Abstract:
Background: The use of technology-enhanced patient-reported outcome measures (PROMs) to monitor the symptoms experienced by people with cancer is an effective way to offer timely care. Objective: This study aimed to (a) explore the feasibility and acceptability of the Advanced Symptom Management System with patients with lung cancer receiving radiotherapy (ASyMS-R), and clinicians involved in their care; and (b) assess changes in patient outcomes during implementation of ASyMS-R in clinical practice. Methods: A repeated-measures, single-arm, mixed-methods study design...
was utilized, involving post-study interviews and completion of PROMs at baseline and end of treatment with 16 patients with lung cancer and 13 clinicians who used this mobile phone-based, symptom monitoring system. Results: Only rarely did patients report problems in using the handset, while they felt that the system covered all relevant symptoms and helped them to manage their symptoms and effectively communicate with clinicians. Clinical improvements in patient anxiety, drowsiness, and self-care self-efficacy were also observed. Clinicians perceived the use of ‘real-time’ risk algorithms and automated self-care advice provided to patients as positively contributing to clinical care. Reducing the complexity of the system was seen as important to promote its utility. Conclusions: Whilst tentative, these results suggest that monitoring patient symptoms using mobile technology in the context of radiotherapy for lung cancer is feasible and acceptable in clinical practice. Implications for practice: Future research should focus the use of this technology on the post-radiotherapy phase, and widen the scope of the system to encompass a wider range of supportive care needs.
Complete Manuscript Title:
Development of a novel remote patient monitoring system: the Advanced Symptom Management System for Radiotherapy (ASyMS-R) to improve the symptom experience of patients with lung cancer receiving radiotherapy

Author Names:
Roma Maguire, PhD, MSc (Med. Sci), BN, RGN
Emma Ream, PhD, MSc, BSc, RN, PG Dip Acad Practice
Alison Richardson, PhD, MSc, BN (Hons), Pg Dip Ed, RNT
John Connaghan, MSc, MA (Hons)
Bridget Johnston, PhD, BN (Hons), PGCE (FE), RN
Grigoris Kotronoulas, PhD, MSc (Oncol Nurs & Palliat Care), BSN
Vibe Pedersen, MSc (Anth), MSc (HTA)
John McPhelim, BSc Hon (Nursing), RGN
Natalie Pattison, DNSc, MSc, BSc (Hons), RN, Dip Onc.
Allison Smith, MN (Cancer), RN
Lorraine Webster, BSc (Hons), DCRT (T), Dip Couns, Cert Couns
Anne Taylor, PhD, BSc (Hons), RGN
Nora Kearney, MSc, RGN

Author Affiliations:
School of Health and Social Care, University of Surrey, Guildford, Surrey, United Kingdom
(Professor Maguire, Dr. Kotronoulas and Professor Kearney); School of Nursing &
Midwifery, University of Dundee, Dundee, United Kingdom (Mr. Connaghan); School of Health Sciences, University of Nottingham, Nottingham, United Kingdom (Professor Johnston); Florence Nightingale School of Nursing, Kings College London, London, United Kingdom (Professor Ream); Faculty of Health Sciences, University of Southampton and University Hospital Southampton NHS Foundation (Professor Richardson); NHS Lanarkshire, Lanarkshire, United Kingdom (Mr. McPhelim); The Royal Marsden NHS Foundation Trust, London, United Kingdom (Dr. Pattison); NHS Greater Glasgow and Clyde, Glasgow, United Kingdom (Ms. Smith); Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom (Ms. Webster); Nursing and Midwifery Allied Health Professionals Research Unit, University of Stirling (Dr. Taylor); Danish Patients Organisation (Ms. Pedersen).

Corresponding Author:

Professor Roma Maguire, School of Health and Social Care, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey, GU2 7TE, United Kingdom

E-mail: r.maguire@surrey.ac.uk

Phone: +44 (0) 141 249 0921

Acknowledgements/disclosures:

This study was funded by the National Cancer Research Institute (NCRI) Supportive and Palliative Care Research Collaboratives (Grant ID: LCSuPaC 16).

Conflict of interest statement:

All authors declare that they have no personal or financial conflicts of interest to disclose.
ABSTRACT

Background: The use of technology-enhanced patient-reported outcome measures (PROMs) to monitor the symptoms experienced by people with cancer is an effective way to offer timely care. **Objective:** This study aimed to (a) explore the feasibility and acceptability of the Advanced Symptom Management System with patients with lung cancer receiving radiotherapy (ASyMS-R), and clinicians involved in their care; and (b) assess changes in patient outcomes during implementation of ASyMS-R in clinical practice. **Methods:** A repeated-measures, single-arm, mixed-methods study design was utilized, involving post-study interviews and completion of PROMs at baseline and end of treatment with 16 patients with lung cancer and 13 clinicians who used this mobile phone-based, symptom monitoring system. **Results:** Only rarely did patients report problems in using the handset, while they felt that the system covered all relevant symptoms and helped them to manage their symptoms and effectively communicate with clinicians. Clinical improvements in patient anxiety, drowsiness, and self-care self-efficacy were also observed. Clinicians perceived the use of ‘real-time’ risk algorithms and automated self-care advice provided to patients as positively contributing to clinical care. Reducing the complexity of the system was seen as important to promote its utility. **Conclusions:** Whilst tentative, these results suggest that monitoring patient symptoms using mobile technology in the context of radiotherapy for lung cancer is feasible and acceptable in clinical practice. **Implications for practice:** Future research should focus the use of this technology on the post-radiotherapy phase, and widen the scope of the system to encompass a wider range of supportive care needs.

KEYWORDS

Lung Cancer; Radiotherapy; Supportive Care; Technology; E-Health; ASyMS
INTRODUCTION

Lung cancer is the commonest cancer worldwide\(^1\), with 1.6 million people diagnosed each year. Survival rates are poor, with only 7-9% of people in the UK living 5 years or more\(^2\-^5\). Approximately 70% of people with lung cancer receive radiotherapy as a treatment option, with either curative or palliative intent\(^6\). Radiotherapy is associated with a number of toxicities that occur as acute or late effects, which have a negative impact on patient outcomes such as quality of life, symptom burden and physical functioning\(^7\-^10\). People with lung cancer experience a high level of supportive care needs and many of these needs are unmet\(^11\-^15\). Partly responsible for this is the fact that people with lung cancer tend to not seek help for their supportive care needs; lack of awareness of what needs are amenable to intervention and the assumption that many of their needs just need to be endured have been cited as potential reasons\(^16\). Systematic supportive care is therefore vital in this patient group\(^13\).

To this end, patient-reported outcome measures (PROMs) can be utilized to identify the supportive care needs of people with lung cancer throughout the cancer trajectory. PROMs are defined as ‘measurements of an aspect of a patient’s health status that come directly from the patient’\(^17\) and their use has been partly instigated by the incongruence between patient and health professional and/or carer perceptions of health and need\(^18\-^20\). This has led to the wide scale agreement that patient reporting of their symptoms is the ‘gold standard’\(^21\) and that collection of PROM data in clinical practice has a number of beneficial effects\(^22\).

Enhancing the utility of PROMs within clinical practice is the use of ‘real-time’ health technologies (i.e. e-health technologies), which have the ability to collect PROM data and send this information immediately to relevant health/social care professionals, thus initiating early intervention. Recently, government policy in the United Kingdom has endorsed the use
of e-health technologies to support clinical care with the ultimate goal being the promotion of care provided23 and self-care24 in people with long-term health conditions, including patients with cancer. With the recent shift from inpatient to ambulatory care, the numbers of patients with cancer receiving treatment on an outpatient basis have increased dramatically; this can be translated in more people having to manage treatment-related toxicities at home without direct supervision from health professionals25. The use of e-health technologies such as mobile information and ‘real-time’ communications technology may be instrumental in overcoming such barriers26. In that sense, enhancement of the care provided to people with cancer can be translated into reduction in symptom prevalence and/or burden and therefore reduction in unnecessary hospital admissions, inpatient days, or outpatient visits. Alternatively, promotion of self-care, namely “the ability of individuals, families and communities to promote health, prevent disease, and maintain health and to cope with illness and disability with or without the support of a health-care provider” (World Health Organization, 2013)27, can give people with cancer greater confidence and sense of control, and consequently enhance perceived well-being and quality of life28.

The Advanced Symptom Management System (ASyMS)29-32 is one of the most developed remote patient monitoring systems that enables the ‘real-time’ collection of PROM data to enhance both provision of structured cancer care and patient self-care. Over the past ten years, the ASyMS system has been tested in several patient populations, including adults with breast, colorectal, lung and hematological cancers receiving chemotherapy29-31, teenagers receiving chemotherapy28, and people with palliative care needs33. These studies have demonstrated positive perceptions by patients and health professionals regarding the utility, acceptability and feasibility of the system and improvements in symptom outcomes30.
Despite the recognition of the wide spectrum of supportive care needs experienced by people with lung cancer during and after radiotherapy13, there is a lack of interventions that explore the use of real-time technologies in this patient population. To date, to our knowledge, only one study has been published on the use of e-health technology to monitor and assess the symptoms experienced by people with lung cancer receiving palliative radiotherapy34; however, due to low levels of recruitment, no outcomes were reported and the authors concluded that further research was warranted. Therefore, the primary aim of this study was to develop and explore the feasibility and acceptability of the ASyMS in patients with lung cancer receiving radiotherapy (ASyMS-R) and with clinicians involved in their care. A secondary aim was to explore changes in PROMs during the implementation of ASyMS-R, which could eventually inform the design and primary endpoints of future randomized controlled trials.

METHODS

A repeated measures, single-arm, mixed methods study design was utilized in this study, which was conducted in five clinical sites in the UK between 2008 and 2011. The current study was informed by the Medical Research Council Complex Interventions Framework35. E-health technological interventions are regarded as ‘complex’ because they are built up from a number of components that involve theoretical understanding of how the use of technology benefits patients, and require the involvement of multiple agencies. The MRC Framework proposes a cyclical, multi-method process in the evaluation of these components that takes place in partnership with the target population35. In addition, the Holistic Framework to improve the Uptake and Impact of e-Health Technologies developed by van Gemert-Pijnen et al.36 was used to inform the current study. According to this framework, six fundamental
working principles underpin the development of e-health technologies (Table 1). The framework provides comprehensive development strategies that can be used in a forward (development) and backward (summative evaluation) process, but is also flexible to accommodate for time, policy and financial challenges in clinical practice.

Sample and Setting

The study aimed to recruit 45 patients with lung cancer, receiving a course of thoracic radiotherapy, aged >18 years and able to provide written, informed consent. This sample size has been advocated as adequate for feasibility/pilot studies. Clinicians involved in the care of people with lung cancer receiving radiotherapy were also recruited at the five participating centers following informed consent. Ethical approval for the study was granted by the Fife and Forth Valley on Medical Research Ethics committee.

Procedures

Adaptation of ASyMS for use in people with lung cancer receiving radiotherapy (MRC Framework pre-clinical phase)

ASyMS is a mobile phone-based, remote patient monitoring system. For this study, it was adapted for use in people with lung cancer receiving radiotherapy via multiple methods, including an e-survey of toxicity assessment tools in the UK and three systematic reviews of the literature (i.e. symptoms experienced by people with lung cancer undergoing radiotherapy treatment; toxicity assessment tools; evidence-based self-care; unpublished). In addition, the protocols from each of the participating sites pertaining to radiotherapy toxicity assessment and self-care advice were also reviewed. Focus groups with clinicians caring for people with
lung cancer \(n=2\) and people with lung cancer who were currently or had recently received radiotherapy treatment \(n=2\) were also conducted. Exploring the perspectives of key users is advocated as being a key component in the development and testing of new technologies\(^{38}\). This information informed the content and adaptation of the developing ASyMS-R system, including (a) the selection of the daily electronic PROMs (e-PROMs) completed by patients, which included the Memorial Symptom Assessment Scale – Short Form (MSAS-SF)\(^{39}\) and the Rotterdam Symptom Checklist – Activity Subscale (RSC-Activity)\(^{40}\); (b) the risk model for the generation of alerts; and (c) the evidence-based self-care advice provided for management of toxicity.

The ASyMS-R Intervention (MRC Framework modeling phase\(^{35}\))

Participating clinicians notified the study research assistant (RA) of a new patient scheduled to receive radiation therapy; the RA then checked patient eligibility against inclusion and exclusion criteria, fully informed patients about the study’s aims and procedures, discussed issues of confidentiality and anonymity, and invited patients to take part in the study. All consenting patients provided written informed consent.

Patients used the ASyMS-R system at home during working hours (9 AM-5 PM), seven days a week for the duration of their radiotherapy treatment and for one month post-treatment, and were instructed to follow local procedures regarding out of hours care. After completing the daily questionnaire on the mobile phone, patient daily symptom data was sent in ‘real time’ to a central study server, where an integrated risk model analyzed the symptom reports. Successful receipt and analysis of symptom data was followed by two actions (**Figure 1**). First, patients immediately received self-care advice on their mobile phone that was directly
related to the severity of their symptoms. Second, for those symptoms that were of clinical concern, the server generated alerts to a pager held by a health professional at the clinical site. The ASyMS-R system generated two types of alerts. An ‘amber alert’ was generated when the patient was experiencing symptoms that were not severe or life-threatening, but where early intervention may have prevented progression of the symptom or minimized it. A ‘red alert’ denoted that the patient was experiencing symptoms that were severe. Table 2 provides examples of symptoms and conditions used in the ASyMS-R risk models to generate amber or red alerts. For amber alerts, clinicians were required to contact the patient within 8 hours after an alert had been received; for red alerts, health professionals were required to contact patients as soon as possible to initiate appropriate management. Upon receipt of a new incoming alert, health professionals were required to log into a secure web page to access the patient’s symptom history in the format of symptom reports and graphs of symptoms to inform any clinical decisions and subsequent interventions. The health professional then contacted the patient over the phone to conduct a clinical assessment and offer timely advice and support. Any interventions initiated as a result of the alert were documented in the patient’s medical record and on the secure web page. No standardized clinical intervention protocols were used in this study; instead, health professionals were asked to make use of clinical intervention protocols available at their clinical site. An example scenario of a clinical intervention following receipt of a red alert is presented in Figure 2.

Data Collection

Perceptions of patients and health professionals of the feasibility and acceptability of ASyMS-R were explored using a combination of semi-structured questionnaires and semi-structured interviews, successfully used in previous ASyMS studies\(^{29, 31}\). Semi-structured
questionnaires were completed pre- and post-intervention, and interviews were conducted at the end of the study. The content of the questionnaires and interviews focused on the following pre-determined themes that were relevant to both patients and health professionals: experience of using the technology; expectations of being involved in the ASyMS-R study (pre-study only); perceptions of the training received on how to use the ASyMS R system; and experience of using the system in clinical practice (including the e-PROMs used, the alerts generated and the evidence-based self-care advice provided). Participants were also asked about their perceptions on changes in clinical care as a result of using the ASyMS-R system including perceived changes in symptom management, suggestions for improving the system and their overall experiences of being involved in the study. Health professionals were also asked to grade the appropriateness of all clinical alerts received. However, how fast any incoming alerts were handled by health professionals or the time required for a clinician to fully investigate and respond to an alert was not recorded in this early version of the ASyMS-R system.

To address the study’s secondary objective, patients also completed four PROMs at baseline and at the end of treatment to investigate changes in anxiety levels (State-Trait Anxiety Inventory Form Y, STAI-Y41); self-care self-efficacy (Strategies Used by Patients to Promote Health, SUPPH-2942); well-being and quality of life (Functional Assessment of Cancer Therapy-Lung Cancer, FACT-L43); and physical symptom distress (Edmonton Symptom Assessment Scale, ESAS44) during use of the ASyMS-R system.

The STAI-Y was used to measure psychological distress. It consists of two 20-item scales for measuring state (i.e. a transitory emotional response to a stressful situation) and trait anxiety (i.e. personality-related predisposition to anxiety)41. Higher scores indicate more anxiety. The SUPPH-29 was used to measure perceived self-care self-efficacy. It consists of 29 items
measuring evaluate individuals’ belief in the strategies they use to improve their health. Three subscale (stress reduction; making decisions; and positive attitude) and a total score can be calculated\(^4\). An increase in score shows an increase in level of self-efficacy related to self-care behaviors. Disease-specific quality of life was assessed using the FACT-L scale. FACT-L consists of five subscales: four general subscales (i.e. physical well-being [PWB], social/family well-being [SWB], emotional well-being [EWB], and functional well-being [FWB]) and a 7-item Lung Cancer Subscale (LCS) that assesses symptoms commonly reported by patients with lung cancer\(^4\). Along with a total FACT-L score, a Trial Outcome Index (TOI) is derived by adding scores on the PWB and FWB subscales to the LCS. Higher scores represent better functioning and better quality of life. Finally, the ESAS measures presence and severity of ten common symptoms (pain, fatigue, nausea, depression, anxiety, drowsiness, shortness of breath, lack of appetite, sleep disorders, and impaired feeling of well-being) in patients with cancer\(^4\). Patients are asked to rate intensity of symptoms over the past 24 hours using an 11-point numeric rating scale, from 0 (no symptoms) to 10 (worst possible symptoms).

Data Analysis

Patient and professional interviews were audio recorded and transcribed verbatim. Data was analyzed using thematic analysis\(^4\). Thematic content analysis\(^4\) is a useful approach for answering questions about the salient issues for a particular group of respondents or for identifying typical responses. The software analysis package QSR NVivo version 8 was used to aid the organization of the data. Themed categories were identified by two researchers based on the research objectives and questions following a deductive approach. Analysis of the data focused on points of convergence or divergence on issues raised by participants. For
reliability and validity purposes, two researchers coded interviews independently. Following this preliminary stage of analysis, the two coders cross-checked the codes to ensure that the interpretations were appropriately grounded in the data. Inter-coder agreement was achieved for the entire data set.

Demographic, clinical, and perception questionnaires were calculated as frequencies (percent), means, standard deviations and range. Pairwise deletion approach was used to effectively deal with missing data. Data were examined for normality (Shapiro-Wilk test for samples <50) to select between parametric or non-parametric tests. Statistical analyses for two (t-test or Mann-Whitney U) or more independent groups (one-way ANOVA or Kruskal-Wallis test) were performed to identify significant associations between demographic or clinical variables and items on the perceptions questionnaire. Due to the small sample size, Fisher’s Exact tests were performed to examine differences between categorical/nominal variables. Paired samples t-tests (or Wilcoxon Signed Ranks tests) and McNemar tests were performed to test for significant differences between pre- and post-study data. IBM SPSS 17.0 for Windows was used to aid statistical analyses. Given that this was an exploratory study, no adjustment for multiple statistical tests was applied. All tests were conducted with a two-tailed level of significance of 0.05.

RESULTS

A total of 57 patients across the five sites were approached to take part in the study. Of these, 41 patients declined and 16 patients (response rate 28.1%) consented and participated in the study. Reasons for refusal included poor health status, patients feeling that they were being adequately managed by their clinical team and therefore perceived no need for additional
supportive care interventions and lack of familiarity with the use of technology. Such low rates of participation are common among people with lung cancer, those with advanced disease and those approaching the end of life46-48. No comparisons between patients who consented and those who refused participation could be conducted as we did not have permission to collect sociodemographic data from non-participants.

Participants were predominantly female ($n=11$), with a mean age of 63.6 (±12.9) years, ranging between 42-85 years. Three out of four patients ($n=12$) had a good performance status (ECOG PS 0 or 1), with the majority ($n=5$) scheduled to receive five fractions of radiotherapy for lung cancer. Due to the progressive nature of the disease, five patients died before post-study assessment; thus, information was collected only from the remaining 11 patients at this point. Due also to missing data, actual numbers of patients commenting on the different components of the ASyMS-R system vary.

A total of 13 health professionals also participated in the study. The majority of health professionals identified themselves as Lung Cancer Nurse Specialists ($n=4$), Consultant Oncologists ($n=2$), Nursing Research Fellows ($n=2$) or other (Staff Nurse; Radiographer; Charge Nurse; Consultant Nurse; $n=4$). One health professional did not fill out the respective question.

Primary Aim: Feasibility and Acceptability of ASyMS-R

Over a 12-month period, a total of 182 alerts were generated during the study by the ASyMS-R system (138 amber alerts/44 red alerts). Health professionals graded 51% of amber alerts and 43% of red alerts generated by ASyMS-R as being appropriate. Reasons for alerts being deemed as ‘inappropriate’ included no change from the patients baseline measurements;
patients being seen on a daily basis by health professionals involved in their care; symptoms pre-existing before radiotherapy treatment; other health professionals dealing with symptoms and symptoms improving from previous measurement. However, a few health professionals also spoke about the difficulties in “labelling” the alerts as appropriate or inappropriate as they perceived all alerts generated by the patient to be appropriate.

During post-study interviews, 9 patients indicated that they had received enough training in order to use the ASyMS-R handset. Furthermore, all or almost all reported that they never or very rarely encountered problems in using the handset \((n=10; 100\%)\), answering and submitting questionnaires \((n=9; 90\%)\), reading the self-care information after submitting a questionnaire or again at a later date \((n=10; 100\%)\), or finding cancer information pages \((n=8; 89\%)\).

“I had no hassle with it at all, and as I say having, you know I’m no(t) great on computers and things but I have some knowledge so I was able to do it” [ID18].

Seventy-eight per cent of patients \((n=7)\) felt that the ASyMS-R questionnaire covered all relevant symptoms, and all \((n=9)\) agreed that the handset helped them to both manage their symptoms and communicate with the doctors and nurses responsible for their care, irrespective of phase of treatment.

“Well as far as I am concerned yes, because it was very helpful because I had this bad cough and one or two alerts came up and the nursing staff at the other end were immediately onto it... the fact that we were in contact with the hospital very much quicker than we would be if we’d waited and maybe even phoned” [ID51].
Irrespective of phase of treatment, the majority of health professionals \(n=10; 83\% \) also felt that the use of ASyMS-R resulted in earlier detection of problematic symptoms and timely interventions more often than with usual practice.

Patients also expressed feelings of reassurance offered by ASyMS-R and the rapid feedback by health professionals in response to reported symptoms.

“I think it’s a necessity almost, it just keeps your morale up and I think it’s a great little gadget. I’m glad, let me say I’m glad I had it and I’m glad I used it” [ID31].

Comments were also made on the way that ASyMS-R reduced the uncertainty experienced by the patients, particularly at times when they were at home and were unsure as to whether they should contact health professionals or not.

“I was very pleased because once you’re away from the hospital and you needed contact with them you’re out on a limb sort of thing.....and you do tend to think “oh well perhaps this isn’t anything” and at least when you’re in contact with them (via ASyMS) they can, they know whether it is anything that’s necessary or not. So yes I quite agree with it, I’m glad that they were (there)” [ID51].

Corroborating these findings, health professionals also viewed positively having ‘real time’ access to the patient’s symptom reports on the ASyMS-R website following an alert, while having this information at hand prior to calling the patient enabled them to be better prepared:

“... em, I think you, even in any situation so that you're, like a bit more prepared, em seeing what their, their issues are em, because they might have kind of forgotten what they put in to their questionnaire when you, when you phone them, em so it’s just kind of saying you phoned and it makes them feel that you've actually ... it's very individual to them you've taken the time to look, you've taken the time to prepare before you phone so you've got the knowledge,
and they don't need to go through everything again with you cause they might no [not] be feeling up to that” [SHP2].

Another area where patients provided positive feedback was the automated self-care advice generated by the ASyMS-R system: 89% of them \((n=8) \) perceived the self-care advice offered easy to understand and user-friendly:

“Oh it was helpful, yes ... yes, that was helpful. Aye well the, the coughing and just to, reminding you to lie upright ... upright, that was the thing you're inclined to forget you know to sort of eh, even sit up, up in bed ... pillows up and eh coughing, and what was the other thing ... ? breathless, breathless, instead of panicking, sometimes you could be inclined to, if you just let it get on top of you, and being reassured there that just, to do your breathing exercises which I had got in the hospital ... and just relax, so that, that, that was good” [ID1].

Similarly, the majority of health professionals \((n=9) \) also perceived the self-care advice as being a positive aspect which could help patients feel more empowered:

“The best thing I think was the self-care advice because it's encouraging patients with their own health and to try things first cause that's what we would do for them anyway ... so I think it is putting the ball back in their court for their health em and you know trying that first and if they feel better after a self-help tip that they've done themselves, it gives them a bit of kind of encouragement to” [SHP2].

However, six patients admitted to never or only sometimes having read the self-care information pages, either during or after treatment. In the post-study interviews, some of the participants commented on how they were not trained on using this component of the system. Others commented on how they did not use the self-care information due to having received similar information from their health care professionals:
“Aye, I'll be honest about that, I scanned over it [self-care] because I was getting, I, I was getting the treatment for it, do you know I was doing, what I should have been doing kind of thing it wis’nae [was not] anything that was new to me” [ID18].

Importantly, professionals perceived the system to have most potential during the post-treatment phase, when patients had to deal with the toxicities of their treatment with limited input from healthcare personnel:

“I think there’s quite good contact during radiotherapy. But where it falls down and this is where this device would be useful, I think, is after treatment; if patients are at home by themselves, nobody's is really asking them every day how they are feeling, what their symptoms are... I think that would be something to think about for the future” [PI2].

Despite seeing the utility of ASyMS-R in the delivery of timely interventions to people with lung cancer, half of the health professional sample (n=6) were unsure of the utility of ASyMS-R, or considered it as definitely unhelpful. One health professional spoke about how she found the system cumbersome due to having to use different pieces of equipment:

“It takes the patient to key-in something and then for a nurse to respond to an additional piece of equipment that they have to carry apart from the equipment they already carry. It then depends on them picking that that alert up and then physically logging into another system in addition to the system they will always be logging into and then phoning the patient. So compared to the system that I'm used to, it seems cumbersome, it adds in too many other things to do to actually get to the patient.” [CNS1].

Secondary Aim: Change in Patient Outcomes
Patients reported moderate levels of anxiety both at baseline and at follow-up (Table 3). No differences in anxiety levels were found according to clinical or demographic variables at either pre- or post-study (all p’s >0.05). In addition, no significant between-time points differences were found for either state (Z=-0.42; p=0.68) or trait anxiety (Z=-0.25; p=0.80) before and after using the handset.

Mean SUPPH-29 scores also indicated that patients were ‘somewhat confident’ in handling the effects of their disease and treatment at each time point. Again, no associations with demographic or clinical variables emerged (all p’s >0.05). Moreover, no significant differences were found between pre- and post-study data (all p’s >0.05); however, a slight improvement in mean scores was noted for ‘positive attitude’ and ‘making decisions’ subscales after use of the handset.

Patient well-being was reported as overall good, especially the physical, social and emotional components, at either point of assessment; only scores on the functional well-being scale were relatively low. Patients scheduled to receive fewer radiotherapy fractions had poorer functional well-being (F=17.358; p=0.002); however, this association disappeared in the post-study assessment. Only a slight, yet not significant, improvement in patient functional well-being was noted during use of the ASyMS-R system (t=-1.54; p=0.12).

Prevalence rates of moderate to severe symptoms at either point of assessment are shown in Table 3, with decreases found for fatigue, depression, anxiety, drowsiness, appetite and other problems, which were nevertheless not significant (all p’s >0.05). Wilcoxon Signed Rank tests revealed only a significant increase (Z=-2.03; p=0.04) in the levels of pain at post-treatment compared with baseline.
DISCUSSION

This is the first study of its kind to report patients’ and health professionals’ perceptions of the feasibility and acceptability of the use of a mobile phone-based symptom monitoring system in patients with lung cancer receiving radiotherapy. Whilst the study sample is small, the findings suggest that the use of this type of technology is feasible and acceptable to patients with lung cancer. Participating patients perceived the use of ASyMS-R as a positive contribution to their care, particularly the real-time reporting of symptoms, the quick clinician response to alerts, and the reassurance that was evoked by the fact that clinicians were able to closely monitor patient symptoms even from a distance. These findings are supportive of similar positive evidence generated by previous ASyMS studies conducted among various patient populations with cancer29, 30, 49. One issue that emerged during the study related to reduced patient usability of one of the components of the ASyMS-R system, namely access and/or use of the automated self-care advice that followed receipt of a patient symptom questionnaire. Apart from the fact that patient training might have been sub-optimal in a few cases, a contributing factor to this problematic area could have been the availability of clinical advice to patients receiving active radiotherapy treatment, which might have led to this patient sample feeling that any additional symptom management information was redundant. However, self-care strategies have been advocated as an important concept in cancer care50, and past evidence demonstrates positive effects of self-care approaches in controlling symptoms51-54. In the context of the current study, prompt self-care advice and strategies can be used immediately after symptoms have been reported and while awaiting for clinician response and intervention, thus ultimately supporting patients’ sense of control and independence.
Health professionals’ perceptions of feasibility and acceptability of ASyMS-R were similarly positive, mainly in relation to the generation of ‘real-time’ clinical alerts and the self-care advice provided by the system. However, whilst most agreed that the alerting system was of clinical benefit and resulted in the timely management of symptoms, half of the clinicians were unsure of its clinical utility. Some of the negative perceptions seem to have occurred as a result of health professionals viewing ASyMS-R as an addition to their workload, or perhaps due to perceived ‘inappropriateness’ of the alerts generated. Such perceptions appeared to also stem from health professionals’ views on the ‘appropriateness’ of using ASyMS-R during radiotherapy treatment, when patients were in frequent contact with the clinical team. Although this may suggest that the system would be of greater benefit post-radiotherapy treatment, such clinician perspectives seem to be contrary to those expressed by patients in this study. A similar comment can be made with regard to alert ‘appropriateness’ and the observed discrepancy in the views of patients and clinicians. The resource implications of the use of ASyMS-R in clinical practice were also raised, including the time taken to log patients onto the system, train patients in using the system, or deal with incoming alerts. According to the ‘Normalization Process Theory’55, the identification of factors that promote or inhibit routine embedding of interventions in everyday practice are fundamental to their future implementation. In that sense, the findings of this study provide insight into the future development and use of mobile technologies and key aspects for clinicians which should be considered in future studies.

In terms of patient-reported outcomes, some clinically significant gain emerged, which can be cautiously linked to a hypothesized improved patient symptom management as a result of the use of the ASyMS-R system that boosted patients’ sense of control and confidence. This seemed to be particularly related to patients’ perceptions of their self-care self-efficacy, as well as to clinically significant symptom distress, especially with respect to patient anxiety
and drowsiness. **Self-efficacy, defined as the confidence in one’s ability to execute a course of action, has been regarded as an influential factor of the patients’ ability to self-manage their symptoms** as it can determine how a person thinks, feels, motivates and performs. **Zhang et al.** argued that a sense of control and involvement in the treatment are important aspects of patient self-efficacy. Current evidence suggests that higher levels of patient self-efficacy in symptom management may be linked to less psychological distress and better adjustment in the long run. In the current study, the absence of statistically significant changes may have been the result of different factors interfering with the data including (a) population-specific ceiling effects not allowing additional gain to be shown; (b) attrition, especially with such a small sample size, that might have been related to the more distressed patients withdrawing from the study; or (c) actual positive (e.g. dyspnea) or negative (e.g. well-being) radiotherapy effects that might have interfered with intervention effects. All of the issues addressed here will need to be re-evaluated in order to inform a future pilot study of a ‘pragmatic’ randomized controlled trial tailored to lung cancer care in line with current recommendations.

Our findings provide useful insight as to how ASyMS-R can be further developed for use in patients receiving radiotherapy. Future studies will need to include audio and visual resources within the self-care component, as this may provide patients with a greater array of self-care information in an interactive, accessible and easy to understand format. The use of these mediums in the delivery of self-care advice is widely reported in the literature, with positive perceptions and improved patient outcomes reported as a consequence of such interventions. Moreover, the restricted scope of the ASyMS-R system, focusing only on the toxicities associated with radiotherapy during and immediately after the treatment phase, may have limited its clinical utility. Patients with lung cancer receiving radiotherapy commonly experience toxicities several months post treatment, are increasingly receiving
combined modality treatments64 and often have several other co-morbidities65, 66. Widening the scope of the system \textbf{to allow for inclusion of additional time-points in the lung cancer treatment continuum}, measurement of toxicities associated with combined cancer treatments, recognition and distinction of symptoms relating to co-morbidities, and \textbf{evaluation} of the wider supportive care needs of patients with lung cancer \textbf{could render this system more appealing to health professionals in busy clinical settings}. In conjunction with the aforementioned developments, reducing the time clinicians will be required to spend on using the system possibly through use of adequately-sized smartphones that could act as both pagers and computer terminals to allow web access, as well as standardizing the protocols for clinician intervention following an alert could further enhance the system’s clinical utility.

\textbf{Strengths and Limitations}

Although this study is to our knowledge one of the first to explore the use of mobile technology in the remote monitoring and reporting of \textit{radiotherapy-related} toxicity in people with lung cancer, the results should be interpreted with some caution given the small sample size, the observed attrition, and lack of a control group. In addition, our findings may be associated more with the characteristics of this specific sample rather those of the lung cancer patient population. For instance, lack of familiarity with technology might have deterred patients from taking part in this study. Furthermore, it remains to be verified whether the observed fluctuations in patient outcomes reflect true intervention effects or simply the natural course of change post-administration of radiation therapy. What is more, the follow-up evaluation included one post-treatment measurement only, which may have compromised our sensitivity in documenting changes over time in patient-reported outcomes. Addition of intermediate measurements might have allowed for a more detailed investigation of over-time
change, and revealed significant intervention effects manifested earlier in the course of radiotherapy.

CONCLUSIONS

This study demonstrated the potential to provide an accurate and acceptable means of radiotherapy-related toxicity assessment and management in clinical practice, thus effectively responding to the needs of patients with lung cancer and facilitating the delivery of timely interventions. Patients with lung cancer perceived the ASyMS-R system to positively impact on their care and promote the timely reporting and management of their symptoms. Health professionals involved in the care of patients with lung cancer perceived the use of ‘real-time’ risk algorithms and automated self-care advice as being positive aspects of such systems. Future research will be required to enhance the properties of the system, expand the use of this technology to the post-radiotherapy period, and widen the scope of the system to encompass a wider range of supportive care needs of people with lung cancer.
Statement of Authorship: All authors have equally contributed to the preparation of this manuscript.

Conflicts of interest: The authors have no personal or financial conflicts of interest to disclose.
FIGURE LEGENDS

Figure 1. Conceptual diagram of the ASyMS-R intervention for patients with lung cancer receiving radiotherapy treatment.

Figure 2. Example scenario of clinician involvement in handling a red alert generated by pain graded at ‘quite a bit’.
REFERENCES

27. Webber D, Guo Z, Mann S. Self-care in health: can we define it, but should we also measure it? *SelfCare.* 2013;4(5):101-106.

TABLES

Table 1. Working principles of the Holistic Framework for the Uptake and Impact of e-Health Technologies

<table>
<thead>
<tr>
<th>Principle</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. e-Health Technology Development is a Participatory Process</td>
<td>“Stakeholder participation is essential. Stakeholders’ involvement spans the full development process, starting from contextual inquiry and ending with summative evaluation.”</td>
</tr>
<tr>
<td>2. e-Health Technology Development Involves Continuous Evaluation Cycles</td>
<td>“Development is an iterative, flexible, and dynamic process resulting in concepts of the technology (from ideation to prototypes). […] Evaluation as such is a cyclic, longitudinal research activity interwoven with all stages in the development process and as such without a fixed end (formative and summative evaluation)”</td>
</tr>
<tr>
<td>3. e-Health Technology Development is Intertwined With Implementation</td>
<td>“…the conditions for implementation must be taken into account right from the start (contextual inquiry and value specification)”</td>
</tr>
<tr>
<td>4. e-Health Technology Development Changes the Organization of Health Care</td>
<td>“The development of e-Health technology in itself can be considered as the creation of new processes and infrastructures for health care delivery. It may reshape health care since it intervenes with traditional care characteristics such as the division of labor, or time- and place-dependant deliver.”</td>
</tr>
<tr>
<td>5. e-Health Technology Development Should Involve Persuasive Design Techniques</td>
<td>“[Patients] expect self-care technology to show understanding, to persuade them to do the right thing, or to provide rewards and appraisal for appropriate behavior. […] Particularly in the context of long-term care, it is important to develop technologies that can create bonding relationships with the end users. […] Via persuasive techniques, e-Health technologies can be designed to match user profiles, and to motivate or inspire patients to engage in self-management.”</td>
</tr>
<tr>
<td>6. e-Health Technology Development Needs Advanced Methods to Assess Impact</td>
<td>“…need to understand what differences e-Health technologies can make in health care, why e-Health technologies make these differences, and why e-Health technologies may not have the expected impact. […] The challenge lies in the integration of data collection from multiple sources, using a mixed-methods research design.”</td>
</tr>
<tr>
<td>Symptom</td>
<td>Graded as/at</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Coughing up blood</td>
<td>‘Not happened before’ AND ‘more than a few teaspoons of blood’</td>
</tr>
<tr>
<td>Pain</td>
<td>‘Quite a bit’ OR ‘Very much’</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>‘Quite a bit’ OR ‘Very much’</td>
</tr>
<tr>
<td>Flu-like symptoms</td>
<td>‘Quite a bit’ OR ‘Very much’</td>
</tr>
<tr>
<td>Coughing up blood</td>
<td>‘Not happened before’</td>
</tr>
<tr>
<td>Coughing up blood</td>
<td>‘Happened before’ AND ‘more than two teaspoons of blood’</td>
</tr>
<tr>
<td>Pain</td>
<td>‘Somewhat’</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>‘Somewhat’</td>
</tr>
<tr>
<td>Flu-like symptoms</td>
<td>‘Somewhat’</td>
</tr>
<tr>
<td>Other symptoms (e.g. cough,</td>
<td>‘Quite a bit’ OR ‘Very much’</td>
</tr>
<tr>
<td>nausea, lack of appetite, sore throat)</td>
<td></td>
</tr>
<tr>
<td>Feeling anxious</td>
<td>‘Somewhat’</td>
</tr>
<tr>
<td>Heartburn</td>
<td>‘Somewhat’</td>
</tr>
<tr>
<td>Any ‘new’ symptom</td>
<td>‘Quite a bit’ OR ‘Very much’</td>
</tr>
</tbody>
</table>

Abbreviations: MSAS-SF – Memorial Symptom Assessment Scale-Short Form; RSC-Activity – Rotterdam Symptom Checklist-Activity subscale.
Table 3. Baseline and post-treatment outcome scores, and between time-points associations

<table>
<thead>
<tr>
<th>Outcome Subscale</th>
<th>Cronbach’s alpha</th>
<th>Baseline (n=15)</th>
<th>Post-treatment (n=11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>STAI-Y state</td>
<td>0.63</td>
<td>43.9</td>
<td>9.0</td>
</tr>
<tr>
<td>STAI-Y trait</td>
<td>0.62</td>
<td>43.0<sup>b</sup></td>
<td>8.3</td>
</tr>
<tr>
<td>SUPPH29 Positive attitude</td>
<td>0.70</td>
<td>48.1<sup>d</sup></td>
<td>16.1</td>
</tr>
<tr>
<td>SUPPH29 Stress reduction</td>
<td>0.65</td>
<td>27.4<sup>b</sup></td>
<td>10.9</td>
</tr>
<tr>
<td>SUPPH29 Making decisions</td>
<td>0.72</td>
<td>8.4<sup>b</sup></td>
<td>4.0</td>
</tr>
<tr>
<td>FACT-L PWB</td>
<td>0.74</td>
<td>19.7</td>
<td>6.5</td>
</tr>
<tr>
<td>FACT-L SWB</td>
<td>0.69</td>
<td>18.6</td>
<td>4.0</td>
</tr>
<tr>
<td>FACT-L EWB</td>
<td>0.70</td>
<td>16.6</td>
<td>6.4</td>
</tr>
<tr>
<td>FACT-L FWB</td>
<td>0.73</td>
<td>12.0</td>
<td>7.8</td>
</tr>
<tr>
<td>FACT-L LCS</td>
<td>0.72</td>
<td>21.2</td>
<td>6.7</td>
</tr>
<tr>
<td>FACT-L Total</td>
<td>0.68</td>
<td>86.2</td>
<td>24.7</td>
</tr>
<tr>
<td>FACT-L TOI</td>
<td>0.73</td>
<td>52.1</td>
<td>17.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cronbach’s alpha</th>
<th>Baseline (n=14)</th>
<th>Post-treatment (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDN</td>
<td>Range</td>
</tr>
<tr>
<td>ESAS Pain</td>
<td>0.68**</td>
<td>1.5</td>
</tr>
<tr>
<td>ESAS Tiredness</td>
<td>5</td>
<td>1-8</td>
</tr>
<tr>
<td>ESAS Nausea</td>
<td>0</td>
<td>0-8</td>
</tr>
<tr>
<td>ESAS Depression</td>
<td>0</td>
<td>0-8</td>
</tr>
<tr>
<td>ESAS Anxiety</td>
<td>0.5</td>
<td>0-10</td>
</tr>
<tr>
<td>ESAS Drowsiness</td>
<td>3.5</td>
<td>0-9</td>
</tr>
<tr>
<td>ESAS Appetite</td>
<td>5</td>
<td>0-10</td>
</tr>
<tr>
<td>ESAS Well-being</td>
<td>4.5</td>
<td>0-10</td>
</tr>
<tr>
<td>ESAS Breathlessness</td>
<td>3.5</td>
<td>0-9</td>
</tr>
<tr>
<td>ESAS Other problem</td>
<td>0<sup>e</sup></td>
<td>0-6</td>
</tr>
</tbody>
</table>

Abbreviations: ESAS – Edmonton Symptom Assessment Scale; EWB – emotional w/b subscale; FACT-L Total – sum of all 5 subscales; FWB – functional w/b subscale; LCS – lung cancer specific w/b subscale; M – Mean; MDN – Median; PWB – physical w/b subscale; SD – Standard Deviation; STAI-Y – State/Trait Anxiety Inventory Form Y; SUPPH29 – Strategies Used by Patients to Promote Health 29; SWB – social w/b subscale; TOI – Total outcome index (sum of PWB, FWB, LCS); w/b – Well-being.

* A score >4 indicates increased symptom distress and warrants intervention.

** Cronbach’s alpha was calculated for the total ESAS.

[†] Possible range of scores: 20-80
[‡] Possible range of scores: 0-100
[§] Possible range of scores: PA 15-75, SR 10-50, MD 3-15
[§] Possible range of scores: PWB 0-28, SWB 0-28, EWB 0-24, FWB 0-28, LCS 0-40, TFACT-L 0-148, TOI 0-96.

[★] Possible range for all scales 0-10
[★] n=11; [★] n=14; [★] n=10; [★] n=9; [★] n=6
Figure 2

Patient completes e-symptom questionnaire on their handset

Pain graded at ‘quite a bit’

Red alert on the clinician’s handset

Clinician logs on to the ASyMS-R website

Calls patient as soon as possible

Performs clinical assessment with patient
Follows protocols for intervention available at clinical site

Documents actions/interventions on website/medical record

Signs off alert

Reviews patient clinical report
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author AR.pdf
LWW Copyright Transfer and Disclosure Form

Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author AS.pdf
*LWW Copyright Transfer and Disclosure Form
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author AT.pdf
*LWW Copyright Transfer and Disclosure Form
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author ER.pdf
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author JM.pdf
*LWW Copyright Transfer and Disclosure Form

Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author JPC.pdf
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author LW.pdf
*LWW Copyright Transfer and Disclosure Form

Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author NK.pdf
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author NP.pdf
Click here to download LWW Copyright Transfer and Disclosure Form: copyrightTransfer co-author VP.pdf