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Despite a significant increase in efforts to identify biomarkers and endophenotypic

measures of psychiatric illnesses, only a very limited amount of computational models

of these markers and measures has been implemented so far. Moreover, existing

computational models dealing with biomarkers typically only examine one possible

mechanism in isolation, disregarding the possibility that other combinations of model

parameters might produce the same network behavior (what has been termed

“multifactoriality”). In this study we describe a step toward a computational instantiation of

an endophenotypic finding for schizophrenia, namely the impairment of evoked auditory

gamma and beta oscillations in schizophrenia. We explore the multifactorial nature of

this impairment using an established model of primary auditory cortex, by performing an

extensive search of the parameter space. We find that single network parameters contain

only little information about whether the network will show impaired gamma entrainment

and that different regions in the parameter space yield similar network level oscillation

abnormalities. These regions in the parameter space, however, show strong differences

in the underlying network dynamics. To sum up, we present a first step toward an in

silico instantiation of an important biomarker of schizophrenia, which has great potential

for the identification and study of disease mechanisms and for understanding of existing

treatments and development of novel ones.

Keywords: auditory entrainment, schizophrenia, computational model, oscillations, circuit abnormalities,

parameter search, multifactoriality

1. INTRODUCTION

Over the last years, the traditional diagnostic classifications used in psychiatry have been questioned
and a breakdown into simpler categories like endophenotypes or cognitive domains has been
proposed (Leboyer et al., 1998; Braff et al., 2007; Nuechterlein et al., 2008; Insel et al., 2010;
Cuthbert and Insel, 2013). This is mainly due to the fact that the gap between symptom-
based classifications on the one hand and genes and molecules on the other hand is huge
and a clear mapping in between not in sight. For example, single susceptibility genes for most
disorders have only small predictive value regarding phenotype (Flint and Munafò, 2007; Need
et al., 2009; Cirulli et al., 2010). Underlying these new proposals is the hope that the simpler
categories will map nicely to alterations at the genetic/molecular level (e.g., Meyer-Lindenberg
and Weinberger, 2006). This effort has mainly focused on the identification and validation of
biomarkers for psychiatric disorders using in vivo and in vitro studies. As Siekmeier (2015) argues,
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computational modeling approaches are ideally suited to
complement these efforts in order to construct biomarker based
models of psychiatric disorders for two reasons: (1) Models
can allow for an identification and a mechanistic understanding
of illness mechanisms. Not only is “in silico” testing of such
models easier and cheaper than human or animal studies, they
also offer the great advantage of making all available variables
and assumptions explicit and accessible. (2) Computational
models can be used very effectively for the development of new
neuropsychiatric drugs (e.g., Siekmeier and vanMaanen, 2013).
However, most modeling efforts in computational psychiatry
focus on the study of a single potential mechanism in isolation,
as recently pointed by Pavão et al. (2015). They demonstrate
nicely that the same network behavior can be produced by a
huge number of different instances of a neural network, i.e.,
that network dynamics is multifactorial by nature, using two
established models of schizophrenia. This suggests that, in order
to understand the mechanisms underlying psychiatric disorders
like schizophrenia, it is not enough to discover the genetic
alterations but that it is also essential to understand how these
alterations interact in order to give rise to endophenotypical
and behavioral changes. Computational models offer a unique
possibility to address this need.

Here, we focus on modeling deficits in schizophrenic patients.
Over the last more than 50 years it has become clear that
many different neurotransmitter systems are implicated in
the neuropathology of schizophrenia. This started with the
dopamine hypothesis (e.g., Carlsson and Lindqvist, 1963) and
the implication of serotonin (e.g.. Woolley and Shaw, 1954) in
the early 50 and 60 s, moving on to the glutamate hypothesis
(e.g., Javitt et al., 1994; Javitt, 2004) followed by an implication
of GABAergic circuits (e.g., Perry et al., 1979; Rosso et al.,
2006). This implication of several important neurotransmitter
systems makes it clear that the interactions of these systems
are of paramount importance for an understanding of the
heterogeneity and complexity of schizophrenia, for which the
integrative computational framework outlined above can be an
ideal tool.

In this study we present a step toward an in silico model of
an endophenotypic biomarker of schizophrenia that explores the
multifactorial nature of the underlying network. We focus on
abnormal gamma rhythms in the auditory system, since very
convincing evidence for abnormalities in this frequency band
has accumulated over the last decades (see Siekmeier, 2015),
It has been proposed that oscillations in and between circuits
underlie efficient communication of ensembles and routing of
information in the brain (“Communication through coherence,”
Fries, 2005), with gamma frequency oscillations playing an
important role (Bastos et al., 2015). Although this concept
has been critiqued by some authors (e.g., Ray and Maunsell,
2010; Ray et al., 2013; Buzsáki and Schomburg, 2015), there is
consensus that neural oscillations at least constitute a signature
of the underlying computations performed in the circuit.

It has been reported that schizophrenic patients showmultiple
alterations in the gamma rhythm in different experimental
paradigms, not only in the auditory system (Spencer et al., 2003;
Uhlhaas and Singer, 2010). In the auditory system, however, they

are particularly prominent (Light et al., 2006; Spencer et al., 2008)
and linked with auditory hallucinations (Spencer et al., 2009).
Krishnan et al. (2009) report decreases in EEG power in a steady-
state auditory evoked potential (SSAEP) task, using amplitude-
modulated tones, specific to the 40–50Hz range. Kwon et al.
(1999) showed reduced EEG power in the gamma frequency
range for schizophrenic patients compared with healthy controls
in a click entrainment paradigm. This has been replicated using
the same paradigm in an MEG study by Vierling-Claassen et al.
(2008).While Krishnan et al. (2009) report no significant changes
in the beta range for amplitude-modulated tones, both click
entrainment studies also show alterations in the low beta range
(at around 20Hz), although less pronounced. On the other
hand, multiple circuit abnormalities have been described in
schizophrenia: (i) reduced reduced somal size, spine density, and
dendritic field size on pyramidal cells (Garey et al., 1998; Glantz
and Lewis, 2000; Pierri et al., 2001; Broadbelt et al., 2002; Chana
et al., 2003; Black et al., 2004; Sweet et al., 2008), (ii) reduced
synaptophysin levels (Perrone-Bizzozero et al., 1996; Glantz
and Lewis, 1997), (iii) decreased expression of genes encoding
synaptic proteins (Mirnics et al., 2000; Torrey et al., 2005),
(iv) decreases in GAD67 expression (an enzyme responsible for
GABA synthesis) (Akbarian et al., 1995), and (v) hypoactivation
of NMDA receptors at inhibitory interneurons (Kantrowitz and
Javitt, 2010).

In summary, converging experimental evidence suggests a

deficit in maintaining gamma rhythms in the auditory system

of schizophrenic patients. Whereas deficits in the gamma range

are most prominent, there is inconsistent evidence of changes
in the beta range as well. Several different mechanisms have

been shown to able produce selective reductions in gamma
entrainment in models of the auditory cortex. However, given

the likely multifactorial nature of disorders like schizophrenia, as
we argued above, a more profound investigation of the interplay

of these identified circuit mechanisms is needed. Furthermore,
a more detailed exploration of subtle differences in the beta
range might shed further light on the contributions of these
mechanisms.

In this study we explored possible mechanisms underlying

deficits in gamma range auditory entrainment in schizophrenia
using a biophysically detailed neural network model. Notably,

our approach differs from the above-mentioned, except for the

study by Siekmeier and vanMaanen (2013), in that we do not

restrict our analysis to one possible mechanism but rather the

multifactorial nature of the relationship between cellular level
abnormalities and endophenotypic measures, i.e., we explore the
parameter space of possible circuit abnormalities that might give
rise to SZ-like oscillatory behavior. In particular, we tested four
hypotheses:

• Hypothesis I: Given the results of earlier studies (Pavão
et al., 2015; Mäki-Marttunen et al., 2016), we hypothesized
that SZ-like behavior would be produced by combinations
of parameters rather than being primarily caused by a
single parameter. Thus, we expected the information content
of single parameters regarding the “computational network
phenotype” to be low.
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• Hypothesis II: We hypothesized that the exact definition of
SZ-like (i.e., the number of included features, such as power
decrease at 40 Hz, power increase at 20Hz) would have a
strong influence on the location in parameter space of regions
producing SZ-like network behavior (hereafter, “SZ-regions”).

• Hypothesis III: We expected to find differences regarding the
underlying network dynamics that produce SZ-like behavior
between SZ-regions.

2. MATERIALS AND METHODS

2.1. Computational Model
The auditory cortex model is a slightly downscaled version of
the model described by Beeman (2013) (for a summary of the
most important network parameters see Table 1). Instead of the
48× 48 excitatory and 24× 24 inhibitory neurons of the original
model, we used a smaller version having 24 × 24 excitatory
and 12 × 12 inhibitory neurons. The reduction in size yielded
a significant speedup of simulations and no qualitative effect
on the simulated EEG power spectra. The excitatory cells are
based on the pyramidal cell model of Bush and Sejnowski (1993),
containing voltage and calcium activated channels, and there are
dual-exponential synaptically activated channels at appropriate
locations on the dendrites (see Beeman, 2013). The basket cell
is modeled simply with a soma and a single cylindrical dendrite.
The active channels used in the soma are a small set of modified
hippocampal CA3 region channels (Traub et al., 1994) with
parameters adapted to yield behavior typical of neocortical cells.

Connectivity in the network was random, with the probability
for connections decreasing exponentially with radial distance.
Synaptic weights, however, were fixed independent of distance
(see recent experiments Yuan et al., 2011; Levy and Reyes, 2012).

In addition to the interconnections between the cells, the
excitatory cells receive a Poisson-distributed random activation
at their basal dendrites in order to represent excitatory inputs
from other layers. The default parameters and average frequency
were chosen in order to give background levels of firing for the
two populations in agreement with those measured by Steriade
et al. (2001).

The model was implemented and run in Genesis (Bower and
Beeman, 1998; release 2.3). Integration was performed using the
Crank-Nicholson method with a time step of 0.00002ms. The
network was simulated for 10 s in each simulation run.

2.2. Implementation of Click Entrainment
For the auditory click entrainment at a certain frequency ω,
we calculated spike trains using a Poisson process with a rate
ω. Each cell (excitatory and inhibitory) received such a spike
train at the excitatory synapse where the afferent thalamic input
arrives. For the excitatory pyramidal cell this synapse is located
at its proximal apical dendrite and for the basket cell at the only
dendritic segment. EEG and MEG studies have revealed a click
entrainment deficit in schizophrenic patients at 40Hz but intact
entrainment at 30Hz (Kwon et al., 1999; Vierling-Claassen et al.,
2008). We therefore stimulated at 30 and 40Hz.

2.3. Implementation of Cellular/Network
Level Abnormalities
We implemented three different types of impairments on the
cellular and network levels: (1) reduced inhibitory connectivity,
(2) changed inhibitory output and, (3) prolonged GABAergic
decay times. Table 2 summarizes the changes made and gives the
total number of simulations conducted.

2.3.1. Reduced Inhibitory Connectivity
We reduced the number nie of inhibitory connections to
excitatory cells and the number nii of inhibitory connections to
inhibitory cells. We reduced the number of connections in two
steps (to 75 and 50% of its original value) for each connection
type independently.

2.3.2. Changed Inhibitory Output
We reduced the output of the inhibitory neurons by changing the
weights wie and wii of the inhibitory connections to excitatory
cells and of the inhibitory connections to inhibitory cells,
respectively. Here we not only reduced the weights to 75
and 50% but also increased them to 125 and 150% (see also
the computational study of Siekmeier and vanMaanen, 2013),
because there is evidence of post-synaptic upregulation as a
compensatory means for a reduced GABAergic tone due to
reduced connectivity (Lisman et al., 2008).

2.3.3. Prolonged GABAergic Decay Times
Last, we also modified the decay time constants at GABAergic
synapses, since it has been shown that they have a significant
effect on auditory click entrainment (Vierling-Claassen et al.,
2008; Vierling-Claassen and Kopell, 2009). We chose to increase
the decay time constants τie and τii at inhibitory synapses (on
excitatory and inhibitory cells, respectively) independently of
each other to 15 and 25ms.

2.4. Analysis Methods
2.4.1. Power Spectra
We calculated a simulated EEG signal by summing all excitatory
postsynaptic currents (EPSCs) occurring at excitatory cells.
Power spectra were then computed from this signal using the Fast
Fourier Transform (implemented in Python using Scipy’s signal
processing module).

2.4.2. Identification of “Schizophrenic” Parameter

Combinations - “Illness Metrics”
In order to assess how SZ-like the resulting network behavior of
a given parameter combination was, we ran simulations at both
driving frequencies ( 30 and 40Hz) and calculated the power
spectra.

We then identified different parameter vectors displaying
a strong SZ-like behavior (details are described below) and
compared them against the normal condition, i.e., the network
model as described above without any parameter changes. To
ensure that we had captured a robust control condition, we
simulated 20 different control subjects by changing the seed
for the random generator. Changing the random seed yields a
network with the same overall connectivity statistics, but with a
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TABLE 1 | Connection probabilities p, conductance weights g, and synaptic time constants (τ1 rise time, τ2 decay time).

Receiving cell

Excitatory cell Inhibitory cell

Sending cell

Excitatory cell pee/gee/τ1/τ2 = 0.15/30 nS/1ms/3ms pei/gei/τ1/τ2 = 0.45/0.1 nS/3ms/3ms

Inhibitory cell pie/gie/τ1/τ2 = 0.6/0.6 nS/1ms/6ms pii/gii/τ1/τ2 = 0.6/0.15 nS/1ms/6ms

Thalamic input pie/gie/τ1/τ2 = 1.0/50 nS/1ms/3ms pii/gii/τ1/τ2 = 0.65/1.5 nS/3ms/3ms

Background noise pie/gie/τ1/τ2 = 1.0/90 nS/1ms/3ms pii/gii/τ1/τ2 = −/ − / − /−

TABLE 2 | Implementation of cellular/network level abnormalities in the parameter space search.

Inhibitory connectivity Inhibitory output GABAergic decay times

nie nii wie wii τie τii

Change 100%, 75%, 100%, 75%, 150%, 125%, 100%, 150%, 125%, 100%, 6ms, 15ms, 6ms, 15ms,

50% 50% 75%, 50% 75%, 50% 25ms 25ms

Total 3 · 3 · 5 · 5 · 3 · 3 = 2025 Simulations

different actual connectivity (see also Siekmeier and vanMaanen,
2013).

2.4.3. 40 Hz Reduction - Illness Metric I
We identified those parameter vectors that displayed a strong
reduction of the 40Hz component in the 40Hz drive condition.
This reduction seems to be the most prominent change in
beta/gamma frequency entrainment in schizophrenic patients
(Kwon et al., 1999; Vierling-Claassen et al., 2008; Siekmeier and
vanMaanen, 2013).

In order to quantify the reduction of the 40Hz component, we
used the following metric:

M1(PV) =

(

1−
P40PV

P40Ctrl

)

.

Here, P40PV denotes the 40Hz component at 40Hz drive of
the given parameter vector and P40Ctrl denotes the mean 40Hz
component at 40Hz drive of the 20 control subjects.

2.4.4. 40Hz Reduction and 30Hz Validity - Illness

Metric II
Next, we additionally used the 30Hz component in response to
30Hz drive, since, experimental evidence strongly suggests that
this component remains intact in patients with schizophrenia
(Kwon et al., 1999; Vierling-Claassen et al., 2008). Therefore, we
modified the above metric to:

M2(PV) =

{

0 if|P30PV − P30Ctrl| < 3σCtrl30
M2′ else

with

M2′ =

(

1−
P40PV

P40Ctrl

)

Here, again P40PV denotes the 40Hz component at 40Hz drive
of the given parameter vector and P40Ctrl denotes the mean
40Hz component at 40Hz drive of the 20 control subjects.
Furthermore, P30PV denotes the 30Hz component at 30Hz drive
of the given parameter vector, P30Ctrl denotes the mean 30Hz
component at 30Hz drive of the 20 control subjects and σCtrl30
denotes the standard deviation of the 30Hz component at 30Hz
drive of the 20 control subjects.

That means, we simply excluded all PVs that showed a
deviation from the standard control network, while all remaining
PVs received the same score as with metric M1.

2.4.5. 40Hz Reduction and 30Hz Validity and 20Hz
Facilitation - Illness Metric III
In both EEG and MEG studies, differences not only in the power
at 40Hz but also the power at 20Hz in the 40Hz drive condition
have been found, where patients show an increase in power
(Kwon et al., 1999; Vierling-Claassen et al., 2008).

Therefore, we extendedM2 to also incorporate this difference:

M3(PV) =

{

0 if|P30PV − P30Ctrl| > 3σCtrl30
M3′ else

with

M3′ =

(

1

2

(

1−
P40PV

P40Ctrl

)

−
1

2

(

1−
P20PV

P20Ctrl

))

.

Here, P40PV , P40Ctrl, P30PV , and P30Ctrl are as above.
Furthermore, P20PV denotes the 20Hz component at 40Hz drive
for the given PV and P20Ctrl denotes the mean 20Hz component
at 40Hz drive for the 20 control subjects.

In order to see whether the cellular level parameters
were predictive of a “schizophrenic phenotype,” we took an
information theory based approach, as outlined in Pavão et al.
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(2015). That is, we calculated the normalized mutual information
(nMI) between our independent variables (denoted by Xp, where
p is one of the six parameters τIE,τII ,rIE,rII ,wIE, and wII) and our
dependent variable YMi (i.e., the phenotype as indicated by the
given metric Mi). We calculated nMI not only for single, isolated
parameters but also for all possible combinations of parameters
(again see Pavão et al., 2015). Specifically, nMI was calculated by

nMI(Xi, . . . ,Xj,YMi ) = 100 · (MI(Xi, . . . ,Xj,YMi )/H(YMi )),

where MI(Xi, . . . ,Xj,YMi ) is the mutual information between
the parameters Xi, . . . ,Xj and the phenotype YMi and H(YMi ) is
the Shannon entropy of YMi . Mutual information is calculated by

MI(Xi, . . . ,Xj,YMi ) = H(Xi, . . . ,Xj) + H(YMi ))

− H(Xi, . . . ,Xj,YMi ),

where againH denotes the Shannon entropy, generally defined as

H(X,Y) =
∑

k

∑

l

p(xk, yl) log2(p(xk, yl))

for two random variables X and Y .
After investigating the overall parameter space, we went

further to explore potential mechanisms underlying gamma
entrainment deficits and their dependence on the particular
illness metric. Therefore, we used the PVs having the highest M1,
M2, and M3 values, respectively, for further analysis (denoted by
PVM1, PVM2, and PVM3, respectively). First, we calculated the
ratio of “schizophrenia-like” PVs of all PVs showing a high value
for Mi(for all three metrics). We calculated for each instance
pi of each parameter p (e.g., parameter τie has three instances
p1 = 6ms, p2 = 15ms, and p3 = 25ms ) how many percent
of the “schizophrenia-like” PVs had this particular parameter
instance pi. The higher this percentage, the stronger the influence
of this particular parameter instance on the change in oscillatory
dynamics. We repeated these calculations three times, where
“schizophrenia-like” was defined by metric M1, M2, and M3,
respectively.

Next, we wanted to check whether the effect was robust.
Therefore, we simulated 20 schizophrenic subjects for each of
the three PVs. We then compared the schizophrenic subjects
and the control subjects using three mixed model ANOVAs,
with GROUP (control, schizophrenic-Mi; with i ∈ {1, 2, 3})
as between subjects factor and POWER (40 and 20Hz power
at 40Hz drive; and 30Hz power at 30Hz drive) as a repeated
measures factor (similar as in Siekmeier and vanMaanen, 2013).

Finally, we further analyzed the dynamic behavior for the
three PVs. To this end, we calculated stimulus-locked EEG
signals, where we averaged the EEG signal over two consecutive
stimulation cycles, for the 40Hz drive condition. We also
calculated stimulus-locked spike histograms for the pyramidal
and the basket cell populations.

3. RESULTS

3.1. Control Network Model
The standard network model was able to entrain to both driving
frequencies used in our simulations. In order to establish a

robust baseline for our further analyses, we simulated 20 different
instances of the control network by changing the seed for the
random number generator. This yielded different specific cell-
to-cell connectivity, however, leaving the overall connection
probabilities unchanged.

Figure 1 shows a power spectrum plot of the simulated EEG
signal for both driving frequencies for the 20 control subjects. It is
clearly visible that the model shows entrainment to both driving
frequencies in agreement with human experimental data (Kwon
et al., 1999; Vierling-Claassen et al., 2008). The entrainment
presented a robust phenomenon which was hardly influenced by
the actual cell-to-cell connectivity for the 30 and 40Hz drive.
Notably, in the control network entrainment is strong at the
driving frequency but very weak at other frequencies (especially
at 30Hz drive).

3.2. Consequences of Circuit Abnormalities
3.2.1. Hypothesis I
Overall, many PVs produced oscillatory dynamics leading to
high values for a given metric. However, no obvious single
parameter describing circuit abnormalities could be identified
by exploration of the data. In order to more formally quantify
the information single parameters and combinations of single
parameters had on the network phenotype, we calculated
the normalized mutual information (nMI) as detailed in the
Materials and Methods Section (see Figures 2–5). The average
nMI for single parameters and for combinations of two or three
parameters was quite low, although it was higher forM2 andM3

than for M1. This means that we could not identify one or two
single parameters that led to SZ-like behavior in neither case.
For metric M2 there is one single parameter with a high nMI
(∼40%) with phenotype, the GABAergic decay time constant at
I-to-E synapses. This stems from the fact that for prolonged time
constants the network failed to produce 30Hz power (for 30Hz
drive) within the control range for most cases and thus did not
show an SZ-like behavior.

3.2.2. Hypothesis II
Our second hypothesis was that, the exact definition of SZ-
like, would strongly influence the location of the SZ-region
in parameter space. To this end, we defined three different
illness metrics, which gradually incorporate more features of
experimental results (see Materials and Methods).

Since we were interested in PVs that produce strong
reductions, we further analyzed the PVs with the 5% highest
M1. Figure 5 shows how these PVs distribute across the different
instances of each parameter. We clearly see that longer decay
times, especially at I-to-E synapses, leads to strong reductions.
Furthermore, most PVs show an intact I-to-E connectivity and
intact or even increased I-to-E weights. I-to-I connectivity and
weight strength, however, can take all instances and typically
seems to be intact to reduced in PVs showing strong reductions.

However, we found that almost all of the above mentioned
parameter combinations also produced power values in the
30Hz band (in response to 30Hz drive) that were substantially
different from the control network, i.e., ha. Therefore, we
analyzed which parameter combinations produced power values
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A B

FIGURE 1 | Mean power spectrum for the 20 control subjects in response to (A) 30Hz drive and (B) 40Hz drive.

FIGURE 2 | Mutual information shared by single network parameters or combinations thereof with the phenotype of the network. Phenotype is

determined by metric M1. Network Parameters: A = Decay time constant at GABAergic I-to-E synapses, B = Decay time constant at GABAergic I-to-I synapses,

C = Reduction of number of GABAergic I-to-E connections, D = Reduction of number of GABAergic I-to-I connections, E = Change of weight at GABAergic I-to-E

connections, F = Change of weight at GABAergic I-to-I connections. Inset displays mean information (± standard deviation) for different numbers of parameters.
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FIGURE 3 | Mutual information shared by single network parameters or combinations thereof with the phenotype of the network. Phenotype is

determined by metric M2. Network Parameters: A = Decay time constant at GABAergic I-to-E synapses, B = Decay time constant at GABAergic I-to-I synapses, C =

Reduction of number of GABAergic I-to-E connections, D = Reduction of number of GABAergic I-to-I connections, E = Change of weight at GABAergic I-to-E

connections, F = Change of weight at GABAergic I-to-I connections. Inset displays mean information (± standard deviation) for different numbers of parameters.

at 30Hz in the 30Hz drive condition that were within three
standard deviations of the control power in that condition.
We found that 31.06% (629/2025) parameter combinations
satisfied this condition (the PVs satisfying this condition are
hereafter referred to as valid vectors). We found that most
valid parameter combinations produce a reduction in the
40Hz component, i.e., a high M2 value. Now the parameter
combinations showing the strongest reduction lay in a totally
different region of the parameter space. Figure 6 again shows
how these PVs distribute across the different instances of
each parameter. We found that all PVs showing a “valid”
response and a strong reduction in the 40Hz component
had an unchanged GABAergic decay time at inhibitory-to-
excitatory synapses, but now had strongly prolonged GABAergic
decay times at inhibitory-to-inhibitory synapses. Furthermore,
an unchanged or only slightly reduced inhibitory-to-inhibitory
connectivity seemed crucial for producing a “valid” response
together with a strong reduction in the 40Hz component.
I-to-I connectivity tended to be reduced but with normal

or stronger weights. I-to-E connectivity Furthermore, the
strongest reduction produced by “valid” PVs was not as
strong as those produced by the strongest not valid PVs
(strongest valid PV:34.49% reduction, strongest overall PV:
48.29%).

Afterwards, we examined the top 5% of the PVs showing the
highest M3 values, i.e., those valid PVs showing strong 40Hz
reduction and 20Hz increase. Overall, we found unchanged I-
to-E decay times and in an increase in I-to-I decay times for
most PVs (Figure 7). Furthermore, most PVs tended to have
unchanged connectivity (Figure 7).

3.2.3. Hypothesis III
In order to test our third hypothesis, that different SZ-regions
might show different network dynamics than the control network
and than other SZ-regions, we selected 3 specific PVs for further
analysis. The selected PVs were: (1) the PV showing the strongest
reduction in 40Hz power for 40Hz drive (PVM1 ), (2) the PV
showing the strongest reduction in 40Hz power for 40Hz drive
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FIGURE 4 | Mutual information shared by single network parameters or combinations thereof with the phenotype of the network. Phenotype is

determined by metric M3. Network Parameters: A = Decay time constant at GABAergic I-to-E synapses, B = Decay time constant at GABAergic I-to-I synapses, C =

Reduction of number of GABAergic I-to-E connections, D = Reduction of number of GABAergic I-to-I connections, E = Change of weight at GABAergic I-to-E

connections, F = Change of weight at GABAergic I-to-I connections. Inset displays mean information (± standard deviation) for different numbers of parameters.

while giving a valid response to 30Hz drive (PVM2 ), and (3)
the PV showing the strongest combined reduction at 40Hz and
increase at 20Hz for 40Hz drive (PVM3 ). In detail, the selected
parameter vectors were:

• PVM1 = [τie = 25ms; τii = 15ms; nie = 100%; nii = 50%;
wie = 150%; wii = 75%]

• PVM2 = [τie = 6ms; τii = 25ms; nie = 100%; nii = 100%;
wie = 75%; wii = 125%]

• PVM3 = [τie = 6ms; τii = 6ms; nie = 100%; nii = 50%;
wie = 150%; wii = 50%]

In order to test the first part of hypothesis III, we simulated
network behavior 20 subjects for each of the selected PVs by
generating different seeds for the random generator, thus altering
specific connectivity but preserving connectivity statistics. In
order to test the differences between the control group and
the three different “schizophrenic” groups, we ran mixed model
ANOVAs with GROUP (control, schizophrenic-Mi) as a between
subjects factor and POWER (40 and 20Hz power at 40Hz

drive; and 30Hz power at 30Hz drive) as a repeated measures
factor.

Figures 8A,F show a comparison of the power in the 40 and
the 20Hz band for a stimulation with 40Hz click trains between
the control group and the PVM1 group. Obviously both, the
reduction at 40Hz and the increase at 20Hz, were a robust
phenomenon. Interestingly, although there is a clear increase at
20Hz for each of the 20 PVM1 subjects, the variance was very
high. The ANOVA showed that both the main effects of GROUP
[F(1, 38) = 667.56 , p < 0.001] and POWER [F(1.04, 39.40) =

4890.90, p < 0.001, Greenhouse-Geisser correction: ǫ =

0.518] were highly significant. Furthermore, there was a highly
significant interaction GROUP∗POWER [F(1.04, 39.40) = 2987.92,
p < 0.001, Greenhouse-Geisser correction: ǫ = 0.518]. This
clearly demonstrates that control and schizophrenic groups
produce very different oscillatory dynamics at 40Hz drive.

Figures 9A,F show a comparison of the power in the 40
and the 20Hz band for a stimulation with 40Hz click trains
between the control group and the PVM2 group. Again we see
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A B

C D

E F

FIGURE 5 | Isolated network parameters : Pie charts showing the distribution of the 5% PCs having the highest M1 scores across the different

instances of each parameter. (A) GABAergic decay time constant at I-to-E synapses τie, (B) GABAergic decay time constant at I-to-I synapses τii , (C) Percentage

of remaining I-to-E connections rie , (D) Percentage of remaining I-to-I connections rii , (E) Weight increase/decrease at I-to-E synapses wie ,(F) Weight

increase/decrease at I-to-I synapses wii .

a clear reduction at 40Hz and an increase at 20Hz, however,
the increase was much less pronounced than before for M1. The
ANOVA revealed that both themain effects of GROUP [F(1, 38) =
8771.45, p < 0.001] and POWER [F(1.60, 60.89) = 156950.51,
p < 0.001, Greenhouse-Geisser correction: ǫ = 0.801] were
highly significant. Furthermore, there was a highly significant
interaction GROUP∗POWER [F(1.60, 60.89) = 2618.20, p < 0.001,
Greenhouse-Geisser correction: ǫ = 0.801]. Again, although

the effect was weaker, both groups differed significantly in the
produced oscillatory dynamics at a 40Hz drive.

Figures 10A,F show a comparison of the power in the 40 and
the 20Hz band for a stimulation with 40Hz click trains between
the control group and the PVM3 group. Here we see that the
difference at 40Hz is even smaller than for M2 and that the
power at 20Hz is highly variable for the schizophrenic subjects.
For some subjects there is a substantial increase compared to the
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FIGURE 6 | Isolated network parameters : Pie charts showing the distribution of the 5% PCs having the highest M2 scores across the different

instances of each parameter. (A) GABAergic decay time constant at I-to-E synapses τie, (B) GABAergic decay time constant at I-to-I synapses τii , (C)

Percentage of remaining I-to-E connections rie , (D) Percentage of remaining I-to-I connections rii , (E) Weight increase/decrease at I-to-E synapses wie ,(F) Weight

increase/decrease at I-to-I synapses wii .

healthy controls but for others there was no increase at all. Here
the ANOVA showed that the main effect of GROUP [F(1, 38) =

4.01, p = 0.052] was not significant, however the effect of
POWER [F(1.02, 38.77) = 1814.42, p < 0.001, Greenhouse-Geisser
correction: ǫ = 0.510] was highly significant. Furthermore,
there was a highly significant interaction GROUP∗POWER
[F(1.02, 38.77) = 66.02, p < 0.001, Greenhouse-Geisser correction:
ǫ = 0.510]. Here the ANOVA did not reveal a clear difference

in oscillatory dynamics (although a trend toward significance
was found; p = 0.052) between the control and the subject
group.

In order to test the second part of hypothesis III and to
better understand the mechanisms underlying these different
oscillatory dynamics we investigated the simulated EEG signals
and the spiking behavior of the cells in the model more closely.
Again, we start with PVM1 .
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FIGURE 7 | Isolated network parameters : Pie charts showing the distribution of the 5% PCs having the highest M3 scores across the different

instances of each parameter. (A) GABAergic decay time constant at I-to-E synapses τie, (B) GABAergic decay time constant at I-to-I synapses τii , (C) Percentage

of remaining I-to-E connections rie , (D) Percentage of remaining I-to-I connections rii , (E) Weight increase/decrease at I-to-E synapses wie ,(F) Weight

increase/decrease at I-to-I synapses wii .

Figure 8 shows a comparison of the power in both the 20
and 40 Hz band, the raw signal as well as the EEG signal
averaged over two continuous cycles of the 40Hz stimulation
(i.e., the signal divided in bins of two times the length of an
oscillation/stimulation cycle aligned with the stimulation and
the bins are then averaged. E.g., in case of a 40 Hz drive, one
cycle is 25 ms long and each bin contains the signal from
25ms before stimulation up to 25 ms after the stimulation)

together with the stimulus-locked spike time histograms of the
excitatory and the inhibitory populations, in comparison to the
control network . The raw EEG signal reveals that every second
peak was suppressed in the schizophrenic network, explaining
both, reduction and increase. We also see that stimulus-locked
EEG and spike histograms became broader in the schizophrenic
case, reflecting a worse entrainment at the driving frequency.
Furthermore, we see that the first peak (for the stimulus-locked
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FIGURE 8 | Comparison of oscillatory activity between simulated control subjects and schizophrenic patients (as defined by metric M1). (A,F) The

power in the 20 and 40 Hz band for the 20 control subjects and the 20 schizophrenic patients, respectively. (B,G) A representative 0.5 s frame from the simulated raw

EEG signal for simulated controls and schizophrenic patients, respectively. (C,H) Stimulus-locked EEG (i.e., EEG signal averaged over two consecutive cycles) for

simulated controls and schizophrenic patients, respectively. (D,I) Stimulus-locked spike histogram of the pyramidal cell population for simulated controls and

schizophrenic patients, respectively. (E,J) Stimulus-locked spike histogram of the basket cell population for simulated controls and schizophrenic patients,

respectively. All plots depict results from 40Hz stimulation trials.

FIGURE 9 | Comparison of oscillatory activity between simulated control subjects and schizophrenic patients (as defined by metric M2). (A,F) The

power in the 20 and 40 Hz band for the 20 control subjects and the 20 schizophrenic patients, respectively. (B,G) A representative 0.5 s frame from the simulated raw

EEG signal for simulated controls and schizophrenic patients, respectively. (C,H) Stimulus-locked EEG (i.e., EEG signal averaged over two consecutive cycles) for

simulated controls and schizophrenic patients, respectively. (D,I) Stimulus-locked spike histogram of the pyramidal cell population for simulated controls and

schizophrenic patients, respectively. (E,J) Stimulus-locked spike histogram of the basket cell population for simulated controls and schizophrenic patients,

respectively. All plots depict results from 40Hz stimulation trials.

EEG and both spike histograms) was higher than the second,
which explains the suppression of every second peak in the
EEG.

We continue with PVM2 .
Figure 9, similar to Figure 8, shows a comparison of the

power in both the 20 and 40 Hz band, the raw signal as well
as the EEG signal averaged over two continuous cycles of the
40Hz stimulation together with the stimulus-locked spike time
histograms of the excitatory and the inhibitory populations, in

comparison to the control network, for PVM2 this time. The raw
EEG signal, as one would expect, did not show any beat skipping
as before, but had lower amplitude and was more irregular than
for the control network. Again, the cycle-averages show a strong
broadening for both EEG signal and spike time histograms,
which generally reflect a diminished ability to entrain to the
gamma frequency stimulation.

Finally, we analyzed PVM3 . Note that the ANOVA before only
showed a trend for differences in oscillatory dynamics.
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FIGURE 10 | Comparison of oscillatory activity between simulated control subjects and schizophrenic patients (as defined by metric M3). (A,F) The

power in the 20 and 40 Hz band for the 20 control subjects and the 20 schizophrenic patients, respectively. (B,G) A representative 0.5 s frame from the simulated raw

EEG signal for simulated controls and schizophrenic patients, respectively. (C,H) Stimulus-locked EEG (i.e., EEG signal averaged over two consecutive cycles) for

simulated controls and schizophrenic patients, respectively. (D,I) Stimulus-locked spike histogram of the pyramidal cell population for simulated controls and

schizophrenic patients, respectively. (E,J) Stimulus-locked spike histogram of the basket cell population for simulated controls and schizophrenic patients,

respectively. All plots depict results from 40Hz stimulation trials.

Again as before, Figure 10 shows a comparison of the power
in both the 20 and 40 Hz band, the raw signal as well as
the EEG signal averaged over two continuous cycles of the
40Hz stimulation together with the stimulus-locked spike time
histograms of the excitatory and the inhibitory populations, in
comparison to the control network. As mentioned above the
increase in 20 Hz power for the 20 schizophrenic subjects for
this PV was highly variant. We chose to showcase a subject
with a high increase in 20Hz power in order to better visualize
the changes in dynamics. Again, we see both the reduction at
40Hz and the increase at 20Hz clearly in the time-frequency
analysis. In the raw EEG signal, both changes become instantly
apparent, since the schizophrenic signal clearly showed the
skipping of every other beat of the 40Hz cycle. This is also
reflected in stimulus-locked EEG as well as the stimulus-locked
spike histograms. Excitatory cells almost only fired in the second
cycle. Consequently, the inhibitory population also almost only
fired in the second cycle. However, here we see a very interesting
phenomenon: In the second cycle, there are two peaks of activity
in the inhibitory population. The first one is very similar to the
peak in the inhibitory population of the control network. The
second peak however, was not seen in the control group at all.
This peak leads to a suppression of activity in the excitatory
population which lasted throughout the first cycle and thus
caused the skipping of every other gamma cycle.

4. DISCUSSION

4.1. Hypothesis I
Overall, we find that many different PVs can produce reductions
in the gamma power in our 40Hz entrainment paradigm and
evenmany of them show valid 30Hz entrainment and an increase

in 20Hz power. Furthermore, our information theoretic analysis
revealed that single parameters only contain little information on
the phenotype of the network. We found that several parameters
had to be combined in order to obtain a substantial amount of
phenotypic information. Thus, the EEG power abnormalities for
entrainment found in schizophrenic patients are likely caused by
an interaction of several mechanisms.

4.2. Hypothesis II
Our simulations demonstrate the most effective way to produce
a marked decrease in 40Hz power in response to 40Hz drive, is
to increase the inhibitory decay time constant τie at inhibitory
synapses at excitatory cells,while keeping I-to-E connectivity
intact and strong (see Figure 5). This is most likely due to the fact
that the oscillatory activity, which is produced by the excitatory
postsynaptic currents (EPSCs), is most effectively controlled by
inhibition onto excitatory cells. In more detail, the inhibitory
neurons control excitatory firing by prohibiting pyramidal cell
firing throughout most of the gamma cycle and only allowing
firing during very brief time windows phase-locked to the gamma
cycle. The decrease in gamma power seen for simulations where
the τie is prolonged is caused by pyramidal cells being inhibited
for longer than one gamma cycle. Although, prolonging τie
is the most effective way to reduce gamma power it yields a
strong decrease in 30Hz power for 30 drive, which is not found
experimentally (Kwon et al., 1999; Vierling-Claassen et al., 2008).

Our further analysis shows that an increase in τii also leads to
a strong decrease in gamma power, while affecting the response
to 30Hz drive much less than the aforementioned increase of
τie. The effect of this prolonged inhibition between inhibitory
neurons is, of course, strongest if the I-to-I connectivity is
intact and strong (see Figures 6, 7). The prolonged inhibition of
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interneurons means that the interneurons are not able to entrain
to the gamma rhythmwhich is fed forward to them by the sensory
input and thus their control of the firing of the pyramidal cells
is weaker, in turn leading to a weaker gamma rhythm of the
excitatory network. Interestingly, while increasing the inhibitory
time constant τie also had a drastic effect on the response to
30Hz drive, increasing τii does not effect this response drastically.
Interestingly, this motif of strong, prolonged I-to-I inhibition is
present in both, the PVs having high M2 and the PVs having
high M3 values, although they produce very different network
dynamics. This suggests that strong, prolonged I-to-I inhibition
selectively effects gamma entrainment, presumably by preventing
interneurons to synchronize properly, while a change of τie
effects entrainment in a broader frequency range, presumably
by affecting the imposition of the generated oscillation onto the
pyramidal cells.

4.3. Hypothesis III
4.3.1. SZ-Like Network Dynamics Differ from Control

Network Dynamics
Although the three SZ-like networks investigated in our study,
produce very different raw EEG signals, they all strongly differ
from the control network (see Figures 5A, 6A, 7A) Furthermore,
they alter the EEG signal by either suppressing responses during
specific cycles of oscillations or by decreasing the response
amplitude.

4.3.2. SZ-Like Network Dynamics from Each Other
We also found, that the oscillatory dynamics of the three tested
networks are very different from each other. While PVM1 shows
a mixture of reduced EEG signal amplitude and suppression
of specific oscillation cycles (see Figure 8), PVM2 only shows
a reduction in signal amplitude (see Figure 9), and PVM3 only
shows suppression of responses in every other oscillation cycle
(see Figure 10).

Since PVM1 , characterized by a prolongation of strong I-to-E
inhibition. also led to a very strong reduction of power in 30Hz
stimulation trials, which is not seen in experiments, it is unlikely
that this mechanism plays an important role in gamma deficits
in schizophrenic patients. However, it highlights that models of
gamma entrainment should not solely focus on the reduction of
gamma power as an indicator for SZ-like behavior. Futuremodels
will have to explain more features of the experimental gamma
entrainment data, such as unchanged 30Hz power and increased
20Hz power.

The fundamental difference between the dynamics produced
by PVM2 and PVM3 is very interesting, since the only difference
in these network responses is the existence or absence of an
increase in power at 20Hz. An increase in power at 20Hz is
found experimentally (Kwon et al., 1999; Vierling-Claassen et al.,
2008), however it is not as prominent as the gamma reduction.
Notably, the 20 subjects simulated using PVM3 showed a very
high variance in 20Hz power, ranging from strong increases in
power to no change at all (see Figure 10F). Further investigations
should be made to identify the reasons underlying the high
variance found in this SZ-like group.

4.4. Limitations
As has been argued elsewhere (e.g., Siekmeier and vanMaanen,
2013), although the deficit in gamma entrainment is not a
core symptom of schizophrenia, it presents an ideal target
for computational modeling studies like ours. First, the above
mentioned shift toward endophenotypic measures of psychiatric
disorders, produces an increasing amount of experimental data,
which show that abnormalities in the gamma band seem to
be most consistent in schizophrenic patients. Second, gamma
oscillations have been identified to underly several important
computations in many different sensory and cognitive functions,
which suggests that a deficit therein might explain many of the
symptoms found in patients with schizophrenia.

Obviously, the network model used in our study has clear
limitations and our approach only constitutes a first step toward
the use of biophysically detailed models in computational
psychiatry. Therefore, we want to discuss these limitations here
to show how the proposed approach can be extended in future
work.

The network model does not contain several components
that are likely to influence oscillatory dynamics in vivo. First,
there are no NMDA receptors in the model, however, these
are likely to be important in the etiology of schizophrenia
(e.g., Lisman et al., 2008) and have been demonstrated to
influence gamma oscillations (e.g., Kirli et al., 2014; Jadi et al.,
2016). Interestingly, these studies both have shown that in
this case single perturbations to the NMDA receptors can
account for gamma oscillation deficits. Therefore, it will be
important to include NMDA receptors to the proposed model
and to explore the interactions of NMDA receptor deficits
with the abnormalities modeled here. Kömek et al. (2012)
found changes in network oscillations in response to auditory
entrainment stimulation by modulating the excitability of fast-
spiking interneurons via changes in dopaminergic drive. Taken
together, these findings suggest that in some cases single
perturbation can potentially account for experimental findings
whereas in other cases several perturbations have to coincide.
Given the enormous heterogeneity of schizophrenia and the
existence of different subpopulation of patients, it will be very
interesting to explore the differences in auditory entrainment in
these subpopulations in much more detail. It might be the case
that a mapping of these subpopulations to the different cases
outlined above exists.

Second, no distinction of different interneuron types was
included in the model. However, Chandelier cells (a PV+ subtype
that only targets pyramidal cell axon initial segments), for
example, are hypothesized to play a crucial role in schizophrenia
(Vierling-Claassen et al., 2008; Vierling-Claassen and Kopell,
2009), although there is some controversy (see e.g., Gonzalez-
Burgos and Lewis, 2008, 2012).

Furthermore, no interneuron-targeting inhibitory, calretinin
positive (CR+) neurons were included, although dis-inhibition
by altering CR+ neurons has been shown to contribute to SZ-
like behavior in working memory models (Wang et al., 2004). We
also did not include LTS, dendrite-targeting inhibitory neurons,
although they have a pronounced influence on low frequency
entrainment (Vierling-Claassen et al., 2010) and thus might play
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a role for the changes in the beta range. Gap junctions between
interneurons were omitted as well although they have been
shown to be powerful synchronizers in hippocampal networks
(Bartos et al., 2007). Hyperpolarizing vs. shunting inhibition (or
even depolarizing inhibition) has not been addressed although it
can potentiallymodulate oscillation frequencies (Vida et al., 2006;
Woodruff et al., 2009, 2010, 2011).

In addition to these synaptic/network level components, there
is also evidence that genetic alterations in schizophrenic patients
affect cell-intrinsic properties that influence cell excitability and
thus could potentially change the oscillatory dynamics of the
network. In a recent modeling study, (Mäki-Marttunen et al.,
2016) show that the interaction of small changes to parameters
regulating ion channels and internal calcium concentrations in
cortical pyramidal cells, can drastically change the excitability of
the cells. The novelty of their approach is, that the parameter
changes implemented in their model are directly derived
from susceptibility genes identified from a large genome-wide
association study (Ripke et al., 2014). An inclusion of these
cell-intrinsic into our current model is ongoing work in our
group.

Although, we tried to incorporate more detail of the
experimental results from the EEG/MEG studies used in this
work, we have not taken into account the differences between
healthy controls and schizophrenic patients when stimulated in
the beta range (i.e., 20Hz stimulation). Furthermore, we have not
looked at other frequency ranges outside of the gamma and beta
range, although differences have been reported in other ranges
(e.g., alpha range or high-gamma Uhlhaas and Singer, 2010). An
exploration of these other frequency ranges would have further
increased the number of simulations. Furthermore, we strongly
expect that extending the model to incorporate more of the
above-mentioned components would be necessary to change the
model presented to explain these other phenomena mentioned
here and was therefore beyond the scope of this article.

Spencer (2009) have explored similar network level
perturbations in the context of induced, rather than evoked,
gamma oscillations, and find strong influences on oscillation
power and overall synchrony. Therefore, it would be interesting
to complement our present analysis with an exploration of
induced gamma oscillations.

Generally, we think that the approach outlined here, should be
extended to produce amore detailed, in both, the biological detail
represented by the model and also the detail of experimental
data reproduced by the model. This would greatly increase
the explanatory power of the insights gained through this
modeling effort. Additionally, the process itself will likely shed

light onto the mechanisms underlying oscillatory deficits in
schizophrenic patients and produce novel hypotheses that can be
experimentally tested.

5. CONCLUSION

The development of new medication for the treatment of
psychiatric disorders such as schizophrenia has met with limited
success over the past decades. Many have argued that a

shift toward endophenotypic measures would provide clearer
mappings between these measures and the underlying genetic
alterations, ultimately facilitating this drug development. As
Siekmeier points out (Siekmeier, 2015), detailed computational
models of endophenotypic measures can provide a crucial tool
in such an effort. However, often computational modeling efforts
seem to neglect the multifactorial nature of these system level
measures and only investigate one specific mechanisms that
might produce abnormal results, without exploring the many
other ways which could possibly produce the same abnormality
(Pavão et al., 2015).

Here we provide an underpinning of the importance of a
multifactorial view when modeling endophenotypic measures.
Furthermore, we demonstrate how an exhaustive exploration of
the parameter space of such a model can be used to extract
information on the different mechanisms that might underly
abnormalities in schizophrenic patients. We also find that
possible mechanisms depend on the amount of experimental
detail which is incorporated in the analysis.

In conclusion, we have presented an biophysically detailed
implementation of a biomarker of schizophrenia, which can
serve as a basis for the exploration of mechanisms underlying
oscillatory deficits in schizophrenia and as a tool for the
identification and testing of novel mechanisms of action for
anti-psychotic drugs.
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