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The entrainment across a stably stratified interface forced by convective motions is
discussed in the light of the mixing efficiency of the entrainment process. The context
is the convectively driven atmospheric boundary layer and we focus on the regime of
equilibrium entrainment, i.e. when the boundary-layer evolution is in a quasi-steady
state. The entrainment law is classically based on the ratio R of the negative of
the heat flux at the interface to the heat flux at the ground surface. We propose a
parameterization for R that involves the mixing efficiency and the thickness of the
interface, which matches well the direct computation of R from a high-resolution
large-eddy simulation. This result enables us to derive modified expressions for the
classical entrainment laws (the so-called zero- and first-order models) as a function
of the mixing efficiency. We show that, when the thickness of the interface is ignored
(zero-order model), the scaling factor A in the entrainment law is the flux Richardson
number. This parameterization of A is further improved when the thickness of the
interface is considered (first-order model), as shown by the direct computation of A
from the large-eddy simulation.

1. Introduction
The interfacial layer (IL) between the convectively driven atmospheric boundary

layer and the stably stratified free atmosphere above is subjected to intense turbulent
mixing, due to entrainment of air by convective motions. As a result, the IL

rises or, equivalently, the boundary layer deepens. As pointed out for instance by
Otte & Wyngaard (2001), the modelling of the entrainment process is an essential
issue for both oceanic and atmospheric applications. Thus, several entrainment law
formulations have been derived to date, which relate the entrainment velocity, namely
the velocity at which the interface rises, to measurable parameters of the mixed and
interfacial layers.

In the zero-order model (ZOM) proposed by Lilly (1968), the thickness of the IL is
assumed infinitesimal, and the temperature profile exhibits a jump across that interface
(see figure 1a). The IL altitude, denoted by zi , is defined as the level where the heat
flux is minimum (being negative). Herein we consider a horizontally homogeneous
boundary layer without large-scale subsidence. Let Θ and F denote the horizontally
averaged virtual potential temperature and heat flux, respectively. Lilly (1968) showed
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Figure 1. Profiles of typical virtual potential temperature Θ and heat flux F for the
convectively driven boundary layer. (a) Zero-order model (ZOM) by Lilly (1968); (b) first-order
model (FOM) by Betts (1974). The strength of the capping inversion is denoted by �Θ . The
interfacial-layer thickness is designated δ and ΓFA is the Θ lapse rate in the free atmosphere.

that the entrainment velocity, we ≡ żi , can be expressed as

we = −Fi/�Θ , (1.1)

where Fi is the heat flux at the interface and �Θ is the strength of the capping
inversion.

The difficulty, once �Θ is known, is to estimate the entrainment heat flux Fi and
a simple closure was proposed by assuming that Fi is a fixed fraction of the surface
heat flux Fs , i.e. the flux ratio,

R ≡ −Fi/Fs , (1.2)

has a constant value. This value is commonly taken as 0.2 (e.g. Stull 1976). Equations
(1.1) and (1.2) together yield a simple model for the entrainment velocity,

we = R Fs

�Θ
. (1.3)

This expression for we may be written in a non-dimensional form by introducing a
convective velocity, w� ≡ (g β Fs zi)

1/3, with g being the gravitational acceleration and
β the coefficient of thermal expansion, and a bulk (overall) Richardson number,

RiB ≡ g β �Θ zi

w2
�

. (1.4)

This yields the classical ZOM formulation of the entrainment law,

we/w� = AR
0 Ri−1

B , (1.5)

with AR
0 = R. Hereafter the subscript 0 refers to the ZOM framework.

In first-order models (FOMs), the finite thickness δ of the IL is taken into account
(e.g. Betts 1974; van Zanten et al. 1999). Betts (1974) assumed that the mixed layer
extends up to zi , and that above zi the heat flux increases linearly to zero at zi + δ

(see figure 1b). Assuming that the IL thickness is constant, Betts (1974) showed that
the entrainment velocity can be written as

we =
−Fi + δ ∂Θ�/∂t

�Θ
, (1.6)

where Θ� = [Θ (zi) + Θ (zi + δ)] /2. In the limit of infinitely small thickness of the
interface (δ → 0), equation (1.6) reduces to equation (1.1), as it should. Note that
rigorously we should use another notation for �Θ (and consequently RiB) within the
FOM framework (see the discussion in § 4). Using the definitions of the convective
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velocity and the bulk Richardson number above, equation (1.6) can be rewritten as

we/w� = AR
1 Ri−1

B , (1.7)

where AR
1 = R + (δ/Fs) ∂Θ�/∂t . This is the classical expression of the entrainment

law in the FOM framework. Note that the subscript 1 refers to the order of the model.
To account for the smooth vertical profiles of both Θ and F in the real atmosphere,

more general formulations have been derived from integral parameters of the IL (e.g.
Fedorovich & Mironov 1995). General-structure models thus obtained are more
realistic but contain empirical dimensionless functions, which need to be carefully
estimated from either field or laboratory experiments or numerical simulations.

From an experimental point of view, the entrainment processes across a density
interface have been studied extensively (see Hopfinger 1987; Fernando 1991, for
reviews, as well as references therein). When entrainment results from grid-generated
turbulence, the dimensionless entrainment velocity, we/w�, was found to vary as Ri−n

B ,
where n is in the range 1−2 depending upon the values of the Prandtl and Richardson
numbers. For strong enough stratification of the interface, Turner (1968) found that
for density differences produced by heat alone n is close to 1, and in the presence
of a salinity difference across the interface n is close to 3/2. In the convection tank
experiment of Deardorff, Willis & Stockton (1980), the dimensionless entrainment
velocity was found to vary as

we/w� = A Ri−1
B , (1.8)

with A � 0.25. As noted by Deardorff et al. (1980), this is equation (1.5) with A = R.
But these authors found that their data could also be fitted by a Ri−3/2

B power law, so
that there seemed to be no clear conclusion on the values of both n and A.

The entrainment-law formulation has also been extensively investigated from
large-eddy simulations (LESs) of the convective atmospheric boundary layer. The
entrainment law (1.8) is generally confirmed with A � 0.25 in the regime of
equilibrium entrainment, which is realized when the turbulent regime in the mixed
layer is in a quasi-steady state (e.g. Sullivan et al. 1998; Fedorovich, Conzemius &
Mironov 2004; Chemel, Staquet & Chollet 2007). Nevertheless, LES investigations
in the literature show a scatter of about 30 % in the value of A (e.g. Stevens &
Lenschow 2001). Stevens et al. (2000) also noted that the entrainment velocity is clearly
dependent on numerical and subgrid-scale mixing, as well as on the details of the
numerics. This result indicates that only high-resolution LESs would provide reliable
estimates of A since, as the resolution is increased, these dependences should decrease.

The main purpose of the present paper is to investigate the link between the
quantification of mixing at the interface and the entrainment law. To proceed, we
apply the concept of mixing efficiency to both the ZOM and FOM frameworks, and
use a high-resolution LES of the convectively driven boundary layer to assess the
validity of our approach.

2. Energy considerations
2.1. Basic concepts of mixing

When mixing occurs in a stably stratified fluid, the centre of mass of the fluid system
rises. Hence, the potential energy of the fluid system increases through mixing. The
term potential energy should be specified. One should distinguish the potential energy
associated with reversible processes, like internal gravity wave motions, from the
potential energy associated with irreversible processes, like mixing. The former is the
available potential energy (Lorenz 1955) and vanishes when the flow returns to its
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rest state. Conversely, the latter is the minimum potential energy of the fluid system
(usually referred to as the background potential energy, denoted by Eb) and always
increases through mixing.

The amount of energy brought into a fluid system, by a paddle in a laboratory
experiment (in which case the energy input is kinetic) or by heating from below as in
the present case (in which case the energy input is potential), is thus dissipated via
two sinks: (i) kinetic energy dissipation and (ii) the mixing of the active scalar (the
virtual potential temperature in the present case), which locally reduces its gradient.

Mixing in a stably stratified fluid is most usefully quantified by the mixing efficiency
(e.g. Osborn & Cox 1972). The mixing efficiency, denoted by γ , is defined as the ratio
of the increase in the background potential energy per time unit, Ėb, to the dissipation
rate of turbulent kinetic energy E:

γ ≡ Ėb/E, (2.1)

where Eb and E are volume-averaged quantities. This quantification of mixing is
equivalent to that of the flux Richardson number Rif as obtained by Linden (1979)
in forced turbulence laboratory experiments. In that case, Ėb is instead compared to
the input rate of energy to the fluid system per time unit, denoted by Ṁ, yielding

Rif ≡ Ėb/Ṁ. (2.2)

When a statistically steady regime is reached, Ṁ = Ėb + E, implying that the flux
Richardson number and the mixing efficiency are simply related by

Rif =
γ

γ + 1
. (2.3)

Note that Rif is the same as the parameter R� introduced by Manins & Turner
(1978).

Let us assume that the turbulent regime in the mixed layer is in a statistically steady
state. This is a valid assumption if the entrainment velocity we is much smaller than
the typical velocity of the convective motions w�. Hence we assume that we � w�,
which is the case in the convectively driven atmospheric boundary layer.

2.2. Application to the zero-order model

Let us start from the heat balance equation, ∂Θ/∂t = −∂F/∂z, in the Boussinesq
approximation, neglecting subsidence and molecular effects. In the mixed layer, Θ

is constant with height, so that the heat flux F decreases linearly with height (see
figure 1a):

F = Fs

[(
1 − z

zi

)
− R z

zi

]
. (2.4)

As is usual, we consider the equation for the turbulent kinetic energy averaged
over the mixed-layer depth (e.g. Stull 1976). For strong enough stability of the air
above and neglecting the flux due to upward radiation of energy from the top of the
boundary layer, this equation may be written as

g β
1

zi

∫ zi

0

Fdz =
1

zi

∫ zi

0

ε dz, (2.5)

where ε is the horizontally averaged dissipation rate of kinetic energy.
We shall now partition the buoyancy flux averaged over the mixed layer into

positive and negative contributions, which are identified as energy production and
mixing terms, respectively. We adopt the process-partitioning originally proposed by
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Figure 2. Partitioning to retrieve the energy production part (dark grey) and the mixing part
(light grey) of the buoyancy flux. (a) Zero-order model (ZOM) by Lilly (1968); (b) first-order
model (FOM) by Betts (1974).

Manins & Turner (1978) (see also Zilitinkevich 1991; Fedorovich et al. 2004). From
equation (2.4), the buoyancy flux profile averaged over the mixed layer,

g β
1

zi

∫ zi

0

F dz = 1
2
g β Fs + 1

2
g β Fi , (2.6)

is thus the sum of a positive contribution due to ground surface heating, g β Fs/2,
which we identify as Ṁ, and a negative contribution due to convective entrainment,
g β Fi/2, which we identify as −Ėb; the integration extends all over the mixed-layer
depth as we may expect from updraughts and downdraughts. Hence, Ṁ = g β Fs/2
is the energy production due to ground surface heating (displayed in dark grey
in figure 2a), and −Ėb = g β Fi/2 is the fraction of buoyancy production used on
entrainment (displayed in light grey in figure 2a). Note that this expression for Ėb

can be derived easily by computing the potential energy averaged over the mixed-
layer depth, taking the time derivative, and using the heat balance equation (see
Winters & D’Asaro 1996, equation (15)). It follows that the flux ratio is the flux
Richardson number Rif , i.e. in terms of mixing efficiency,

Rγ

0 =
γ

γ + 1
, (2.7)

where the superscript γ denotes a result based on mixing efficiency. This means
that a fraction γ /(γ + 1) of the energy made available by ground surface heating
is used to deepen the mixed layer (or equivalently to lift the interface). This result
was guessed by several authors in the sense that the flux ratio R was referred to
as the energy efficiency (e.g. Lilly 2002, p. 3346), the entrainment efficiency (e.g.
Caldwell, Bretherton & Wood 2005, p. 3787), or the general entrainment flux ratio
(e.g. Conzemius & Fedorovich 2006, p. 1158).

The entrainment law (1.5) may thus be expressed as a function of the mixing
efficiency γ using equation (2.7), namely

we/w� = Aγ

0 Ri−1
B , (2.8)

with Aγ

0 = γ / (γ + 1). At this point, we recall that this equation is valid when
we/w� � 1, that is, since γ < 1, when RiB � 1. Hence, the interface should be strongly
stratified for this analysis to apply, as already assumed for the air above.
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2.3. Application to the first-order model

For the FOM, both Θ and F are made up of linear segments (see figure 1b). The
expression for the heat flux F is straightforward: for 0 � z � zi , F is expressed
by equation (2.4) while for zi � z � zi + δ, F = (R Fs/δ) [z − (zi + δ)]. As in § 2.2,
we partition the buoyancy flux averaged from the ground surface up to the free
atmosphere,

g β
1

zi + δ

∫ zi+δ

0

F dz =
1

2
g β

zi

zi + δ
Fs +

1

2
g β Fi , (2.9)

into a positive contribution, Ṁ, and a negative contribution, −Ėb. Consistent with
§ 2.2, we shall assume that the positive contribution due to ground surface heating
occurs through updraughts that extend up to the top of the mixed layer zi . This
implies that Ṁ = g β [zi/ (zi + δ)] Fs/2, which implies that Ėb = −g β Fi/2. Both
the positive and negative contributions to the averaged buoyancy flux are illustrated
in figure 2(b). It follows that, in this FOM framework, the flux ratio and the mixing
efficiency γ are related by

Rγ

1 =
zi

zi + δ

γ

γ + 1
. (2.10)

Assuming that the IL thickness is constant in the regime of equilibrium entrainment
and using the FOM by Betts (1974), equation (2.10) for the flux ratio enables us to
derive a modified expression of the entrainment law (1.7) as a function of γ , namely

we/w� = Aγ

1 Ri−1
B , (2.11)

where Aγ

1 = [zi/ (zi + δ)] γ / (γ + 1) + (δ/Fs) ∂Θ�/∂t .

3. Computation of the mixing efficiency
In this section, we compute directly the mixing efficiency from the high-resolution

LES data of Chemel et al. (2007) in the regime of equilibrium entrainment. A
detailed description of the LES is given in Chemel et al. (2007). The horizontal
domain is 5.12 km × 5.12 km and the domain height is 4.535 km. The computation
was performed with the ARPS (Advanced Regional Prediction System) model (Xue,
Droegemeier & Wong 2000), using a horizontal resolution of 20 m. The vertical
resolution was 20 m over the mixed-layer depth, 5m within the IL and 50 m above.
The model was initialized using a 0900 EST (local time) sounding of Day 33 of the
Wangara experiment (Clarke et al. 1971). In the present study, we use the data from
1200 EST to 1330 EST, for which the boundary-layer evolution is in a quasi-steady
state and the IL is strongly stratified (RiB > 10).

Here, the attention is focused on the IL. We thus consider a volume V extending
on both sides of the interface, from a level above the ground surface (at z/zi = 0.5) up
to a level far above the upper boundary of the IL (at z/zi =1.5). These boundaries
may be regarded as geometric boundaries, which do not interfere with the IL. The
temporal evolution of Eb satisfies the equation (Winters & D’Asaro 1996)

Ėb = Φd + Fadv
surf + Fdif

surf, (3.1)

where all four terms are averaged over V. Φd is the rate of change of Eb due to
mixing across the surfaces of constant resolved (filtered) virtual potential temperature

Θ̃; Fadv
surf and Fdif

surf are the rate of change of Eb due to advection and diffusion of
Θ̃ across the boundaries of V. The lateral boundaries of our LES being periodic,
there is no net transport into or out of the computational domain through those
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Model frameworkDefinition
ZOM FOM

R ≡ − Fi

Fs

Rγ

0 =
γ

γ + 1
Rγ

1 =
zi

zi + δ

γ

γ + 1

AR
0 = R AR

1 = R +
δ

Fs

∂Θ�

∂t
A ≡ we

w�

RiB Aγ

0 =
γ

γ + 1
Aγ

1 =
zi

zi + δ

γ

γ + 1
+

δ

Fs

∂Θ�

∂t

Table 1. Definition (first column) and parameterization of the flux ratio R and of the scaling
factor A in the entrainment law, using the zero-order model (ZOM) by Lilly (1968) (second
column) and the first-order model (FOM) by Betts (1974) (third column). All parameters are
defined in the text.

boundaries. At the upper boundary where the fluid is at rest, Fadv
surf vanishes and

Fdif
surf may be neglected. Across the lower boundary both fluxes are zero since the

fluid is well mixed there.
Thus, the change of Eb occurs only through mixing, so that only the location where

mixing occurs, namely the IL, contributes to this change. The term Φd is computed as

a volume average over V of the local diffusive flux across the Θ̃ surfaces, denoted by
ϕd , multiplied by g β . Winters & D’Asaro (1996) derived an exact expression for ϕd:

ϕd =
〈κt |∇Θ̃ |2〉
dΘ̃s/dz�

, (3.2)

where κt is the subgrid-scale thermal diffusivity. The 〈�〉 operator denotes an

average along a constant-Θ̃ surface. Θ̃s (z�) is the stable Θ̃ profile obtained by an
adiabatic rearrangement of the fluid particles (elementary volumes of side equal to
the minimum grid size). From a practical point of view, the fluid particles are moved
to their new vertical position z� according to the value of their virtual potential
temperature, the lowest particle being the heaviest. In a three-dimensional fluid
volume, a similar methodology is applied. The stably stratified profile is constructed
by filling the successive horizontal planes with the ordered particles. Then, the

background Θ̃s profile at each plane is computed by a horizontal average. The
mixing efficiency γ at the interface is simply inferred from equations (2.1), (3.1) and
(3.2), E being computed from the subgrid-scale model. Note that γ accounts for the

IL thickness since it is based on the sorted profile Θ̃s (z�).
The mixing efficiency was computed every 30 min from 1200 EST to 1330 EST.

All values were between 0.26 and 0.30 (being equal, as time elapses, to 0.28, 0.30,
0.29 and 0.26, respectively). This range is consistent with the one found in turbulent
stably stratified flows, whether in the ocean (e.g. Moum & Caldwell 1995), in the
stratosphere (e.g. Wilson, Dalaudier & Bertin 2005), in laboratory experiments (e.g.
Linden 1979) or in numerical simulations (e.g. Staquet 2000).

4. Evaluation of the models for R and A based on γ

Our purpose in this section is to compare the numerical value of R, as computed
from the expressions based on γ within the ZOM and FOM frameworks, with that
computed directly from its definition (1.2). These expressions are recalled in table 1.
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Figure 3. (a) Flux ratio computed from the LES data of Chemel et al. (2007) versus Ri−1
B :

�, R; �, Rγ
� ; �, Rγ

1 . (b) Dimensionless parameter A = (we/w�)RiB computed from the LES

data, as a function of Ri−1
B : �, Anum; �, Aγ
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0 ; �, AR

1 . Experimental values
from the convection tank measurements of Deardorff et al. (1980) are also included as ·. The
shaded area represents R and A in the range 0.15–0.25. All expressions for R and A are
given in table 1, while RiB is defined by equation (1.4).

We also compare the numerical values of A as computed from the four expressions
derived, which are recalled in table 1, with that computed directly from its definition
(1.8), denoted by Anum, and with the experimental measurements of Deardorff et al.
(1980). These comparisons are displayed in figure 3(a) for R and in figure 3(b) for A.

The retrieval of the LES data needs to be carefully discussed as it should be
consistent with the model framework. The retrieval procedure we used is as detailed
by Fedorovich et al. (2004, p. 287), except for �Θ in the ZOM framework. As their
procedure proved to be difficult to apply (because the buoyancy frequency in the free
atmosphere is not constant in our case), we kept the same value of �Θ in both the
ZOM and FOM frameworks, i.e. that of the temperature jump Θ (zi + δ) − Θ (zi).
Note that �Θ appears only in the definition of the bulk Richardson number RiB ,
so that RiB has the same value for either model, which makes comparisons easier.
For the mixing efficiency, we have already noted that the computation of γ involves
the IL thickness. Hence, the retrieval of the parameters Rγ

0 and Aγ

0 from the LES

is not fully consistent with the ZOM framework. In figure 3, we shall thus refer to
the computed values of these parameters as Rγ

� and Aγ
� , respectively, in order to

avoid confusion with the notation Rγ

0 and Aγ

0 , which would imply that γ has been
computed for an infinitely small thickness of the IL.

The LES computed values for R in figure 3(a) are between 0.17 and 0.18, in
agreement with the standard value of 0.2 taken for this ratio. The prediction by
the FOM model is very good, the relative difference between Rγ

1 and R being less
than 10 % on average. Conversely, Rγ

� is a poor approximation of the flux ratio, the
relative difference being between 14 % and 36 % as RiB varies. Figure 3(a) therefore
shows that, when our LES data are considered, a reliable model for the flux ratio is
provided by the expression [zi/ (zi + δ)] γ / (γ + 1), that is, assuming δ/zi to be small,
(1 − δ/zi) γ / (γ + 1).

Figure 3(b) shows that AR
0 (computed directly as −Fi/Fs) is not a good

approximation of Anum whatever RiB , as is well known (e.g. Sullivan et al. 1998;
Fedorovich et al. 2004). The computation of R needs to be consistent with the ZOM
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framework. When R is approximated by γ / (γ + 1), better results are obtained. We
note that the relative difference between Aγ

� (namely γ / (γ + 1)) and Anum is always
less than 9 % whatever RiB . This result may be explained by recalling that the
computation of γ implicitly depends upon the finite thickness of the IL. However, the
explicit introduction of the IL thickness does not improve significantly the modelling
of A compared with Aγ

� if the mixing efficiency is not taken into account as well:
AR

1 does not perform better than Aγ
� but Aγ

1 does remarkably. Indeed, the relative
difference between Aγ

1 and Anum is of a few percent whatever RiB . Hence a good
estimate of A is obtained by using the flux Richardson number and this estimate
becomes excellent when the IL thickness is taken into account.

5. Conclusions
The objective of this work was to introduce the mixing efficiency into the parameter-

ization of the entrainment process at the top of the convectively driven boundary layer.
We focus upon the regime of equilibrium entrainment, when the Richardson number
at the interface is high enough (say RiB > 10). The parameterization of the entrainment
process usually relies on the ratio R of the negative of the heat flux at the interface
to the heat flux at the ground surface, which is usually taken constant, with value 0.2.

We proposed a parameterization for R based on the mixing efficiency and on the
thickness of the IL. This is expression Rγ

1 in table 1, which can be further approximated
by (1 − δ/zi) γ / (γ + 1). With γ � 0.3, which we computed directly from our LES data
using the method proposed by Winters et al. (1995), and δ/zi � 0.2 (also from the
LES), this yields R � 0.2.

We next used the classical zero- and first-order model frameworks to derive new
expressions for the entrainment law based on the mixing efficiency. Our purpose was
to explain the value of about 0.2 generally obtained for the scaling factor A in the
entrainment law. We showed that a good approximation of A is provided by the
flux Richardson number of the entrainment process and that an excellent model is
obtained when the IL thickness is further taken into account. This is expression Aγ

1

in table 1.
From a practical point of view, the present parameterizations rely on the

computation or measurement of γ . The direct method we used makes it possible
to estimate γ from LES data. Understanding the approximate 0.2 value found for
γ in stably stratified flows would provide final closure but this is still a challenge,
despite attempts that have been made in specific contexts (e.g. McEwan 1983).

The authors thank two referees for their valuable comments, which led to substantial
improvements to the manuscript.
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