific 

recognition failure. 
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INTRODUCTION 

One of the most consistently reported  find ings from  neuropsychological work on visual object 

recognition is the emergence of category specific recognition deficits after different forms of 

neurological impairment (e.g. Basso, Capitani and  Laiacona, 1988; Farah, McMullen and  Meyer, 1991; 

Farah, Meyer and  McMullen, 1996; Gonnerman, Andersen, Devlin, Kempler and  Seidenberg, 1997; 

Humphreys, Riddoch and  Quinlan, 1988; Warrington and  McCarthy, 1987). Category specific deficits 

are characterised  by a sparing of recognition and  naming abilities for certain classes  of object in 

contrast to a marked  deficit for others. The most frequently reported  broad pattern of impairment is a 

d ifficulty in naming pictures of living things relative to non -living things (e.g. Arguin, Bub and  

Dudek, 1996; Sartori and  Job, 1988; Warrington and  Shallice, 1984). The reverse d issociation has also 

been documented  but is more unusual (e.g. Hillis and  Caramazza, 1991; Sacchett and  Humphreys, 

1992; Turnbull and  Laws, 2000; Warrington and  McCarthy, 1983). Although the living/ non -living 

d istinction has been the focus of many stud ies, it is notable that category deficits are rarely this pure: 

neurological patients with purported  living thing deficits often present with similar impairments for 

musical instruments whilst those with non-living thing deficits often have d ifficulty naming body-

parts (Gainotti, Silveri, Daniele and  Giustolisi, 1995; Parkin and  Stewart, 1993; but see Caramazza and  

Shelton, 1998 for an unusually pure deficit in naming animals). 

 

It has been argued  that apparent category effects may emerge from inadequate control of variables 

known to pred ict object recognition performance. Funnell and  Sheridan (1992) and  Stewart, Parkin 

and  Hunkin (1992) both pointed  out that living things, relative to non -living things, are less familiar , 

more visually complex and  have lower word  frequency. Since these three variables are strong 

pred ictors of naming performance, it is p lausible that a general reduction in cognitive efficiency might 

give rise to marked  anomia for stimuli that are visually complex, conceptually unfamiliar and  

infrequently referred  to(i.e. living things). However, whilst this explanation has gained  some support 

it cannot explain the reversed  pattern of deficit, nor the persistence of category effects under careful 

control of pred ictor variables (e.g. Farah et al., 1991; 1996; Laiacona, Barbarotto and  Capitani, 1993; 

Mauri, Daum, Sartori, Riesch and  Birbaumer, 1994; Sartori, Job and  Coltheart, 1993; Sheridan and  
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Humphreys, 1993). Thus, although experimental artefact may underlie some reported  cases, a great 

many must undoubted ly be genuine. 

 

Category-specific impairments may be informative about the functional architecture for representing 

knowledge in the brain and  there has been extensive debate on their implications for theor ies of object 

processing and  organisation of semantic memory. Most advances in this area have been made under 

neuropsychological investigation (e.g. Hillis and  Caramazza, 1991; Laiacona, Capitani, and  Barbarotto, 

1997; Warrington and  Shallice, 1984) althou gh other approaches have also made substantial inroads, 

includ ing electrophysiological stud ies in primates (see Logothetis and  Sheinberg, 1996; Tanaka, 1996; 

Yamane, Kaji and  Kawano, 1988) and  visual object recognition stud ies in normal adults (e.g. Gaffan  

and  Heywood, 1993; Laws and  Neve, 1999; McRae, de Sa and  Seidenberg, 1997). More recently, there 

have been important contributions from stud ies of connectionist neuropsychology (e.g. Devlin, 

Gonnerman, Andersen and  Seidenberg, 1998; Durrant-Peatfield , Tyler, Moss and  Levy, 1997; 

Humphreys, Lamote and  Lloyd -Jones, 1995; Small, Hart, Nguyen and  Gordon, 1995). It is the latter 

approach upon which this paper will principally focus although some consistencies between data from 

neural network models and  other ap proaches will also be d iscussed . 

 

Reviews and  critiques of candidate explanations for category specific deficits are widespread  in the 

neuropsychological literature (e.g. Caramazza, 1998; Caramazza, Hillis, Leek and  Miozzo, 1994: 

Coltheart, Inglis, Cupples, Michie, Bates and  Budd , 1998; Farah et al., 1996; Humphreys and  Forde, in 

press; Moss, Tyler, Durrant-Peatfield  and  Bunn, 1998) so here we will limit our d iscussion only to 

‘emergent property’ accounts (see Caramazza, 1998) in which connectionist models have had  the 

greatest influence. Emergent property accounts include the sensory/ functional theory (SFT) of 

Warrington and  Shallice (1984), the organised  unitary contents hypothesis (OUCH) of Caramazza, 

Hillis, Rapp and  Romani (1990) and  the cascade model/ structural description hypothesis of 

Humphreys et al., (1988). We will firstly d iscuss SFT and  OUCH since they both account for category 

specific impairments at the level of semantic representation. 
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Warrington and  Shallice (1984) argued  the case for a mult i-modal semantic store comprising 

perceptual and  functional sub-systems. Category specificity was accounted  for by positing that 

semantic representations of living things and  non -living things are predominantly specified  in terms of 

visual/ perceptual and  functional/ associative properties respectively. In such a framework, it is 

p lausible that damage within a single module could  induce recognition failure for one broad  class of 

item. In the later OUCH model of Caramazza et al. (1990) there was no reliance up on modality 

specificity but, rather, it was assumed that items belonging to ‘natural kind’ classes share a 

comparatively higher number of attributes (e.g. moves, has eyes, eats, etc.) and  that strongly 

correlated  properties (e.g. flight, feathers, beak) ar e represented  in ad jacent substrate. Under these 

assumptions, properties of living things would  tend  to be close together which would  render stored  

knowledge of living things more prone to catastrophic effects of localised  neural damage.  

 

Several connectionist models of emergent category specific phenomena have followed  assumptions 

about semantic organisation deriving from SFT. However, some have also included  aspects of OUCH. 

The model described  by Farah and  McClelland  (1991) was a pure simulation of SFT. A vector of 

binary features represented  either pictorial or verbal stimuli. These inputs were associated  with 

semantic output targets in a feed -forward  network. Semantic space was partitioned  into perceptual 

and  functional semantics and , based  upon information reported  in d ictionary definitions of item 

names, living things were represented  predominantly by perceptual attributes whilst non -living 

things were represented  more evenly across both feature types. Simulated  lesioning produced  deficits 

for living things when damage was located  in perceptual semantics, even when connectivity loss was 

minimal. Lesioning of functional semantics elicited  non -living thing deficits, but only at moderate to 

severe levels. Thus, category effects in the model derived  from th e ratio of perceptual to functional 

features specifying a given item and  the anatomical separation of sensory and  functional semantics. A 

particular strength of this model in articulating the SFT theory is that it pred icts the relative 

frequencies of living and  non-living deficits within a single architecture. However, whilst it succeeds 

on grounds of parsimony, its explanation is limited  to semantic dysfunction since it cannot simulate 

aspects of pre-semantic processing (cf. Humphreys et al. 1995). 
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In a later model of semantic activation described  by Devlin et al. (1998), locally represented  semantic 

features were either d istinctive (activated  by few stimuli) or shared  (activated  by many stimuli). 

Consistent with OUCH and  the work of McRae et al. (1997), the ratio of shared  to d istinctive features 

was higher for living things resulting in an increased  level of correlated  activity between units 

representing natural kinds. Classification errors emerged  for non -living things after low levels of 

semantic layer lesioning but high intercorrelations between the majority of natural kind  features 

afforded  living things protection against relatively minor connectivity loss. However, when lesioning 

was increased , a relative deficit for living things was observed  which derived  from a catastrophic loss 

of correlated  feature information. Durrant-Peatfield  et al. (1997; see also Tyler et al., 2000) also utilised  

the principle of correlated  features combined with a sensory/ functional d istinction in a hybrid  model 

of SFT and  OUCH. A motivation behind  this work was the more recent find ing that living thing 

deficits are not always accompanied  by selective deficits for perceptual properties (Laiacona et al., 

1993; 1997; Sheridan and  Humphreys 1993), an empirical find ing which is not easily explained  under 

SFT alone. For living things, there was high correlated  activity between units representing shared  

perceptual features (e.g. ‘wings’) and  shared  functional features (e.g. ‘flight’). For non -living things, 

on the other hand , correlated  activity was high between units representing d istinctive perceptual 

properties and  d istinctive functional properties. Following lesioning, identification errors and  intra -

category confusions were greatest for living things, yet superord inate categorisation was preserved . 

Loss of perceptual properties varied  in kind , rather than degree: whereas d istinctive perceptual 

features were susceptible for living things, shared  perceptual features were more susceptible for 

artefacts. Lesioning severity was also an important factor: at 60% or lower severity the impairment 

was greatest for living things but, at higher levels, the converse was true (cf. Devlin et al. 1998).  

 

The three models d iscussed  so far can all account for living and non-living deficits although they do so 

as a result of different assumptions about semantic representation. Whilst certain assumptions are 

necessary to test any theoretical account, the same assumptions may also limit a model’s ability to 

objectively explore the target domain. As pointed  out by Reeke and  Edelman (1988), any model 

relying on experimenter-imposed  representation risks being ‘homuncular’, whereby it can exhibit 

similar behaviour to a human yet fail to capture important elements of underlying processing in the 
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target domain (Reeke and  Sporns, 1993; see also Perry, 1999). A potential problem with nameable 

attribute representations is that inter -item similarity is constrained  in an artificial way depending on 

the choice of items and  features which are represented . For example, the animals dog and  mouse have 

identical representations if specified  across the set of attributes: <has fur>, <is a mammal>, <lives 

indoors>, <has a tail>, <has 4 legs>; however, they d iffer marked ly if encoded  over the set: <is small>, 

<eats grain>, <barks>, <eats meat>, <is a pet>. Thus, in any model where behaviour is critically 

dependent upon similarity between items, the choice of features used  to encode a d iverse range of 

items has high explanatory power for emergent behaviour. This may not be pro blematic if properties 

of the artificial representations hold  for real representations but, without strong evidence to support 

such a comparison, any model must be treated  with at least some scepticism. For example, 

assumptions about the nature of feature-based  representation in both the Devlin et al. (1998) and  

Durrant-Peatfield  et al. (1997) models generate contradictory patterns of performance after lesioning.1 

 

All three models d iscussed  so far simulate processing in the semantic system and  do not explo re other 

architectures which purported ly contribute to full visual object recognition (e.g. Humphreys et al. 

1988). Whilst this does not d iminish their ability to elucidate specific theoretical accounts of category 

specificity (i.e. SFT, OUCH or both), it does limit their ability to test whether non -semantic processes 

may also contribute to such deficits. The third  emergent property account, however, proposes that 

factors operating at the level of structural description (i.e pre-semantic, perceptual-categorical 

representation) can underlie some category-specific impairments (e.g. Forde, Francis, Riddoch, 

Rumiati and  Humphreys, 1997; Humphreys et al., 1988; Riddoch and  Humphreys, 1987a; Sartori, Job, 

Miozzo, Zago and  Marchiori, 1993). The central tenet with this theory is that structural descriptions of 

living things embody greater item -to-item similarity and  are more visually complex than those of non -

living things. These characteristics render living things more prone to confusion when processing 

capacity is constrained . This explanation is able to account for the most commonly observed  pattern of 

category impairment (i.e. living thing deficits) but not the reverse pattern and  is not, therefore, 

mutually exclusive to some of the accounts d iscussed  earlier. Moreover, it only comfortably accounts 

                                                           
1 Such anomalous model performance may also be explained  by the fin d ing that critical behaviours of some connectionist 

models (e.g. Devlin et al., 1998) are susceptible to small manipulations in architecture (Perry, 1999).  
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for recognition d ifficulties with pictorial stimuli, since tasks involving recognition of verbal stimuli 

(i.e. object names, definitions, etc) may not require interrogation of structural representations. The 

structural description account does pred ict greater confusion in d iscrimination learning and  slower 

reaction times in speeded  recognition tasks with normal subjects, since d ifficulties in resolving 

structural descriptions for living things arise, at least in part, as  a result of stimulus characteristics (e.g. 

Humphreys et al., 1988; Lloyd -Jones and  Humphreys, 1997). In an influential study, Gaffan and  

Heywood (1993) trained  monkeys to d iscriminate between pairs of pictures selected  from the corpus 

of Snodgrass and  Vanderwart (1980). Error rates during training were three times higher when the 

pairs comprised  living things relative to non -living things. Furthermore the d isparity in error rate 

grew logarithmically as set size increased  from 8 stimuli at the beginning to 128 by the end , suggesting 

that the find ing is not artefactual. Using the same stimulus set again, Gaffan and  Heywood (1993) 

demonstrated  a similar pattern of performance limitation in speeded , degraded  visual recognition 

tasks with normal human subjects and  argued  that ‘perceptual crowdedness’ offered  the best 

explanation for their data. Perceptual crowding occurs when the range of partial features extracted  

from a stimulus object, and  then bound  together to form an internal structural description, is no 

longer sufficient to d ifferentiate between visually similar items. During learning, perceptual crowding 

may become apparent only when the size of the stimulus set exceeds a critical boundary. In the 

natural world  one might expect it to occur within certain biological categories (e.g. birds, fish, 

butterflies) where expertise is required  to represent each member in a multid imensional space with a 

d imensionality that is sufficient to allow inter -item separation (Edelman, 1998). Following brain 

damage, category-specific deficits may emerge for perceptually crowded  categories when restriction 

is placed  on the number of d imensions available to represent objects. This hypothesis was tested  by 

Humphreys et al. (1995) in a connectionist simulation of the Cascade model utilising an interactive 

activation (IAC) model first described  by McClelland  and  Rumelhart (1981; 1988). The network 

consisted  of 3 layers, each of 20 units. ‘Visual’ stimuli comprised  20 input vectors representing 10 

animals and  10 items of clothing. Similarity ratings for the real-life referents were derived  from 

‘visual’ comparisons made by judges and  these were captured  in the model by representing correlated  

patterns of activity across the input units, which represented  the structural description sy stem. The 

inputs then connected  to a semantic layer with localised  representation (i.e. one unit per object) and  



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 9 

this layer, in turn, was connected  to a layer of name units which coded  the identity of each input. At 

the same level a separate set of two sup er-ord inate units connected  to the preced ing layer to simulate 

category decision (i.e. ‘animal’ versus ‘clothing’). Following simulated  lesioning, identification error 

rates and  reaction times were higher for structurally similar inputs (animals), irrespective of lesion 

site, although at higher lesion severity the ‘visually’ similar and  d issimilar inputs produced  

comparable error rates. Thus, with a novel method  of representing visual similarity in their model, 

Humphreys et al. (1995) demonstrated  a strong association between structural similarity and  impaired  

recognition for living things. However, a number of concerns arise with this model: firstly, although 

between-item visual similarity ratings were collected  from uninterested  parties, it is probable tha t 

such judgements also reflect semantic proximity due to d ifficulty in d isambiguating visual and  

semantic similarity in visual representations (Dixon, Bub and  Arguin, 1997). For example, knowing a -

priori that a duck and  kingfisher are both birds may exaggerate perception of their structural 

similarity even though they have d issimilar shapes. Secondly, as Dixon et al. (1997) also point out, the 

kind  of visual similarity that normal subjects ascribe to a set of objects may not be the sort that is 

crucial emergence of living thing deficits. Finally, representing a small number of stimuli (20 objects 

from 2 categories) in a model of relatively large size (62 units) is unlikely to provide sufficient 

generalisation performance (Baum and  Haussler, 1989; Hinton, 1989) thereby restricting the model’s 

potential to capture underlying processing in the simulated  domain. Thus, although this model 

demonstrates a potential role for visual similarity in emerging living thing deficits, it would  be 

informative to explore the idea further with a larger set of stimuli in which (i) the number of object 

categories is increased , (ii) the visual similarity between exemplars is captured  in a way which does 

not also reflect semantic proximity and , (iii) other groups of item with specia l significance in the 

category specific debate (i.e. musical instruments) are also included . 

 

So far, we have d iscussed  four d ifferent connectionist models which offer alternative ways of 

conceptualising category-specific recognition failure. Three of these models simulate dysfunction 

within the semantic system and , although impairments are accounted  for by quite d ifferent theoretical 

assumptions, none of these models rule out the possibility that pre -semantic representations may also 

play an important role in some impairments. On the other hand , the Humphreys et al. (1995) model 
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demonstrates that pre-semantic representations may underlie deficits for natural kinds but does not 

rule out the possibility that some cases might be better explained  by models of s emantic function. 

Nonetheless, given that perceptual representations are activated  prior to semantic representations in 

the visual object recognition process (e.g. Humphreys et al. 1988), it is important to establish their 

potential contribution to category biases in order that these effects can be accounted  for in models of 

the semantic system. 

 

In this paper we investigate the contribution of perceptual representations to emergent category 

specificity in a series of simulations utilising an unsupervised neural network. All connectionist models 

of category specificity described  so far have used  supervised  training procedures or, in the case of 

Humphreys et al. (1995), the IAC model. In these models, representations are largely determined  by 

the modeller and  correct mapping between input and  output is determined  by a ‘tutor’ learning 

algorithm which makes corrections by assigning ‘blame’ to d ifferent units for their relative role in 

producing an erroneous output (or, in IAC, by setting connections between nod es beforehand). 

However, there is evidence that human perceptual representations can arise through self organisation. 

For example, very young infants can form superord inate and  basic level ‘perceptual’ categories in the 

absence of language ability and  without feedback from the environment (e.g. Behl Chadha, 1996; Behl-

Chadha, Eimas and  Quinn, 1995; Eimas and  Quinn, 1994; Eimas, Quinn and  Cowan, 1994; Quinn and  

Eimas, 1986). In light of these find ings, unsupervised  neural networks may have more ecological 

valid ity in modelling the acquisition of perceptual-categorical information. In a further departure 

from some other models, we have not used  nameable features to represent visual characteristics of 

items in this model. This is because it is d ifficult to prov e that any given set of features adequately 

reflects the kind  of information extracted  from visual stimuli during object recognition and  is of 

sufficient size and  content to provide an accurate reflection of between -item visual similarity. Instead , 

we present real images as input to our model so that categorisation can be achieved  only by analysing 

the topography of visual information within each presented  picture. Our investigation is restricted  to 

exploring the final emergent property account for living thing category specific deficits - namely the 

structural description/ visual crowding hypothesis. Although we utilise semantic representations in 

some simulations, we do so only to investigate the mapping between perceptual representations and  
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semantic knowledge and  we make no assumptions about categorical d ifferences in the nature of 

semantic representation. Our model should  provide a stringent test of perceptual crowding theory 

since any purported  visual similarity between stimuli should  be captured  by the self-organising 

component of the model. This will permit investigation of between category d ifferences in the nature 

of emergent perceptual representations and  whether these are sufficient to explain any patterns of 

category specific impairment. 

 

 

GENERAL METHOD 

This section describes aspects of methodology that are common to all experiments reported  in this 

paper. These include (i) the way in which training data was assembled  and  (ii) the various neural 

architectures used  to simulate components of the visu al object recognition process. 

 

Training Patterns: Image Choice and Preparation 

The training exemplars were derived  from the superord inate categories of animals, musical 

instruments, clothing and  furniture and  were chosen to fall within the tripartite hier archy of 

increasing specificity originally proposed  by Eleanor Rosch and  colleagues (Rosch, 1973; Rosch, 1975; 

Rosch and  Mervis, 1975; Rosch, Mervis, Gray, Johnson and  Boyes Braem, 1976; see also Collins and  

Loftus, 1975; Collins and  Quillian, 1969; Mervis and  Greco, 1984; Tversky and  Hemenway, 1984). This 

allowed  exemplars to be grouped  at (i) the superord inate level (e.g. animals, furniture), (ii) the basic 

level (e.g. fishes, birds, clocks, chairs), and  (iii) the subord inate level (e.g. p ikes, bullfinche s, alarm 

clocks, office chairs). This categorical structure was imposed  not because we believed  it would  

accurately reflect the real world  of objects but simply because it ensured  that each superord inate was 

represented  by an equal number of exemplars and  characterised  by the same degree of object 

specificity. Seven basic level categories were chosen for each superord inate as follows: Animals - 

snakes, frogs, fishes, spiders, deer, mice, and  birds; Furniture - chairs, beds, chests, clocks, lamps, 

tables and  wardrobes; Musical Instruments - guitars, violins, p ianos, saxophones, electronic keyboards, 

flutes and  drums; Clothing - jackets, shorts, trousers, gloves, boots, shoes and  t -shirts. These basic level 

categories were chosen to reflect a representative range of visual d iversity within each superord inate 



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 12 

so as not to deliberately bias any category towards visual crowding. Thus, to give some examples, the 

category of animals comprised  basic level representatives from d ifferent genera (e.g. amphibians, 

mammals, fish, birds, etc.) and  the category of musical instruments comprised  string, wind  and  

percussive types (e.g. p iano, d rum, guitar, flute). All basic level categories were listed  in Battig and  

Montague (1969) and  most, exclud ing a minority of musical inst ruments and  clothing items, were 

listed  in Snodgrass and  Vanderwart (1980). To minimise experimenter bias, the task of choosing 

images was given to someone who was not part of the investigative team and  who was naive to the 

rationale of the study. The guid elines given to this person were to select either colour photographs or 

very high quality coloured  drawings which depicted  items in a typical orientation, preferably with no 

foreshortening of the principal axis (see Palmer, Rosch and  Chase, 1981). Selected  images were 

required  to depict d ifferent, but not atypical, examples of each basic level category. In total, 140 

images were selected  (35 for each superord inate). 

 

Each image was scanned  into an Apple Power Macintosh™ computer at a resolution of 100dpi and  was 

then ed ited  to (i) remove background  detail, (ii) convert from colour to 8-bit greyscale and  (iii) reduce 

in size such that each object’s maximal d imension fitted  exactly within a 50 by 50 pixel grid .  Such pre-

processing removed  relative size d ifferentials between objects and  also invoked  the assumption that 

objects are perceived  in the central visual field .2 Although these assumptions may limit the full 

biological plausibility of the model, they do not d iminish its informativeness to the category specific 

debate since the same assumptions are common to other tests utilising static pictorial stimuli. Some 

example images of the basic level category ‘clock’ are d isplayed  in figure 1 and  the full set of al l 140 

images is d isplayed  in appendix A. 

 

INSERT FIGURE 1 HERE 

 

In order to ensure that visual properties of our selected  images were broad ly consistent with those 

used  in other neuropsychological tests, 45 first -year undergraduate psychology students were asked  

to rate each image for its visual complexity using exactly the same scale and  definitions devised  by 

                                                           
2 Although it is, in principle, feasible to create an architecture capable of recognising objects wh en rotated  or enlarged , this 

would  require considerable additional pre-processing resources (e.g. Fuchs and  Haken, 1988) and  is not of concern to our 

investigations. 
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Snodgrass and  Vanderwart (1980). Visual complexity ratings for items were averaged  across subjects 

and  then across all images within each superord in ate. The mean (± SD) visual complexity ratings for 

each category was as follows: animals 3.14 (± 0.47); furniture 2.72 (± 0.51); musical instruments 2.71 (± 

0.51); clothing 2.67 (± 0.46). A between groups ANOVA demonstrated  a significant effect of category  

(F [3, 139] = 7.167, p  < 0.0005) and  pair-wise comparisons (using Bonferroni) revealed  significant 

d ifferences between animals and  all other categories. In the Snodgrass and  Vanderwart (1980) corpus 

a similar d istribution of visual complexity is evident in all categories except musical instruments 

(animals 3.83 (± 0.5); furniture 2.81 (± 0.69); musical instruments 4.03 (± 0.54); clothing 2.71 (± 0.64)). 

The d iscrepancy in visual complexity between our musical instrument images and  those of Snodgrass 

and  Vanderwart (1980) may arise because our stimuli are reduced -size greyscale representations that 

cannot afford  such accurate depiction of fine-grained  detail inherent in certain line d rawn musical 

instrument exemplars (e.g. flute). To ensure further that our images were realistic representations of 

their referent objects we asked  10 subjects to name each picture. Nearly all images were accurately 

named (mean 97.3%, range 84-100) at the basic or subord inate level except for some of the saxophones 

and  flutes which were mistaken for other brass or woodwind  instruments. In recognition terms then, 

we contend  that our image set is not unrepresentative of the type of stimuli used  in other stud ies.  

 

Before any experiments began, two additional control measures were int roduced . Firstly, a left-right 

inversion of each image was created  to overcome the fact that some asymmetrical objects (e.g. fishes) 

tended  always to be depicted  in the same orientation (e.g. with head  to the left and  tail to the right), 

whereas others (e.g. chairs, snakes) had  more variable orientations. Secondly, for each left -right 

inversion, a novel image was created  by shifting the d istribution of greyscale values (apart from those 

of the white background) by ±20%. Images whose originals were subjectiv ely judged  to be dark were 

made lighter, whilst images that were judged  to be light were made darker. These manipulations 

generated  4 versions of each subord inate exemplar, increasing the total image set size to 560. Figure 2 

depicts the light/ dark variations and  left-right inversions for a single image. 

 

INSERT FIGURE 2 HERE 
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The Modular Artificial Neural Network 

The full connectionist model used  within this set of stud ies comprised  two modules: an unsupervised 

visual processing module (VPM) and  a supervised categorisation module (CM). These were trained  

independently of each other and  will be described  separately. Broad ly speaking, the VPM was 

designed  to perform bottom -up encoding of pictorial stimuli to simulate the level of perceptual 

categorisation achievable in the absence of lexical-semantic information (e.g. Behl Chadha, 1996; Behl-

Chadha, et al., 1995; Eimas and  Quinn, 1994; Eimas et al., 1994; Quinn and  Eimas, 1986). The CM was 

designed  to perform top -down encoding (supervised  object categorisation ) of the representations that 

had  developed  in the VPM in order to simulate classification (linguistic or otherwise) of each item.  

 

The  Visual Processing Module (VPM) 

The centrepiece of the VPM was based  on Kohonen’s self organising feature map (see Kohon en, 1982a; 

1982b; 1988) - an unsupervised  neural network using competitive learning. In Kohonen’s original 

model, pattern classification was achieved  by activation of a single ‘winning' unit in a two -

d imensional array of competing output units. In our modified self organising feature map (SOFM), 

however, pattern classification was d istributed  across all units in the grid , thereby generating a 

contoured internal representation of each input pattern. The 'winning unit’ in this model (i.e. that unit 

which had  the highest level of activation for a given pattern) was still highly important in the 

representation of an input pattern but, unlike Kohonen's original model, d id  not have exclusive 

d iagnostic capability. The SOFM used  within the VPM was structurally and  functionally very similar 

to that described  by Schynns (1991) and  an overview is provided  here (see also figure 3 for an 

illustration). To clarify the use of terminology at an early stage, the abbreviation VPM denotes the 

entire visual processing module - which includes the visual input vector, the SOFM and  their 

ad joining weight matrix. The term SOFM refers only to the map of output units.  

 

The VPM simulations in these experiments were characterised  by an n-d imensional input vector (A), 

where n was the number of pixel values in each training image - in this case 2500 (50 pixels square). 

The input vector (A) was fully connected  to a SOFM of 10 units square. In a VPM of this size (i.e. a 10 

by 10 unit SOFM connected  to a 2500 pixel input vector) there were a quarter of a million connections 
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with each having its own independent weight value. Each output unit (o i) in the SOFM was connected  

to the input vector with an n-d imensional weight vector (W i). Each input vector (A i) comprised  2500 

integer values with each value representing 8-bit greyscale information (i.e. the level of 'greyness' 

between 0 and  255) and  spatial location of the corresponding pixel in the input pattern.  

 

INSERT FIGURE 3 HERE 

 

At each iteration, the activation values across the SOFM were comp uted  by comparing the euclidean 

d istance between the input vector (A) and  the weight vector (W i) for each output unit. The output 

unit with the lowest euclidean d istance from the input vector (and  hence the highest output value) 

was regarded  as the winner (see appendix B for a formal description). The output map was computed  

using a transfer function that returned  a value in the range of 0 to 255 where 0 represented  a unit 

whose weight vector was far away from the input vector and  255 represented  a unit who se weight 

vector was identical. The training rule updated  the weights of the winning unit, and  also those of a 

neighbourhood  surrounding the winner, moving them closer to the input vector (see appendix B). The 

neighbourhood  was characterised  by a Gaussian function such that weight vectors of units closer to the 

winner tended  to approximate the input vector to a greater degree than those further away. It is such 

correlated  zones of activation which facilitate self-organisation (Kohonen, 1982a; Schynns, 1991). As 

training time increased , the neighbourhood  size decreased  linearly such that, eventually, only the 

winning unit's weight vector was updated . Initially, to ensure global order, each unit’s neighbourhood  

was larger than one half of the output map but th is was reduced  over training time. Similarly, to 

ensure learning stability, the training rate also declined  over training time. In these simulations, VPMs 

were trained  for 1500 epochs with an initial neighbourhood  of 7 units square and  an initial learning 

rate of 0.5. Presentation of training set exemplars was randomised  within each epoch. The 

neighbourhood  size and  learning rate decreased  linearly (to 1 and  0 respectively) every 250 and  150 

epochs respectively. It will be helpful to the reader to keep in m ind  that a SOFM surface is wrapped  

around  on itself such that opposite sides and  corners are actually in close proximity. For illustration 

purposes (fig. 3), a SOFM surface is most easily depicted  as a 2-d imensional map but, dynamically, it 

is more akin to the surface of a sphere. In our model, each output unit could  take a value between 0 

and  255, which made it possible to view the whole surface as an 8-bit (i.e. 256 possible values) 
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greyscale contour map with regions of high and  low activity. Regions of low activity tended  more 

towards values of 0 (black) and  regions of high activity more towards values of 255 (white). Two 

examples of such contour maps are shown in figure 4. Moreover, because each output unit’s weight 

vector gradually evolved  towards a state which approximated a particular input vector, or group of 

vectors, the weight vector for any output unit could  be viewed  as a 2500 pixel greyscale image. This 

kind  of depiction is informative about the training pattern, or group of training patterns, to  which a 

particular output unit is maximally responsive (see Luckman et al., 1995). 

 

INSERT FIGURE 4 HERE 

 

In summary then, the VPM reduces the dimensionality of the input vector but preserves training pattern 

topology. Images that are visually similar will, therefore, tend  to generate similar contour maps. 

Preservation of topology means that spatial relationships between areas of a picture and , indeed , 

between d ifferent pictures will be preserved  in VPM representations. These characteristics are not 

incongruent with some properties of structural descriptions although it must be noted  that similar 

VPM representations will arise because items are globally visually similar rather than because they 

share similar part structures. Moreover, given that the precise  representational characteristics of 

structural descriptions are open to debate and  d ifficult to specify (e.g. Biederman, 1983; Humphreys et 

al., 1988; Marr, 1982; Marr and  Nishihara, 1978), d irect comparison between structural descriptions 

and  the perceptual representations in these simulations would  be premature. 

 

The Categorisat ion Module (CM) 

The CM was realised  by a multi-layered  perceptron with partial recurrence, trained  with the back -

propagation algorithm (Rumelhart, Hinton and  Williams, 1986a; 1986b). A typical recurrent network 

comprises input, hidden and  output layers plus an add itional layer of units which 'clean up ' the 

output, creating stable attractor states. This is to say that the euclidean d istance between a novel 

representation and  the training set representation to which it is most similar is reduced  by a cycle of 

activity through the clean-up layer. In this way, a novel pattern can fall into the attractor basin of a 

training set pattern endowing the model with a memory for some, if not al l, of the training patterns 

which it has experienced . A comprehensive description of attractor networks can be found  in both 
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Hinton and  Shallice (1991) and  Plaut and  Shallice (1993). In our model, the size of the CM input layer 

was determined  by the size of SOFM within the preced ing VPM. In the majority of experiments this 

was 100 units (i.e. 10 by 10 output units in the VPM). The CM input layer fed  into a layer of hidden 

units which, in turn, connected  to a layer of 32 output units. The output layer had  bi -d irectional 

connections to a layer of 10 ‘clean-up’ units which allowed  attractor states to develop in the output 

space. The size of the output layer was initially determined  by the number of object categories to be 

encoded  using local feature representation (see Hinton, McClelland  and  Rumelhart, 1986 for a 

d iscussion of local vs. d istributed  representations). For most experiments there were 4 superord inate 

categories and  28 basic level categories (7 for each superord inate) which necessitated  32 outputs, o f 

which, only 2 should  be active for each training item (i.e. one superord inate and  one basic level unit). 

In a later simulation the output layers encoded  d istributed  patterns representing semantic features 

and  microfeatures across the same 32 output units. The exact nature of the output representation is 

d iscussed  within each experiment. The number of units in the hidden layer was always the minimum 

necessary for consistent, accurate learning of all training patterns.3 Each CM layer was fully 

interconnected  with the subsequent layer but there were no intra-layer connections.4 All CM 

simulations were run on the t-learn simulator program (Plunkett and  Elman, 1997) using a learning 

rate of 0.01 and  a momentum of 0.95. 

 

Model Summary  

To summarise, we implemented  a modular architecture comprising a visual processing module 

(VPM) and  a categorisation module (CM). The VPM performs d imensionality reduction with 

topological preservation on a series of greyscale images and  the resulting representations form inputs 

to the CM which is subsequently trained  to perform object classification. Figure 5 depicts the full 

model showing the interaction between VPM and  CM and  the various layers within each module.  

 

INSERT FIGURE 5 HERE 

 

 

                                                           
3 Utilising a minimal hidden layer size is important since it maximises the generalisation  performance of the model for the 

task in which it has been trained  (Hinton, 1989). 
4 Intra-layer connections were used  in the output layer when target outputs were d istributed  rather than local (expt. 5)  
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THE EXPERIMENTAL INVESTIGATIONS 

Experiment 1 

Introduct ion 

The first experiment explored  the representations of visual stimuli which develop in the VPM, with 

particular focus on whether emerging contour maps provide any evidence for categorical d istinctions 

at a pre-semantic level of representation. At this early stage, the response profile of an output unit was 

considered  only when it was the most highly activated  ('winning’) unit in the SOFM. Although 

representations were d istributed  across the whole SOFM surface, the winning unit is still partially 

d iagnostic since its weight vector tends to approximate the pixel map of one or more exemplars in the 

training set. The fact that there were only 100 SOFM units and  560 exemplars necessitated  that some 

units would  be winners to more than one pattern. In any self organising network, the d istinctiveness of 

a training pattern determines whether it will share a similar representation with other patterns. 

Highly d istinctive patterns excite exclusive regions of the SOFM whereas less d istinctive patterns tend  

to excite the same regions (Luckman et al., 1995; Schynns, 1991). This, in turn, determines the 

probability that a given unit is a 'winning' unit for more than one pattern. If natural kind  categories are 

more visually crowded  (e.g. Damasio, 1990; Gaffan and  Heywood, 1993; Humphreys et al., 1988; 

Tranel, Logan, Frank and  Damasio, 1997) it follows that fewer units should  respond  maximally to 

animals since there will be greater redundancy of visual information within this class. For non -living 

things, by contrast, representation should  tend  to be at an exemplar level because there is a purported  

lower level of perceptual overlap in these categories. In order to formalise these hypotheses into 

testable pred ictions, the following scenarios are proposed : if the leve l of visual crowding within each 

superord inate is similar, the expectation is that exemplars, or amalgamations of exemplars, from the 4 

superord inates will each excite 25% of winning units; however, if the levels of visual crowdedness are 

not similar between these categories, the expectation is to see unequal proportions of 'winning' units 

for each category. If there is variation in the VPM's representation of categories, this can be due only 

to the topography of visual information in the training images since no explicit categorical data is 

provided  in the input. 
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Method 

Ten VPM simulations were run, each utilising a SOFM of size 10 by 10 units and  each being trained  

with all 560 pictures. Each SOFM started  with a random configuration of initial connection weights. 

After training, the final weight vector (i.e. the 2500 weight values) for each unit in all 10 SOFMs was 

output as a 50 by 50 pixel image in order to visualise the type of input for which each unit was 

maximally responsive. The resulting images were then laid  out accord ing to the surface grid  structure 

of the SOFM to which they corresponded . Thus a set of 10 by 10 weight vector plots was derived  for 

each VPM. An example of the weight vector images from a VPM simulation can be seen in Figure 6.  

 

INSERT FIGURE 6 HERE 

 

It is notable that some images in figure 6 depict clearly identifiable training stimuli (row 2, column 6) 

whilst others depict amalgamations of stimuli (row 3, column 2). Furthermore, some training 

exemplars are barely visible, if at all (e.g. there are no clearly d iscernible frogs in the weight matrix 

depictions for this VPM despite the fact that it experienced  all 20 examplars of frogs in training). This 

pattern was not confined  only to the VPM in figure 6 but was evident in the other nine also. To test 

whether such representational biases were consistent, we assessed  the response profile of every unit 

in each SOFM and  recorded  the type of image which generated  maximum activity. In this way the 

frequency of ‘winning units’ for each superord inate category could  be assessed  for each VPM. 

 

Results  

Table 1 d isplays, for each VPM, the number of winning units for each superord inate. The d ifferent 

VPM simulations produced  highly consistent frequency d istributions. 

INSERT TABLE 1 HERE 

 

Furniture and  clothing exemplars were depicted  more frequently amongst the weight vector plots 

than animals and  musical instruments (repeated  measures ANOVA F [3, 39] = 408, p  < 0.0001, with 

post-hoc, Bonferroni corrected , Scheffe F tests demonstrating significance for all pair-wise 

comparisons except animals vs. musical instruments). Although living things were, as pred icted  by 
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visual crowding theory, less likely to cause maximal activation in a high number of units, the same 

was also true for musical instruments. So, purely with respect to winning unit activity, some form of 

category bias is evident which can arise only on the basis of visual information. 

 

Discussion 

These data cannot be accounted  for by any of the so-called  ‘artefact’ variables which pred ict 

recognition accuracy in humans: item familiarity carries no explanatory power here since each 

training pattern was presented  an equal number of times; visual complexity can neither explain the 

pattern of results because it was only rated  as being significantly h igher within the category of animal 

stimuli (the ratings obtained  for musical instruments, furniture and  clothing were all similar). That 

animals and  musical instruments should  generate fewer states of maximal activation offers some 

preliminary evidence of greater visual redundancy within these categories. However, whilst the 

structural description hypothesis would  presumably define visual redundancy in terms of shared  

parts and  part configurations, the redundancy in this model is attributable to global vis ual similarity 

(e.g. shape, spatial location and  d istribution of shad ing information), since the model has no specific 

mechanisms for decomposing pictured  objects into constituent parts. 

 

 

Experiment 2 

Introduct ion 

So far, the response profile of a given u nit has been examined  only when it is maximally active. 

However, given the d istributed  nature of representation in the VPM, it is pertinent to consider the 

add itional information that may be available from studying relationships between different feature 

map units for the same training exemplar. For example, units may still carry some d iagnosticity even 

when they are inactive or only partially active. In the VPM every SOFM unit plays a role in the 

representation of every training set exemplar, even if only at low levels of activation. Figure 7, where 

light and  dark areas ind icate high and  low regions of feature map activity respectively, should  

illustrate this point. These contour maps fit within the same grid  pattern as the images in figure 6 

since they derive from the same SOFM. 

 



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 21 

INSERT FIGURE 7 HERE 

 

The 10 by 10 grid  structure in the 2 d iagrams (figures 6 and  7) allows superimposition and , matching 

the lightest region on each contour map with the corresponding weight image, provides a description 

of the type of image which the most active unit (i.e. the whitest) responds to. Note how the activation 

peaks for the 2 furniture items in figure 7 (row 2, column 3 and  row 7, column 9) correspond  with 

units whose weight vectors depict unambiguous examples of lamp s and  clocks. Now contrast this 

with the 2 animals and  note how the highest regions of activity correspond  to units whose weight 

vectors depict ambiguous figures. These examples are not atypical and  begin to illustrate some of the 

qualitative representational d ifferences which emerge between d ifferent object categories in the VPM. 

When examining feature map representations for animals and  furniture, a trend  was observed  

towards the former being represented  by undulating contour maps (i.e. relatively shallow  peaks and  

troughs) and  the latter being represented  by much harsher contours (i.e. sharper and  higher peaks). 

To establish whether this trend  was reliable, an assessment of the distribution of activation values was 

made for each image for all 10 VPMs. 

 

Method 

Activation values (range 0-255) were recorded  for all 100 SOFM units in each VPM, for every training 

exemplar. For d iagramatical and  analytical purposes, the possible activation values (i.e. values in the 

range 0 to 255) were grouped  into 5 ord inal bands as follows: (i) 0-49, (ii) 50-99, (iii) 100-149, (iv) 150-

199, (v) 200-255. The frequencies of unit activation values falling within each band  were recorded  for 

each training exemplar and  averaged  across all 10 VPMs. These mean frequencies were then av eraged  

across all exemplars within each superord inate. 

 

Results 

The mean frequencies for each unit activation band  are plotted  in figure 8 with respect to each 

superord inate. VPM performance was highly consistent, ind icated  by the low standard  deviations.  

INSERT FIGURE 8 HERE 
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It is evident that most images generate contour maps comprising a majority of minimally activated  

units. This derives largely from the learning algorithm used , in which the size of a unit's associative 

neighbourhood  is reduced  during the training cycle such that, eventually, only each winning unit’s 

weights are updated . However, the d istribution of unit activation values was not consistent across 

superord inate categories, with significant d ifferences being observed  within each frequency band  

(one-factor ANOVAs [df 3, 559] for the 0-49 band , F = 48.2, P < 0.0001; for the 50-99 band , F = 46.28, p  

< 0.0001; for the 100-149 band , F = 43.41, p  < 0.0001; for the 150-199 band , F = 2.72, p  < 0.05; for the 200-

255 band , F = 6.19, p  < 0.0005). Post-hoc pairwise comparisons (Bonferroni) revealed  the following 

d ifferences: 0-49 band  - animals vs. all others, musical instruments vs. all others; 50-99 band  - animals 

vs. all others; 100-149 band  - animals and  musical instruments vs. clothing and  furniture; 200-255 band  

- furniture vs. all others. 

 

Discussion 

Experiment 2 confirms that category d ifferences exist not just in the response profile of winning units 

but also across d istributed  VPM representations. Whilst some images generated  unique contour m aps 

with fairly sharp peaks and  a residual surface of marginally active units (i.e. furniture and  clothing), 

other images generated  very similar contour maps with plateaux of moderate to high activity and  less 

tendency for localised  peaks (i.e. animals and  musical instruments). The former tended  to be 

represented  as unique exemplars and  the latter as exemplar amalgamations or abstractions. This 

pattern of representation may offer an alternative conceptualisation of hierarchically organised  

perceptual representations. For example, Sartori et al. (1993) proposed  that living things have 

structural representations which are deeper, whereby their item -specific representations reside further 

down the hierarchy relative to non-living things. Representation of exemp lars and  categories within 

the VPM suggest this hypothesis might be better articulated  in terms of the extent of overlap between 

patterns in a neural network. Within such a framework, certain categories can emerge naturally 

because their exemplars are more tightly clustered  together. Others have little perceptual basis for 

categorical coherence, resulting in d iscernible exemplar representations. Differentiation of exemplars 

in the former would  necessitate more intricate, and  presumably time-consuming, representational 

interrogation whereas d ifferentiation in the latter might require only a ‘shallow’ comparison between 
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representations. Moreover, local neurological damage (within an area of the map critical for 

representing visually crowded  categories) may selectively impair recognition of living things and  

musical instruments by removing the subtle exemplar d ifferences previously encoded  within the 

damaged  or missing units. By contrast, localised  damage in other areas of the map would  not have 

such a profound  effect because fewer exemplars would  be affected . 

 

Although categorical inequalities were observed  in the VPM representations, it remains untested  

whether these would  modulate accuracy of full object recognition (i.e. object identification/ naming). 

For example, although we suggest that d ifferentiation between living things requires a more intricate 

interrogation of perceptual representations, it does not necessarily follow these items will u ltimately 

be more d ifficult to identify. Indeed , given that human object naming purported ly favours a more 

generic level (e.g. ‘bird ’ rather than ‘sparrow’ (Rosch et al., 1976)), it is p lausible that a high degree of 

overlap between item representations in certain categories might serve to enhance object identification. 

In experiment 3 we investigate whether categorical inequalities at the level of perceptual 

representation can impact upon basic level identification. 

 

 

Experiment 3 

Introduct ion 

The previous experiments have demonstrated  how formation of perceptual categories may be 

moderated  by global visual similarity and  how certain groups of items may gain greater categorical 

coherence at a pre-semantic stage of processing. Following assumptions of the cascade model 

(Humphreys et al., 1988), one should  also expect the level of perceptual overlap in a group of items to 

be reflected  at later stages of object recognition because competing perceptual representations should  

each activate their own semantic representations which should  then compete with the target semantic 

output. To explore this idea in a connectionist framework, we used  the representations which had  

previously emerged  in the VPM as a set of input vectors for a supervised  network trained  to allocate 

each perceptual representation to a basic level name category. By measuring the learning time taken to 

categorise each VPM representation correctly, it should  be possible to assess whether the nature of 
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pre-semantic representation has a bearing on actual object classification.  

 

Method 

The CM was used  to simulate basic level naming. In the recurrent part of the CM one cycle was 

implemented  as this was sufficient to elicit an unambiguous output state (cf. Hinton and  Shallice, 

1991). Cross-entropy5 was instantiated  as the measure of unit error during training although, for the 

purpose of data presentation, all error terms are expressed  in the standard  form of root mean square 

(RMS) error. Ten ind ividual CM simulations were run, each using output representations of a 

d ifferent one of the 10 VPMs described  in experiments 1 and  2. For training purposes the output 

values from each VPM were standard ised  within the range 0-1 and  the 560 patterns were presented  in 

random order across the 100 unit input layer of each CM. The subsequent hidden layer, output layer 

and  clean-up layer comprised  15, 32 and  10 units respectively. Each of the 32 output units represented  

a d istinct name category (i.e. target categories were locally represented), with the first 4 representing 

superord inates and  the remaining 28 representing basic level nam es. Thus, for each input, 2 output 

units were simultaneously active at any one time. This method  of classification is not intended  to 

simulate the complex processes involved  in object naming and  nor is it proposed  to be neurally 

plausible. Nonetheless, it does provide an unambiguous measure of the model's ability to separate 

each input pattern into a coherent categorical grouping (Allison, Ellis, Flude and  Luckman, 1992; 

Humphreys et al., 1995; Luckman et al., 1995; Quinn and  Johnson, 1997) and , moreover, ensures that 

the target output representation for each input is qualitatively similar, thereby eliminating 

confounding factors at the level of output representation. For the purposes of this investigation, the 

error term for each training pattern was measured  across the entire output layer at intervals of 10 

epochs (i.e. every 5600 pattern presentations) and  training was aborted  when the RMS error for every 

pattern in the training set had  dropped  below 0.01. For analysis, RMS errors for each training 

exemplar were averaged  across all 10 CM simulations at each 10 epoch interval and , for graphical 

representation, these mean error terms were averaged  across all items within each superord inate, 

provid ing a mean RMS error for each superord inate category at every 10 epochs. 

                                                           
5 RMS can be ineffective for overcoming local minim a when target patterns are large and  sparse because units may become 

pinned  incorrectly due to momentum. Cross-entropy overcomes this problem by increasing exponentially for completely 

incorrect outputs. 
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Results 

Figures 9a, 9b and  9c d isplay the decrease in average RMS error for pattern classification in each 

superord inate category during early, middle and  late stages of training respectively.  

 

INSERT FIGURE 9 HERE 

 

Animals and  musical instruments generally produced  a higher error rate than furniture and  clothing. 

Note how a marked  d ifference emerges between these 2 categorical groupings soon after training 

commences (figure 9a) and  continues (figure 9b) until a late stage of training, when error rates for all 4 

categories converge (figure 9c). Repeated -measures ANOVAs showed significant error d ifferences 

between superord inate groups (F [3, 139] > 3.51, p  < 0.05) at each 10 epoch interval up until 480 epochs. 

Post-hoc pairwise comparisons (Bonferroni) demonstrated  the following significant error d ifferences 

at epoch intervals 100 through to 300 inclusive: (i) animals vs. furniture and clothing; (ii) musical 

instruments vs. furniture and clothing. These data show that animal and  musical instrument VPM 

patterns are more d ifficult for the CM to learn. 

 

Discussion 

The category d issociations observed  in learning correlate broad ly with those found  in experiments 1 

and  2. Furniture and  clothing items, which generated  the most d istinctive contour maps, were more 

easily classified  by the CM. In some respects this is surprising because target outputs for the CM 

represented  basic and  superord inate categories and  were, therefore, more generic than the level of 

abstraction that was possible in the VPM representations. It follows that the CM must re-represent 

some of the more atypical VPM representations, forcing them to converge within basic and  

superord inate groups. Given that animal and  musical instruments exhibited  greater tendency towards 

coarse-coding in the VPM, one might expect the CM to be more adept at assigning them to their 

appropriate categories. The fact that this d id  not happen suggests that the level of categorical 

coherence seen across some animal (and  musical instrument) VPM representations may actu ally be 

more inclusive than the basic level. If this is the case, the biggest problem for the CM may well have 

been one of disambiguating basic level categories due to perceptual crowding at a more global level 

rather than grouping together unique exemplar s at the basic level. This interpretation does not accord  
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with the notion that all basic level categories reflect maximal within category similarity and  maximal 

between category d issimilarity (Rosch et al., 1976). Indeed , our data suggest that, for animals  and  

musical instruments, these parameters might be better fulfilled  by a level of categorisation more 

inclusive than the basic level. Conversely, for most artefacts the optimal level of categorisation may be 

more exclusive than the basic level.6 The data presented  here are consistent with the primate learning 

study of Gaffan and  Heywood (1993) whose subjects were trained  to d iscriminate between pairs of 

basic level objects and  animals selected  from Snodgrass and  Vanderwart (1980). The monkeys learned  

more slowly to d iscriminate basic level living things from each other and  the authors concluded  that 

visual d iscriminability must be particularly d ifficult within living thing taxonomies. The implication 

of these find ings, and  those of experiment 3, is that liv ing things are perceptually crowded  not just 

within basic level groups but also at a more global level. Gaffan and  Heywood d id  not d iscuss 

primate d iscrimination of musical instruments but they d id  report, in another experiment utilising the 

same stimulus set, that musical instruments and  living things suffer from similar visual processing 

constraints when degraded  line d rawings are presented  to neurologically intact human subjects 7.  

 

Experiment 3 demonstrates how pre-semantic category bias may give rise to category specificity in 

full object recognition. These data concur with the cascade model which pred icts slower recognition 

for structurally similar stimuli. However, whilst the pre-semantic module of cascade (i.e. the 

structural description system) is assumed to represent similarity by shared  parts and  part 

configurations, the VPM abstracts a less processed , more global type of similarity (e.g. spatial location, 

global shape and  the d istribution of shad ing information across an object’s surface). Whilst such 

global representations may capture some information about shared  parts and  configurations, it would  

be wrong to imply that objects are explicitly specified  by constituent parts within the VPM. 

 

 

 

 

                                                           
6 However, the simulations reported  here only consider global visual similarity and  do not take into account functional or 

tactile similarity which may also play a critical role in the natural coherence of basic level groups.  
7 Although their comparison was only between musical instruments and  tools. 
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Experiment 4 

Introduct ion 

In experiment 3 the CM was slower to learn correct classifications for animals and  musical instruments. 

Nonetheless, it was able to learn correct classifications for all training patterns if given sufficient time 

(i.e. > 480 training epochs). Although increased  learning time is required  to d ifferentiate between 

exemplars from perceptually crowded  categories, it is not necessarily the case that these items will be 

more prone to error once learning has reached  saturation (i.e. when error rates converge at a low 

levels for all items). To test this hypothesis in a supervised  network like the CM is not straightforward  

because, when fully trained , it will be 100% accurate for all familiar patterns (i.e. those experienced  

during training) giving rise to ceiling effects. However, given that neural networks can generalise 

learned  mappings beyond training items, it is viable to test them with unfamiliar stimuli. Within the 

context of the current study, a generalisation task using novel stimuli would  serve 2 purposes. Firstly 

it would  give some ind ication of whether pre-semantic categorical d ifferences can explain error rates 

when testing occurs under less than optimal conditions (i.e. when an easy task is made more d ifficult 

by imposing constraints – in this case testing with unfamiliar rather than familiar items). Secondly, it 

would  test whether the model can apply learned  mappings from one set of images to another. This is 

important because if a model fails to generalise, it may be d ismissed  as an artefact.  

 

In this experiment we explored  the emergence of category effects in the full model (i.e. the VPM and  

CM combined) after presenting it with only 80% of the pictorial stimuli. At testing phase the model 

was presented  with the remaining 20% and  its ability to generalise (as measured  by classifica tion 

accuracy) was assessed  in relation to the d ifferent object categories. The target item classifications in 

the CM were the same as in experiment 3 (i.e. superord inate and  basic). Given the find ings of the 

previous experiments, we can make some tentative pred ictions about how the model should  perform. 

We know that animal patterns tend  to be tightly clustered  together in the VPM such that even some 

basic level animal categories share similar representations. This should  make superord inate 

classification quite easy for the model although it may have d ifficulty in d isambiguating some basic 

level categories. A broad ly similar pattern of performance would  be expected  for the category of 

musical instruments. Clothing and  furniture exemplars, on the other hand , have very d istinctive VPM 
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representations which do not cohere naturally at either the superord inate or even basic level; although 

their appropriate classifications were easier for the CM to learn in experiment 3, this may have been 

because there was much less chance of confusing similar items. Indeed , given the low levels of visual 

overlap in these categories, it is possible that learned  mappings are of little use in categorising novel 

exemplars. For this reason, the model is expected  to generalise more effectively with visually crowded  

categories (i.e. animals and  musical instruments). 

 

Method 

Creation of VPM Training and Test Sets: The set of 560 images was systematically subdivided  in the ratio  

of 4:1 to create training and  test sets (448:112 images respectively). Training sets included  4 of the 5 

subord inates representing each basic level category and  test sets included  the remaining subord inate. 

Five training/ test set combinations were created  such that each subord inate appeared  in one of the 5 

d ifferent test sets. The presence of a subord inate, whether in the training or test set, was characterised  

by all light/ dark variations and  left-right inversions (i.e. 4 instantiations of each subord inate). In this 

way, training/ test set construction was counterbalanced  across superord inate, basic and  subord inate 

categories such that all images appeared  the same number of times. 

 

Training: One randomly configured  VPM simulation was run for each d ifferent training/ test set 

combination (i.e. 5 in total). When training was complete the 448 output vectors for each VPM were 

transformed within the range of real values between 0 and  1. These transformed vectors formed the 

training set for the CM (the CMs were identical in specification to those described  in expt. 3). Six 

randomly configured  CMs were trained  with each of the 5 sets of transformed VPM output vectors 

(i.e. 30 unique CM simulations in total). Presentation of training patterns was randomised  within each 

epoch and  training was aborted  when the RMS error for every pattern had  dropped  below 0.01. 

 

Testing: The appropriate test set (i.e. the set of images that was mutually exclusive to the training set) 

was presented  to each of the 5 fully trained  VPMs and  the resulting contour maps (i.e. the activation 

values of all 100 units of the SOFM) were recorded  for each image. Activation values in each contour 

map were standard ised  within the range 0-1 and , in this way, formed the novel test sets for the CMs. 
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These test sets (each containing 112 patterns) were then presented  to the appropriate CMs. Activation 

values were recorded  across the CM output layer for each item and  scored  for their level of accuracy.  

 

Scoring: For scoring purposes, superord inate and  basic level classifications were treated  

independently. For a correct superord inate generalisation the appropriate CM output unit (1 of 4) had  

to be activated  to a level of at least 0.49 (min 0, max 1) and  no other competing ‘superord inate’ units 

could  be more highly active than the correct unit. Furthermore, unless a compet itor was activated  to a 

value that was at least 0.1 less than the target unit, classification was scored  as incorrect. In this way 

'proximity' and  'gap ' criteria were set for measuring model performance (see Hinton and  Shallice, 

1991; Plaut and  Shallice, 1993). For correct basic level generalisation the appropriate basic level output 

unit (1 of 28) had  to be activated  to a level of at least 0.49. The procedure for dealing with competing 

basic level units (i.e. gap criteria) was identical to that for superor d inate units. The type of basic level 

classification error for each pattern was also recorded . If a d ifferent basic level unit from within the 

same superord inate was activated  to a higher level than the target unit, the response was classed  as a 

‘within-category error’. This was also the case if a competing basic level unit from within the same 

superord inate was activated  to within 0.1 of the target unit. An error subtype of ‘unrelated  category 

error’ was recorded  if the most active unit (provided  that its activity level exceeded  0.49) was a 'basic 

level' unit belonging to a d ifferent superord inate. These error classifications are often used  in 

cognitive neuropsychological assessments of visual object recognition (e.g. Done and  Gale, 1997; 

Hodges, Salmon and  Butters, 1991; 1992). All other erroneous classifications were treated  as non -

responses includ ing any instances where no unit was activated  above the imposed  threshold  value of 

0.49. The number of correct and  incorrect classifications was recorded  for all  30 CMs, and  broken 

down with respect to the superord inate categories. Comparisons of generalisation performance were 

d rawn, firstly, between levels of abstraction (superord inate vs. basic) and , secondly, between 

superord inate categories (animals vs. musical instruments vs. clothing vs. furniture). 

 

Results 

Collapsing across all categories, generalisation accuracy far exceeded  the levels pred icted  by chance 

alone (Mean ± S.D. accuracies for superord inate and  basic level generalisation were 68.7% ± 5.7% and  
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42.8% ± 5.1% respectively). Chance accuracy would  be 25% (i.e. 1 in 4 units) for superord inate 

generalisation compared  with only 3.57% (1 in 28 units) for basic level generalisation. With chance 

performance partialled  out, superord inate generalisation was still superior to basic level 

generalisation (t [1, 29] = 3.279, p  < 0.005). Category effects in generalisation accuracy were observed  

at both superord inate (F [3, 87] = 20.99, p  < 0.0001) and  basic levels (F [3, 87] = 67.62, p  < 0.0001). At 

the superord inate level, accuracy for furniture items was consistently lower compared  to other 

categories, whilst accuracy for animals exceeded  that of all other categories except musical 

instruments (Bonferroni corrected  Scheffe F-tests, p  < 0.008). At basic level, accuracy for furniture was 

consistently lower than in all other categories (p  < 0.008). Figure 10 d isplays the mean percentages of 

novel stimuli that were correctly identified  at both basic and  superord inate levels. The scores 

pred icted  by chance occurrence are also provided  for comparative purposes. The type and  frequency 

of basic level generalisation errors are plotted  in figure 11. The frequency of each error type is 

expressed  as a percentage of all basic level generalisation errors made within each superor d inate. 

 

INSERT FIGURES 10 AND 11 HERE 

 

Non-responses were the most frequent error type for each class simply because the level of activation 

across basic level outputs often failed  to reach the imposed  threshold . The proportion of non -

responses varied  across categories (F [3, 87] = 6.81, p  < 0.0005) with both animals and  musical 

instruments generating significantly fewer than other categories (p  < 0.008). The proportions of 

within-category errors also varied  across categories (F [3, 87] = 21.98, p  < 0.0001) with (i) animals 

generating more than all other categories except musical instruments and  (ii) clothing generating fewer 

than any other categories (p  < 0.008). It is of particular interest that, in many stud ies of object naming, 

these errors would  be categorised  as 'semantic'. In these simulations, however, such confusions can 

only be visual since input representations d id  not encode explicit 'semantic' features.  

 

Discussion 

This experiment has demonstrated  a d ifferent pattern of category deficit to that reported  in 

experiment 3. As pred icted , superord inate categories of novel animals and  musical instruments were 
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more easily recognised  compared  to the other categories. This further supports the view that these 

categories are crowded  at a global level and  a  pred iction is that category decision in normal subjects 

(i.e. forced  choice of superord inate labels) should  be quicker for items in these classes. Basic level 

classification of animals and  musical instruments was less accurate (relative to superord inate 

classification) suggesting that boundaries of some basic level perceptual representations within these 

categories may be fuzzy. Nonetheless, the model was considerably more accurate at classifying basic 

level animals and  musical instruments relative to furn iture and , considering that chance performance 

is only 3.6%, the model has arguably captured  useful d iagnostic information about object categories. 

We d id  not pred ict a d ifference in classification accuracy between clothing and  furniture since these 

categories elicited  similar patterns of learning performance in experiment 3. However, novel clothing 

items were recognised  more accurately at both levels of abstraction compared  with furniture. This 

pattern cannot derive from item effects because the presentation of exemplars was counterbalanced  so 

that each item was ‘novel’ in the same number of experiments. In experiment 1, items of furniture 

accounted  for a higher number of ‘winning units’ than items of clothing (34.5% and  28.3% 

respectively), suggesting greater visual redundancy in the latter. Intuitively, one might expect basic 

level clothing categories to carry more redundant visual information because their general shape 

characteristics are determined  by those of basic level human body parts (e.g. trousers / shorts - legs, 

gloves – hand, shoe/ boot – feet, t-shirt/ jacket – torso) which tend  to be shape invariant. However, 

whilst the shape of some furniture items is partly constrained  by human body shape, d ifferent 

functional specifications result in considerable variation within basic level categories (e.g. chairs: 

armchair, deckchair, d ining chair, office chair) and  some items of furniture have no relationship with 

human body shape whatsoever (e.g. lamp, clock). That basic level non -living categories can have low 

between-item similarity and  high within -item variability has also been pointed  out by Laws and  Neve 

(1999) and  Turnbull and  Laws (2000). The data from this experiment (and  indeed  experiment 1) 

concur with this although the extent of visual redundancy w ould  vary between categories (i.e. some 

artefact categories would  have greater visual redundancy than others).  

 

Again we would  point out that no semantic features have been encoded  in any simulations so far. One 

might argue that the weight matrices of the CM perform some kind  of semantic function on grounds 



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 32 

that they facilitate assemblance of certain object groupings (e.g. ‘pulling together’ visually d iverse 

items such as furniture) and  d isambiguation of others (e.g. enhancing the fine -grained  d istinctions 

between basic level animal categories). However, such properties derive from imposition of target 

output states for the model rather than explicit encoding of semantic attributes. Although the 

proposed  model cannot be viewed  as a full model of object recognition (since there is no semantic 

system to mediate between perceptual representations and  object classifications), it does give some 

ind ication of the level of object identification that may be achievable from visual information alone.  

 

An important, and  indeed  consistent, find ing of the simulations so far is the similar performance 

profile for animal and  musical instrument stimuli which accords with many cases described  in the 

literature (e.g. Stewart, Parkin and  Hunkin, 1992; Warrington and  Shallice, 1984). This apparent 

anomaly has been d ifficult to explain in terms of relative deficits for living things or biological entities 

(Parkin and  Stewart, 1993). It has been pointed  out that both living things and  musical instruments are 

relatively unfamiliar and visually complex categories. Whilst these assertions are undoubted ly true, 

they cannot account for our data. Our results suggest, rather, that similar performance characteristics 

for these classes arise through high levels of within -category visual overlap. We would  certainly not 

contend  that this explanation accounts for all living thing/ musical instrument category -specific 

impairments. Indeed , we have not considered  the role of the semantic system (or systems) in object 

classification/ naming, so we are unable to rule out explanations at the level of semantic knowledge 

(e.g. Caramazza et al., 1990; Farah and  McClelland , 1991; Warrington and  Shallice, 1984). Nonetheless, 

our model does show that perceptual crowding can be a potentially important factor in  at least some 

cases of category specific impairment. In the next experiment we test this hypothesis in a larger model 

which incorporates a semantic layer within the CM. Unlike the previous experiments which have 

investigated  model performance under ‘normal’ condid ions, experiment 5 focuses on the model after 

it had  been artificially lesioned . From this we may pred ict the kind  of errors that might be expected  

following damage at d ifferent stages of the visual object recognition process.  

 

 

Experiment 5 

Introduct ion 
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In experiments 1 to 4 we have demonstrated  how perceptual crowding might underlie category 

specific impairments. We have also demonstrated  the level of object identification that is achievable 

for our image set without the use of semantic information. We have not yet considered  the potential 

modulatory effects of semantics on representations which have evolved  in the VPM. Most category 

specific impairments d iscussed  in the literature have been described  in terms of object 

naming/ recognition accuracy and , under the assumptions of contemporary models of object 

recognition, such impairments must reflect contributions of both perceptual and  semantic 

representations. It is d ifficult to d irectly probe perceptual representations in human subjects without 

activating some semantic information, due to the non -d iscrete nature of visual object processing 

(Humphreys et al., 1988). Thus, if there is any valid ity in the claim that perceptual crowding can 

underlie some category impairments, it is important to show th at visual redundancy effects are still 

present at later stages of object processing. In this experiment, a new variation of the model is 

introduced . Rather than simply mapping VPM representations onto locally represented  object 

categories (as in expts 3 and  4), this model is intended  to capture, more plausibly, the mapping 

process between perceptual and  semantic representations. The function of the VPM is identical to 

before but, in this experiment, the CM is trained  to assign VPM representations to a seman tic 

representation which comprises distributed features and  micro-features. Once trained , the model is 

lesioned  incrementally at d ifferent processing stages (early vs. mid  vs. late) and  the impact on 

recognition performance for d ifferent object categories is measured . 

 

Method 

The outputs of the 10 VPMs trained  in experiments 1 and  2 were used  as training sets for the CMs in 

this experiment (i.e. the 560 output vectors from each VPM formed the set of training vectors for one 

d istinct CM, resulting in 10 unique CM simulations). Each CM had  100 input, 50 hidden and  32 output 

units with each layer being fully connected  to the previous. The number of hidden units was 

increased  in this study because d istributed  output representations were used  instead  of local 

representations. One impact of this is a greater overlap between output patterns, rendering learning 

more d ifficult and  necessitating an increase in processing resources. However, the hidden layer was 

still of minimum size necessary for consistent, accurate learning of all patterns. Unlike the previous 
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experiments there was no clean-up layer in this model. However, all units in the output layer were 

fully interconnected  to allow mutual excitation or inhibition. Implementing a d ifferent form of 

recurrence in this experiment served  two purposes. Firstly, initial investigations had  demonstrated  

that a large clean-up layer was needed  to cope with the new set of d istributed  output representations 

(Gale, 1997). This prolonged  model training considerably and  d id  not lead  to more accurate learning 

than intra-layer connections. Secondly, when a large clean -up layer was implemented , it only 

accounted  for a very small change in the output representations of most training patterns (i.e. the 

majority of the categorisation was done by the feed -forward  part of the network) rendering this 

method  an uneconomic use of processing units. 

 

As with experiments 3 and  4, the output units represented  superord inate and  basic level category 

information. However, in this experiment, semantic categories were delineated  by pools of micro-

features rather than localised  category markers. The set of possible output states comprised  28 

d ifferent d istributed  binary patterns (i.e. one for each of the 28 basic level categories). Each d istributed  

pattern represented  both superord inate and  basic level information. Representations for basic level 

categories sharing the same superord inate incorporated  the same superord inate information (table 2). 

Each of the 28 possible outputs was associated  with 20 d ist inct VPM representations (i.e. the 5 

subord inates of each basic level group represented  by left -right inversions at 2 levels of light/ dark). 

Each possible output pattern comprised  32 microfeatures (i.e. bits), of which, 16 were involved  in the 

representation of superord inate properties and  16 in the representation of basic level properties. Each 

output pattern comprised  an equal number of 1s and  0s and , across all 28 possible output patterns, 

each unit was set to 1 and  0 an equal number of times. Thus, no output unit was biased  towards 

assuming a particular binary value (i.e. the probability of any given unit being active was 0.5). 

Moreover, each output unit was involved  in the representation of superord inate and  basic level 

properties an equal number of tim es, removing any d ivision of labour between units representing 

general and  specific information (following Tippett, McAuliffe and  Farah, 1995). For the reader’s 

clarification, 8 examples of semantic outputs are d isplayed  in table 2. 

 

INSERT TABLE 2 HERE 
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Such great care was taken to counterbalance all sources of output representation variation so as not to 

introduce any theoretical assumptions about the representation of semantics for d ifferent object 

categories. There was no d istinction between perceptual and  functional semantic units (cf. Farah and  

McClelland , 1991) and  nor were there d iffering levels of inter -unit correlation for d ifferent categories 

(cf. Devlin et al., 1998). This is not because we believe that such assumptions are necessarily flawed . 

However, it is d ifficult to justify them on a neural basis given what little is known about the 

fundamental nature of semantic representation in the brain. For example, whilst it is undoubted ly true 

that living and  non-living things tend  to be defined more in terms of perceptual and  functional 

attributes respectively, it does not logically follow that these attributes form the basis for such concepts 

(e.g. Keil, 1989; Komatsu, 1992; Medin, 1989; Murphy and  Medin, 1985). Thus, in our model, we have 

avoided  any assumptions about representational inequalities at the level of semantics and  our 

investigation will focus purely upon the mapping process between VPM and  d istributed  semantic 

representations in order to ascertain whether perceptual crowding effects are s till apparent in a neutral 

semantic system. 

 

The CMs were trained  using RMS error as a measure of unit d iscrepancy. Training patterns were 

presented  randomly without replacement within each epoch and  training was aborted  when the RMS 

error for every pattern had  dropped  below 0.01. When training was complete, each of the 10 CMs was 

systematically lesioned , by random connection removal, at 3 d istinct locations, each under 3 levels of 

severity. The levels of lesion severity were set at 5%, 10%, 20% removal of connections and  lesions 

were made at the following locations: (i) between input and  hidden units (IH); (ii) between hidden 

and  output units (HO); (iii) between units within the semantic output layer (OO). Each CM was tested  

with the full set of 560 patterns at baseline (i.e. no lesioning) and  then under each lesion severity level 

at each of the 3 sites (i.e. 10 tests for each CM in total). Errors across output units were expressed  as 

mean unit output d iscrepancies, whereby the activation value of each unit was compared  with its 

target state for a given pattern and  the modulus of the d iscrepancy was averaged , within each test 

pattern, across (i) those units involved  in the representation of superord inate information and  (ii) 

those units involved  in the representation of basic level information. These mean unit output 

d iscrepancies were then averaged  across the 4 instantiations of each subord inate image (i.e. the 2 
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left/ right inversions and  2 light/ dark variations), resulting in 140 superord inate and  140 basic level 

mean unit output d iscrepancies for each CM simulation. These values were then averaged  across all 

10 CM simulations for each item thereby facilitating a by-items analysis (35 items for each 

superord inate) with the basic level and  superord inate error score for each item being synthesised  

from 640 ind ividual unit measures (i.e. 16 unit output d iscrepancies * 4 instantiations * 10 unique CM 

simulations). These final error values were analysed  within a 4-factor analysis of variance model. 

Level of visual crowdedness (high vs. moderate to low) was a between items factor with animals and  

musical instruments being pitted  against furniture and  clothing. Lesion severity level (5% vs. 10% vs. 

20%), lesion site (IH vs. HO vs. OO) and  level of semantic classificat ion (superord inate vs. basic) were 

nested  within-items factors. 

 

If visual crowding effects are still observable at post -perceptual stages of visual object recognition, it 

must be pred icted  that items from visually crowded  categories (i.e. animals and  musical instruments) 

will generate higher mean unit output d iscrepancies after simulated  lesioning. Furthermore, given the 

greater activation frequency of superord inate information (i.e. superord inate feature patterns were 

activated  7 times more often as basic level feature patterns), we would  also have to pred ict a relative 

overall preservation of superord inate information. However, based  upon the find ings in experiment 3, 

it would  be reasonable to expect an interaction between level of semantic categorisation  and  visual 

crowdedness since d isambiguation of basic level categories appeared  to be more d ifficult for items 

belonging to visually crowded  groups. Thus, we would  expect highest unit output d iscrepancies for 

units involved  in representing basic level information for visually crowded  categories. Naturally, one 

would  expect the level of lesioning severity to pred ict global error rates but there is no a -priori basis 

for assuming a qualitatively d ifferential impact upon visually crowded  and  non -crowded  categories. 

Finally, the site of lesioning should  influence propensity for error because each layer of the CM will 

p lay a d ifferent role in representing training items: at input level representation, visual similarity 

effects will be of a similar magnitude to those reported  in the previous experiments because the CM 

input layer simply encodes the VPM output; the hidden layer, however, will need  to re -represent the 

similarity relationships between training items in order to facilitate correct semantic classificatio n at 

output (given that no categorical biases are encoded  in the semantic output representations); finally, 
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the interconnections between semantic units would  be expected  to act as a fine -tuning mechanism for 

reducing RMS error. Given the nature of represen tational change that is likely in the model, we would  

pred ict a large visual crowding effect for early (i.e. IH) lesions but would  expect this effect to be 

attenuated  (though not lost completely) after later lesions (i.e. HO and  OO). 

 

Results 

The mean unit output d iscrepancies after lesioning are plotted  in figure 12 (min 0, max 1). The 3 levels 

of lesion severity (5%, 10% and  20%) are plotted  on the x axis for each lesion types (IH, HO and  OO). 

Mean unit output d iscrepancies for items from highly crowded  categories (i.e. animals and  musical 

instruments) are ind icated  by black and  white bars (for units involved  in superordinate and  basic level 

representation respectively). Mean unit output d iscrepancies for items from moderate to low crowded  

categories (i.e. clothing and  furniture) are ind icated  by dark grey and  light grey (for units involved  in 

superordinate and  basic level representation respectively). 

 

As pred icted , all main effects were significant. Visual crowdedness was a significant factor (F[1, 139] = 

25.8, p  < 0.0001), with crowded  categories generating higher d iscrepancies than uncrowded  categories 

(overall means 0.155 and  0.113 respectively). Level of semantic classification was also a highly 

significant pred ictor (F[1,139] = 73.0, p  < 0.0001), with  basic level information being more vulnerable 

to lesioning (overall mean superord inate and  basic level unit output d iscrepancies 0.109 and  0.159 

respectively). As would  be expected  in any neural model, the extent of lesion severity was highly 

pred ictive of classification accuracy (F[2, 278] = 1347, p  < 0.0001), with overall mean unit output 

d iscrepancies of 0.046, 0.132 and  0.224 for 5%, 10% and  20% levels of lesion severity respectively. 

Lesion site was also a significant factor (F[2, 278] = 226.8, p  < 0.0001), with earlier lesions always 

generating a higher error rate than later lesions (overall mean unit output d iscrepancies were 0.215, 

0.114 and  0.074 for IH, HO and  OO lesions respectively). 

 

INSERT FIGURE 12 HERE 

 

There was an interaction between level of semantic classification and  visual crowding (F[1, 139] = 48.5, 

p  < 0.0001); for visually uncrowded  categories, the mean overall level of unit output d iscrepancy was 
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similar for superord inate and  basic level units (0.111 and  0.109 respectively); for visually crowded  

categories, however, the mean unit output d iscrepancy was much greater for units involved  in the 

representation of basic level information (0.20 vs. 0.11).  So, although visual crowding effects are still 

observable at the post-perceptual stages of our model, these effects only seem to be tapped  by tasks 

which rely on basic level semantic knowledge. There was also an interaction between lesion site and  

visual crowdedness, whereby early lesions produced  the largest effects of visual crowding. Th e ratio 

of crowded: uncrowded  mean unit output d iscrepancies were as follows: for IH lesions 0.265 vs. 0.164; 

for HO lesions 0.121 vs. 0.110; for OO lesions 0.082 vs. 0.066. Post -hoc tests confirmed  that the 

d ifferences were significant only for IH and  OO lesions (p  ≤ 0.005). The fact that HO lesions d id  not 

generate visual crowding effects would  suggest that the hidden units were compensating for the 

d ifferential effects of visual similarity, thereby re-representing visually crowded  items in a way which 

made them more d iscernible from each other and , moreover, re-representing visually d iverse items in 

a way which made them more categorically coherent. However, given that a visual crowding effect 

was still observable after OO lesions, it would  appear that connections between units within the 

semantic later played  a greater role in generating correct activation states for visually crowded  items, 

even though the effect size was relatively small. Finally, although there was no effect of visual 

crowding after HO lesions, there was an interaction between level of semantic categorisation, visual 

crowding and  lesion site (F[2,276] = 12.4, p  < 0.0001) with post-hoc tests revealing a significantly 

higher mean unit output d iscrepancy for basic level information within crowded  categories after IH, 

HO and  OO lesions. 

 

Discussion 

In this experiment, the model was required  to map between VPM representations and  d istributed  

semantic representations. In the former, qualitative d ifferences between categories had  evolved  (see 

experiments 1 and  2) but, in the latter, categorical biases were deliberately avoided  in order to 

eliminate theoretical assumptions about the organisation of semantic memory which might account 

for category effects. Although the semantic representations we adopted  clearly embody some 

assumptions (for example, we have made the assumption that d ifferent items are represented  by 
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equivalent levels of superord inate and  basic level information), none of these would  pred ispose any 

particular category of items toward s a higher error rate after lesioning. Whilst it is contentious 

whether this reflects the true nature of representation in semantic memory, our aim was simply to 

investigate whether visual crowding effects can be propagated  forward  in a ‘neutral’ semantic system. 

Our data support the view that visual crowding can underlie category impairments even when 

lesioning occurs at post-perceptual levels of processing. However, as the site of lesion damage moves 

from perceptual towards semantic representations, the effects are reduced  considerably in our model. 

Nonetheless, there is a consistent trend  for relative loss of basic level semantic information for items 

belonging to visually crowded  categories, suggesting that representational inequality at a pre -

semantic stage of visual processing has some potential in accounting for loss of more detailed  

semantic information for living things and  musical instruments. This explanation is not mutually 

exclusive to other explanations which posit between -category d ifferences in the nature of semantic 

representation (e.g. Durrant-Peatfield  et al., 1997; Farah and  McClelland , 1991). Indeed , it is possible 

that the visual crowding effects demonstrated  here may be further exaggerated  or attenuated  

depending upon what assumptions one makes about the organisation of information underlying 

semantic categories. 

 

 

Experiment 6 

Introduct ion 

In the introduction, we d iscussed  potential concerns about how a model’s behaviour can be 

contingent upon properties of a particular training set. To recap, the subjective choice of features used  

to represent a range of objects within a connectionist model may give rise to interesting emergent 

behaviour that would  not be observed  if the same items were encoded  across a completely d ifferent 

set of features. Our aim, in using images as visual input, was to reduce the risk of subjectivity in 

feature selection. Each image in our training set was represented  over 2500 features (pixels) and  each 

ind ividual feature could  take any value between 0 and  255, giving  considerable scope for between-

item variability. The value of any given feature for any given image was determined  by its spatial 

position within that image, rather than being pre-determined  by the investigators. In this way, 
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features in our model were simply components of a picture rather than having a d irect relationships 

with nameable visual features (e.g. ‘is large’, ‘has eyes’, ‘is brown’, etc.). By adopting this approach, 

we aimed  to reduce the level of bias that is introduced  when an experimenter se lects a specific set of 

features to represent a d iverse range of objects. However, this method  is not fully immune to 

experimenter bias because it is arguable that the exact choice of items in the training set will have just 

as important a bearing on the m odel’s final behaviour as the set of features chosen to represent those 

items. We adopted  rigorous procedures when selecting images for this study: basic level categories 

were chosen carefully to reflect the range of visual d iversity within each superord in ate category; the 

choice of images was given to an ind ividual who was not a member of the investigative team; all 

images were required  to depict objects in typical and  canonical perspectives; all images were 

standard ised  for size and  centralised  within the input space; all images were left-right inversed  to 

reduce standard  orientation biases. Moreover, in experiment 4, we tested  a variant of our model with 

stimuli which were not experienced  during training (N.B. these stimuli were novel to the neural 

network but not to the original set of chosen stimuli). However, despite these control measures, it 

would  be impossible to eliminate subjectivity in image choice simply because a set of images cannot 

be chosen at random from the population of all possible pictur es. The question still remains as to 

whether the model would  generate similar behaviour for an entirely d ifferent set of pictures and  we 

address this in the final experiment by testing the model with images obtained  from a new source.  

 

Method 

A new test set of images comprising 2 examples of each basic level animal and  musical instrument 

category (28 images in total falling within the same basic level categories that were used  in 

experiments 3, 4 and  5) was assembled  using the 1995 Grolier Multimedia CD -ROM encyclopaed ia. 

No images of furniture or clothing were available within this volume so we were not able to use these 

categories. This new source of stimuli was ideal for this study because all depicted  items were very 

high quality coloured  line d rawings d epicting each object, in a canonical view, against a plain white 

background . Each image was converted  to 8-bit greyscale and  centred  within a 50 by 50 pixel grid , 

thereby conforming to the method  used  for constructing the original image set. These new imag es 

were then presented  to each of the 5 VPMs used  in experiment 4, which had  already been trained  with 
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448 images from the original set of items.8 After training, the output vectors from each VPM were 

standard ised  (range 0-1) and  presented  to half of the fully-trained  CMs (chosen at random) which had  

been paired  with each VPM in experiment 4 (i.e. 15 CMs in total were tested). Classification 

performance was scored  by the same criteria used  in experiment 4. Although this method  does not 

allow us to validate our model with a completely novel training set, it does offer a useful test of 

whether the model’s performance is contingent upon properties of a specific training set of images 

chosen by one person. If this is indeed  the case, we would  expect a d ifferent pattern of generalisation 

performance to that seen in experiment 4. If, however, our model’s performance is independent of the 

training set, we should  expect a similar pattern. To test this formally, we ran a by -subjects analysis of 

variance on the data from the 15 CMs which were used  in both this experiment and  experiment 4. A 

repeated  measures by-items analysis would  not be appropriate because the actual tests items d iffered , 

both in source and  quantity. Test set (expt. 4 vs. expt. 6), level of classifica tion (superord inate vs. basic 

level) and  category (animals vs. musical instruments) were nested  within -items factors in the ANOVA 

model. 

 

Results 

Model performance is plotted  in Figure 13, showing the level of consistency between the 2 image test 

sets (original vs. new). The small confidence intervals at each measure ind icate high levels of between -

subject consistency and  this is despite the fact that the 15 CMs d id  not all experience identical training 

sets.  

 

INSERT FIGURE 13 HERE 

 

For analytical purposes, chance performance was partialled  out (25% and  3.57% for superord inate and  

basic level classification respectively). There was no main effect of category (F[1,14] < 1) but level of 

classification was a significant factor (F[1,14] = 4.71, p  < 0.05; overall superord inate (SO) and  basic 

level (BL) means ad justed  for chance were 49.6 and  48.6). There was a significant main effect of test set 

(F[1,14] = 5.6, p  < 0.05) although the effect size was very small (but, nonetheless, consistent) with 

                                                           
8 Each of these 5 training sets had  omitted  a different subord inate from each basic level category, meaning that the composition 

of each training set was d ifferent but that all images were represented  in 4 out of 5 sets - for further clarification, see the 

method  section of experiment 4. 
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ad justed  means of 50.1 and  48.2 for original and  new test sets respectively. The 3-way interaction was 

significant (F[1,14] = 22.3, p  < 0.0001) although post-hoc tests (Bonferroni) showed significant 

d ifferences between sets only for musical instruments at the superordinate level (50.6% vs. 45.2%). It is 

notable that the 2 significant main effects derived  from very small effect sizes (approx 1% and  2% 

respectively for level of classification and  test set). A small number of replications (15 in this case) 

would  not usually p rovide sufficient power to detect as significant, such a small d ifference between 

means. However, the classification performance of CMs was highly consistent between simulations, 

and  it is this consistency which accounts for such small d ifferences reaching  significance. 

 

Discussion 

Although there was a small quantitative d ifference in classification accuracy levels between the 

original and  novel set, the overall profile of performance were very similar (figure 13). The data show 

that our model’s behaviour m ust be somewhat contingent upon properties of a particular training set 

although we would  argue that the magnitude of the d ifference is far too small to d ismiss our model’s 

performance as a toy domain. Whilst we would  accept that our model will not generat e the exact 

response profile reported  in this paper for every possible set of images, we would  suggest that it does 

capture important elements of the simulated  domain and  that our results demonstrate how visual 

crowding can be an important factor underlyin g at least some category specific impairments. 

 

 

SUMMARY OF RESULTS 

In this brief section we provide the a brief summary of the key find ings reported  within this paper. In 

experiment 1, a visual processing module (VPM) based  on Kohonen's (1982a; 1982b; 1988) self 

organising feature map was presented  with standard ised , d igitised  images of animals, musical 

instruments, clothing, and  furniture - categories which have been extensively used  in testing of 

patients with category specific agnosias. The VPM was able  to represent a d iverse set of 560 greyscale 

images deriving from 7 basic level categories within each of 4 superord inates. When the weight vector 

for each output unit in a trained  VPM was used  to generate an image of the type of stimulus that 

would  generate maximal response in that particular unit, there was a strong tendency for furniture 
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and  clothing exemplars to be depicted  at an exemplar level, whereas animals and  musical instruments 

tended  to be visible in amalgams of several images, thus implying tha t they are less visually 

d istinctive. In experiment 2, patterns of activation across the whole VPM surface were analysed . 

Different types of contour map could  be identified  for categories of animals or musical instruments 

compared  with furniture and  clothing. For the latter categories, cod ing in the VPM was more localised  

with the majority of output units having background  levels of activity. Such localised  representation 

resulted  in little overlap in VPM patterns across basic level categories (i.e. minimal  visual crowding). 

Categories of animals and  musical instruments, by contrast, were characterised  by relatively higher 

levels of activity in a greater number of VPM units, and  there was considerable overlap of activity 

across basic level categories (i.e. h igh visual crowding). In experiment 3, the rate at which acquired  

patterns of activity in the VPM would  lead  to correct classification by a supervised  Categorisation 

Module (CM) varied  between categories. Although the CM could  eventually identify the corre ct 

category for each VPM pattern with similar accuracy, animals and  musical instruments required  

substantially greater training time, relative to furniture and  clothing, to reach a state of re -

representation that would  permit a comparable level of identification accuracy. This data supported  

the view that visual crowding may underlie some processing d ifficulties for living things and  musical 

instruments. In experiment 4, the fully trained  model (i.e. VPM and  CM combined) was tested  for its 

ability to generalise mappings from basic and  superord inate level categories it had  already acquired , 

to novel exemplars. Basic level object recognition of novel stimuli was significantly less accurate for 

furniture compared  to animals, musical instruments and  clothing. Classification of superord inate 

category was significantly more accurate for animals and  musical instruments than furniture and  

clothing. Recognition errors for novel images of animals and  musical instruments tended  to be within -

category errors (i.e. members of a perceptually related  basic level category) rather than recognition 

failures which was the case for furniture and  clothing. In experiment 5, localised  category output 

representations were replaced  by d istributed  representations within the CM in order to more 

plausibly simulate the mapping process between pre-semantic and  semantic representations. After 

lesion damage, visually crowded  categories were more prone to categorisation failure, although the 

effect size was moderated  by lesion site. Finally, experiment 6 replicated  the results of experiment 4 

using a completely novel test set of pictures. Although a small quantitative d ifference was observed , 
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the general pattern of performance across the two d ifferent test sets was remarkably consistent 

suggesting that the behaviour of our model is quite tolerant of changes within the stimulus set.  

 

GENERAL  DISCUSSION  

In this paper we have described  a connectionist model of object processing which takes, as input, 

d igitised  greyscale images and  classifies each image accord ing to its semantic category. The model has 

provided  an alternative approach to exploring variables assumed to operate at pre -semantic levels of 

processing and , more specifically, their potential role in emerging category impairments. Before 

d iscussing the implications of our find ings, we firstly focus upon some strengths and  limitations of 

the approach. 

 

Firstly, our model does not seek to explain category specific deficits in terms of representation within 

the semantic system. In experiment 5 w e demonstrated  how, in a neutral semantic system, lesion 

damage at the level of semantics can give rise to a relative impairment in activating correct 

information for visually crowded  categories. This pattern derives, however, from a variable operating 

at a pre-semantic stage of processing (i.e. visual crowding) rather than from variables operating 

within the semantic system itself. Thus, visual crowding has some potential in explaining category 

specific deficits for living things (and  musical instruments), even when the locus of damage is post-

perceptual. However, this explanation does not preclude the possibility that the same type of 

impairment may also derive from factors operating at a semantic level. For example, Farah and  

McClelland  (1991) have demonstrated  how a bias in the d istribution of sensory and  functional 

semantic information can underlie both living and  non -living thing deficits. Our model is not 

mutually exclusive to such accounts but does demonstrate the potential contribution of factors which 

have not been addressed  in some earlier models. 

 

Secondly, our model only comfortably accounts for one pattern of deficit, namely an impairment in 

recognising living things. Living things (and  musical instruments) were more d ifficult to classify 

(expt. 3) and  more prone to the d isruptive effects of lesion damage (expt. 5). However, our 

simulations provided  no evidence that the reversed  pattern (i.e. a non -living thing deficit) might be 
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attributable to pre-semantic factors, suggesting that impairments in recognising non-living things 

might be better accounted  for by representational characteristics of object concepts within the semantic 

system. Although our model was less accurate at recognising novel p ictures of non-living stimuli 

(exclud ing musical instruments – expt. 4), this pattern emerged  before the model was lesioned  and  

does not, therefore, simulate the emergence of a non -living thing d isorder after brain damage. It does, 

however, support the view that non-living things may be more d ifficult to recognise under normal 

conditions owing to greater within category structural variability at the basic level (see Laws and  

Neve, 1999; Turnbull and  Laws, 2000). It must also be noted  that our model simulates living thing 

deficits for pictorial stimuli and  does not specifically address those cases where such impairments are 

demonstrated  across d ifferent input modalities. Pictures are generally assumed to activate semantic 

representations via stored  structural representations (Humphreys et al., 1988) whereas word s are 

thought to tap conceptual knowledge more d irectly (Caramazza et al., 1990; Chertkow, Bub and  

Caplan, 1992; Riddoch and  Humphreys, 1987a). Whether the d istinction is actually this clear cut or 

not, the fact that some neurological patients demonstrate greater d ifficulty in accessing semantics via 

one modality (e.g. Bub, Black and  Hampson and  Kertesz, 1988; Riddoch and  Humphreys, 1987b) does 

suggest d ifferent semantic access procedures between d ifferent types of stimuli. Those cases where 

living thing deficits are demonstrated  under testing with both verbal and  pictorial stimuli can only be 

explained  by visual crowding effects by assuming that verbal definitions rich in visual information 

tap stored  structural representations. However, there appears to be  no theoretical basis for 

speculating that an item’s visual similarity to within -category associates should  influence object name 

perception. Nonetheless, one can argue minimally that where a living thing deficit is restricted  to 

pictorial stimuli (see the investigation of patient JB described  by Riddoch and  Humphreys, 1987b), 

visual crowding may play a role in the impairment. 

 

A relative strength of this model is its ability to pred ict a co -occurrence of impaired  performance for 

both living things and musical instruments. This pattern is not so easily accounted  for by theories 

positing representational biases at a level of semantic processing. For example, a sensory/ functional 

d istinction may neatly pred ict a living/ non -living d issociation but it is d ifficu lt to conceive how it 

could  explain a d issociation between musical instruments and  other artefact categories (e.g. tools).  
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Connectionist models have been criticised  by some (e.g. Reeke and  Sporns 1993) for being 

'homuncular' (see Reeke and  Edelman, 1988) whereby a human interpreter must provide suitable 

neural inputs and  infer appropriate behaviour from a model’s output states. It is claimed  that many 

modellers utilise a set of engineering principles to build  an artefact which merely behaves in a similar 

way to a human, yet does not capture underlying processing in the simulated  domain. Moreover, 

connectionist models can often oversimplify a problem domain, permitting tolerable explanations yet 

offering little by way of testable pred ictions. Reeke and  Sporn s (1993) argue that ideal models should  

have 'inputs that are actual sensors and  outputs that are actual effectors working on the environment' 

(p . 598) and  also fulfil strict psychological or biological plausibility criteria. Whilst our model falls a 

considerable way short of fulfilling these very stringent criteria 9, we have made  an attempt to 

address some general criticisms of neural models. Given the degree of pre -processing applied  to our 

pictorial stimuli, our input data cannot really be described  as sensory in nature. Nonetheless, our 

images constitute a level of representation that is closer to actual visual data than an inferred  list of 

nameable attributes. For example, a greyscale image provides information about shape, spatial 

location and  the d istribution of shad ing across the object’s surface. This type of information does not, 

on its own, specify a depicted  object in terms of its parts and , therefore, has some parallels with 

bottom-up visual data. By contrast, an inferred  list of visual features  implies that a certain amount of 

processing has already been carried  out to extract those features which are relevant in the object 

recognition process. Given the lack of conclusive evidence about which type of visual features are 

important, this approach may sometimes be mislead ing. By utilising pictorial stimuli, we have not 

completely avoided  the homunculus problem because there is still a degree of experimenter 

subjectivity in stimulus selection. However, we have provided  data in experiment 6 which sug gests 

that our model’s behaviour is not an artefact of a specific training set. 

 

The issue of subjectivity in image choice is an important consideration: there is always a possibility 

that one could  select a completely d ifferent set of images depicting items from within the same 

                                                           
9 It is of course questionable whether Reeke and  Sporn’s criteria for modelling are reasonable in all domains. For example, it is 

quite possible that the introduction of unnecessary complexity may actually undermine a model’s ab ility to test the adequacy 

of key theoretical assumptions. 
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taxonomies, which would  not give rise to the same pattern of behaviour observed  in these 

experiments10. The question then arises as to whether our stimuli provide a reasonable reflection of our 

chosen basic level and  superord inate categories and  whether any systematic biases exist which might 

contribute towards the behaviour of the model. Within any given set of images there will always be 

id iosyncracies that are d ifficult to control. For example, our 5 examples of snakes vary from a simple 

vertical squiggle to a complex set of convolutions. The complexity of the coils reflect movement and  

are accidental to the basic simple shape, yet the model has no way of knowing this and  must represent 

all variations. Conversely, there is less shap e variation within the images of frogs because posture is 

very similar in all p ictures (for example, there were no images which depicted  frogs in mid -leap). 

Such variations would  be d ifficult to control in pictorial stimuli and  are, largely, a by -product of the 

way in which animals are depicted  in reference media. For example, frogs are typically photographed  

in a stationary, seated  position because this is probably the position in which they are most commonly 

visible (and  most easily photographed). To control for variations in the shape of living things which 

derive from movement would  be very d ifficult and  the fact that some of our chosen basic level living 

thing categories reflect shape/ movement interactions is purely accidental. Nonetheless, it could  be 

argued  that these variations constitute a confounding factor since they are present in only one of 4 

categories. We would , however, argue that they do not undermine but, rather, strengthen the case for 

visual crowding being a potentially important factor in category specific impairments. For example, 

although some of our basic level animal categories may have been rendered  less visually coherent by 

movement/ shape interaction, the category of living things, as a whole, was still visually crowded  

relative to furniture and  clothing. Moreover, living things generated  a very similar pattern of model 

performance to musical instruments which, by contrast, are not prone to shape/ movement 

interactions: indeed , even though accidental shape variations might hypothetica lly render basic level 

animal classification more d ifficult (compared  to musical instruments), our data suggests otherwise, 

since there was no d ifference in the level of basic level classification accuracy for novel animals and  

musical instruments in both experiments 4 and  6. 

 

Another important issue relating to stimulus characteristics is whether the actual categories of items 

                                                           
10 For example, it is likely that line drawings would  give quite d ifferent results because they have little textural or shading 

information. 



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 48 

utilised  in these experiments would  elicit recognition d ifficulties in genuine category specific patients. 

The CM in our model confused  many d ifferent basic level categories within each superord inate (e.g. 

snake/ frog; bird / mouse; violin/ guitar; flute/ saxophone), whereas most visual agnosics, unless 

severely impaired , would  confuse only those basic level objects which shared  similar sh apes and  

configurations of features (e.g. flute/ saxophone; violin/ guitar) rather than items which have very 

d ifferent shapes (e.g. snake/ frog; bird / mouse). This issue relates particularly to our representation of 

living things because the basic level categories within this group all appear to be visually d issimilar to 

each other (cf. musical instruments, for example, where some items like guitar and  violin have similar 

shapes and  configurations of features). All our basic level categories were specifically selected  to 

reflect the range of visual d iversity within each superord inate group so, for example, the basic level 

animal categories we chose represented  several d ifferent genera (e.g. reptiles, amphibians, mammals, 

birds, etc.). If, instead , we had  selected  all our living thing stimuli from within the same genera (e.g. 

frog, toad , newt, salamader), it would  be arguable that we were deliberately constraining similarity 

and  that this selection of items may have generated  a pattern of performance atypical of the whole 

category of animals. To represent a broad  range of d ifferent animals in which several genera were 

represented  by more than one basic level category would  require a much larger training set and  this 

would  make it d ifficult to counterbalance the nu mber of basic level categories within each of the 3 

other superord inates. In practice, our model’s ‘visual’ experience is highly limited  and , owing to 

control measures, cannot reflect overall category size. In the real world , the category of animals 

probably includes many more basic level items than any other category. This, combined  with the fact 

that living things tend  to be visually crowded , visually complex, relatively unfamiliar and of low word  

frequency, may well mean that greater learning effort is r equired  to make accurate within -category 

d iscriminations for living things.11 Within our simulations, however, only visual crowdedness (and  

possibly visual complexity) could  influence category learning because both familiarity and  category 

size were counterbalanced  (and  word  frequency d id  not apply in this model). Considering category 

size alone, the model had  no greater expertise with any one of the 4 categories.  Were we to increase 

the number of exemplars in each superord inate (in proportion with overall category size) such that 

                                                           
11 Differentiating items from different genera would  be relatively easy and  would  not require the same level of expertise that 

is needed  within a field  like ornithology, for example. By contrast, within -genera d iscriminations would  tend  to more d ifficult 

for the non-expert and  this is why they probably elicit a h igher error rate in visual agnosic patients 
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living things accounted  for more than a quarter of the training set, the model might become more 

expert in classifying animals and  may, perhaps, make fewer ‘coarse-grained’ visual d iscrimination 

errors (e.g. frog/ snake) and  more ‘fine-grained’ d iscrimination errors (e.g. spider/ beetle). 

Nonetheless, even if this were the case, the basis of any confusions would  still be high visual 

crowding and  we would  pred ict that an increase in category size would  only increase the size of the 

crowding effect seen within these simulations. In short, we suggest that if a crowding effect emerges 

in a category that is deliberately set up to include a visually d iverse range of items, it should  be 

accounted  for in models seeking to explain category specific impairments. 

 

We have d iscussed  possible criticisms of the stimuli presented  to our model and  have argued  that 

these do not undermine the principal find ing of this study. However, in add ition stimulus 

characteristics, connectionist models may also be evaluated  by the type of architecture used  to 

implement a particular theory. In a departure from some other simulations of category specific 

agnosia, we utilised  an unsupervised  module (the VPM) to model the formation of perceptual 

categories. Whilst unsup ervised  neural networks are not immune from experimenter effects, they are 

potentially useful in modelling perceptual processes because they develop representations without a -

priori assumptions about the information that is extracted  from the environment (Luckman et al., 

1995; Schynns, 1991).12 Thus, the VPM representations which evolved  in our simulations d id  so in 

response to the topology of visual stimuli rather than being pre -ordained  categorical representations. 

A full evaluation of the psychological an d  biological plausibility of our model is beyond  the scope of 

this article. Nonetheless, it is worth pointing out some broad  similarities with neural representation in 

the human brain. For example, there appear to be separate pathways in visual object reco gnition, most 

notably the ventral visual pathway and  a separate route which is critically dependent on the posterior 

parietal and  frontal lobes (Gainotti et al., 1995: Logothetis and  Sheinberg, 1996). The inferotemporal 

cortex in the ventral visual pathway is considered  to have a role for storing the 'central 

representations' of objects (Logothetis and  Sheinberg, 1996; Mishkin, Malamut and  Bachevalier, 1984). 

Coding in the inferotemporal cortical system is characterised  by neither sparse, localised  

                                                           
12 Although it should  be pointed  out here that whilst unsupervised  networks make weaker assumptions about the 

environment, they embody stronger assumptions about the form of representation that will develop (cf. 3-layer back-

propagation networks). 
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representations (i.e. single neurones signalling an object) nor highly d istributed  representations 

(Fotheringhame and  Young, 1997). Instead , neighbourhoods of neurones appear to be tuned  to classes 

of stimuli whereby each cell may respond  to a range of stimuli var ying along a particular d imension. 

Physiological selectivity of stimuli to which inferotemporal cortex cells respond  (e.g. facial stimuli) is 

correlated  with physical similarity derived  from multid imensional scaling of the stimuli. Thus, in 

some respects, the VPM in our model appears to represent the visual properties of objects in a manner 

similar to that of the inferotemporal cortical system by reducing d imensionality of the external world  

and  representing objects within multid imensional spaces. Moreover, the overall clustering behaviour 

of the 10 individual VPM simulations in experiments 1 and  2 was similar suggesting that it is the 

configurations of neuronal firings, rather than the activation values of single cells, that generate 

meaningful representation over time. So, whilst our model is relatively simple and  does not capture 

anything like the full complexity of human visual processing, it has a certain degree of biological and  

psychological plausibility. 

 

It is well documented  that apparent living thing deficits may emerge through poor control of variables 

known to affect naming performance in normal and  neurological subjects (e.g. Funnell and  Sheridan, 

1992; Stewart et al., 1992). The artefact explanation has been examined  under several parad igms, one  

of which is statistical modelling. Here, multiple regression is used  to see whether partial correlation of 

the categorical factor (living vs. non-living) is still a significant pred ictor of recognition performance 

after complexity, familiarity, frequency and  within-category similarity have been taken into 

consideration (e.g. Farah et al., 1991; Kurbat, 1997). Kurbat and  Farah (1998) demonstrated  that, when 

measurement error was minimised  or modelled  using simulated  data (e.g. Monte -Carlo simulations), 

living things still produced  higher error rates in patients and  slower reaction times in normal subjects. 

Thus, the categorical factor (living vs. non -living) was still a significant pred ictor of recognition 

accuracy. However, this may be a premature conclusion. A number of stud ies have suggested  that 

visual similarity is a key variable influencing the organisation of the structural description system as 

well as subsequent access to an amodal semantic store (Forde et al., 1997; Humphreys, et al., 1988; 

Humphreys et al. 1995; Lloyd -Jones and  Humphreys, 1997; Riddoch and  Humphreys, 1987b; Sartori 

and  Job, 1988). Moreover, from the simulation data presented  in this paper, it appears that a self 
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organising system can, over time, develop d ifferent ways of representin g living and  non-living things 

based  upon their visual similarity. These qualitatively d ifferent types of representation generate 

d ifferent performance characteristics in learning (expt. 3), recognition of novel items (expts. 4 and  6) 

and  post-lesion classification (expt. 5). Thus visually crowded  categories may not simply require finer 

visual d ifferentiation for stored  knowledge to be retrieved  (Forde et al., 1997; Humphreys et al., 1988) 

but, during learning, may actually give rise to d ifferent types of r epresentation: when learning was 

complete within our model the VPM was organised , to a certain extent, along categorical lines. This 

questions the valid ity of the debate as to whether category specific deficits result from categorical 

organisation of the structural description system or greater susceptibility of visually crowded  

categories because, in a self organising system, visual similarity can lead  to some degree of categorical 

organisation. Since measures of visual similarity which have been used  prev iously (e.g. Farah et al., 

1991; Humphreys et al., 1995) are less precise than the competitive learning algorithm used  in our 

VPM, this may explain why some statistical models of patient performance require the categorical 

factor as an add itional pred ictor  variable. 

 

The cascade model of Humphreys et al. (1988) holds that competition between similar items at one 

level of visual processing will propagate forward  to subsequent levels. Thus, increased  competition 

between structural representations, especially if degraded , will be reflected  in the semantic (and  

phonological) system by within-category recognition errors (e.g. ‘cow’ for deer). Superord inate 

categorisation tasks, by contrast, will induce few, if any, errors (Humphreys et al. 1988; Sartori and  

Job, 1988; Sartori et al. 1993; Silveri and  Gainotti 1988). Like the simulation of Humphreys et al. (1995), 

the find ings in experiment 5 demonstrate how lesioning within the ‘semantic’ system can result in an 

impairment for living things even though the categor y bias is pre-semantic. Although the hidden and  

output layer of the CM ‘separated  out’ the visually crowded  exemplars to a certain degree, the effects 

of visual crowding were still evident within representations at these later processing stages. For 

example, lesions at all 3 sites (i.e. IH, HO and  OO) impaired  access to basic level semantic information 

for all items but the effect was more pronounced  for those belonging to visually crowded  categories. 

However, activation of superord inate features was, under  mild  HO and  OO lesions, slightly worse 

(relative to basic level features) for visually uncrowded  categories. Thus a low degree of lesioning (i.e. 
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5%) in the HO and  OO stages of our model accords to some extent with the incongruous find ing 

reported  in patient RC (Moss et al., 1998) who was significantly better at sorting living things (93% 

correct) than non-living things (63% correct) into superord inate categories despite a typical category 

specific agnosia for living things. Unlike the simulation of Humphr eys et al (1995), the hidden layer in 

our CM performed somewhat d ifferent functions for visually crowded  and  uncrowded  categories 

evidenced  by a d ramatic reduction in the visual crowding effect observed  after HO lesions (cf. IH 

lesions). On one hand , the CM appeared  to be re-representing items from visually crowded  categories 

by exaggerating subtle inter-item d ifferences (i.e. separation) whereas, on the other, it re-represented  

items from visually uncrowded  categories by reducing the amount of d iscrepancy between visually 

d issimilar items within the same category (i.e. convergence). The dual function of the CM hidden layer 

has been borne out in cluster analyses of the representations at each stage of a fully trained  CM (Gale, 

1997). Thus, semantic proximity can exert a strong modulatory effect upon visual similarity. 

 

As we have already pointed  out, a relative strength of our model is its ability to account for a co -

occurrence of recognition problems for both living things and musical instruments. That such an 

apparently bizarre pattern of patient deficit should  be so consistently reported  has been the focus of 

much interest (e.g. Gainotti et al., 1995; Parkin and  Stewart, 1993). Meanwhile, purported  category 

specific deficits for non-living things tend  to be restricted  to small manipulable objects rather than 

large, outdoor objects (e.g. Warrington and  McCarthy, 1987) and  there is frequently a co -occurrence 

with impaired  knowledge for body parts. The explanation offered  by Gainotti et al. (1995) is that, for 

the former, patients fail to retrieve visual-perceptual features defining the d ifferent members of each 

category. For the latter, however, the critical knowledge is mainly somato -sensory, and  depends upon 

motor representations. Thus, non-living thing deficits would  arise through d ifficulties in accessing 

somato-sensory, rather than visual-perceptual, representations. If this is the case, the influence of 

perceptual crowding should  hold  true for somato-sensory relatedness as much as it does for visual 

relatedness in our simulations. Thus it is possible that if the somato-sensory representation system is 

also self-organising, the converse pattern of representation to that reported  here will occur (i.e. greater 

coarse-coding for non-living things and  little rep resentational overlap for living things). 
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APPENDIX A: The Image Set  

All images are d isplayed  in alphabetical order of their basic level name (starting in column 1 and  continuing in column 2). The 

basic level categories are: bed , bird , boot, chair, chest, clock, deer, d rum, fish, flute, frog, glove, guitar, jacket, keyboard , lamp, 

mouse, piano, saxophone, shoe, shorts, snake, spider, table, trousers, t -shirt, violin, wardrobe. Five subord inates appear for 

each basic level group but, in the interests of brevity, the light-dark variations and  left-right inversions do not appear. 
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APPENDIX B: Formal description of VPM training procedures 

 

1. Description of VPM module.  

The Self Organising Feature Map (SOFM) module consists of n input neurons fully connected  to 

M output neurons in a 2-d imensional grid  of R by C rows. 

 

2.     Algorithm used for training the SOFM  

(i) Initialise all the connections between the input layer and  the SOFM layer with random values  

inthe range of 0 to 1. 

(ii) The connections that emanate from  the input units  to the ith output unit form the weight 

vector  w
i
. = (w

i0
  , w

i1 
 , ..  w

ij
… w

in 
 ) 

(iii) For each epoch, t = 1, 2, ..T,  

(iv) For each input pattern,  

    A
k
  = ( a

0

k
, a

1

k
, a

j

k
 ,… a

n

k
 )    k = 0 .. K-1 

 

For each unit in the SOFM output m ap I = 1  … M 

Calculate  the euclidean d istance between each unit weight vectors and  the input pattern using  

  

   d
i
 =  √((a

k

1
 - w

i1
)

2
 + .. +(a

k

j
 - w

ij
)

2
  + (a

k

n
 - w

in
)

2
 )  (1) 

 

Store the euclidean d istances for each output unit in the SOFM output map  x 
i 

 
       (v) Select the winning unit g  =  min(d  

i
)  

 (vi)  Calculate the row r, and  column c position of g  

 (vii) Determine the neighbourhood  size n from  

 

    n(t) =  INT(n
0
 ( 1 - t/ T)),     (2) 

 

with n
0
 being the initial neighbourhood  size such that the neighbourhood  includes at least half the 

map and  T the maximum number of epochs. 

 

(viii) Create a list of g plus the units in the neighbourhood  of g, (r -n, r+n, c-n, c+n) 

 

(ix) For  each unit h in the neighbourhood list move the units weight vector w
g
 closer to A

k
 using the 

equation: 

 

    ∆w
hj
 = ß(t)[a

j

k
 – w

hj
]          (3) 

 

where j = (0,2 .. N -1) and  ß(t) = ß
o
 [1 - t/ T)], with ß

o
 being the initial training rate.  
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FIGURES AND TABLES 

 

 

 

Figure 1  Examples of a set of greyscale images presented  to our model. Each image fits  within a 50 by 

50 pixel grid  such that the principal d imension comes within one pixel of the grid  border. The above 

examples depict the 5 subord inate images of the basic level category ‘clock’ which, in turn, is one of 

the 7 basic level categories representing furniture. 
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  Original  L/ R inversion  Original - 20%  L/ R inv. - 20% 

 

Figure 2   Examples of left-right inversions and  light/ dark variations for one subord inate image  
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Figure 3  A schematic representation of the VPM - a self organising feature map (SOFM) connected  to 

an input vector (A) by weight vector (W i). This d iagram shows (i) how each SOFM output unit 

connects to every input unit and  (ii) how each output unit will have its own n -d imensional weight 

vector, where n is the number of values in the input vector. Greyscale information depicts variability 

in both unit activation and  weight values. 



Gale, Done & Frank (2000) Visual crowding and  category specific deficits  

 71 

              
 

Figure 4  Greyscale depictions of self organising feature map representations for 2 d ifferent training 

patterns. Light squares ind icate areas of high activity (peaks) and  dark squares ind icate areas of low 

activity (troughs) 
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Figure 5  Schematic representation of the full model showing the interaction between VPM and  CM  
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Figure 6  A representation of the weight vectors for one SOFM. The images are mapped  over the 

surface of a fully-trained  10 by 10 unit feature map, whereby each image represents a plot of the 

weight vector connecting the corresponding unit to the input array.  Thus the first image in the top left 

hand  corner is a plot of the weight matrix for the unit in the top left hand  corner of SOFM. The 

competitive learning algorithm d ictates that the weight vectors for a winning unit and  its 

neighbouring units are moved  closer in Euclidean d istance to any training patter n for which they are 

highly activated  (Kohonen, 1982a 1988; Schynns, 1991; Luckman et al., 1995). Thus, each image depicts 

the stimulus or configuration of stimuli to which the corresponding unit is maximally responsive. It 

should  be kept in mind  that the surface is wrapped  around  on itself such that patterns on opposite 

sides and  corners are actually neighbouring each other. 
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VPM 

 

Animals Furniture M/Insts Clothing 

1 20  34  18  28  

2 19 35  18  28  

3 20  36  16  28 

4 20  36  16  28  

5 19  33  18 30  

6 19  34  17  30  

7 20  34  18  28  

8 18  36  19  27  

9 20  33 20 27 

10 19  34 18 29 

Mean 19.4 (± 0.7) 34.5 (± 1.2) 17.8 (± 1.2) 28.3 (± 1.1) 

 

Table 1. A breakdown of ‘winning units’ for each superord inate category within each of the 10 VPMs  
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     Bird  C         Deer E       Lamp C       Clock C 

 

Figure 7  Examples of self organising feature map output contour maps for 4 training patterns (see 

appendix A for the actual images presented). Light areas ind icate regions of high output activa tion, 

whereas dark areas ind icate regions of low unit response. Note how the furniture training patterns 

generate sharper peaked  contour maps than the animal training patterns. 
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Figure 8  Frequency plot of activation values across a 100 unit Self Organis ing Feature Map for 

training patterns from 4 d ifferent semantic categories. Error bars ind icate the standard  deviations.  
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Figure 9 (a, b and  c)  Categorisation accuracy over time for training exemplars (i.e. VPM 

representations) from each of the 4 superord inate categories. Graphs a, b and  c depict early, middle 

and  late stages of training respectively. 
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Figure 10  The percentage of novel stimuli identified  correctly at the superord inate and  basic level. 

Error bars ind icate standard  errors of the mean. 
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Figure 11  The d istribution of generalisation error types for each object class. Error bars d isplay the 

standard  errors of the means 
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Exemplar Binary Semantic Feature Vector Feature Order 

   

Animal 1 10101010 10101010 11111111 00000000 SO SO BL BL 

Animal 2 10101010 10101010 00001111 00001111 SO SO BL BL 

Furniture 1 00000000 11111111 01000111 10011100 BL BL SO SO 

Furniture 2 11001100 11001100 01000111 10011100 BL BL SO SO 

Musical 1 00111100 01010101 10111000 00111100 BL SO SO BL 

Musical 2 01100110 01010101 10111000 01100110 BL SO SO BL 

Clothing 1 01010101 11011000 11001001 01100011 SO BL BL SO 

Clothing 2 01010101 10101111 00001100 01100011 SO BL BL SO 

 

Table 2  Example semantic output vectors used  in experiment 6. It can be seen that the group of 32 

output units d ivide into 4 banks of 8 and  the superord inate feature banks are denoted  by bold  

typeface. In the example shown here, superord inate properties for animals are represented  across the 

first 2 banks, whereas for furniture they are represented  across the last 2. For musical instruments, 

they are represented  across the second  and  third  banks and  for clothing, across the first and  fourth 

banks (in the last column, the letters 'SO' and  ‘BL’ represent superord inate a nd  basic level properties 

respectively). Not only do these representations remove any architectural d istinction between 

superord inate and  basic level information, but they are perfectly counterbalanced  across all training 

patterns such that no unit is biased  towards assuming a particular value. 
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Figure 12  Mean Unit Output Discrepancies for units involved  in the representation of superord inate 

(SO) and  basic level (BL) information, for both Crowded  and  Uncrowded  categories. Data are  p lotted  

to show the effects of incremental lesioning at each possible lesion site. 
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Figure 13  Consistency of model performance over 2 d ifferent image samples. Error bars ind icate 95% 

confidence intervals 

 


