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AbstractIn the thesis we investigate the connections between arbitrary functions andtheir realizing polynomials over �nite algebras. We study functionally com-plete algebras, i.e. algebras over which every function can be realized by apolynomial expression. We characterize functional completeness by the socalled Stone�Weierstrass property, and we determine the functionally com-plete semigroups and semirings. Then we investigate the computational per-spective of the function�polynomial relationships over �nite groups. We con-sider the e�cient representability, the equivalence, and the equation solvabil-ity problems.We approach the e�cient representability problem from three directions.We consider the length of functions, we investigate the circuit complexity offunctions, and we analyse the �nite-state sequential machine representationof Boolean functions. From each of these viewpoints we give bounds on thepotential e�ciency of computations based on functionally complete groupscompared to computations based on the two-element Boolean algebra.Neither the equivalence problem nor the equation solvability problemhas been completely characterized for �nite groups. The complexity of theequivalence problem was only known for nilpotent groups. In the thesiswe determine the complexity of the equivalence problem for certain meta-Abelian groups and for all non-solvable groups.The complexity of the equation solvability problem is known for nilpotentgroups and for non-solvable groups. There are no results about the complex-ity of the equation solvability problem for solvable non-nilpotent groups apartfrom the case of certain meta-cyclic groups that we present in the thesis.Moreover, we determine the complexity of the equation solvability problemfor all functionally complete algebras.The idea of the extended equivalence problem emerges from the obser-vation that the commutator might signi�cantly change the length of group-polynomials. We characterize the complexity of the extended equivalenceproblem for �nite groups. For many �nite groups we determine the complex-ity of the equivalence problem if the commutator is considered as the basicoperation of the group.
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Chapter 1IntroductionNowadays, computers play larger and larger role in everyday life and inscienti�c research. This is especially true in mathematics and in algebra,where one often wants to perform calculations or computations with a ma-chine. Computers are based on the two-element Boolean algebra, namely
B = ({ 0, 1 } ,¬,∨,∧), where ¬ (0) = 1, ¬ (1) = 0, ∨ (0, 0) = 0, ∨ (0, 1) =
∨ (1, 0) = ∨ (1, 1) = 1, ∧ (0, 0) = ∧ (1, 0) = ∧ (0, 1) = 0 and ∧ (1, 1) = 1.Instead of ∨ (x, y) we write x∨y and instead of ∧ (x, y) we use x∧y. The al-gebra B has a special property which makes the computers universal, namelyevery arbitrary function from { 0, 1 }n to { 0, 1 } can be expressed by the ba-sic operations ¬,∨ and ∧. This property is called functional completeness.However, not only B has this property.By a functionally complete algebraA we mean an algebra with underlyingset A and with basic operations f1, . . . , fm such that for every nonnegativeinteger n and for every function f : An → A there is a polynomial expression
p (x1, . . . , xn) over A such that for every n-tuple (a1, . . . , an) ∈ An we have
p (a1, . . . , an) = f (a1, . . . , an). (Polynomial expressions are expressions builtup from variables, constants from A and the basic operations of A usingcomposition.) The two-element Boolean algebra, matrix rings over �nite�elds, and the �nite simple non-Abelian groups are examples for functionallycomplete algebras [40, 41, 26]. A computer based on any of these algebraso�ers an alternative paradigm for computation.To assess the power of other functionally complete algebras (especiallygroups) for providing a basis for computer science, we investigate the con-nections between functions and their representing polynomials. An arbitraryfunction can be represented by many polynomials and in many ways. Usu-ally these polynomials are required to satisfy some natural conditions, such asshortness or e�cient computability. In other cases we are given polynomials,and we are interested in whether the functions represented by the polyno-



2 INTRODUCTIONmials have some common properties, such as: are the functions equal or dothey attain the same value for some substitution? This work investigatesthese problems mainly over �nite groups and therefore consists of three mainthemes.1. Find representing polynomials for an arbitrary function over a given�nite functionally complete group. We are especially interested in thoserepresenting polynomials which are either short or fast computable.This problem is the e�cient representability problem.2. Decide whether or not two polynomials represent the same function overa given �nite group. We are especially interested in the computationalcomplexity of this question in the length of the two polynomials. Thisproblem is called the equivalence problem.3. Decide whether two functions, which are represented by two polyno-mials over a given �nite group, attain the same value at some substi-tution. We are especially interested in the computational complexityof this question in the length of the two polynomials. This problem iscalled the equation solvability problem.In Chapters 2, 3 and 4 we are interested mainly in the �rst theme, whileChapters 5, 6, 7 and 8 focus on the latter two themes, which are closelyrelated.Now we give a brief survey on all three themes by recalling their back-ground. Then we explain how the Chapters of the thesis relate to the formerresults. At the end of this Chapter we summarize the di�erent methods andtheir importance.1.1 The e�cient representability problemA natural question to ask is how a function can be represented as a poly-nomial. More interestingly, whether there is a short way of representingand a fast way of computing an arbitrary or a speci�c function over a givenfunctionally complete algebra. These questions have been thoroughly in-vestigated before for the two-element Boolean algebra (see e.g. [40]) or forrings (see e.g. [29]), but there are very few results for groups. Surprisingly,the original paper [26], characterizing the functionally complete groups, isnot algorithmic: Maurer and Rhodes �rst prove that a �nite group G hasthe so-called Stone�Weierstrass property if and only if it is simple and non-Abelian. Then they prove for groups that functional completeness follows



1.1 The e�cient representability problem 3from the Stone�Weierstrass property. In the thesis we are particularly in-terested in functionally complete groups. We note that some of our resultsapply in a more general context, e.g. we prove theorems which hold for everyfunctionally complete algebra.In Chapter 2 we �rst give a basic overview about functionally completealgebras.De�nition. (equivalent to De�nition 2) Let A be a �nite algebra and let Sbe a �nite nonempty set. Let F be an arbitrary subalgebra of AS, such that:1. F contains the constant functions, namely for every a ∈ A there is afunction fa ∈ F such that for every s ∈ S we have fa(s) = a.2. F separates every two elements of S, namely for every s1 6= s2 ∈ Sthere exists a function f ∈ F such that f(s1) 6= f(s2).If for every S these two properties imply that F = A
S, then we say that Ahas the Stone�Weierstrass property.We prove that the Stone�Weierstrass property is equivalent with the func-tional completeness for any �nite algebra, not only for a group:Theorem. (Theorem 3). Let A be a �nite algebra. Then A has the Stone�Weierstrass property if and only if A is functionally complete.Then we determine the functionally complete classical algebras. Theo-rem 14 in Section 2.1 shows that the only functionally complete Booleanalgebra is the two-element one. The functionally complete rings are the ma-trix rings over �nite �elds (Theorem 16 in Section 2.2), while the functionallycomplete groups are the �nite simple non-Abelian ones (Theorem 18 in Sec-tion 2.3). Although these results were already known (see e.g. [40, 29, 26]),we introduce algorithmic proofs for them: we use these algorithms later inChapter 3 to obtain upper bounds on lengths of polynomials. The last twoSections contain the results that there are no more functionally completesemigroups (Section 2.4) or semirings (Section 2.5) other than those alreadymentioned above for groups or rings:Theorem. (Theorem 28) Every �nite functionally complete semigroup is agroup.Theorem. (Theorem 32) Every �nite functionally complete semiring is aring.



4 INTRODUCTIONIn Chapter 3 we investigate the length of polynomials. We give upperand lower bounds on the lengths of shortest polynomials realizing special orarbitrary functions.De�nition. (De�nition 35 and De�nition 37) The length of a polynomialexpression over A is de�ned recursively:1. The length of a variable x or a constant c is 1: ‖x‖
A

= ‖c‖
A

= 1.2. For an m-variable basic function f of A and for polynomial expressions
p1, . . . , pm, the length of f (p1, . . . , pm) is the sum of the lengths of pi's:
‖f (p1, . . . , pm)‖

A
=
∑m

i=1 ‖pi‖A
. Then the length of f (x1, . . . , xm) is

‖f‖
A

= m.The length of a function f over an algebra A is the length of a shortestpolynomial p over A realizing the function f .The two most important theorems which can be applied for functionallycomplete algebras in general are Theorem 45 and Theorem 48.Theorem. (part of Theorem 45) Let A be a functionally complete algebraand let 0 be an element of A. Let p be a shortest polynomial realizing anarbitrary n-ary function f over A with e-many non-zero values (1 ≤ e ≤
|A|n). Then the following inequality holds:

‖p‖
A
≤ c · nc1 · ec2,where c, c1 and c2 are constants depending on the algebra A and on the ele-ment 0, c1 ≥ 1, c2 ≥ 1.Theorem. (Part of Theorem 48) Let A be a functionally complete ring orfunctionally complete Boolean algebra, N = |A|. Let p be a shortest polyno-mial realizing an arbitrary n-ary function f over A with e-many non-zerovalues, where 1 ≤ e ≤ Nn. Then the following inequality holds:

‖p‖
A
≤ e · (1 + T · (3 + n − logN e)) − 2 · T,where T is a constant depending on the algebra A.For an algebra A we denote by N the number of elements of A, i.e.

N = |A|. Let 0 be an element of A. Theorem 45 bounds the length of an
n-ary function by the product of some power of n, the number e of its non-zero values, and some constant depending on the algebra. In Theorem 48



1.1 The e�cient representability problem 5we replace the factor of nc1 by another factor: (3 + n − logN e). This newfactor is linear in n, but it can be bounded by a constant unless e is reallysmall compared to Nn. Therefore Theorem 48 gives a better upper bound;unfortunately it cannot be applied for arbitrary functionally complete alge-bras. Theorem 46 states that if A is a functionally complete algebra then forlarge enough n there exists an n-ary function which cannot be realized witha polynomial shorter than c · Nn · (log n)−1 for some constant c. Here andfrom now on we denote the base 2 logarithm function by log.Then in the following Sections we derive bounds for every functionallycomplete algebra mentioned in Chapter 2. In Sections 3.2 and 3.3 by usingTheorem 48 we obtain bounds on the length of arbitrary n-ary functions forthe two-element Boolean algebra and for functionally complete rings.Theorem. (part of Theorem 61) Let B be the two-element Boolean algebra.Let f be an arbitrary n-ary function over { 0, 1 } with e-many non-zero values(1 ≤ e ≤ 2n). Then
‖f‖

B
≤ (3 + n − log e) · e − 2.Theorem. (part of Theorem 66) Let F be a �nite �eld, |F| = q and let f bean arbitrary n-ary function over F with e-many non-zero values. Then

‖f‖
F
≤ 2 · q ·

(
3 + n − logq e

)
· eif q ≥ 3 and

‖f‖
F
≤ 2 · (3 + n − log e) · e − 4if q = 2.Theorem. (Theorem 68) Let F be a �nite �eld, |F| = q and let R = Mk(F),the k × k-matrices over F (k ≥ 2). Let N = |Mk(F)| = qk2 and let f be anarbitrary n-ary function over R with e-many non-zero values. Then

‖f‖
R
≤ 16 · (log N)5/2 · N1/4 · (3 + n − logN e) · e.Theorems 61, 66 and 68 have some common properties. Apart from thefactor e and the strange factor (n − log|A| e

) there is only a constant factor,which is at most linear in the size of the particular algebra. On the otherhand, in Section 3.4 the upper bound of Theorem 75 for groups is much worsecompared to the case of rings or the two-element Boolean algebra.Theorem. (Part of Theorem 75) Let G be a functionally complete group.Let N = |G|. Let f be an n-ary (possibly partial) function over G with



6 INTRODUCTION
e-many non-identity values (1 ≤ e ≤ Nn). Then the following inequalitieshold:

‖f‖
G
≤ 2 · KG\{ 1 },b · Kb,G\{ 1 } · V 2 · (N − 1)log V · nlog V · e + 1,

‖f‖
G
≤ 6272 · (K − 1)2 · (N − 1)8 · n8 · e + 1,where KG\{ 1 },b, Kb,G\{ 1 } and V are constants depending on the group, V ≥ 4and K = 1+max

{
KG\{ 1 },b, Kb,G\{ 1 }

} is bounded by the number of conjugacyclasses of G.Apart from the factor e the bound contains a power of n and a constant,which is a power of the size of the group. This comparison of bounds seems toimply that groups are not the most e�cient way of representing an arbitraryfunction; they seem to be less e�cient than rings or the two-element Booleanalgebra.In Section 3.5 we investigate the special case when the �nite simple non-Abelian group is an alternating group Am. We show in Section 3.1 that ifa function can be realized by a polynomial over a group G1, and G1 ≤ G2,then the same polynomial realizes the function over G2, too. This otherrealization has the same length, therefore when we try to �nd a shortestrealization over a functionally complete group G, we can as well just embedit into another functionally complete group and investigate realizations ofthe function over the larger group. Since every �nite group can be embeddedinto Am for some m, we dedicate a whole Section to investigate these groups.Theorem. (part of Theorem 88) Let m ≥ 5 and let N = |Am|. Let f be anarbitrary (possibly partial) n-ary function over the group Am with at most
e-many non-identity values (1 ≤ e). Then the following inequality holds:

‖f‖ ≤ m ·
(
3N2 − 9N + 8

)
·
(
3n2 − 3n + 2

)
· e + 1.If 4 - m, then we can replace the factor m by bm/2c.This bound is linear in e, but square in both n, N and m. This is thepossible best bound we can obtain from Theorem 75, but still di�ers by asquare factor of n and N from the case of rings or the two-element Booleanalgebra.We observe that the explanation for having worse bounds for groups canbe derived from the main di�erence between rings and groups, namely thatrings have two basic binary operations compared to only one for groups(which is closely related to the addition for rings). And it is indeed the caseas Section 3.6 shows: in Theorem 101 we prove similar upper bounds on thelength of an arbitrary function over a two-element set if the commutator isconsidered as a basic operation.



1.1 The e�cient representability problem 7Theorem. (Theorem 101) Let G = (G, ·,−1 , 1) be a functionally completegroup and let G
c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is the commuta-tor operation of G. Let 1 6= u ∈ G, let f be an arbitrary n-ary function

f : { 1, u }n → { 1, u } with at most e-many non-identity values. Then
‖f‖

Gc ≤ KG\{ 1 },u · ((10 + 3 (n − log e)) · e − 5) + 1,where KG\{ 1 },u is a constant depending on the group G and on the element
u. When G = Am (m ≥ 5) and u is a 3-cycle, then

‖f‖
Ac

m
≤ 4 · ((10 + 3 (n − log e)) · e − 5) + 1.If 4 - m, then we can replace the constant factor 4 by 2.The idea of Theorem 101 unfortunately cannot be used for an arbitraryfunction f : Gn → G. We still can obtain better bounds than those in Theo-rem 75. The result looks similar to those in Theorem 45.Theorem. (Part of Theorem 103) Let G = (G, ·,−1 , 1) be a functionallycomplete group and let G

c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is thecommutator operation of G. Let f be an arbitrary n-ary (possibly partial)function over G with e-many non-identity values. Let N = |G|. Then thefollowing inequality holds:
‖f‖

Gc ≤ 3 · K4 · N · n · e,where K is a constant depending on the group G and is bounded by thenumber of conjugacy classes of G. If G = Am (m ≥ 5), then
‖f‖

Ac
m
≤ 176 · bm/2c · (N − 1) · n · e.If 4 - m, then we can replace the constant 176 by 28.These results not only show the importance of the commutator operationin groups, but they reveal that in some circumstances it behaves similarlyas the multiplication behaves in a ring. Therefore a group with commutatorcan behave similarly to a ring. We use this property later on in the thesis.The above results are relevant to the question of whether a computerbased on a particular algebra o�ers a more e�cient way of doing calcula-tions than one, based on another type of algebra. E�ciency, however, canbe de�ned in many ways. A natural way is to consider the length of poly-nomial expressions representing the desired function f . We are concerned



8 INTRODUCTIONmostly about this aspect in Chapter 3. In Chapter 4 we investigate di�erentcomputational models. In Section 4.1 we consider the circuit complexity.For a functionally complete algebra A an A-circuit C is a directed acyclicdigraph with labelled nodes. The source nodes are labelled by variables orby constants, the other nodes (called `gates') are labelled by basic opera-tions of A. A calculation at a gate is the application of the correspondingbasic function on the values calculated at the sources of the incoming edges.Therefore a circuit computes a function at every gate. If every calculationat a gate takes one time-step, then the number s (C) of gates (size) corre-sponds to the required time for calculating a function with a single processormachine. Similarly, the length d (C) of a longest path (depth) corresponds tothe time required to calculate a function with a multiple processor machine.For a function f : An → Ak let the complexity of f with respect to A be thesize of a smallest n-ary A-circuit which computes f ; let the depth of f withrespect to A be the depth of an n-ary A-circuit which computes f and hasthe smallest depth. We denote the size of f by s (f) and the depth of f by
d (f).The main result of Section 4.1 is Theorem 117 which gives an upper boundon the size and the depth of an arbitrary n-ary function.Theorem. (part of Theorem 117) Let A be a functionally complete algebra,
N = |A|. Let 0 ∈ A be an element. Let f be an arbitrary n-ary function over
A with e-many non-zero values, where 1 ≤ e ≤ |A|n. Then the followinginequalities hold:

s (f) ≤ c1 · ((3 + n − logN e) · e − 2) ,

s (f) ≤ c2 · n · e,
d (f) ≤ c3 · dlog ee + c4 · dlog ne + c5,where c1, . . . , c5 are constants depending on the algebra A and on the element

0. In Theorem 120 we give a lower bound on the size and the depth: weprove that for a functionally complete algebra A and for su�ciently large nthere exist n-ary functions f1 and f2 such that sA (f1) ≥ c · Nn · n−1 and
dA (f2) ≥ c′ · (n log N − log log n) for some constants c and c′.We re�ne our results for functionally complete groups in Section 4.2.Theorems 127 and 128 give sharper upper bounds on the depth and the sizethan Theorem 117.Theorem. (part of Theorems 127 and 128) Let G be a functionally completegroup. Let f be an n-ary (possibly partial) function over G with e-many non-identity values. Let N = |G| and let K be the number of conjugacy classes



1.1 The e�cient representability problem 9in G. Then the following inequalities hold:
s (f) ≤ e · (9nN · (2K + 7) − 7n − 7 + 4K) − 1,

d (f) ≤ 14 + 2 log (K − 1) + 8 log (N − 1) + 8 log n + log e.Moreover if G = Am (m ≥ 5), then
s (f) ≤ e · ((27N − 14) · n + m − 2) − 1,

d (f) ≤ 1 + log m + 2 · (log 3 + log N + log n) + log e.If 4 - m, then we can replace the factor (27N − 14) by (13N − 11) and thefactor m by 2 · bm/2c in the bound on the size.In Section 4.3 we compare the possible e�ciency of functionally completegroup based circuits and two-element algebra based circuits by simulatingone with the other. Theorem 130 gives an upper bound on how much fastertwo-element algebra based circuits can be compared to circuit based on afunctionally complete group.Theorem. (part of Theorem 130) Let G be a functionally complete group andlet K be its number of conjugacy classes. Let A denote a two-element algebrawhose basic operations are at most binary. Then there exists b ∈ G, b 6= 1such that for every positive integer n and any function f : { 0, 1 }n → { 0, 1 }we can �nd functions p1, p2 over G such that p1 and p2 are the same functionover { 1, b } as f is over { 0, 1 } and
sG (p1) ≤ (6K + 456) · sA (f) , dG (p2) ≤ (14 + 2 log K) · dA (f) .If G = Am (for m ≥ 5) and b = (1 2 3), then for every positive integernumber n and any function f : { 0, 1 }n → { 0, 1 } we can �nd functions p1,

p2 over G such that p1 and p2 are the same function over { 1, b } as f is over
{ 0, 1 } and

sAm
(p1) ≤ 13 · sA (f) , dAm

(p2) ≤ 8 · dA (f) .If G = Am for m ≥ 6 then we can choose b = (1 2) (3 4) and we can replacethe constants 13 and 8 by 10 and 5, respectively.Theorem 130 entails that, given that calculating basic operations takethe same amount of time, computations based on the two-element Booleanalgebra can be at most 13 times faster than computations based on thealternating group A5 and at most 10 times faster than computations basedon the alternating group Am (for m ≥ 6). For the lower bound: Theorem 131



10 INTRODUCTIONstates that if the group multiplication of a functionally complete group G iscomputed by a circuit based on a two-element algebra, then the circuit hassize at least dlog |G|e.In Section 4.4 we introduce a method by which a functionally completegroup can simulate the ring Zp for an odd prime p. For every ring-polynomial
q we build an Am-circuit C (for m ≥ p + 2), which has linear size in ‖q‖and simulates the computation of the ring polynomial q. Whenever for someconstant c we have sZp

(f) ≤ c · ‖f‖
Zp

or dZp
(f) ≤ c · ‖f‖

Zp
, then we cancompute f by an Am-circuit C, such that s (C) is linear in sZp

(f) or d (C)is linear in dZp
(f).Theorem. (Theorem 136) Let p be an odd prime and let m ≥ p + 2. Let

a = (1, . . . , p) ∈ Am, let r be a primitive root modulo p and let h ∈ Amsuch that ah = ar. Let H = 〈h〉 and let A = 〈a〉. Let in : Zp ↪→ H × Hand out : Zp ↪→ A be embeddings such that for every 0 ≤ k ≤ p − 1 we have
out (k) = ak and in (k) =

(
hk1 , hk2

) such that rk1 − rk2 = k in Zp. Then forevery Zp-polynomial q (z1, . . . , zn) there exists an Am-circuit C such that forevery n-tuple (r1, . . . , rn) over Zp the circuit C computes out (q (r1, . . . , rn))on the input 2n-tuple (in (r1) , . . . , in (rn)) and
s (C) ≤ 16 ‖q‖

Zp
,

d (C) ≤ 8 ‖q‖
Zp

.In Section 4.5 we investigate a di�erent approach for function realiza-tions than that introduced in Section 4.1. Krohn, Maurer and Rhodes in [22]showed a method how �nite-state sequential circuits can be used for calcu-lating an arbitrary Boolean function f : { 0, 1 }n → { 0, 1 }. They, however,did not measure the e�ciency of their method.A �nite-state sequential circuit is a 6-tuple M = (A, B, Q, q0, λ, µ), withbasic input set A, basic output set B, state set Q, starting state q0, next-state function λ : Q × A → Q and output function µ : Q → B. Let A+ bethe free semigroup generated by A, i.e. all �nite words with positive lengthconstructed from the alphabet A. For any t = a1 · · ·an ∈ A+ let us de�ne
λ′ (t) : Q → Q inductively: λ′ (a1) (q) = λ (q, a1) for a1 ∈ A and q ∈ Q. Let
λ′ (a1 · · ·ak) (q) = λ′ (ak) (λ′ (a1 · · ·ak−1) (q)) for a1 . . . ak ∈ A+ and q ∈ Q.Let Mq (a1 . . . ak) = µ (λ′ (a1 . . . ak) (q)). This is the letter which machine Mwhen started in state q outputs for the word a1 . . . ak.Let F(Q) denote the semigroup of all transformations of Q into itselfunder the multiplication ·, where for f, g ∈ F(Q) we have (f · g) (q) =
g (f (q)). Then λ′ : A+ → F(Q) is a homomorphism: λ′ (a1 . . . akb1 . . . bm) =
λ′ (a1 . . . ak) · λ′ (b1 . . . bm). Let us denote λ′ (A+) by M

S. We call M
S thesemigroup of the machine M.



1.2 The equivalence problem 11De�nition. (De�nition 137) Let M = (A, B, Q, q0, λ, µ) be a �nite-statesequential circuit. We say that M is a simple non-Abelian Boolean circuit if
A = B = { 0, 1 }, µ (Q) = { 0, 1 }, and M

S as a subsemigroup of F (Q) is atransitive simple non-Abelian group which is generated by two elements.All simple non-Abelian Boolean circuits can be constructed in the follow-ing way: letG be a �nite simple non-Abelian group generated by the elements
g0 and g1. Let H ≤ G be a subgroup. Let us consider the right cosets of
H in G: let R = {Hg : g ∈ G }. Let µ : R → { 0, 1 } with µ (R) = { 0, 1 }be arbitrary. Then M = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ) is a simple non-AbelianBoolean circuit where λ (Hg, k) = Hggk for k = 0, 1.De�nition. (De�nition 139) Let G be a �nite simple non-Abelian group,where the elements g0 and g1 generate G. LetM = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ)be a simple non-Abelian Boolean circuit. Let p be an n-ary polynomial over
G which does not contain inverses and every constant occurring in p is either
g0 or g1. Then B (M, p) : { 0, 1 }n → { 0, 1 } is the Boolean function of nvariables such that
B (M, p) (y1, . . . , yn) = MH (p (gy1 , . . . , gyn

)) = µ
(
λ′ (p (gy1 , . . . , gyn

)) (H)
)
.In Theorem 140 we use the results of Chapter 3 for giving an upper boundon ‖p‖.Theorem. (Theorem 140) Let G be a �nite simple non-Abelian group, wherethe elements g0 and g1 generate G. Let K be the number of conjugacy classesof G and let N = |G|. Let M = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ) be a simple non-Abelian Boolean circuit such that µ (R) = { 0, 1 }. Let f : { 0, 1 }n → { 0, 1 }be an arbitrary function with e-many non-zero values. Then there exists apolynomial p over G such that p does not contain inverses and every constantin p is either g0 or g1, f = B (M, p), and

‖p‖ ≤ 1 605 632 · (N − 1) · (K − 1)2 · n8 · e + (N − 1) .If G = Am (m ≥ 5), H = Am−1, g0 = (1 2 3), and g1 = (3 . . . m) (if 2 - m)or g1 = (1 2) (3 . . . m) (if 2 | m) then we can choose p, such that
‖p‖ ≤ 128 · bm/2c · n2 · e + (N − 1) .1.2 The equivalence problemUp to this point we were interested in �nding polynomials which representcertain functions. Another interesting aspect is to �nd the functions repre-sented by polynomials, more precisely to decide whether or not two given



12 INTRODUCTIONpolynomials de�ne the same function. This problem is called the polynomialequivalence problem or identity checking problem. This question is interest-ing not only for functionally complete algebras, but for any algebra; and notonly for polynomials, but for terms (expressions built up from variables andthe basic operations of A using composition, but without constants) as well.This problem is called the equivalence problem. These questions are clearlydecidable for any given �nite algebra: one only has to check whether the twopolynomials (or terms) attain the same value for every possible substitutionfrom the given algebra. Thus the interesting question is whether or not thisdecision can be made in some fast way, i.e. to determine the computationalcomplexity of deciding whether or not two polynomials (terms) represent thesame function.To every term or polynomial expression t(x1, . . . , xn) and each algebra Awe denote the naturally associated function by tA : An → A. We recall thatan algebra A satis�es an equation s(~x) ≈ t(~x) for ~x = (x1, . . . , xn), if thecorresponding functions sA and tA are the same function. We denote this by
A |= s ≈ t.De�nition. (De�nition 141) Equivalence problem and polynomial equiva-lence problem.Given: A �nite algebra A.Instance: Two term expressions (for the equivalence problem), ortwo polynomial expressions (for the polynomial equivalence problem).Let the two expressions be s and t.Question: Do the two input expressions realize the same function over

A, i.e. does A |= s ≈ t hold?The complexity is always in coNP: for proving that two polynomials orterms are not realizing the same function it is enough to check a substitutionwhere they di�er. Similarly, it is easy to see that whenever the equivalenceproblem is coNP-complete, so is the polynomial equivalence problem. More-over if the polynomial equivalence problem is in P, so is the equivalenceproblem.In Section 5.3 we determine the complexity of the polynomial equivalenceproblem for functionally complete algebras.Theorem. (Theorem 146) The polynomial equivalence problem for a non-trivial functionally complete algebra A is coNP-complete.



1.2 The equivalence problem 13This is a joint result with Nehaniv and Szabó [14]. A corollary of thistheorem is that the polynomial equivalence problem is coNP-complete formatrix rings over �nite �elds or for �nite simple non-Abelian groups.For �nite commutative rings the computational complexity of the equiv-alence problem is completely characterized by Hunt and Stearnes [16]. Theyproved a dichotomy theorem: if a �nite commutative ring is nilpotent, thenthe equivalence problem is in P; if it is not nilpotent, then it is coNP-complete. Later Burris and Lawrence generalized the result for arbitrary�nite rings [2]. It follows from their proof that the same holds for the poly-nomial equivalence problem, too.Much less is known for groups. There is a result of Burris and Lawrence[3] from 2004 that checking identities can be done in polynomial time forevery �nite nilpotent group and for the dihedral group Dn for odd n. It thusnaturally arises to investigate the case of meta-Abelian groups. We carryout this examination in Chapter 6 and prove for several kinds of semidirectproducts that the complexity of the polynomial equivalence problem is in P.The following theorem summarizes the main results:Theorem. (Theorem 151 and Theorem 154) Let G ' A o B such that thefollowing hold:(a) A is Abelian and either the exponent of A is squarefree or A is cyclic;(b) the polynomial equivalence problem for B is in P;(c) for ever prime p dividing the size of A and P ∈ Sylp(A) the group
B/CB(P) is Abelian and p - |B/CB(P)|, where CB(P) denotes thecentralizer of P in B.Then the polynomial equivalence problem for G is in P.Examples for such groups are the above-mentioned dihedral groups, thealternating group A4, or the wreath product of two cyclic groups. This is ajoint result with Szabó [15].These were results with polynomial time complexity. There are groups,for which the equivalence problem (and so the polynomial equivalence prob-lem) is coNP-complete. In Chapter 7 we prove the following:Theorem. (Theorem 156) The equivalence problem for a �nite nonsolvablegroup G is coNP-complete.From this result one wonders whether a dichotomy theorem, similar tothe one for �nite rings, holds for �nite groups. At the moment this is an openquestion. Theorem 156 is a joint result with Lawrence, Mérai and Szabó [13].



14 INTRODUCTIONIn Section 3.6 we observed that the commutator as a basic operation cansigni�cantly change the length of realizing polynomials for several group-functions. For example, the expression [[[x1, x2] , x3] , . . . , xn] has length n ifthe commutator is a basic operation, but has exponential length in n whenexpressed by only the group multiplication. Such a decrease in the lengthsuggests that the complexity of the equivalence problem might change ifthe commutator is a basic operation. Other group operations might have asimilar property. A straightforward question arises, whether the complexityof the equivalence problem changes by taking one or more new operations asadditional basic operations. Moreover, this question is interesting not onlyfor groups but for all �nite algebras. Hence we can raise the question ingeneral:De�nition. (Part of De�nition 166) Let f1, . . . , fn be polynomial expressionsover the group G. The algebra (G, f1, . . . , fn) is de�ned to be the algebra
(G, ·,−1 , 1, f1, . . . , fn), i.e. the algebra with underlying set G and with basicoperations ·,−1 , 1 together with f1, . . . , fn as well.1. The extended equivalence problem for G.We say that the extended equivalence problem for G is in P if for allpossible term expressions f1, . . . , fn, built up from variables and thebasic operations of G, the equivalence problem over (G, f1, . . . , fn) isin P (Theorem 168).We say that the extended equivalence problem for G is coNP-completeif there exist some term expressions f1, . . . , fn, built up from variablesand the basic operations of G, such that the equivalence problem over

(G, f1, . . . , fn) is coNP-complete.2. The extended polynomial equivalence problem for G.We say that the extended polynomial equivalence problem for G is inP if for all polynomial expressions f1, . . . , fn, built up from variables,constants from G and the basic operations of G, the polynomial equiv-alence problem over (G, f1, . . . , fn) is in P.We say that the extended polynomial equivalence problem for G iscoNP-complete if there exist some polynomial expressions f1, . . . , fn,built up from variables, constants from G and the basic operations of
G, such that the polynomial equivalence problem over (G, f1, . . . , fn)is coNP-complete.In Chapter 8 we consider the complexity of the extended equivalenceproblem and the extended polynomial equivalence problem for �nite groups.



1.2 The equivalence problem 15We start with nilpotent groups in Section 8.1. The (original) equivalenceand the polynomial equivalence problems for �nite nilpotent groups are in Pby Burris and Lawrence [3]. Using the idea of their proof we prove that theextended polynomial equivalence problem is in P.We prove in Chapter 7 that for non-solvable groups the equivalence prob-lem is coNP-complete. As the extended problems are always at least as `hard'as the original, we can conclude that the extended equivalence and the ex-tended polynomial equivalence problems are coNP-complete for non-solvablegroups. The complexity of the equivalence problem for non-nilpotent solvablegroups is, for the most part, a terra incognita of mathematics. Only very fewpartial results are known (in Section 6.1 we proved that for a special classof meta-Abelian groups the complexity of the equivalence problem is in P,e.g. for meta-cyclic groups, dihedral groups D2k+1, S3 or A4), but we do notknow the answer even for the symmetric group S4. The following theoremcompletes the characterization of the extended equivalence problem:Theorem. (Theorem 169) Let G be a �nite solvable non-nilpotent group.Then there exists a term expression f (built up from variables and the ba-sic operations of G) such that the equivalence problem for (G, f) is coNP-complete.From these results we immediately have the following corollary:Corollary. (Corollary 170) Let G be a �nite group. If G is nilpotent then theextended equivalence and the extended polynomial equivalence problems arein P. If G is not nilpotent then the extended equivalence and the extendedpolynomial equivalence problems are coNP-complete.The function f is not uniform in these proofs; it depends on the group
G. However, we show in Section 8.5 that for a large class of groups f can bechosen as the commutator.Let us recall that the lower central series for a group G is the followingsequence of normal subgroups: γ0 (G) = G, γi (G) = [G, γi−1 (G)]. It isclear that if i < j, then γi (G) ≥ γj (G). For every �nite group the lowercentral series terminates in γi0 (G) for some i0. Let us denote this normalsubgroup γi0 (G) with N = N (G).Theorem. (Theorem 184) Let G be a non-nilpotent group, let N = N (G) bethe �nal term of the lower central series as de�ned above. Let us suppose that
N and G/CG (N) are both Abelian. Let us suppose that exp (G/F (G)) > 2,where F (G) is the Fitting subgroup of the group G. Then the equivalenceproblem for (G, [, ]) is coNP-complete, where [, ] denotes the commutator op-eration.



16 INTRODUCTIONComparing the results of Section 8.5 to the results of Section 6.1 we canconclude that the complexity of the equivalence and the extended equiva-lence problems are not always the same. In Section 6.1 we prove that theequivalence problem for A4 is in P. By Theorem 184 the equivalence problemfor (A4, [, ]) is coNP-complete. Moreover we observe that if a correspondingtheorem could be shown for any G such that G/CG (N) and N are bothAbelian, and exp (G/F (G)) = 2, then Theorem 169 would follow by induc-tion with f being the commutator of the group. If, however, it is not thecase, then the characterization would be much harder.1.3 The equation solvability problemOne of the oldest algebraic questions, equally important in computer science,is to decide whether or not an equation has a solution. This question againcan be easily decided over �nite algebras: one only has to check whetherthere is a substitution for which the two sides of the equation attain the samevalue. Thus the interesting question is again to determine the computationalcomplexity of deciding whether two polynomials can attain the same valueat some substitution. This is the equation solvability problem or equationsatis�ability problem.De�nition. (De�nition 142) Equation solvability problem.Given: A �nite algebra A.Instance: Two polynomial expressions p, q.Question: Do the two input polynomials attain the same value for at leastone substitution over A, i.e. does the equation p = q have a solutionover A?The computational complexity of the equation solvability problem is NP-complete for functionally complete algebras. Nipkow asserted it in [29]; hisproof, however, yields only a weaker theorem. In Section 5.2 we �rst givethe theorem that follows from his proof, then give the complexity of thepolynomial satis�ability problem for functionally complete algebras:Theorem. (Theorem 143) The equation solvability problem for a nontrivialfunctionally complete algebra A is coNP-complete.This is another joint result with Nehaniv and Szabó in the paper [14].Surprisingly there are no published papers about the complexity of theequation solvability problem for �nite rings. The complexity of the equation



1.4 Methods 17solvability problem has been solved for nilpotent or non-solvable �nite groupsby Goldmann and Russell [10]. In Section 6.2 we determine the complexityof this problem for meta-Abelian groups with pq-many elements and provethe following:Theorem. (Theorem 155) For any group G of order pq where p and q areprimes the equation solvability problem for G is in P.No other results are known about the complexity of the equation solv-ability problem for groups.After comparing the complexity of the equivalence, polynomial equiva-lence, or equation solvability problems, one might think that if any of thesethree complexities is in P for a particular algebra, then the two other com-plexities are in P for the same algebra. This is, however, not the case: Seifand Szabó presented a 10 element semigroup (see [34]) for which the equiv-alence problem is in P and the equation solvability problem is NP-complete.Klíma proved an even stronger result in [20], where he showed a semigroupof size 24 for which the equation solvability problem is NP-complete but thepolynomial equivalence problem is in P. An open question of the thesis iswhether there exist such examples among groups.1.4 MethodsSeveral methods appear throughout the thesis; many of them are used andrecur for proving theorems from di�erent areas of algebra or of computationalcomplexity. We summarize them here and note how they are used.Iterating functions in logarithmic depth. This is one of the most im-portant methods used in Chapter 3. We observe that certain binarypolynomial expressions can be iterated many times quite e�ciently, i.e.in a way that the n-ary version of the polynomial expression will havepolynomial length in n. Detailed description of the method can befound in Lemma 44. The method is used in the proof of Theorem 45,and in Section 3.4 for estimating the length of the `and ' function overgroups. The method is also used in Section 5.2, where we prove that theequation satis�ability problem is NP-complete over functionally com-plete algebras. Chapter 7 uses the method to prove that a certain n-arycommutator expression has polynomial length in n.Recursive function realization. Theorem 48 gives better bounds thanTheorem 45 as we realize the function recursively: we realize the n-ary function f (x1, . . . , xn) with the help of the (n − 1)-ary functions



18 INTRODUCTION
fa (x1, . . . , xn−1) = f (x1, . . . , xn−1, a), where a is a constant element ofthe algebra. Detailed description of the method can be found in theproof of Theorem 48. The idea can be improved further in a way toobtain the theoretically best possible bounds. The method, however,cannot be used e�ciently for every functionally complete algebra, it canonly be applied for algebras with at least two binary basic operations.The method is useful for the two-element Boolean algebra or for rings,but not for groups, since groups have only one binary operation. Thisleads to the idea of taking the commutator as a basic operation, whichis investigated in Section 3.6. We observe that using the commutatorenables us to e�ciently realize functions using recursion.The commutator as a basic operation. In Section 3.6 we observe thattaking the commutator as a basic operation can change the length ofpolynomial expressions signi�cantly. The idea of the recursive functionrealization (as mentioned above) can be used e�ciently, which showsthat the group multiplication and commutator in some circumstancesbehave similarly as the ring addition and multiplication. In Section 8.5we show that for many non-nilpotent groups the complexity of theequivalence problem is coNP-complete when using the commutator asa new basic operation. For many of these groups the complexity ofthe equivalence problem is in P. Therefore taking the commutator asa basic operation e�ectively changes the complexity, which is furtherevidence of the importance of the commutator in complexity questionson functions over groups.Exploiting the endomorphism ring structure. In Chapter 6 we con-sider groups with structure G = A o B, where A is Abelian. Wereduce the equivalence problem of G to the equivalence problem overthe endomorphism ring End A. In Chapter 8 for any non-nilpotentgroup we �nd some Abelian subgroup A ≤ G and we polynomiallyreduce the extended equivalence problem over the original group to theequivalence problem over the endomorphism ring End A. The thirdapplication of the method is used in Section 4.4, where we e�cientlysimulate the ring Zp by an alternating group Am for m ≥ p+2. Again,we �nd an Abelian subgroup in Am whose endomorphism ring is iso-morphic to Zp.



Chapter 2Functionally complete algebrasIn this Chapter we give some general theorems about functionally completealgebras. Then we determine all functionally complete algebras for someclassical structures, e.g. for Boolean algebras, rings, groups, semigroups andsemirings. These theorems and proofs are used in Chapter 3, where we tryto �nd short realizing polynomials for arbitrary functions.Let A be a �nite algebra with underlying set A (we usually denote thealgebra by boldfaced capital letter and denote the underlying set by an ital-ics capital letter). Every algebra in the thesis is �nite and contains at leasttwo elements, unless we explicitly indicate otherwise. Let p and q be two
n-variable polynomial expressions over A, i.e. expressions built up from vari-ables, constants from A and the basic operations of A using composition.An equivalent de�nition is that an n-ary polynomial over A is a functionbuilt up the constant function, the projections and the basic operations of
A using composition. The variable xi corresponds to the ith projection
πi : An → A, for which πi (x1, . . . , xn) = xi. Both perspectives can be usefulin di�erent situations. By de�nition A is functionally complete if and onlyif every function over A can be expressed (or realized) as a polynomial of
A, i.e. for every nonnegative integer n and for every function f : An → Athere is a polynomial expression p (x1, . . . , xn) over A such that for every n-tuple (a1, . . . , an) ∈ An we have p (a1, . . . , an) = f (a1, . . . , an). We note thata nontrivial functionally complete algebra must contain an at least binarybasic operation.A term expression over an algebra A is an expression built up from vari-ables (or projections) and the basic operations of A. The di�erence betweenterm expressions and polynomial expressions is that terms are not allowedto have constants, but polynomials are. If every possible function over A canbe realized as a term expression of A, then A is a primal algebra. Primalityis a stronger assumption on an algebra than functional completeness, but



20 FUNCTIONALLY COMPLETE ALGEBRASthey coincide if A contains all constants as nullary basic operations. In thefollowing we only consider functionally complete algebras.Sometimes we add new functions over A to the algebra A as basic op-erations. If we add the functions f1, . . . , fn as new basic operations to thealgebra A, then we denote the algebra obtained by (A, f1, . . . , fn).Maurer and Rhodes proved in [26] that among nontrivial �nite groupsexactly the simple non-Abelian ones are functionally complete. They didnot give a direct proof but proved a Stone�Weierstrass Theorem and as acorollary they obtained the functional completeness of the �nite simple non-Abelian groups.De�nition 1. Let A be a �nite algebra with underlying set A. Let S be anarbitrary set and let F(S,A) be the set of all functions S → A. For everybasic operation g of A we de�ne g′ over F(S,A) in the following way: if gis an n-ary operation and f1, . . . , fn ∈ F(S,A), then g′ (f1, . . . , fn) : S → Aand g′ (f1, . . . , fn) (s) = g (f1 (s) , . . . , fn (s)). With these basic operations
F(S,A) is an algebra with the same type as A. We usually denote g′ as gif it does not create confusion. We note that F(S,A) is isomorphic to the
|S|-fold direct product A

S of A with itself.De�nition 2. Let A be a �nite algebra and let S be a �nite nonempty set.Let F be an arbitrary subalgebra of F(S,A), such that:1. F contains the constant functions, namely for every a ∈ A there is afunction fa ∈ F such that for every s ∈ S we have fa(s) = a,2. F separates every two elements of S, namely for every s1 6= s2 ∈ Sthere exists a function f ∈ F such that f(s1) 6= f(s2).If for every S these two properties imply that F = F(S,A), then we say that
A has the Stone�Weierstrass property.In Section 2.3 we give a direct proof that the �nite simple non-Abeliangroups are the only functionally complete groups. Comparing it to the the-orem in [26] we can conclude that functional completeness and the Stone�Weierstrass property are equivalent among �nite groups. There are no directproofs, whatsoever, for this equivalence in the literature; moreover the twoproperties are equivalent in general, namelyTheorem 3. Let A be a �nite algebra. Then A has the Stone�Weierstrassproperty if and only if A is functionally complete.



2 Functionally complete algebras 21Proof. Let us suppose that A has the Stone�Weierstrass property. Let
S = An for an arbitrary nonnegative integer n. Let F be a subalgebraof F(S,A) = F(An,A) which contains every constant function and everyprojection to a coordinate. Then F has both properties in De�nition 2 and
A has the Stone�Weierstrass property, hence F = F(An,A). This is true forevery nonnegative integer n, hence A is functionally complete.Conversely, let us suppose now that A is functionally complete. Let Sbe a �nite nonempty set and F be a subalgebra of F(S,A) which containsthe constant functions and separates the elements of S. Let n =

(
|S|
2

) and let
fs1,s2 ∈ F be a function for which fs1,s2(s1) 6= fs1,s2(s2). Let f1, . . . , fn be anenumeration of these n-many functions. For every a ∈ A let fa : S → A bethe constant a function: for every s ∈ S let fa(s) = a.The idea is the following: we give an embedding e : S → Ak for some k.The embedding e will be de�ned in a way, such that fi's become the com-position of πi |im e with e−1 (where πi : Ak → A is the ith projection). Thenusing the functional completeness of A, for an arbitrary function f : S → Awe de�ne a polynomial p : Ak → A, built up by the projections and the con-stant functions, such that f is the composition of p |im e and e−1. As p isbuilt up from the projections and constant functions, so is f from fi's and
fa's.Let e : S → An be the following embedding of S to An: e(s) = (f1(s), . . . , fn(s)).Note that if πi : An → A is the projection to the ith coordinate, then
fi = πi ◦ e.

↪−−−−−→e
−−−−−−−−−→

fi

−−−−−−→ πi

S An

ANow let f : S → A be an arbitrary function. We prove that f ∈ F. Let
p : An → A be a function such that f = p ◦ e, i.e. for every s ∈ S we have
f(s) = p(e(s)). Such a function p exists, since e is an embedding. Now A isfunctionally complete, hence p is the composition of constant functions pa,projections πi and the basic functions of A. Composing p with the embedding
e we obtain f . In p replacing every πi by fi and every constant pa by fa yieldsthat f is a composition of the functions fi = πi ◦e (1 ≤ i ≤ n) and fa = pa◦e(a ∈ A). Since all fi's and fa's are in F, f ∈ F, too.The following proposition claims that a functionally complete algebra hasno nontrivial homomorphism:



22 FUNCTIONALLY COMPLETE ALGEBRASProposition 4. If a �nite algebra A is functionally complete, then it has nonontrivial homomorphisms, namely if h : A � B is a surjective homomor-phism, then either h is an isomorphism or |B| = 1.Proof. If a nontrivial homomorphism h : A → B exists, then there are 3distinct elements a1, a2, a3 ∈ A such that h(a1) = h(a2) 6= h(a3). Let f : A →
A be any function such that f(a1) = a1, f(a2) = a3. Now, if f is representedby a polynomial p of A, then by the interchangeability of p and h (whichfollows from the de�nition of homomorphism) we have

h (a1) = h (p (a1)) = p (h (a1)) = p (h (a2)) = h (p (a2)) = h (a3) ,a contradiction. Hence if a nontrivial homomorphism h exists, then theabove-mentioned f cannot be represented as a polynomial of A and A is notfunctionally complete.Remark 5. We note that an algebra has no nontrivial homomorphisms ifand only if it is congruence-simple, i.e. it has no nontrivial congruence rela-tions. Proposition 4 claims that every �nite functionally complete algebra iscongruence-simple. The converse holds for non-nilpotent rings (Section 2.2)and for non-Abelian groups (Section 2.3) but not in general, e.g. does nothold for semigroups (Section 2.4) or for semirings (Section 2.5).The following theorem has been proved in [29] (�rst in [30]), but wediscuss it, as we use the ideas of the proof later on.Theorem 6. Let A be an algebra, where |A| ≥ 2. The algebra A is func-tionally complete if and only if the following three conditions hold:1. there exist two distinct elements, called 0 and 1,2. there exist two binomials (binary polynomials) + and · such that 0+a =
a + 0 = a, a · 0 = 0 and a · 1 = a for every a ∈ A,3. for every a ∈ A there exists a monomial (unary polynomial) χa suchthat χa(a) = 1 and χa(b) = 0 if b 6= a (the monomial characteristicfunctions).Proof. If A is functionally complete and |A| ≥ 2, then assign 0 and 1 to twodistinct elements of A and the polynomials described in the three conditionsclearly exist.If the three conditions hold, then we want to construct a polynomialfor every n-variable function f : An → A. First we prove that for ev-ery a1, . . . an ∈ A there exists an n-variable polynomial χa1,...,an

such that



2 Functionally complete algebras 23
χa1,...,an

(a1, . . . , an) = 1 and χa1,...,an
(b1, . . . , bn) = 0 whenever bi 6= ai for any

i ≤ n. Indeed,
χa1,...,an

(x1, . . . , xn) =

n∏

i=1

χai
(xi) (2.1)has the property that if xi = ai for every i then χa1,...,an

is evaluated as 1,otherwise it is evaluated as 0.We have to note though that since · is not necessarily associative orcommutative, the meaning of ∏ is not straightforward. But it is easy to seethat if we de�ne∏ as an iterated version of ·, then neither the ordering of theelements we multiply together nor the iteration method of the multiplicationwill change the fact that χa1,...,an
de�ned with formula (2.1) will have therequired property. Indeed, by the assumption we know that 1 · 1 = 1 and

0 · 1 = 0 by a · 1 = a, moreover 1 · 0 = 0 and 0 · 0 = 0 by a · 0 = 0. During theevaluation of χa1,...,an
on some input we multiply 1's and 0's together. Theresult will be either 1 or 0, depending only on whether there were any 0'sand not depending on the method or the ordering of the multiplication.Now we create an n-variable polynomial p, which evaluates a given arbi-trary n-variable function f : An → A. Let p be the following:

p (x1, . . . , xn) =
∑

(a1,...,an)∈An

(f (a1, . . . , an) · χa1,...,an
(x1, . . . , xn)),where∑ is an iterated version of +, the ordering of the elements or the iter-ation method is immaterial. It is clear that when we evaluate p on the input

(a1, . . . , an), then every summand will be 0 except one, which is f (a1, . . . , an).So the sum is f (a1, . . . , an), depending neither on the ordering of the sum-mands nor on the method of the addition.Remark 7. We denote with χa(x) the characteristic function for which χa(a) =
1 and χa(x) = 0 if x 6= a. We denote the n-ary characteristic function with
χa1,...,an

(x1, . . . , xn), for which χa1,...,an
(a1, . . . , an) = 1 and χa1,...,an

(x1, . . . , xn) =
0 if xi 6= ai for some i. These de�nitions however do not immediatelymake sense over groups, where we have an identity element correspond-ing to 0 (and the group multiplication naturally corresponds to the oper-ation + in Theorem 6), but no natural group element corresponds to 1.Hence for some b 6= 1 let χa;b (x) be the characteristic function for which
χa;b (a) = b and χa;b (x) = 1 if x 6= a. Let us denote the n-ary characteristicfunction with χa1,...,an;b (x1, . . . , xn), for which χa1,...,an;b (a1, . . . , an) = b and
χa1,...,an;b (x1, . . . , xn) = 1 if xi 6= ai for some i. The semi-colon makes a dif-ference between the two possible meanings of the indexes. We note here thatthere not necessarily exists a natural group operation which corresponds tothe operation · in Theorem 6.



24 FUNCTIONALLY COMPLETE ALGEBRASCorollary 8. If R is a �nite ring with an identity element, then R is func-tionally complete if and only if every 1-variable function can be expressed asa polynomial.Proof. If R is functionally complete, then every 1-variable function can beexpressed as a polynomial. For the other direction we use Theorem 6: let uschoose + and · as the regular addition and multiplication of the ring, and letus choose 0 and 1 as the zero and unit-element of the ring. The monomialcharacteristic functions exist by the assumption that every 1-variable functioncan be expresses as a polynomial.There are other equivalent conditions for functional completeness. Oneof them is that the discriminator function can be expressed.Theorem 9. An algebra A is functionally complete if and only if there existsa three-variable polynomial d such that it is a discriminator, i.e.
d(x, y, z) =

{
z, if x = y
x, if x 6= y

.Proof. It is clear that if A is functionally complete then the discriminatorpolynomial exists. Now assume that d is a discriminator polynomial, let 0and 1 be two arbitrary (di�erent) elements of A. We will use Theorem 6 andexpress +, · and χa using the discriminator d.Let x + y = d (y, 0, x). Now x + 0 = d (0, 0, x) = x (hence 0 + 0 = 0) andif x 6= 0 then 0 + x = d (x, 0, 0) = x as well.Let x ·y = d (0, d (0, y, 1) , x). Now x ·0 = d (0, d (0, 0, 1) , x) = d (0, 1, x) =
0 and x · 1 = d (0, d (0, 1, 1) , x) = d (0, 0, x) = x.Let χ0(x) = d (0, x, 1) and χa (x) = d (0, d (a, x, 0) , 1) for every a 6= 0.Now χ0(0) = d (0, 0, 1) = 1 and χ0(b) = d (0, b, 1) = 0 for every b 6= 0.Moreover (for every a 6= 0) we have χa (a) = d (0, d (a, a, 0) , 1) = d (0, 0, 1) =
1 and χa (b) = d (0, d (a, b, 0) , 1) = d (0, a, 1) = 0 for every b 6= a.Remark 10. We mention that if the polynomials x + y, x · y and χ0(x) havethe properties as in Theorem 6, and if x−y can be expressed by a polynomialsuch that x− y = 0 if and only if x = y and 1− 0 = 1, then χa and d can beexpressed as follows:

χa (x) = χ0 (x − a) ,

d (x, y, z) = z · χ0 (x − y) + x · (1 − χ0 (x − y)) .We summarize the conditions equivalent to functional completeness:Theorem 11. The following are equivalent.



2.1 Boolean algebras 251. The algebra A is functionally complete.2. For every nonnegative integer n and for every function f : An → Athere is a polynomial expression p (x1, . . . , xn) over A such that forevery n-tuple (a1, . . . , an) ∈ An we have f (a1, . . . , an) = p (a1, . . . , an).3. The algebra A has the Stone�Weierstrass property, i.e. for every �nitenonempty set S if a subalgebra F of AS has the following two propertiesthen F = A
S:(a) F contains the constant functions, namely for every a ∈ A thereis a function fa ∈ F such that for every s ∈ S we have fa(s) = a.(b) F separates every two elements of S, namely for every s1 6= s2 ∈ Sthere exists a function f ∈ F such that f(s1) 6= f(s2).4. The following three conditions hold:(a) there exist two distinct elements, called 0 and 1,(b) there exist two binomials (binary polynomials) + and · such that

0 + a = a + 0 = a, a · 0 = 0 and a · 1 = a for every a ∈ A,(c) for every a ∈ A there exists a monomial (unary polynomial) χasuch that χa(a) = 1 and χa(b) = 0 if b 6= a (the monomial char-acteristic functions).5. The three-variable discriminator polynomial exists:
d(x, y, z) =

{
z, if x = y
x, if x 6= y

.In the following Sections of this Chapter we determine all functionallycomplete algebras for di�erent classes. We start with one of the most well-known class, the Boolean algebras.2.1 Boolean algebrasIt is well-known that the two-element Boolean algebra is functionally com-plete. This is the main reason that we can build universal machines basedon this algebra. In this section we determine all �nite functionally com-plete Boolean algebras. Our main reference on Boolean algebras and theirrepresentation is [36].



26 FUNCTIONALLY COMPLETE ALGEBRASDe�nition 12. A Boolean algebra is a distributive complemented lattice,i.e. it has two binary operations ∧ (meet or and), ∨ (join or or), a unaryoperation ¬ (complement or not) and two distinct elements 0 (or false) and
1 (or true), such that ∧ and ∨ are both associative, commutative, moreoverthey satisfy both distributive laws, the absorption laws (a ∧ (a ∨ b) = a and
a ∨ (a ∧ b) = a), a ∧ ¬a = 0 and a ∨ ¬a = 1.Remark 13. The reader might wonder why we consider the quite speci�cBoolean algebras instead of e.g. the more general concept of lattices. It iseasy to see, that there are no functionally complete lattices, as the latticeoperations are order-preserving considering the usual partial ordering on thelattice. Hence, to make lattices as candidates for functionally complete alge-bras, we have to include at least one more operation which does not preservethe lattice partial ordering. The complement ful�lls this requirement. Wenote that a complemented lattice does not have to be distributive, such asBoolean algebras are. Nevertheless, the most common complemented latticesare Boolean algebras; we only consider them in this Section.We denote the two-element Boolean algebra by B = ({ 0, 1 } ,∧,∨,¬). ByStone's Representation Theorem we know that every �nite Boolean algebrahas of order 2k for some positive integer k, and it is isomorphic with thecomplemented lattice of all subsets of the set { 1, . . . , k }. Moreover, the
2k-element Boolean algebra is isomorphic with B

k. The following theoremstates that the only functionally complete Boolean algebra is the two-elementalgebra B.Theorem 14. If A is a �nite Boolean algebra, then A is functionally com-plete if and only if A = B.Proof. The `only if' part is quite easy, as by Stone's Representation Theoremwe know that A = B
k for some positive integer k. Since the projections arenontrivial homomorphisms, applying Proposition 4 we have that k = 1, sothe only possible candidate is A = B.For the other direction we use Theorem 6. Let x + y = (x ∧ ¬y) ∨

(¬x ∧ y) and let x · y = x ∧ y. These are the usual mod 2 addition andmultiplication operations over the set { 0, 1 } and satisfy the conditions inTheorem 6. Moreover the two unary characteristic functions can be expressedas χ0 (x) = ¬x and χ1 (x) = x. By Theorem 6 we have that B is functionallycomplete.Remark 15. We note that if we consider A = B
k and we take the ith projec-tion πi : A → A, πi (a1, . . . , an) = (0, . . . , 0, ai, 0, . . . , 0) for every 1 ≤ i ≤ k



2.2 Rings 27as a basic operation, then the obtained algebra (A, π1, . . . , πk) is function-ally complete. Expressing any function f :
(
Bk
)n → Bk over (A, π1, . . . , πk)is, however, not essentially di�erent than expressing every coordinate of fover B and taking the ∨ of their projections, hence we do not pay any moreattention to these algebras.Second proof of Theorem 14. We give the discriminator operation:

d (x, y, z) = (((x ∧ ¬y) ∨ (¬x ∧ y)) ∧ x) ∨ ((x ∨ ¬y) ∧ (¬x ∨ y) ∧ z) .It is easy to see that d(x, y, z) = z if x = y and d(x, y, z) = x if x 6= y.
B is not the only functionally complete algebra with 2-elements. If analgebra over { 0, 1 } can express the basic operations of B, then it is func-tionally complete, too. In Section 2.2 we prove that the two-element �eld isanother such example. The multiplication of this �eld is the same as ∧ andthe addition is the same as in the proof (x + y = (x ∧ ¬y) ∨ (¬x ∧ y)). It issometimes called xor (exclusive or), too.We consider here another two-element functionally complete algebra, asit has the most important practical application in Computer Science. Con-sider the algebra B0 = ({ 0, 1 } , NAND, NOR), where x NAND y = ¬ (x ∧ y)(negation of and) and x NOR y = ¬ (x ∨ y) (negation of or). This algebra isfunctionally complete: either only NAND or only NOR is already enough toexpress ∧, ∨ and ¬, as the following equations show:

¬x = x NAND 1 = x NOR 0 (2.2)
x ∧ y = (x NAND y) NAND 1 = (x NOR 0) NOR (y NOR 0) (2.3)
x ∨ y = (x NAND 1) NAND (y NAND 0) = (x NOR y) NOR 0 (2.4)These equations show that not only B0, but BNAND = ({ 0, 1 } , NAND) and

BNOR = ({ 0, 1 } , NOR) are functionally complete, too. Today's computersare based on B0 as the NAND and NOR operations can be realized quiteeasily in practice [12]. In later Chapters we mainly consider B and B0.2.2 RingsIn this Section we determine the functionally complete rings. We note thatwe do not require that the ring has an identity, the proofs work without it.The only notion we use, which is usually not considered for rings withoutan identity, is the Jacobson radical. The Jacobson radical can be de�nedfor rings without identity, the same properties (which make sense withoutidentity) can be proved and the Wedderburn�Artin Theorem holds, too [17].



28 FUNCTIONALLY COMPLETE ALGEBRASThe following theorem has a similar proof in [29], but we give a proof here,as it is quite algorithmic and gives an explicit way of realizing an arbitraryfunction over a functionally complete ring.Theorem 16. A �nite ring R is functionally complete if and only if R is amatrix ring over a �nite �eld.Proof. Suppose that the �nite ring R is functionally complete. First weprove that R has no nontrivial two-sided ideals. Indeed, suppose that I C Rand �x two elements (a, b) of R such that 0 6= a ∈ I, b /∈ I. Let f be afunction over R with the property that f(0) = 0, f(a) = b. Now if f can berepresented with a polynomial p over R, then consider p + I over R/I. Now
b + I = p(a) + I = p(a + I) = p(I) = p(0) + I = I, which is a contradiction,since b /∈ I. This follows from Proposition 4, too.Let J be the Jacobson radical of R. Since J is a two-sided ideal of R,
J is either R or { 0 }. If J = R, then R is nilpotent, i.e. there exists somepositive integer d such that the term x1x2 . . . xd is evaluated as 0 wheneverthe variables attain values from R. In this case, we can give an upper boundto the number of polynomials with n variables: Let N be the number ofelements of R, then there are at most (N + n)k monomials with length k(under monomial with length k we mean a product of k members, eachmember is either an element of the ring or a variable), hence there are (N +
n)+(N +n)2+· · ·+(N +n)d−1 < (N +n)d monomials which contain variablesfrom the set { x1, . . . , xn } and have length less than d. Every polynomial withat most n variables can be written as a sum of these monomials. Adding upthe monomial m k-many times (where k is an integer) can be written as
k′ ·m, where k′ is k modulo N (observe that N · r = 0 in R). Using this formevery monomial has a non-negative integer coe�cient between 0 and N − 1.This means that there exist at most N (N+n)d polynomials over R. On theother hand, it is easy to see that there exist NNn-many Rn → R functions.Since N (N+n)d

< NNn for large enough n, R is not functionally complete if
J = R. Hence J = { 0 }.By the Wedderburn�Artin Theorem [17] we have that R/J = R is adirect sum of matrix rings over �nite �elds. Since any summand of thisrepresentation is a two-sided ideal, we can conclude that if R is functionallycomplete then it is a �nite matrix ring Mk(F) over a �nite �eld F.For the other direction let R be a �nite matrix ringMk(F), where q = |F|.By Theorem 6 we only need to check if there exist polynomials χM(X) withthe property that χM(M) = 1 and χM(N) = 0 if N 6= M , where N and Mare k × k matrices over the �nite �eld F. Let us denote the identity matrixwith I and let Ii,j denote the matrix whose only non-zero value is 1 and is



2.2 Rings 29in row i and column j. Let us denote with M(i, j) the element of a matrix
M which lies in row i and column j. Now with the following polynomial wecan check the element M(i, j) of a matrix M :

pi,j (X) =

k∑

s=1

Is,i · X · Ij,s.It is easy to see that for any k × k matrix M we have pi,j (M) = M(i, j) · I.Now let X ∨Y = X +Y −X ·Y , and let ∨n
i=1 Xi be the iterated version of ∨,the ordering or iteration method can be arbitrary. Observe that ∨ acts likethe or function if we substitute only I and 0 (i.e. I ∨ 0 = 0 ∨ I = I ∨ I = Iand 0 ∨ 0 = 0). Using the fact that uq−1 is either 1 (if u 6= 0) or 0 (if u = 0)we are able to check whether a matrix is 0 or not:

δ (X) =
k∨

i,j=1

(
pi,j (X)q−1) =

{
0, if X = 0
I, if X 6= 0

.Finally we can �nd a realizing polynomial for χM :
χM (X) = I − δ (X − M) =

{
I, if X = M
0, if X 6= M

.Whenever R = F is a �nite �eld containing q elements, then χa (x) has aquite simple representing polynomial:
χa (x) = 1 − (x − a)q−1 .Remark 17. We note here that the proof actually shows that for �nite non-nilpotent rings the congruence-simple property is equivalent with the func-tional completeness. The two properties are not equivalent for �nite rings,as e.g. 0-multiplication rings of prime order are congruence-simple but notfunctionally complete.Second proof of Theorem 16. We give the discriminator operation (using thenotations of the previous proof of Theorem 16). If R = Mk(F) a matrix ringover a �nite �eld F:

d(X, Y, Z) = δ (X − Y ) · X + (I − δ (X − Y )) · Z.If R = F a �nite �eld containing q elements, then expressing d is even moresimple
d (x, y, z) = (x − y)q−1 · x +

(
1 − (x − y)q−1) · z.



30 FUNCTIONALLY COMPLETE ALGEBRAS2.3 GroupsThe following theorem gives us the functionally complete groups. We do notrepeat the �rst proof of [26], but show another one (based on Exercise 14 onpage 158 of [27]), which gives us an algorithm for �nding realizing polynomialsfor an arbitrary function.Theorem 18. A �nite group G is functionally complete if and only if G issimple and non-Abelian.Proof. Suppose that G is not simple, i.e. N is a nontrivial normal subgroupin G. Fix 1 6= a ∈ N and b /∈ N. Let f be a unary function such that
f(x) = 1 if x 6= a, and f(a) = b. If f can be represented with a polynomial
p over the group G then consider p/N over G/N. Now bN = p(a)N =
p(aN) = p(N) = p(1)N = N, which is a contradiction, since b /∈ N. Thisfollows from Proposition 4, too.Suppose that G is Abelian and let 1 6= a ∈ G. Now if a function f(x, y)has the property that f(1, 1) = f(1, a) = f(a, 1) = 1, f(a, a) = a, then itcannot be represented with a polynomial over G: every two-variable poly-nomial has a form of p(x, y) = xk1 · yk2 · c. Now if p(x, y) = xk1 · yk2 · cand p(1, 1) = p(1, a) = p(a, 1) = 1, then c = 1k1 · 1k2 · c = p(1, 1) = 1,
ak1 = ak1 · 1k2 · c = p(a, 1) = 1, ak2 = 1k1 · ak2 · c = p(1, a) = 1, hence
p(a, a) = ak1 · ak2 · c = 1.Now suppose that G is a simple, non-Abelian group. We will prove thetheorem via the following lemmas:Lemma 19. For every 1 6= u ∈ G and v ∈ G there are y1, . . . , yk such that
v = uy1 · · ·uyk .Proof. Let Cu be the conjugacy class of u in G, and Hu the subgroup gen-erated by Cu. If u 6= 1 then Hu 6= 1. Now Hu is closed under conjugation,because its generator set is closed, too. Thus Hu CG, and G is simple, hence
H = G, which is equivalent with the statement of the lemma.Let pu,v(x) = xy1 · · ·xyk . Now we have pu,v(1) = 1, pu,v(u) = v.Lemma 20. For every u 6= 1 6= v in G there exists y ∈ G such that [u, vy] 6=
1.Proof. [u, vy] = 1 for every y means that u centralizes Cv, thus u ∈ CG(Cv).For every subset X ⊆ G the centralizer of X is the same as the centralizerof 〈X〉. Now v 6= 1 and CG(Cv) = CG (〈Cv〉) = CG(G) = Z(G) is the centerof G. Since Z(G) = 1, u ∈ CG(Cv) implies u = 1, a contradiction.



2.3 Groups 31Lemma 21. For every 1 6= b ∈ G and for every natural number n thereexists a polynomial f
(n)
b (x1, . . . , xn) such that f

(n)
b (y1, . . . , yn) = 1, whenever

yi = 1 for some i, and f
(n)
b (b, . . . , b) = b.Proof. Let u1 = b, we de�ne ui for i ≤ n inductively such that ui 6= 1 forevery i. By Lemma 20 there exists ci such that [ui−1, b

ci] 6= 1. Choose ciand let ui = [ui−1, b
ci ] 6= 1. Let h1(x1) = x1 and for every 2 ≤ k ≤ nlet hk (x1, . . . , xk) = [hk−1 (x1, . . . , xk−1) , xck

k ]. With these notations we havethat hk (b, . . . , b) = uk, and if we substitute xi = 1, then for every k ≥ i wehave hk (x1, . . . , xk) = 1. By Lemma 19 we have a unary polynomial pun,bsuch that pun,b(1) = 1, pun,b(un) = b. With this notation f
(n)
b (x1, . . . , xn) =

pun,b (hn (x1, . . . , xn)) satis�es the conditions of the lemma.Remark 22. It is easy to see that for any b ∈ G the function f
(2)
b describedabove is the `and ' function if we encode `false' with 1 and `true' with b. Thisis in fact a function we cannot obtain as a polynomial expression if G isAbelian.Lemma 23. For every 1 6= b ∈ G there exists a unary polynomial χ1;b suchthat χ1;b(1) = b and χ1;b(u) = 1 for all 1 6= u ∈ G.Proof. LetG = {u1, . . . , uN}, where u1 = 1. By Lemma 19 we have the unarypolynomials pui,b such that pui,b(1) = 1 and pui,b(ui) = b. By Lemma 21we have the N − 1-ary polynomial f

(N−1)
b such that f

(N−1)
b (b, . . . , b) = band f

(N−1)
b (y1, . . . , yn) = 1, whenever for some i, yi = 1. Take χ1;b(x) =

f
(N−1)
b

(
bpu2,b (x)−1 , . . . , bpuN ,b (x)−1). Now if we substitute x = 1 then forevery i we have bpui,b (x)−1 = b, hence χ1;b(1) = f

(N−1)
b (b, . . . , b) = b.If we substitute x = ui, then bpui,b (x)−1 = bb−1 = 1, hence χ1,b(ui) =

f
(N−1)
b

(
bpu2,b (ui)

−1 , . . . , 1, . . . , bpuN ,b (ui)
−1) = 1.Remark 24. χ1;b is clearly the 1-variable characteristic function for the iden-tity element. Among rings it is quite clear that a characteristic functionattains values 0 or 1. However among groups it is not the case. From nowon we denote with χa1,...,an;b(x1, . . . , xn) the characteristic function for which

χa1,...,an;b(a1, . . . , an) = b and χa1,...,an;b(x1, . . . , xn) = 1 whenever xi 6= ai forsome i. The semi-colon makes a di�erence between the two possible meaningsof the indexes.Lemma 25. For every a1, . . . , an; b ∈ G there exists an n-ary polynomial
χa1,...,an;b such that χa1,...,an;b(a1, . . . , an) = b and χa1,...,an;b(x1, . . . , xn) = 1whenever xi 6= ai for some i.



32 FUNCTIONALLY COMPLETE ALGEBRASProof. Let us �x some b 6= 1. By Lemma 21 we have the n-ary polynomial
f

(n)
b such that f

(n)
b (b, . . . , b) = b and f

(n)
b (y1, . . . , yn) = 1, whenever for some

i, yi = 1. By Lemma 23 we have the unary polynomial χ1;b such that
χ1;b(1) = b and χ1;b(x) = 1, whenever x 6= 1. Let χa1,...,an;b(x1, . . . , xn) =

f
(n)
b

(
χ1;b

(
x1a

−1
1

)
, . . . , χ1;b (xna−1

n )
). Now if we substitute xi = ai for every i,then χa1,...,an;b (a1, . . . , an) = f

(n)
b (χ1;b (1) , . . . , χ1;b (1)) = f

(n)
b (b, . . . , b) = b.If for some i we substitute xi 6= ai, then we have χ1;b

(
xia

−1
i

)
= 1 thus

χa1,...,an;b(x1, . . . , xn) = 1, as requested.Now let f : Gn → G be an arbitrary n-ary function. Then
p (x1 . . . , xn) =

∏

(a1,...,an)∈Gn

16=u=f(a1...,an)

χa1,...,an;u (x1, . . . , xn)

is a representing polynomial for f as
p (a1, . . . , an) = χa1,...,an;f(a1,...,an) (a1, . . . , an) = f (a1, . . . , an) .Remark 26. We note here that the proof actually shows that for �nite non-Abelian groups the congruence-simple property is equivalent with the func-tional completeness. These two properties are not equivalent for all �nitegroups as e.g. �nite groups with prime order are congruence-simple but notfunctionally complete.Second proof of Theorem 18. We will use Theorem 6 and express +, · and

χa for every group element a.Let 1 be the zero-element, let us �x a b element of a group as the unit-element and let + be the multiplication of the group. Now, χ1,b(a
−1x) willdo as the characteristic function for a. All we need now is the · function withthe following properties: · (x, 1) = 1, · (x, b) = x. For every a 6= 1 let c be anelement of the group such that [b, bc] 6= 1. Let fa be the following function:

fa (x, y) = [χ1,b(a
−1x), yc]. fa has the following properties: fa(x, 1) = 1,

fa (a, b) = [b, bc] 6= 1, and for every x 6= a we have fa (x, y) = 1. Now thefollowing · function will have the required properties:
·(x, y) =

∏

16=a∈G

p[b,bc],a (fa (x, y)) .



2.4 Semigroups 332.4 SemigroupsIn this Section we determine the functionally complete semigroups and provethat every functionally complete semigroup is a group. Our leading referenceon semigroups is [5]. We note that a semigroup does not necessarily have anidentity element. For a semigroup S let S
1 be the smallest semigroup whichcontains both an identity and S. It is easy to see that S

1 = S if S alreadycontained and identity, otherwise S
1 = S ∪ { 1 }. We remind the reader forthe notion of J -class:De�nition 27. Let S be a semigroup. Let us de�ne the following relation:for every a, b ∈ S we have aJ b if and only if there exists s1, s2, s3, s4 ∈ S

1,such that b = s1as2 and a = s3bs4, i.e. a and b generate the same two-sidedideal. It is easy to verify that J is an equivalence relation. We call the classesof this equivalence relation J -classes. Let Ja be the J -class containing a.There is a natural partial ordering on the J -classes of a semigroup: let
Ja ≤ Jb if and only if S

1aS1 ⊆ S
1bS1. We remind the reader that for anytwo elements a, b from the semigroup S we have that Jab ≤ Ja and Jab ≤ Jb,moreover if S is �nite then there is a unique minimal J -class with respectto this ordering.Theorem 28. Every �nite functionally complete semigroup is a group.Proof. Let S be a functionally complete semigroup, |S| ≥ 2. We �rst provethat S has only one J -class. Indeed, let us suppose that S has at leasttwo J -classes. Let J0 be the minimal J -class by the usual ordering and let

s1, s2 ∈ S two elements of the semigroup such that s1 ∈ J0, s2 /∈ J0. Let thefunction f : S → S be such that f (s1) = s2 and f (s2) = s1. This functioncannot be realized by a polynomial over S, as the semigroup multiplicationis order-preserving, so is every polynomial but not the function f . Hence Shas only one J -class, which implies that S does not contain a 0 element withthe property 0 · s = s · 0 = 0 for every s ∈ S.We conclude that S has exactly one J -class, hence it is a Rees matrixsemigroup without a 0, by the Rees � Suschkewitsch Theorem. Let I and J bethe two index-sets, let G be the Schützenberger group and let C : I×J → Gbe the corresponding structure matrix. Now C contains elements only from
G and does not contain 0. Now S = M (G; I, J ; C) and |S| = |I| · |J | · |G|.Let us suppose that G = 1, then every entry of C is 1. If |I| · |J | ≥ 3, thenwe prove that S is not functionally complete. Without loss of generality wecan assume that |I| ≥ |J |. Let i0, i1 ∈ I are two distinct elements. Let S

′ bethe Rees matrix semigroup M (1; I, J ; C ′), where the Schützenberger group



34 FUNCTIONALLY COMPLETE ALGEBRASis 1, the two index sets are I ′ = I \ { i0 } (for an element i0 ∈ I) and J ′ = J ,and the structure matrix is C ′ : I ′ × J ′ → { 1 }. Now clearly there existsa nontrivial homomorphism h : S → S
′, where h ([1; i0, j]) = [1; i1, j] and

h(s) = s otherwise. Hence S is not functionally complete by Proposition 4.If G = 1 and |I| · |J | = 2, then S has the identity either xy = y or
xy = x. Let f be a unary function which interchanges the two elementsof S. Clearly, f can not be realized by a polynomial of S, hence S is notfunctionally complete.If G 6= 1 and either |I| ≥ 2 or |J | ≥ 2, then with structure matrix
C ′ : I × J → { 1 } we have that h : S → M (1; I, J ; C ′), h ([g; i, j]) = [1; i, j]is a nontrivial homomorphism and S is not functionally complete.We can conclude that if S is functionally complete, then S ' G and is agroup.Remark 29. We note here that the proof actually shows that for �nite semi-groups the congruence-simple property is not equivalent with functional com-pleteness as e.g. the two-element left-zero or two-element right-zero semi-groups are congruence-simple but not functionally complete.Corollary 30. A �nite semigroup S is functionally complete if and only if
S is a �nite simple non-Abelian group.2.5 SemiringsIn the �nal Section of the Chapter we determine all functionally complete�nite semirings and prove that all functionally complete semirings are rings.As in Section 2.4 we proved that every functionally complete semigroup is agroup, we only consider functionally complete rings and groups later on inthe thesis.Some basic references on semirings are [9, 11, 18]. Semirings di�er fromrings only in that the addition is a commutative semigroup, not necessarily anAbelian group. These structures arise quite naturally as the endomorphismsof commutative semigroups.De�nition 31. A semiring S = (S, +, ·) is a nonempty set S with twoassociative operations + and ·, the operation + is commutative and bothdistributive laws holds, i.e. for every a, b, c ∈ S, (a + b) · c = (a · c) + (b · c)and (a + b) · c = (a · c) + (b · c).We later on omit the parentheses from (a · c)+(b · c) and simply write a·c+
b·c as with rings. We note that sometimes the de�nition of a semiring includesa 0-element (identity for the addition). In that case, it is a requirement that



2.5 Semirings 35for every element s from the semiring 0 · s = s · 0 = 0 applies. This alwaysholds for rings, as the addition is an Abelian group. We, however, do notrequire that a semiring has a 0-element.Theorem 32. Every �nite functionally complete semiring is a ring.Proof. Let S = (S, +, ·) be a functionally complete semiring. From Proposi-tion 4 we know that it is congruence-simple. We claim �rst that the J -classdecomposition of the addition is a congruence. Indeed, let a ∼ b if and onlyif a = b or if there exist c, d ∈ S such that b = a + c and a = b + d. It canbe easily veri�ed that if a ∼ b, then for every s ∈ S we have a + s ∼ b + s,
s + a ∼ s + b, a · s ∼ b · s and s · a ∼ s · b. As S is congruence-simple, (S, +)has either only one J -class, or every element of S is in a separate J -class.We distinguish these two cases.If every element is in a separate J -class of (S, +), then we de�ne a partialordering on the set S: let a ≤ b if and only if either a = b or there exist
c ∈ S such that a + c = b. This partial ordering is the exact reverse ofthe usual J -class ordering and if a ≤ b and b ≤ a, then a = b (since everyelement is in a separate J -class). We claim that any polynomial p over S isorder-preserving. For that we only have to prove that the basic operations
+ and · are order-preserving.The addition is order-preserving: if a + c = b, then for every x we have
a + x + c = a + c + x = b + x, hence a + x ≤ b + x. Similarly x + a ≤ x + bfor every x if a ≤ b. Finally if a ≤ b and c ≤ d, then a + c ≤ a + d ≤ b + d.Using the distributive law we can prove that the multiplication is order-preserving: if a+ c = b, then a ·x+ c ·x = (a+ c) ·x = b ·x, hence a ·x ≤ b ·x.Similarly if a ≤ b, then x · a ≤ x · b. Finally if a ≤ b and c ≤ d, then
a · c ≤ a · d ≤ b · d.Let α =

∑

s∈S s and let a be an arbitrary element di�erent from α: a 6= α.Now a ≤ α, for every polynomial p we have p (a) ≤ p (α), therefore if a unaryfunction f : S → S has the property f(a) = α and f(α) = a, then f cannot be realized by a polynomial over S, since f is not order-preserving. Thiscontradicts with our original assumption that S is functionally complete.If (S, +) has only one J -class, then it is a (commutative) Rees matrixsemigroup with no absorbing elements (an absorbing element forms a J -classby itself), by the Rees�Susckewitsch Theorem [5]. Let I and J be the twoindex-sets, let G be the Schützenberger group and let C : I × J → G be thecorresponding structure matrix. Now C contains elements only from G and
(S, +) = M (G; I, J ; C). (S, +) is commutative, hence for every i1, i2 ∈ I,



36 FUNCTIONALLY COMPLETE ALGEBRAS
j1, j2 ∈ J , every g1, g2 ∈ G we have

[i1, g1, j1] [i2, g2, j2] = [i2, g2, j2] [i1, g1, j1]

[i1, g1C (j1, i2) g2, j2] = [i2, g2C (j2, i1) g1, j1]This means that i1 = i2 and j1 = j2, hence |I| = |J | = 1. Let C(1, 1) =
h ∈ G. Now for every g1, g2 ∈ G we have g1hg2 = g2hg1. For g2 = 1we have g1h = hg1 for every g1 ∈ G, hence h ∈ Z (G). From that weconclude to g1g2 = g2g1 for every g1, g2 ∈ G, hence G is Abelian. Now
ϕ : (S, +) → G, ϕ ([1, g, 1]) = gh is an isomorphism between G and (S, +):
ϕ ([1, g1, 1] [1, g2, 1]) = ϕ ([1, g1hg2, 1]) = g1hg2h = ϕ ([1, g1, 1]) ϕ ([1, g2, 1]).Therefore (S, +) is an Abelian group and S is a ring.Remark 33. We note here that for �nite semirings the congruence-simpleproperty is not equivalent with the functional completeness. Let V (G) bethe following semiring for any group G: the underlying set is G ∪ {∞}; themultiplication is the group multiplication, x · ∞ = ∞ · x = ∞; and for theaddition x + x = x and x + y = ∞ for x 6= y. It is easy to see that V (G) iscongruence simple for any �nite group, but not functionally complete.Corollary 34. A �nite semiring is functionally complete if and only if it isa matrix ring over a �nite �eld.



Chapter 3Length of polynomial expressionsIn Chapter 2 we determined functionally complete algebras for several classes.Moreover, our proofs are all algorithmic, so they all give us some method torealize arbitrary functions over these functionally complete algebras. Thereare of course many di�erent realizations of a function. One usually wantsto �nd an optimal realization (or one close to the optimal) in some sense,e.g. a polynomial which can be calculated e�ciently. E�ciency can, how-ever, be measured in may ways. In this Chapter we consider one of themost basic ones: the length of the realizing polynomials. We give upper andlower bounds on the length of arbitrary functions over arbitrary and spe-ci�c functionally complete algebras. We consider computational models inChapter 4.We de�ne the length of a polynomial expression over an algebra A =
(A, f1, . . . , fk) (i.e. an expression which can be composed from variables, thebasic operations and some constants from A) in a natural way. We give ade�nition which represents the idea that the length of a polynomial p is thenumber of occurrences of the constants and the variables p has. This de�ni-tion coincides with the usual length de�nition for group polynomials. Denotethe length of a polynomial expression p (x1, . . . , xn) with ‖p (x1, . . . , xn)‖.De�nition 35. The length of a polynomial expression over A is de�nedrecursively:1. The length of a variable x or a constant c is 1: ‖x‖

A
= ‖c‖

A
= 1.2. For an m-variable basic function f of A and for polynomial expressions

p1, . . . , pm, the length of f (p1, . . . , pm) is the sum of the lengths of the
pi's: ‖f (p1, . . . , pm)‖

A
=
∑m

i=1 ‖pi‖A
. Then the length of f (x1, . . . , xm)is ‖f‖

A
= m.



38 LENGTH OF POLYNOMIAL EXPRESSIONSWe usually omit the subscript and just write ‖p‖ for the length of a polyno-mial.We have to mention here that every polynomial has a correspondingrooted tree with ordered edges and labelled nodes. Every inner node rep-resents a basic function in the polynomial, the children of a node representthe inputs of the corresponding basic function in the polynomial. The or-dering of the edges determines the ordering of the inputs. Finally the leavesrepresent constants and variables. From now on by an edge uv we mean anedge, where v is a child of u.Now length can be de�ned by using this rooted tree. Let the length ofthe polynomial be the number of leaves in the corresponding rooted tree.It is easy to check that the length by this de�nition is exactly the same asby De�nition 35. Technically the length of a polynomial is the number ofoccurrences of constants and variables in p (counting multiplicities).Another de�nition could be to de�ne the length of a polynomial as thenumber of inner nodes in the corresponding tree (as in e.g. [40]). Technicallythis de�nition counts the number of the basic functions used. This de�ni-tion of length is almost the same as ours, apart from the use of the basicunary operations. Generally the `unary part' of the algebra is not reallyinteresting, as by the composition of unary functions we only obtain unaryfunctions. This idea suggests the notion of the branching tree: we take theusual rooted tree corresponding to a polynomial and collapse every chain ofunary operations into a single edge. Then we label the edges with a unarypolynomial which we obtain by composing the unary basic operations of thecorresponding chain. The precise de�nition is the following:De�nition 36. For every polynomial p we de�ne the corresponding branch-ing tree. The branching tree has one root with degree exactly one. For abranching tree T we denote this root by rT and we denote the label of theedge of rT by eT . The tree is de�ned recursively:1. The branching tree T for a variable xi has two nodes u and r = rT , andan edge ru. The node u is labelled by xi and the edge ru is labelled by
eT = id (the identity unary operation).2. The branching tree T for a constant c has two nodes u and r, and anedge ru. The node u is labelled by c and the edge ru is labelled by
eT = id (the identity unary operation).3. Let f be a unary basic operation and let p be a polynomial with branch-ing tree T . Now the branching tree T ′ of the polynomial f(p) is thesame as T , except that eT ′ is the polynomial g ◦ eT .



3 Length of polynomial expressions 394. Let f be a k-ary basic operation (k ≥ 2) and let p1, . . . , pk be poly-nomials with branching trees T1, . . . , Tk. Now the branching tree T ′ ofthe polynomial f (p1, . . . , pk) is constructed by identifying rT1 , . . . , rTkinto a single node u, labelling it by f , adding a root rT with an edge
rT u and labelling this by id (the identity unary operation). When weidentify the nodes rTi

we linearly order the edges of u. The orderingwill be that the edge uv is the ith if v was originally in the tree Ti.Therefore in the corresponding branching tree the edges and nodes arelabelled, moreover the edges have a numbering. Every inner node (non-leafand non-root node) represents a basic non-unary function in the polynomial,and the children of a node represent the inputs of the corresponding basicfunction in the polynomial. The ordering of the edges at a node determinesthe ordering of the inputs of the corresponding basic function. The leavesrepresent constants and variables. Finally if v is a child of u, then the labellingof the edge uv represents the composition of basic unary functions (or theidentity), which is applied on the result of v in the polynomial p. If A is agroup, then every edge uv (v is a child of u) is labelled either with the −1or with the identity, depending on whether we invert the result of v beforeapplying u in the polynomial p. Similarly if A is the two-element Booleanalgebra B, then every edge is labelled either with ¬ or with the identity,depending on whether there is a negation at that particular place in thepolynomial p.It is easy to see that the number of inner nodes in the correspondingbranching tree is essentially the same as the length of the polynomial (thedi�erence is 1). Moreover, if the algebra has no unary basic operations thenthe corresponding branching tree is essentially the same as the usual corre-sponding rooted tree. This is the case in [40], where the two-element algebrawith 16 binary basic operations was considered.In this Chapter we search for short polynomials realizing particular func-tions. In many cases we denote a function and its realizing polynomial withthe same symbol. In most of the cases this polynomial is a shortest one. Inorder not to create confusion we introduce the following de�nition:De�nition 37. The length of a function f over an algebra A is the lengthof a shortest polynomial p over A realizing the function f . We denote thelength of f with ‖f‖
A
or shortly ‖f‖:

‖f‖
A

= min { ‖p‖
A

: p realizes f over A } .Throughout the Chapter we plan to give upper and lower bounds forthe length of polynomials realizing arbitrary functions. We calculate these



40 LENGTH OF POLYNOMIAL EXPRESSIONSbounds for arbitrary and for speci�c functionally complete algebras, then wecompare the results.For several algebras the length of a polynomial is closely related to thenumber of variables in the polynomial expression (including multiplicities).Therefore we introduce the following notion: Let vA (p) (or shortly v (p))be the number occurrences of the variables (counting multiplicities) in thepolynomial expression p containing n variables x1, . . . , xn. Later we might usethe term `number of variable occurrences' as well. Let vi (p) be the numberoccurrences of the ith variable xi (counting multiplicities) in the polynomialexpression p. If p is an n-ary polynomial expression then v (p) =
∑n

i=1 vi (p).Similarly to ‖f‖ we de�ne vA (f) (shortly v (f)) for a function f :
vA (f) = min { vA (p) : p realizes f over A } .Remark 38. We do not know whether for every functionally complete algebraand for any arbitrary function f : An → A there exists a polynomial p over Asuch that ‖f‖ = ‖p‖ and v (f) = v (p). This is not true for partial functions(see Remark 81). We do know that ‖p‖ = ‖f‖ does not imply v (p) = v (f):the polynomials x + x and 2 · x realize the same function over the �nite ring

Z5, they both have length two (which is the length of the function), but onlyone of them has one variable occurrences.Now we mention some properties of the length and the number of variableoccurrences. An immediate consequence of the de�nition are the followinglemmas:Lemma 39. For polynomial expressions p, q1, . . . , qn we have that
‖p (q1, . . . , qn)‖ ≤ ‖p‖ · max { ‖qi‖ : i = 1, . . . , n } .Proof. Let q be a polynomial from { q1, . . . , qn }, for which the length is max-imal: ‖q‖ = max { ‖qi‖ : 1 ≤ i ≤ n }. Then
‖p (q1, . . . , qn)‖ =

n∑

i=1

‖qi‖ ≤ n · ‖q‖ = ‖p‖ · ‖q‖ .Lemma 39 holds for the number of variable occurrences, too:Lemma 40. For polynomial expressions p, q1, . . . , qn we have that
v (p (q1, . . . , qn)) ≤ v (p) · max { v (qi) : i = 1, . . . , n } .



3 Length of polynomial expressions 41Proof. Let q be a polynomial from { q1, . . . , qn }, for which the number ofvariable occurrences is maximal: v (q) = max { v (qi) : 1 ≤ i ≤ n }. Whensubstituting the variable xi with qi in the expression p, then every variableis substituted by a polynomial expression with at most v (q) variable oc-currences. Hence there are at most v (p) · v (q) variable occurrences in theexpression p (q1, . . . , qn).With a slight modi�cation of the proof we have the following:Lemma 41. For polynomial expressions p, q1, . . . , qn we have that
‖p (q1, . . . , qn)‖ ≤ ‖p‖ +

n∑

i=1

vi (p) · (‖qi‖ − 1) .Proof. When substituting the ith variable by qi in the expression p, thenlength increases at most by vi (p) · (‖qi‖ − 1). Hence comparing with ‖p‖the length increases by at most ∑n
i=1 vi (p) · (‖qi‖ − 1) which �nishes theproof.Corollary 42. For polynomial expressions p, q1, . . . , qn we have that

‖p (q1, . . . , qn)‖ ≤ ‖p‖ + v (p) · max { ‖qi‖ − 1 : i = 1, . . . , n } .Remark 43. It is easy to see that Lemma 39 and Lemma 40 hold not only forpolynomial expressions but for functions, too. Lemma 41 and Corollary 42,however, may not necessarily hold for functions: it might happen that forsome function f the length ‖f‖ and v (f) cannot be realized by the samepolynomial expression.Let us recall the proof of Theorem 6, where we mentioned that both ∏and∑ can be de�ned in an arbitrarily iterated way (even if · and + are notassociative in general). The following lemma is one of the most importantlemmas in this Chapter. Here we give a fast and short method for someiterations, which we use later on as well. From now on by log we mean thebase 2 logarithm function.Lemma 44. Let p be a binary polynomial over an algebra A. De�ne thefollowing polynomial expressions: p(1) (x1) = x1, p(2) (x1, x2) = p (x1, x2) andfor every integer n ≥ 2:
p(2n−1) (x1, . . . , x2n−1) = p

(
p(n) (x1, . . . , xn) , p(n−1) (xn+1, . . . , x2n−1)

)

p(2n) (x1, . . . , x2n) = p
(
p(n) (x1, . . . , xn) , p(n) (xn+1, . . . , x2n)

)
.



42 LENGTH OF POLYNOMIAL EXPRESSIONSLet v
(
p(n)
) be the number of variable occurrences in p(n), let ∥∥p(n)

∥
∥ be thelength of p(n) and let V = v

(
p(2)
), L =

∥
∥p(2)

∥
∥. Suppose that V ≥ 2. Then

v
(
p(n)
)

< V · nlog V , (3.1)
∥
∥p(n)

∥
∥ =

L − 1

V − 1
·
(
v
(
p(n)
)
− 1
)

+ 1, (3.2)
∥
∥p(n)

∥
∥ <

L − 1

V − 1
·
(
V · nlog V − 1

)
+ 1, (3.3)

∥
∥p(n)

∥
∥ < L · nlog L, (3.4)

∥
∥p(n)

∥
∥ < 2 · L · nlog V . (3.5)Proof. Let Vi be the number of variable xi occurrences in p, V = V1 +V2. Bythe de�nition of p(n) and using the ideas of proof of Lemma 40 and Lemma 41we can give an easy recursion for v

(
p(n)
) and ∥∥p(n)

∥
∥: v

(
p(1)
)

=
∥
∥p(1)

∥
∥ = 1,

v
(
p(2)
)

= V , ∥∥p(2)
∥
∥ = L and for every n ≥ 2:

v
(
p(2n−1)

)
= V1 · v

(
p(n)
)

+ V2 · v
(
p(n−1)

)

v
(
p(2n)

)
= V · v

(
p(n)
)
,

∥
∥p(2n−1)

∥
∥ =

∥
∥p(2)

∥
∥+ V1 ·

(∥
∥p(n)

∥
∥− 1

)
+ V2 ·

(∥
∥p(n−1)

∥
∥− 1

)

∥
∥p(2n)

∥
∥ =

∥
∥p(2)

∥
∥+ V ·

(∥
∥p(n)

∥
∥− 1

)
.Solving the recursion is usually hard, but we can estimate using some prop-erties of v

(
p(n)
) and ∥∥p(n)

∥
∥.First we prove (3.2) by induction on n. The equation (3.2) holds for

n = 1 and for n = 2, since ∥∥p(1)
∥
∥ − 1 = 0 = L−1

V −1
·
(
v
(
p(1)
)
− 1
) and

∥
∥p(2)

∥
∥ − 1 = L − 1 = L−1

V −1
· (V − 1) = L−1

V −1
·
(
v
(
p(2)
)
− 1
). Let us supposethat (3.2) holds for k < 2n − 1 for some n ≥ 2 and check ∥∥p(2n−1)

∥
∥− 1:

∥
∥p(2n−1)

∥
∥− 1 = V1 ·

(∥
∥p(n)

∥
∥− 1

)
+ V2 ·

(∥
∥p(n−1)

∥
∥− 1

)
+ L − 1 =

V1 ·
(

L − 1

V − 1
·
(
v
(
p(n)
)
− 1
)
)

+ V2 ·
(

L − 1

V − 1
·
(
v
(
p(n−1)

)
− 1
)
)

+ L − 1 =

L − 1

V − 1

(
V1v

(
p(n)
)

+ V2v
(
p(n−1)

))
+ (L − 1) ·

(

1 − V1 + V2

V − 1

)

=

L − 1

V − 1
·
(
v
(
p(2n−1)

)
− 1
)
.Now let us suppose that (3.2) holds for k < 2n for some n ≥ 2 and check
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∥
∥p(2n)

∥
∥− 1:
∥
∥p(2n)

∥
∥− 1 = V ·

(∥
∥p(n)

∥
∥− 1

)
+ L − 1 =

= V · L − 1

V − 1
·
(
v
(
p(n)
)
− 1
)

+ L − 1 =

=
L − 1

V − 1
· V v

(
p(n)
)

+ (L − 1) ·
(

1 − V

V − 1

)

=

=
L − 1

V − 1
·
(
v
(
p(2n)

)
− 1
)
.This �nishes the proof of (3.2).We continue by proving (3.1). We claim �rst that v

(
p(n)
) is strictlymonotone in n, i.e. v (p(n)

)
< v

(
p(n+1)

) for every positive integer n. We provethis statement by induction on n. The statement is clearly true for n = 1,since v
(
p(2)
)

= V ≥ 2 > 1 = v
(
p(1)
). Suppose that v

(
p(k−1)

)
< v

(
p(k)
) forevery k < 2n − 1 (for some n ≥ 2) and let us check v

(
p(2n−1)

):
v
(
p(2n−1)

)
= V1 · v

(
p(n)
)

+ V2 · v
(
p(n−1)

)
> V · v

(
p(n−1)

)
= v

(
p(2n−2)

)
.Now suppose that v

(
p(k−1)

)
< v

(
p(k)
) and for every k < 2n (for some n ≥ 2)and let us check v

(
p(2n)

):
v
(
p(2n)

)
= V · v

(
p(n)
)

> V1 · v
(
p(n)
)

+ V2 · v
(
p(n−1)

)
= v

(
p(2n−1)

)
.Thus v

(
p(n)
) is strictly monotone in n.For n = 2k we can calculate v

(
p(n)
):

v
(
p(n)
)

= v
(

p(2k)
)

= V · v
(

p(2k−1)
)

= · · · = V k = nlog V .Now let n be arbitrary and suppose that 2k−1 ≤ n < 2k. Then
v
(
p(n)
)

< v
(

p(2k)
)

=
(
2k
)log V ≤ (2n)log V = V · nlog V .The inequality (3.3) immediately follows from (3.2) and (3.1). For provingthe inequality (3.4) we mention that V 1+log n−1

V −1
is strictly monotone in V for

n ≥ 2. If we we change V to L in (3.3) then we can only increase the valueof the righthand side and we have
∥
∥p(n)

∥
∥− 1 <

L − 1

L − 1
·
(
L · nlog L − 1

)
= L · nlog L − 1.Finally (3.5) follows from (3.3) and the fact that V

V −1
≤ 2.



44 LENGTH OF POLYNOMIAL EXPRESSIONSNow, closely examining the proofs of Theorem 6 and Theorem 9, recallingRemark 10, then applying Lemma 39 and Lemma 44 we obtain the followingfor a functionally complete algebra A with two arbitrary distinct elements 0and 1:Theorem 45. Let A be a functionally complete algebra. Let 0, 1 ∈ A betwo distinct elements and let +, · and χa be shortest polynomials with prop-erties such as in Theorem 6. Let T be any positive real number for which
T ≥ max { ‖χa‖ : a ∈ A }. Let d be a shortest discriminator polynomial. Let
χa1,...,an

be a shortest characteristic polynomial for the n-tuple (a1, . . . , an).Let − be a shortest polynomial such that x − y = 0 if and only if x = yand 1 − 0 = 1. Let p be a shortest polynomial realizing an arbitrary n-aryfunction f over A with e-many non-zero values, where 1 ≤ e ≤ |A|n. Thenthe following inequalities hold:
‖χa‖ ≤ ‖−‖ · ‖χ0‖ (3.6)

‖χa1,...,an
‖ ≤ 2 · ‖·‖ · nlog v(·) · max { ‖χai

‖ : 1 ≤ i ≤ n } , (3.7)
‖p‖ ≤ 2 · ‖·‖ · ‖+‖ · elog v(+) · max { ‖χa1,...,an

‖ : ai ∈ A } , (3.8)
‖p‖ ≤ 4 · ‖·‖2 · ‖+‖ · elog v(+) · nlog v(·) · T, (3.9)
‖p‖ ≤ 4 · ‖−‖ · ‖·‖2 · ‖+‖ · elog v(+) · nlog v(·) · ‖χ0‖ , (3.10)
‖d‖ ≥ max

{

‖+‖ , ‖χ0‖ ,
√

‖·‖,
√

‖χa‖
}

, (3.11)
‖d‖ ≤ ‖−‖2 · ‖+‖ · ‖·‖ · ‖χ0‖ . (3.12)If |A| = 2, then
‖p‖ ≤ 2 · ‖+‖ · elog v(+) · max { ‖χa1,...,an

‖ : ai ∈ A } , (3.13)
‖p‖ ≤ 4 · ‖·‖ · ‖+‖ · elog v(+) · nlog v(·) · T, (3.14)
‖p‖ ≤ 4 · ‖−‖ · ‖·‖ · ‖+‖ · elog v(+) · nlog v(·) · ‖χ0‖ . (3.15)Proof. The proof is simply applying Lemma 39 and Lemma 44 on the fol-lowing representations:

χa (x) = χ0 (x − a) ,

χa1,...,an
(x1, . . . , xn) =

n∏

i=1

χai
(xi) ,

p (x1, . . . , xn) =
∑

(a1,...,an)∈An

(p (a1, . . . , an) · χa1,...,an
(x1, . . . , xn)) ,

d (x, y, z) = z · χ0 (x − y) + x · (1 − χ0 (x − y)) .



3 Length of polynomial expressions 45Here we consider ∏ and ∑ as the iterated versions of · and + in the waydescribed in Lemma 44. If |A| = 2, then p can be represented as
p (x1, . . . , xn) =

∑

(a1,...,an)∈An

χa1,...,an
(x1, . . . , xn) .

Checking Theorem 45, especially (3.9) we understand the importance ofthe number of occurrences of + and ·. The number e usually has the order of
|A|n, hence e is very large compared to the other elements occurring in (3.9).In our bound e is taken to the power log v (+), so we can obtain the bestbound when + is a binary polynomial with only two variable occurrences,i.e. + is basically a basic operation of the algebra A. This is the case forBoolean algebras, rings or for groups. The following theorem shows that itis essential that a bound has a such large factor:Theorem 46. Let A be a functionally complete algebra. For every ε > 0and for su�ciently large n (depending on ε) there exists an n-ary function fover A, such that

‖f‖ ≥ log |A|
1 + ε

· |A|n
log n

.Proof. We use the same counting idea as e.g. [40], which shows a similarbound for the two-element algebra with 16 binary operations as basic oper-ations. Let us consider the number of functions f which can be realized by apolynomial with length at most l. This way we count the number of functionsfor which ‖f‖ ≤ l. Let this number be N (l). If L is the least length suchthat all n-ary functions have length at most L, then N(L) ≥ |A||A|n. Thisgives us a lower bound on the length.Let A have m-many basic operation symbols, which are neither unaryoperation symbols nor constant symbols. Let us suppose that every basicoperation of A is at most k-ary. For an arbitrary polynomial p with ‖p‖ ≤ lwe consider the corresponding branching tree as we de�ned it in De�nition 35.In this tree every inner node (non-leaf and non-root node) represents a basicnon-unary function in the polynomial and the children of a node represent theinputs of the corresponding basic function in the polynomial. The labellingof the edges corresponds to some composition of the basic unary operations.The branching tree has at most l leaves for every polynomial p with ‖p‖ ≤ l.There are at most l−1 inner nodes in the tree, all of them are chosen from
m-many (at least binary) basic operations, so for every tree the labelling ofthe inner nodes can be done at most ml−1-many ways. Each leaf is either a



46 LENGTH OF POLYNOMIAL EXPRESSIONSvariable or a constant, so all leaves can be labelled at most (n + |A|)l-manyways. Moreover there are at most (3k
)l−1-many labellings for nodes andleaves of the trees corresponding to polynomials ‖p‖ ≤ l: every inner nodehas k possible children and for each possible child there are three options(the child is a leaf, the child is another inner node, or the child does notexist).We have not estimated on the labelling of the edges, yet. There existpotentially in�nitely many possible labellings of an edge, but every labelrealizes one of the |A||A|-many unary functions. If two branching trees di�eronly by a label of an edge, and both labels represent the same function, thenthe corresponding polynomials represent the same function, too. Thereforewe count the possible realizations of every edge-label. Every edge is labelledby a unary function, thus the edges can be labelled in at most (|A||A|

)2l−1-many ways, as there are at most 2l − 1-many edges. Hence
N(l) ≤ (n + |A|)l · ml−1 · 3k·(l−1) · |A||A|·2l .Let f be a longest n-ary function. Let L = ‖f‖. Now applying N(L) ≥

|A||A|n we have that
|A|n · log |A| ≤ (L − 1) ·(log m + k · log 3)+L ·(log (n + |A|) + 2 |A| · log |A|) .Let us �x an ε > 0. For su�ciently large n we have |A| ≤ n, thus

|A|n · log |A| ≤ L · (log m + k · log 3 + 1 + log n + 2 |A| · log |A|) .For su�ciently large n we have log m+ k · log 3+1+2 |A| · log |A| ≤ ε · log n,therefore we obtain
‖f‖ = L ≥ log |A|

1 + ε
· |A|n
log n

.Remark 47. Though slightly sharper lower bounds can be derived for partic-ular algebras (as e.g. in [40] for the two-element algebra with all 16 binarybasic operations), we do not calculate those here explicitly.The other important factor in the upper bound (3.9) is n taken to thepower log v (·). We can get rid of this factor for some special algebras:Theorem 48. Let A be a functionally complete algebra, N = |A|. Let
0, 1 ∈ A be two distinct elements and let +, · and χa be shortest polynomialswith properties such as in Theorem 6 and let us suppose that ‖+‖ = v (+) =



3 Length of polynomial expressions 47
v (·) = ‖·‖ = 2. Let p be a shortest polynomial realizing an arbitrary n-aryfunction f over A with e-many non-zero values, where 1 ≤ e ≤ |A|n. Let
T be any positive real number for which T ≥ max { ‖χa‖ : a ∈ A }. Then thefollowing inequalities hold if N ≥ 3:

‖p‖ ≤ e · (1 + T · (3 + n − logN e)) − 2 · T,

‖p‖ ≤ e ·
(

1 + T ·
(

3 + n − log e

log N

))

− 2 · T,If N = 2, then
‖p‖ ≤ ((3 + n − log e) · e − 2) · T.Proof. Consider the case where |A| ≥ 3. The second inequality is the same asthe �rst one using logN e = log e

log N
. We prove the �rst inequality by inductionon n. If n = 1, then f(x) =

∑

a∈A f(a) · χa (x), which has length at most
e · (1 + T ) ≤ e · (1 + T · (3 + 1 − logN e))−2 ·T if we do not put any of thosesummands into the polynomial where f(a) = 0.The idea of the proof is that we try to calculate f recursively. For everyelement a ∈ A let fa be an n − 1-ary function, such that fa (x1, . . . , xn−1) =
f (x1, . . . , xn−1, a). Now f (x1, . . . , xn) =

∑

a∈A fa (x1, . . . , xn−1) ·χa (xn). Let
fa have ea-many non-zero values. Now we apply the induction hypothesis forthe n − 1-ary functions. If there is only one ea > 0, then ea = e and

‖p‖ ≤ ‖fa‖ + T ≤ e · (1 + T · (3 + n − 1 − logN e)) − 2 · T + T

≤ e · (1 + T · (3 + n − logN e)) − 2 · T.Otherwise
‖p‖ ≤

∑

a∈A

(‖fa‖ + T )

≤
∑

ea>0

(ea · (1 + T · (3 + n − 1 − logN ea)) − 2 · T + T )

≤ (e0 + e1) · (3 + n) − T · (e0 + e1 + e0 · log e0 + e1 · log e1) − 2T

≤
∑

ea>0

ea · (1 + T · (3 + n)) − T ·
(
∑

ea>0

ea +
∑

ea>0

ea logN ea

)

−
∑

ea>0

T

= e · (1 + T · (3 + n − logN e)) − 2 · T.The last of these inequalities holds by the following lemma:



48 LENGTH OF POLYNOMIAL EXPRESSIONSLemma 49. Let N ≥ 2 be a positive natural number, let k ≤ N be a positivenatural number, too. If e1, . . . , ek are positive real numbers, e =
∑k

i=1 ei, then
e · logN e ≤ e +

k∑

i=1

(ei · logN ei) .Proof. The function f : R+ → R, f(x) = x · logN x is convex as the secondderivative is positive. Therefore we have
∑k

i=1 ei

k
· logN

∑k
i=1 ei

k
≤
∑k

i=1 ei · logN ei

k
,

e · (logN e − logN k) ≤
k∑

i=1

ei · logN ei,

e · (logN e − 1) ≤
k∑

i=1

ei · logN ei,

e · logN e ≤ e +

k∑

i=1

(ei · logN ei) .

The N = 2 case di�ers only in that we do not need to multiply by aconstant, since the only constant di�ering from 0 is 1. Hence if n = 1, then
f (x) =

∑

a∈A,f(a)6=0 χa (x), which has length at most
e · T ≤ ((3 + 1 − log e) · e − 2) · T.The induction goes the same way as with the case of N ≥ 3, and we have

‖p‖ ≤ (‖f0‖ + T ) + (‖f1‖ + T )

≤ ((3 + n − 1 − log e0) · e0 − 2 + 1) · T
+ ((3 + n − 1 − log e1) · e1 − 2 + 1) · T
≤ e · (1 + T · (3 + n)) − T · e · logN e − 2 · T
≤ ((3 + n − log e) · e − 2) · T,if both e0 and e1 are positive. If one of them is 0, then
‖p‖ ≤ ((3 + n − 1 − log e) · e − 2 + 1) · T

≤ ((3 + n − log e) · e − 2) · T.



3 Length of polynomial expressions 49Remark 50. The idea of building up a polynomial recursively only workswhen the operations + and · have the shortest possible representations, whichmeans that they are quite close to some basic binary functions of A. If either
+ or · has more than two variable occurrences then mixing them up will endup having another exponential factor in the bound, which we wanted toget rid of. Theorem 48 is useful for calculating bounds for the two-elementBoolean algebra or for functionally complete rings as we see it in Section 3.2and in Section 3.3.Remark 51. Notice that comparing the result (3.9) in Theorem 45 with theresult of Theorem 48 we almost completely got rid of the factor n. We havea factor (3 + n − logN e) instead, but if e is large then this factor is just aconstant, e.g. if e = c1 · Nn−c2, then this factor is at most (3 + c2 − logN c1).If, on the other hand, e is really small, e.g. e = c3 · N c4·n where c4 < 1,then this factor turns out to be linear in n: (1 − c4) · n + (3 − logN c3). Inthat case e being small compensates for the slightly larger second factor, sowe do not lose anything (compared to Theorem 45) by having the factor
(3 + n − logN e).Finally we summarize the upper and lower bounds:Corollary 52. Let A be a functionally complete algebra, let N = |A|. Let
0, 1 ∈ A be two distinct elements and let +, · and χa be shortest polynomialswith properties such as in Theorem 6. Let T be any positive real number forwhich T ≥ max { ‖χa‖ : a ∈ A }. Let f be an arbitrary n-ary function over
A. Then

‖f‖ ≤ 4 · ‖·‖2 · ‖+‖ ·
(
N log v(+)

)n · nlog v(·) · T,If N = 2 then we can replace the factor ‖·‖2 by ‖·‖.If ‖+‖ = v (+) = ‖·‖ = v (·) = 2 then
‖f‖ ≤ (3T + 1) · Nn − 2 · T.If ‖+‖ = v (+) = ‖·‖ = v (·) = N = 2 then

‖f‖ ≤ (3Nn − 2) · T.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 over A such that
‖f0‖ ≥ log N

1 + ε
· Nn

log n
.Proof. We apply Theorems 45, 48 and 46.



50 LENGTH OF POLYNOMIAL EXPRESSIONS3.1 Partial functionsOne does not always look for realizing polynomials for fully de�ned functions.There are many situations, when one only needs a realizing polynomial whichful�lls several criteria, e.g. attains prede�ned values at only certain inputs,not on all inputs. When a function is not necessarily given on the whole do-main, we call it a partial function. We already used this notion in Chapter 2:in the proof of Theorem 18, more precisely in Lemma 21: the function f
(2)
bwas not de�ned for every pair of group elements. χa;b was, on the contrary,de�ned for every group element input. This did not cause any confusion inChapter 2 as we always made clear exactly what we were looking for. Fromnow on, by `function' we always mean possibly partial function, and we al-ways determine the exact domain at where we require predetermined valuesof the function. Moreover, we are looking for realizing polynomials not onlyfor functions, but for partial functions, too.In this Section we make some easy observations about the connectionof partial functions over di�erent functionally complete algebras. More pre-cisely, if one functionally complete algebra contains another, then every func-tion over the smaller algebra can be realized shorter or equally long over thelarger algebra. For this to make sense, we have to de�ne the length of apartial function.De�nition 53. Let f be an n-ary partial function over an algebra A. Letthe domain of f be D ⊆ An. Then let us denote the length of f with ‖f‖
Aand de�ne it as:

‖f‖
A

= min { ‖p‖
A

: p polynomial realizes f on the domain D } .Similarly we de�ne the number of variable occurrences vA (f):
vA (f) = min { vA (p) : p polynomial realizes f on the domain D } .These de�nitions agree with the de�nitions for the case, when D = An.We note that for a partial function f there does not necessarily exist a poly-nomial p over the algebra A such that ‖f‖

A
= ‖p‖

A
and vA (f) = vA (p).We show such an example in Remark 81.The following proposition makes some connection between length of func-tions and partial functions:Proposition 54. Let A be a functionally complete algebra and g be an n-ary partial function on domain D ⊆ An. Then its length [number of variable



3.1 Partial functions 51occurrences] is the minimum length [number of variable occurrences] of func-tions f with domain An agreeing with g on D:
v (g) = min

f |D=g
v (f) ,

‖g‖ = min
f |D=g

‖f‖ .Proof. In the proof we denote polynomials by p and functions with domain
An by f . By the de�nition we have

v (g) = min
p

{ vA (p) : p realizes g on the domain D } =

= min
p

min
f |D=g

{ vA (p) : p realizes f } =

= min
f |D=g

min
p

{ vA (p) : p realizes f } =

= min
f |D=g

v (f) .The very same argument works for the length ‖g‖.Now let us make some observation about partial functions over di�erentfunctionally complete algebras.Proposition 55. Let A1 and A2 be two functionally complete algebras withthe same signature. Let us suppose that there exists an embedding e : A1 ↪→
A2. Let en : A

n
1 ↪→ A

n
2 be the nth power of the embedding e. Let us denotewith (en)−1 the partial inverse of en. Let f : An

1 → A1 be a (possibly partial)function.
−−−−−−−−−−−−−→f

↪−−−−−→ en

↪−−−−−→ e

−−−−−−−−−−−−−→
e◦f◦(en)−1

A
n
1 A1

A
n
2 A2Then

∥
∥e ◦ f ◦ (en)−1

∥
∥

A2
≤ ‖f‖

A1
,

vA2

(
e ◦ f ◦ (en)−1) ≤ vA1 (f) .Proof. First we note that e◦f ◦ (en)−1 is a well de�ned partial function since

en is an embedding. The domain of e◦f ◦(en)−1 is the image of An
1 under en.Let p be a polynomial over A1 which realizes f with ‖p‖

A1
= ‖f‖

A1
. Now,



52 LENGTH OF POLYNOMIAL EXPRESSIONS
p is a polynomial over A2, too and realizes the (possibly partial) function
e◦ f ◦ (en)−1, hence ∥∥e ◦ f ◦ (en)−1

∥
∥

A2
≤ ‖p‖

A2
= ‖p‖

A1
= ‖f‖

A1
. Similarly,let q be a polynomial over A1 which realizes f with vA1 (q) = vA1 (f). Now,

q is a polynomial over A2, too and realizes the (possibly partial) function
e ◦ f ◦ (en)−1, hence vA2

(
e ◦ f ◦ (en)−1) ≤ vA2 (q) = vA1 (q) = vA1 (f).Corollary 56. Let A1 and A2 be two functionally complete algebras. Let ussuppose that A1 ≤ A2. Let f be a (possibly partial) function over A1 (so itis a possibly partial function over A2, too). Then

‖f‖
A2

≤ ‖f‖
A1

,

vA2 (f) ≤ vA1 (f) .This proposition and corollary basically tell us that the `larger' the al-gebra, the shorter the possible realizing polynomials are. Therefore in thelater Sections of the Chapter we do not necessarily search for realizing poly-nomials over every functionally complete algebra, but only over those whichcontain the others. This property is especially useful among �nite groups aswe explain it in Section 3.4.We determined some upper bounds for several functions over di�erentfunctionally complete algebras in Theorem 45 and in Theorem 48. Eventhese theorems can be applied to partial functions, as we just consider themas functions which take value zero where they were not de�ned originally.If, however, the partial function is only de�ned on a domain which is subsetof S1 × · · · × Sn for some subsets Si ⊆ A, then we can bene�t more. Forthis we need the notion of the partial characteristic function over the domain
S1×· · ·×Sn: let χS1×···×Sn

a1,...,an
(x1, . . . , xn) be the n-ary partial function for which

χS1×···×Sn
a1,...,an

(a1, . . . , an) = 1 and χS1×···×Sn
a1,...,an

(x1, . . . , xn) = 0 if every xi ∈ Si andfor some i0 we have xi0 6= ai0 . In this de�nition we require that every ai ∈ Si.The domain of χS1×···×Sn
a1,...,an

(x1, . . . , xn) is S1 × · · · × Sn.Theorem 57. Let A be a functionally complete algebra. Let 0, 1 ∈ A be twodistinct elements and let +, · be shortest polynomials with properties such asin Theorem 6. Let χS
a be a shortest polynomial representing the unary partialcharacteristic function for the element a on domain S. Let χS1×···×Sn

a1,...,an
be ashortest polynomial realizing the n-ary partial characteristic function for the

n-tuple (a1, . . . , an) on domain S1 ×· · ·×Sn. Let − be a shortest polynomialsuch that x − y = 0 if and only if x = y and 1 − 0 = 1. Let p be a shortestpolynomial realizing an arbitrary n-ary partial function f over A with e-manynon-zero values (1 ≤ e ≤∏n
i=1 |Si|) on domain S1 ×· · ·×Sn. For a set S let



3.1 Partial functions 53
S − a = { s − a : s ∈ S }. Then the following inequalities hold:

∥
∥χS

a

∥
∥ ≤ ‖−‖ ·

∥
∥χS−a

0

∥
∥ ,

∥
∥χS1×···×Sn

a1,...,an

∥
∥ ≤ 2 · ‖·‖ · nlog v(·) · max

{∥
∥χSi

ai

∥
∥ : 1 ≤ i ≤ n

}
,

‖p‖ ≤ 2 · ‖·‖ · ‖+‖ · elog v(+) · max
{∥
∥χS1×···×Sn

a1,...,an

∥
∥ : ai ∈ A

}
,

‖p‖ ≤ 4 · ‖−‖ · ‖·‖2 · ‖+‖ · elog v(+) · nlog v(·) · max
{∥
∥χSi−a

0

∥
∥ : 1 ≤ i ≤ n

}
.Proof. The proof is simply applying Lemma 39 and Lemma 44 on the fol-lowing representations:

χS
a (x) = χS−a

0 (x − a) ,

χS1×···×Sn

a1,...,an
(x1, . . . , xn) =

n∏

i=1

χSi

ai
(xi) ,

p (x1, . . . , xn) =
∑

(a1,...,an)∈An

(
p (a1, . . . , an) · χS1×···×Sn

a1,...,an
(x1, . . . , xn)

)
.Here we consider ∏ and ∑ as the iterated versions of · and + in the waydescribed in Lemma 44.As we see, there is not too much to gain: we might be able to shortenour polynomials if we can represent χS

a shorter than χa. We note here thatTheorem 48 has a `partial' version, too. The proof goes exactly as the proofof Theorem 48, so we only state the theorem here:Theorem 58. Let A be a functionally complete algebra. Let 0, 1 ∈ A be twodistinct elements and let +, · be shortest polynomials with properties suchas in Theorem 6 and let us suppose that ‖+‖ = v (+) = v (·) = ‖·‖ = 2.Let χS
a be a shortest polynomial representing the unary partial characteris-tic function for the element a on domain S. Let χS1×···×Sn

a1,...,an
be a shortestpolynomial realizing the n-ary partial characteristic function for the n-tuple

(a1, . . . , an) on domain S1 × · · · × Sn. Let − be a shortest polynomial suchthat x − y = 0 if and only if x = y and 1 − 0 = 1. Let p be a short-est polynomial realizing an arbitrary n-ary partial function f over A with
e-many non-zero values (1 ≤ e ≤ ∏n

i=1 |Si|) on domain S1 × · · · × Sn. Let
s = max { |Si| : 1 ≤ i ≤ n } and let T be any positive real number for which
T ≥ max

{∥
∥χS

a

∥
∥ : a ∈ S, S = Si, 1 ≤ i ≤ n

}. Then the following inequalities



54 LENGTH OF POLYNOMIAL EXPRESSIONShold if s ≥ 3:
‖p‖ ≤ e · (1 + T · (3 + n − logs e)) − 2 · T,

‖p‖ ≤ e ·
(

1 + T ·
(

3 + n − log e

log s

))

− 2 · T,If s = 2, then
‖p‖ ≤ ((3 + n − log e) · e − 2) · T.Again, we see that basically |A| is changed to s, the maximum of thenumber of elements in one coordinate of the domain set and T might bedecreased depending on the algebra. We do not give analogous theoremsin the later Sections, as the proofs are similar: they just use unary partialcharacteristic functions on a subset, rather than on the whole algebra. Itis still interesting to know what algebras can bene�t from considering onlypartial functions on a domain S1 × · · · × Sn, so we always make a note forparticular algebras in the remaining part of this Chapter. This property canbe bene�cial if a functionally complete algebra is embedded into another oneand we want to realize a function of the smaller algebra over the larger one.3.2 The two-element Boolean algebraFirst we consider the two-element functionally complete algebras, especially

B and B0. Let us start with the observation that over B we only have touse negation in front of variables:Proposition 59. Let f be a (possibly partial) function over { 0, 1 }. Thenthere exist two polynomials p1, p2 realizing f such that every negation in p1and p2 is only used on variables, moreover ‖f‖ = ‖p1‖ and v (f) = v (p2).Proof. The proof is a basic one in mathematical logic, thus we just sketch it.One can �nd more details, in e.g. [6]. We de�ne the level of a polynomial. Aconstant or a variable has level 0 and if p1 and p2 are two polynomials over
B with level l1 and l2, then the level of (p1 ∧ p2) is 1 + max (l1, l2), the levelof (p1 ∨ p2) is 1 + max (l1, l2) and the level of ¬p1 is 1 + l1.Let us observe that ¬ (x ∧ y) = ¬x∨¬y, ¬ (x ∨ y) = ¬x∧¬y and ¬¬x =
x. Now let p1 be a polynomial which represents f and for which ‖p1‖ = ‖f‖.If p1 contains any negation which is not a negation of a variable, then iteither negates a negation, a ∧ or a ∨. Let us substitute this negation usingthe corresponding above-mentioned rule, this does not change the length of



3.2 The two-element Boolean algebra 55the polynomial. Let L be the ordered list of polynomials q which appearnegated (i.e. as ¬q) in p1. After a substitution of a negation in p1 using anyof the above-mentioned rules, a polynomial from L is removed and some newpolynomials are added. Each of the new added polynomials have strictly lesslevel than the removed polynomial.If e.g. p1 has a subpolynomial ¬ (x ∧ y), then x ∧ y appears in L. Whenwe substitute every appearance of ¬ (x ∧ y) to ¬x∨¬y, then the polynomial
x ∧ y is removed from L and x and y is added to it. The polynomial x ∧ yhas level 1, the variables x and y have level 0.Iterating this algorithm ends in a polynomial, when L only contains vari-ables, i.e. every negation negates a variable or a constant. Replacing thenegation of the constants by the appropriate corresponding constants �n-ishes the proof.Using the same idea we have the result for the number of variable occur-rences.In the following proposition we compare the length and the number ofvariable occurrences for B and for B0.Proposition 60. Let f be an n-ary (possibly partial) function over { 0, 1 }.Then

vB (f) = vB0 (f)

‖f‖
B

≤ ‖f‖
B0

≤ 3 · ‖f‖
BProof. The proof based on an easy observation, namely that NAND and NORonly di�er from ∧ and ∨ by a negation. Now let p be a polynomial over B,which realizes f . By Proposition 59 we can assume that every negation in pnegates a variable. Now changing every ∧,∨,¬ using the rules (2.2), (2.3) and(2.4) we do not change the number of variable occurrences, but we increasethe length by 1 each time. As p had negations only in front of variables wecan conclude that vB0 (f) ≤ vB (f) and ‖f‖

B0
≤ 3 · ‖f‖

B
.Now if p realizes f over B0, then substituting for NAND and NOR using

x NAND y = ¬ (x ∧ y) and x NOR y = ¬ (x ∨ y) we increase neither thelength nor the number of variable occurrences of the polynomial. Hence, weconclude that vB (f) ≤ vB0 (f) and ‖f‖
B
≤ ‖f‖

B0
.Later on we only consider realizing polynomials over B. One can giveestimations on the length and on the number of variable occurrences over B0using Proposition 60.Now we give some upper bounds on the length for an arbitrary functionover B. We basically use the idea of Theorem 48.



56 LENGTH OF POLYNOMIAL EXPRESSIONSTheorem 61. Let B be the two-element Boolean algebra. Let f be an arbi-trary n-ary function over { 0, 1 } with e-many non-zero values (1 ≤ e ≤ 2n).Then
vB (f) = ‖f‖

B
,

‖f‖
B

≤ (3 + n − log e) · e − 2.Proof. Let p be a realizing polynomial for f with minimal length amongthose polynomials which have exactly v (f)-many variable occurrences. If anyconstants appear in p, then �rst let us change every negation of a constantusing the rules ¬0 = 1 and ¬1 = 0. Now every appearance of a constant hasone of the following forms: 0∧p′, 1∧p′, 0∨p′, 1∨p′ for some subpolynomial
p′. Since 0∧ p′ = 0, 1∧ p′ = 0∨ p′ = p′, 1∨ p′ = 1, we could shorten p if anyof these forms appear. Therefore we have ‖f‖ = v (f).The inequality for the length follows from Theorem 48 (∨ plays the roleof the addition, ∧ is the multiplication) and from the fact that both unarycharacteristic functions χ0 (x) = ¬x, χ1 (x) = x have length 1.Remark 62. We can assume that e ≤ 2n−1, otherwise we realize ¬f with p,then ¬p realizes f and has the same length as p.Remark 63. Lupanov [25] considered the algebra over { 0, 1 } which containsall 16 binary operations as basic operations. He proved that an arbitrary
n-ary function can be realized with length at most (2 + o (1)) · 2n · (log n)−1over this algebra. Our bound is better than Lupanov's, whenever e < c · 2n ·
(log n)−2 for some constant c.The following Corollary summarizes our upper and lower bounds for thealgebras B and B0:Corollary 64. Let f be an arbitrary n-ary function over { 0, 1 }. Then

‖f‖
B
≤ 2 · 2n − 2,

‖f‖
B0

≤ 6 · 2n − 6.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 over { 0, 1 } such that
‖f0‖B

≥ 1

1 + ε
· 2n

log n
,

‖f0‖B0
≥ 1

1 + ε
· 2n

log n
.Proof. We apply Proposition 60, Theorem 61, Remark 62 and Theorem 46.



3.3 Finite rings 57The last proposition of this Section gives an upper bound on the lengthof the discriminator operation.Proposition 65. Let d be the discriminator function over { 0, 1 }. Then
‖d‖

B
≤ 10.Proof. In the second proof of Theorem 14 we gave a polynomial which haslength 10 and realizes the discriminator function.As the only functionally complete Boolean algebra has 2 elements, thereis no point considering partial functions over the set S1 × · · · × Sn. If k isthe number of Si's for which |Si| = 2, then we can easily consider a functionover B

k instead of the original partial function.3.3 Finite ringsSo far we did not de�ne exactly what are the basic operations of a ring, butas soon as we are considering the length of polynomials, we have to be exact.From now on the rings basic operations are the +, − and ·. Let F be a�nite �eld, let q = |F| and let R = Mk(F), the k × k-matrices over F. Now
‖+‖ = v (+) = ‖·‖ = v (·) = ‖−‖ = v (−) = 2, hence we are able to applyTheorem 48. It is easy to see that the n-ary addition and multiplication bothhave length n. First we start with the �nite �elds.Theorem 66. Let F be a �nite �eld, |F| = q and let f be an arbitrary n-aryfunction over F with e-many non-zero values (1 ≤ e ≤ qn). Then

‖f‖ ≤
(
(2q − 2) ·

(
3 + n − logq e

)
+ 1
)
· e − 4q + 4,

‖f‖ ≤ 2 · q · e ·
(
3 + n − logq e

)
.Proof. We have χ0 (x) = 1 − xq−1, which has length q ≤ 2q − 2. For every

a 6= 0 let ca =
(
∏

a6=u∈F
(a − u)

)−1. Then χa (x) = ca · ∏a6=u∈F
(x − u),hence ‖χa‖ ≤ 2q − 2 (as one of the u's is zero). Now applying Theorem 48we obtain the required bounds.Remark 67. We note that if a partial function is de�ned over a domain

S1 × · · · × Sn, and s = max { |Si| : 1 ≤ i ≤ n }, then Theorem 66 holds if wechange q to s, i.e. ‖f‖ ≤ ((2s − 2) · (3 + n − logs e) + 1) · e − 4s + 4.Now we move to the k × k matrix rings. Let N = qk2 the number ofelements of the k × k matrix ring over the q-element �eld. The followingtheorem gives us an upper bound on the length of an arbitrary n-ary function.



58 LENGTH OF POLYNOMIAL EXPRESSIONSTheorem 68. Let F be a �nite �eld, |F| = q and let R = Mk(F), the k×k-matrices over F (k ≥ 2). Let N = |Mk(F)| = qk2 and let f be an arbitrary
n-ary function over R with e-many non-zero values (1 ≤ e ≤ Nn). Then

‖f‖ ≤ 16 · (log N)5/2 · N1/4 · e · (3 + n − logN e) .Proof. We use the notations of the proof of Theorem 16. We recall that
X ∨ Y = X + Y − X · Y . Let us de�ne the polynomial ∨n

i=1 Xi the waywe described in Lemma 44. Let v(n) be the number of variable occurrencesin ∨n
i=1. ∨ has 4 variable occurrences, hence v(n) ≤ 4 · n2 by Lemma 44.Moreover for expressing ∨n

i=1 we do not need to have any constants. Thusfor every n we have ‖∨n
i=1‖ ≤ 4n2.Let us recall the following polynomials from the proof of Theorem 16:
pi,j (X) =

k∑

s=1

Is,i · X · Ij,s,

δ (X) =
k∨

i,j=1

(
pi,j (X)q−1),

χM (X) = I − δ (X − M)It is easy to see that ‖pi,j‖ = 3k, v (pi,j) = k. Now, applying Lemma 40and Lemma 41 we have
v (δ) ≤ v

(
k2
)
· v (pi,j) · (q − 1) ≤ 4 · k5 · (q − 1) ,

‖δ‖ ≤ v
(
k2
)
· (q − 1) · ‖pi,j‖ ≤ 12 · k5 · (q − 1) ,

‖χM‖ ≤ ‖δ‖ + v (δ) · (‖−‖ − 1) + 1 ≤ 16 · k5 · (q − 1) + 1.Let us denote with T the right hand side of the last inequality and applyTheorem 48. Then we derive the following bound on ‖f‖:
‖f‖ ≤ e·

(

1 +
(
16 · k5 · (q − 1) + 1

)
·
(

3 + n − log e

k2 · log q

))

−32·k5·(q − 1)−1.Now using k5 =
(
logq N

)5/2 ≤ (log N)5/2 and q = N1/q2 ≤ N1/4 we easilyderive the desired bound.Remark 69. If e > (N − 1) · Nn−1, then there exists a value 0 6= r ∈ R suchthat f takes the value r at least Nn−1-many times. Let us realize f − r with
p, then p + r realizes f , v (p + r) = v (p) and ‖p + r‖ ≤ ‖p‖ + 1. Thereforewe can assume that e ≤ (N − 1) · Nn−1.



3.3 Finite rings 59Remark 70. Building up the characteristic function over �nite matrix ringsis somewhat di�erent than building them up over �nite �elds. Over �elds thepolynomial for χa (x) checks whether the input is di�erent than any element
u ∈ F (apart from u = a). On the other hand, in the case of matrix rings, thepolynomial checks whether all the entries of the matrix di�er from anythingbut zero. Hence if we want to have a theorem about partial functions, wehave to make a restrictions on the entries of the domain, like the entry in the
ith row and jth column has to be from the set Si,j ⊆ F. Then Theorem 68applies, if we change N to ∏n

i,j=1 |Si,j|.Let us summarize our upper and lower bounds for functionally completerings:Corollary 71. Let F be a �nite �eld, |F| = q. For an arbitrary n-aryfunction f over F we have
‖f‖

F
≤ 10 · (q − 1)2 · qn−1.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 over F such that

‖f0‖F
≥ log q

1 + ε
· qn

log n
.Let R = Mk(F), the k × k matrices over F (k ≥ 2) and let N = |Mk(F)| =

qk2. For an arbitrary n-ary function f ′ over F we have
‖f ′‖

R
≤ 80 · (log N)5/2 · (N − 1) · Nn−1+1/4.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f1 over R such that

‖f1‖R
≥ log N

1 + ε
· Nn

log n
.Proof. We apply Theorems 66, 68, Remark 69 and Theorem 46.We �nish the Section with the upper bounds on the discriminator func-tion. The following propositions show that it is linear in the size of the ring

R.Proposition 72. Let F be a �nite �eld, |F| = q and let d be the discriminatorfunction over F. Then
‖d‖ ≤ 4 · q − 1.



60 LENGTH OF POLYNOMIAL EXPRESSIONSProof. As we showed in the second proof of Theorem 16, the discriminatorhas the following polynomial realization:
d (x, y, z) = (x − y)q−1 · x +

(
1 − (x − y)q−1) · z.It is easy to see that this polynomial has length 4 · q − 1.Proposition 73. Let F be a �nite �eld, |F| = q and let R = Mk(F), the

k × k-matrices over F (k ≥ 2). Let N = |Mk(F)| = qk2 and let d be thediscriminator function over R. Then
‖d‖ ≤ 32 · N1/4 · (log N)5/2 .Proof. As we showed it in the second proof of Theorem 16, the discriminatorhas the following polynomial realization:

d(X, Y, Z) = δ (X − Y ) · X + (I − δ (X − Y )) · Z.Using Lemma 41 we can give an upper bound on the length:
‖d‖ ≤ 2 · (‖δ‖ + v (δ)) + 3 ≤ 32 · k5 · (q − 1) + 3 ≤ 32 · q · k5.As in the proof of Theorem 68 we proved that if q ≤ N1/4 and k5 ≤ (log N)5/2.We do not claim that a shortest polynomial p realizing an arbitrary func-tion f is necessarily built up the way we obtained the bounds in this Section.An interesting question is to �nd the minimal length of a realizing polyno-mial for an arbitrary (or special) function and whether it can be found ina fast way. Another interesting question is whether the shortest realizingpolynomial is unique for every function f , and if not, then characterize thosefunctions for which the shortest realizing polynomial is unique.3.4 Finite groupsSo far we gave bounds on the length of arbitrary n-ary functions for thetwo-element Boolean algebra and for the functionally complete rings. Everyupper bound was based on Theorem 48 and on the idea that we build up ourgiven function recursively. Theorem 48, however, uses some strict conditions,namely that some + and · operations must have exactly two variable occur-rences. Among groups + naturally corresponds to the usual multiplicationof the group, but there is no short or natural function corresponding to ·.Unfortunately, as we stated in Remark 50, it is essential that both v (+) = 2



3.4 Finite groups 61and v (·) = 2. Therefore we have to �nd another way for giving bounds onthe length and on the number of variable occurrences for an arbitrary n-aryfunction over a functionally complete group. We use the idea of Theorem 45and the proof of Theorem 18 helps us to build up our polynomials.Throughout this Section let G be a �nite simple non-Abelian group withtwo basic operations: the group multiplication and the inverse. Let N = |G|.We write [x, y] for the commutator x−1y−1xy and put xy = y−1xy. First weobserve that the variable number of occurrences is connected to the length ofa function and the realizing polynomials can be chosen such that all inversesare taken only on variables.Proposition 74. Let f be an arbitrary n-ary (possibly partial) function over
G. Then there exists realizing polynomials p1 and p2, such that every inverseis used only on variables and ‖f‖ = ‖p1‖, v (f) = v (p2). Moreover,

‖f‖
G
≤ 2 · vG (f) + 1.Proof. Proving that it is enough to consider polynomials with only variablesinverted is entirely the same as the proof of Proposition 59 for the two-elementBoolean algebra. We iterate substituting every invers of a product (xy)−1by y−1x−1. This operations changes neither the length, nor the number ofvariable occurrences of the polynomial. When the algorithm terminates, theresulting polynomial will have the required property.For proving the inequality let p be a polynomial over G which realizes fand v (p) = v (f). Then there exists a polynomial p′ which realizes f , v (p′) =

v (p) and ‖p′‖ ≤ 2v (p)+1: we replace in p every product of constants c1 · · · ckby the constant c, where c = c1 · · · ck. Then v (p′) = v (p) and there must beat least 1 variable between every two constants, hence ‖p′‖ ≤ 2 · v (p′) + 1.Now
‖f‖ ≤ ‖p′‖ ≤ 2 · v (p′) + 1 = 2 · v (p) + 1 = 2 · v (f) + 1.From now on we only consider the number of variable occurrences of afunction, and one can derive a bound for the length using Proposition 74.We use Lemma 40 for estimating the number of variable occurrences in the(partial) functions given in the proof of Theorem 18. We remind the readerfor some notations de�ned in the proof of Theorem 18.For every 1 6= u ∈ G and for every v ∈ G let pu,v be the unary par-tial function for which pu,v (1) = 1 and pu,v (u) = v. Let f

(n)
b (for b 6= 1)be the n-ary partial function de�ned in Lemma 21, i.e. f

(n)
b (b, . . . , b) = band f

(n)
b (x1, . . . , xn) = 1 if xi = 1 for some 1 ≤ i ≤ n. Let χ1;u (for



62 LENGTH OF POLYNOMIAL EXPRESSIONS
u 6= 1) be the unary characteristic function described in Lemma 23, i.e.
χ1;u (1) = u and χ1;u (x) = 1 if x 6= 1. Finally let χa1,...,an;u be the n-arycharacteristic function described in Lemma 25, i.e. χa1,...,an;u (a1, . . . , an) = uand χa1,...,an;u (x1, . . . , xn) = 1, whenever xi 6= ai for some i.Let V = v

(

f
(2)
b

). For every 1 6= u ∈ G, for every v ∈ G, and for everysubset S ⊆ G let
Ku,v = v (pu,v) ,

KS,v = max {Ku,v : 1 6= u ∈ S } ,

Ku,S = max {Ku,v : v ∈ S } .Later on we usually use u to denote an arbitrary element of G \ { 1 }, use
v as an arbitrary element of G, and use b whenever we are referring to a(somehow) �xed element of G \ { 1 }.Theorem 75. Let G be a functionally complete group. Let N = |G|. Thenthe following inequalities hold:

v
(

f
(n)
b

)

≤ V · nlog V , (3.16)
v (χ1;b) ≤ v

(

f
(N−1)
b

)

· max { v (pu,b) : 1 6= u ∈ G } , (3.17)
v (χ1;u) ≤ v (χ1;b) · v (pb,u) , (3.18)
v (χa1,...,an;b) ≤ v

(

f
(n)
b

)

· v (χ1;b) , (3.19)
v (χa1,...,an;u) ≤ v (χa1,...,an;b) · v (pb,u) , (3.20)Let f be an n-ary (possibly partial) function over G with e-many non-identityvalues (1 ≤ e ≤ Nn). Let K = 1 + max

{
KG\{ 1 },b, Kb,G\{ 1 }

}. Then K is atmost the number of conjugacy classes of G and
v (f) ≤ e · max { v (χa1,...,an;u) : 1 6= u ∈ G } , (3.21)
v (f) ≤ e · v

(

f
(n)
b

)

· v
(

f
(N−1)
b

)

· max
16=u1∈G

v (pu1,b) · max
16=u2∈G

v (pb,u2), (3.22)
v (f) ≤ e · KG\{ 1 },b · Kb,G\{ 1 } · V 2 · nlog V · (N − 1)log V , (3.23)
v (f) ≤ 3136 · (K − 1)2 · (N − 1)8 · n8 · e, (3.24)
‖f‖ ≤ 2 · KG\{ 1 },b · Kb,G\{ 1 } · V 2 · (N − 1)log V · nlog V · e + 1, (3.25)
‖f‖ ≤ 6272 · (K − 1)2 · (N − 1)8 · n8 · e + 1. (3.26)Proof. For proving (3.16) we use Lemma 44 on the polynomials p(n), where

p(1) (x1) = x1, p(2) (x1, x2) is a realizing polynomial for f
(2)
b such that v

(
p(2)
)

=
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V , and for every integer n ≥ 2:

p(2n−1) (x1, . . . , x2n−1) = p
(
p(n) (x1, . . . , xn) , p(n−1) (xn+1, . . . , x2n−1)

)

p(2n) (x1, . . . , x2n) = p
(
p(n) (x1, . . . , xn) , p(n) (xn+1, . . . , x2n)

)
.Then p(n) is a realizing polynomial for f

(n)
b and by Lemma 44 we have

v
(

f
(n)
b

)

≤ v
(
p(n)
)
≤ V · nlog V .The inequalities (3.17), (3.18), (3.19), (3.20), (3.21) follow from Lemma 40and the following representations based on the proof of Theorem 18, where

b 6= 1 and u 6= 1:
χ1;b(x) = f

(N−1)
b

(
bpu2,b (x)−1 , . . . , bpuN ,b (x)−1) ,

χ1;u(x) = pb,u (χ1;b(x)) ,

χa1,...,an;b(x1, . . . , xn) = f
(n)
b

(
χ1;b

(
x1a

−1
1

)
, . . . , χ1;b

(
xna

−1
n

))
,

χa1,...,an;u(x1, . . . , xn) = pb,u (χa1,...,an;b(x1, . . . , xn)) ,

f (x1 . . . , xn) =
∏

(a1,...,an)∈Gn

16=u=f(a1...,an)

χa1,...,an;u (x1, . . . , xn),

where G = { 1, u2, . . . , uN }. Then (3.22) and (3.23) simply follows fromthe �rst 6 inequalities. The number K is at most the number of conjugacyclasses of G by Proposition 79 (see Section 3.4.1 below). The inequality(3.24) follows if we apply Proposition 86 on (3.23) (see Section 3.4.2 below).Finally, the last two equations are an immediate consequence of the equations(3.23), (3.24) and Proposition 74.Remark 76. Similarly to Remarks 62 and 69, if e > (N − 1)·Nn−1, then thereexists a value 1 6= g ∈ G such that f takes the value g at least Nn−1-manytimes. Let us realize f · g−1 with p, then p · g realizes f , v (p · g) = v (p) and
‖p · g‖ ≤ ‖p‖ + 1.Comparing the results of Theorem 75 with those of Theorem 45 we canconclude that f

(2)
b plays some similar role for the groups as the · in general.One wants to minimize V in order to have better upper bounds for v (f),which may be possible to do by choosing b wisely. As we see, e is taken tothe �rst power, as the group multiplication plays the role of the general +.The constants Kb,G\{ 1 } and KG\{ 1 },b depend on the choice of b, too. In thefollowing Subsections we give some upper and lower bounds on V and on the

Ku,v's.



64 LENGTH OF POLYNOMIAL EXPRESSIONSRemark 77. We note here that if S1, . . . , Sn, S ⊆ G are subsets, where 1 ∈
S1 ∩ · · · ∩Sn, and f is a partial n-ary function de�ned over the domain S1 ×
· · ·×Sn with values from S, then similar inequalities hold as in Theorem 75:

v
(
χSi

1;b

)
≤ v

(

f
(|Si|−1)
b

)

· max { v (pu,b) : 1 6= u ∈ Si } ,

v
(
χSi

1;u

)
≤ v

(
χSi

1;b

)
· v (pb,u) ,

v
(
χS1×···×Sn

a1,...,an;b

)
≤ v

(

f
(n)
b

)

· max
1≤i≤n

v
(
χSi

1;b

)
,

v
(
χS1×···×Sn

a1,...,an;u

)
≤ v

(
χS1×···×Sn

a1,...,an;b

)
· v (pb,u) ,

v (f) ≤ e · max
{

v
(
χS1×···×Sn

a1,...,an;u

)
: 1 6= u ∈ S

}
,

v (f) ≤ e · Kb,S\{ 1 } · max
1≤i≤n

KSi\{ 1 },b · V 2 · nlog V · max
1≤i≤n

(|Si| − 1)log V ,

v (f) ≤ 3136 · (K − 1)2 · max
1≤i≤n

(|Si| − 1)8 · n8 · e.The bounds apply even in the slightly weird situation when |Si| = 1 or |Si| =
2. When |Si| = 1 then the corresponding characteristic and f 0

b functions areconstant functions, and have zero variable occurrences. If |Si| = 2 then thecorresponding f 1
b function has one variable occurrence as f 1

b (x) = x.Embedding G1 into a larger group G2 may allow us to shorten the lengthof an arbitrary (partial) function f . Formally we obtain the same upperbounds (as the sets Si's and S are the same for the two groups), but by theembedding we have a chance to choose b from a larger set. This may enableus to decrease v
(

f
(2)
b

), v
(

f
(n)
b

), and v (pu,v), hence also to shorten v (f) and
‖f‖ for the partial function f over G2.Let us summarize our bounds for functionally complete groups:Corollary 78. Let G be a functionally complete group. Let N = |G| and let
K be the number of conjugacy classes of G. For an arbitrary n-ary function
f over G we have

‖f‖
G
≤ 6272 · (K − 1)2 · (N − 1)9 · Nn−1 · n8 + 1.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 such that

‖f0‖G
≥ log N

1 + ε
· Nn

log n
.Proof. We apply Theorem 75, Remark 76 and Theorem 46.



3.4 Finite groups 653.4.1 The partial function pu,vFirst we give upper bounds on the number of variable occurrences of thepartial functions pu,v. For the group G and a set S ⊆ G let
Sk = { u1 · · ·uk | u1, . . . , uk ∈ S } .For two elements u, v ∈ G let us denote u ∼G v if u is a conjugate of v in

G. If it is clear over which group we are considering the conjugation, wejust write u ∼ v. Let Cu = {uc : c ∈ G } be the conjugacy class of u andlet Du = Cu ∪ Cu−1. We generate every v ∈ G using the elements of Du asgenerators for some 1 6= u ∈ G. Let S0 = ∅, S1 = Du and for every naturalnumber i ≥ 2 we will create Si, a subset of G, using the following de�nition:
Si = Si−1 ∪ {x · y | x ∈ Si−1, y ∈ Du} =

i⋃

j=1

Dj
u.It is clear that Si ⊆ Si+1 and by Lemma 19 it can only terminate in G, i.e.if Si = Si+1, then Si = G. Moreover, Si is the union of conjugacy classes,hence the process will �nish in at most as many steps as the number of theconjugacy classes of G. The following proposition tells us that this is theway to determine the Ku,v's.Proposition 79. For every 1 6= u ∈ G and for every v ∈ G we have v ∈ Siif and only if v (pu,v) = Ku,v ≤ i. As a corollary we derive that Ku,v is alwaysless than the number of conjugacy classes K of G. Moreover,

‖pu,v‖ ≤ 2 · Ku,v + 1 ≤ 2 · K − 1.Proof. For a �xed u and v if v ∈ Si\Si−1 then we can construct a polynomial
(xj1)

y1 . . . (xji)
yi such that v = (uj1)

y1 · · · (uji)
yi , where jk ∈ { 1,−1 } and yk'sare constants from G. This polynomial clearly has the properties of pu,v andthe number of variable occurrences is i ≥ Ku,v.For the other direction we note that calculating these Si sets gives uspolynomials with the least variable occurrences for a function f(x) with theproperty that f(1) = 1. Any 1-variable polynomial has the form p(x) =

g1x
j1g2x

j2g3x
j3 . . . gsx

jsgs+1 for some s, where j1, . . . , js ∈ { 1,−1 } and gi ∈
G. Now we alter this polynomial with the trick g1x

j1g2 = g1x
j1g−1

1 g1g2 =

(xj1)
g−1
1 g1g2:

g1x
j1g2x

j2 · · ·xjsgs+1 =
(
xj1
)g−1

1 g1g2x
j2 · · ·xjsgs+1 =

(
xj1
)g−1

1
(
xj2
)(g1g2)−1

g1g2g3x
j3 · · ·xjsgs+1 = · · · =

(
xj1
)g−1

1
(
xj2
)(g1g2)

−1

· · ·
(
xjs
)(g1···gs)

−1

g1 · · · gs+1.



66 LENGTH OF POLYNOMIAL EXPRESSIONSWith the notations c1 = g−1
1 , c2 = (g1g2)

−1 , . . . cs = (g1 · · · gs)
−1, c = g1 · · · gs+1we have that p(x) = (xj1)

c1 (xj2)
c2 · · · (xjs)

cs c. Now if p(1) = 1, then c = 1.Therefore for s = Ku,v, then there exists c1, . . . , cs such that pu,v can be real-ized by p(x) = (xj1)
c1 (xj2)

c2 · · · (xjs)
cs, which means that v = (uj1)

c1 (uj2)
c2 · · · (ujs)

csand v ∈ Ss = SKu,v
.Finally the estimation on the length is a consequence of Proposition 74.Remark 80. Using 1 and −1 in the exponent is slightly inconvenient, howeverdoes not make a real di�erence if u is conjugate to u−1. We use this writingof polynomials later on.Remark 81. Now we have an easy example that a polynomial with the leastnumber of variable occurrences is not necessarily the shortest one for realizinga partial function: let u be a 3-cycle inA5, v = u2, then u and v are conjugate,thus there exists c ∈ A5 such that v = c−1uc. Hence both polynomials c−1xcand x2 represent pu,v.Using the method described in this Section one can easily determine Ku,v'sfor a given functionally complete group. In Section 3.5.2 we give quite sharpbounds on Ku,v for certain u, v ∈ Am.3.4.2 The partial function f

(n)
bAfter investigating the function pu,v we move on to the more important f

(n)
b ,especially to f

(2)
b .Let p

(n)
b be a polynomial representing f

(n)
b such that between every twoconstants there is at least one variable. Using the idea of the proof of Propo-sition 79 the polynomial p

(n)
b can be written as

p
(n)
b (x1, . . . , xn) =

(
xj1

i1

)c1 (
xj2

i2

)c2 · · ·
(
xjs

is

)cs

cs+1, (3.27)where i1, . . . , is ∈ { 1, . . . , n }, j1, . . . , js ∈ { 1,−1 }, and cr's are constantsfrom G. Now among i1, . . . is all the elements of { 1, . . . , n } must occurat least once, because p
(n)
b depends on each of its variables. Now, cs+1 =

1, because f(1, . . . , 1) = 1. Moreover if the ith variable occurs only oncein w then if we write xi = b and xj = 1 for every j 6= i, then we have
1 = p

(n)
b (1, . . . , 1, b, 1, . . . , 1) = bc for some constant c ∈ G, contradiction.Therefore we have ∥∥∥p(n)

b

∥
∥
∥ ≥ v

(

p
(n)
b

)

= s ≥ 2n for every n ≥ 2.Let A = { r : cr 6= 1, 1 ≤ r ≤ s } the set of indexes of the non-identityconstants. Now there is a unique partition of the set I such that everyblock of the partition contains only consecutive numbers and every block



3.4 Finite groups 67is maximal in this sense. Let us denote the number of blocks with t andlet us denote the blocks with Ai (where 1 ≤ i ≤ t) such that if i < j and
c ∈ Ai, d ∈ Aj arbitrary elements, then c < d. Let

si = |{ cr : r ∈ Ai, r + 1 ∈ Ai, cr 6= cr+1 }| .Now it is easy to see that
∥
∥
∥p

(n)
b

∥
∥
∥ = s +

t∑

i=1

(2 + si). (3.28)Let Bi = { r : ir = i } be the index set of the variable xi. This index setcannot contain only consecutive numbers: then ∏r∈Bi

(
xjr

ir

)cr would be afactor of the polynomial p
(n)
b . Since ∏r∈Bi

(
xjr

ir

)cr

= f (1, . . . , 1, x, 1, . . . , 1)evaluates 1 for every substitution, p
(n)
b would not depend on the variable xi.The number t ≥ 1, otherwise p

(n)
b is a term expression (containing no con-stants), which would imply b = p

(n)
b (b, b, . . . , b) = p

(n)
b (b, 1, . . . , 1)·p(n)

b (1, b, . . . , b) =

1 (powers of b are interchangeable). It immediately follows that ∥∥∥p(n)
b

∥
∥
∥ ≥

2n + 2.Let r1 ∈ Bi such that cr1 6= 1. We claim that there exist r2 ∈ Bi,
1 ≤ r2 ≤ s, r2 6= r1 such that cr2 6= 1. If there existed no such an r2, then by
∏

r∈Bi

(
xjr

ir

)cr

= 1 we can conclude to that for some k we have xr1 = xk forevery x ∈ G. The following lemma gives the contradiction.Lemma 82. Let G be a �nite, simple, non-Abelian group. Then for anyinteger k and for any 1 6= c ∈ G there exists g ∈ G such that gc 6= gk.Proof. Let us suppose that for every g ∈ G we have gc = gk. If g ∈ CG (c),then gc = g, thus k − 1 is divisible by the order of g. On the other hand, if
k−1 is divisible by the order of g, then gk = g, hence gc = g and g ∈ CG (c).Therefore the subgroup CG (c) is characteristic (it contains exactly thoseelements whose order is a divisor of k − 1) and hence normal. The group Gis simple, CG (c) 6= G, since c /∈ { 1 } = Z (G), hence CG (c) = { 1 }. Thiscontradicts to the fact that 1 6= c ∈ CG (c).If |Bi| = 2, e.g. Bi = { r1, r2 }, then jr1 = −jr2 and cr1 = cr2. Otherwise(

x
jr1
i

)cr1
(

x
jr2
i

)cr2 can be rewritten into the form (xi)
c = xk with some con-stant c ∈ G and with an integer number k. Such equality does not hold forevery x ∈ G by Lemma 82.Let us assume that |Bi| = 3 for some i, then we prove that either t ≥

2 or sj ≥ 1 for at least one 1 ≤ j ≤ t. Let Bi = { r1, r2, r3 }. Since
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(

x
jr1
i

)cr1
(

x
jr2
i

)cr2
(

x
jr3
i

)cr3

= 1 holds for every x ∈ G, we conclude that atleast one of cr1 , cr2, cr3 is not 1. Now if only one of these three constants isdi�erent from 1, then the equation can be rewritten into the form (xi)
c = xkwith some constant c ∈ G and with an integer number k. Such equalitydoes not hold for every x ∈ G by Lemma 82. If exactly two constants outof cr1 , cr2, cr3 di�ers from 1, and they are the same, then we obtain a similarequation and Lemma 82 can be applied, too. If all three constant cr1 , cr2, cr3are equal, then the equation has a form xj1+j2+j3

i = 1, which does not holdfor every x ∈ G. Therefore there are at least two constants from cr1 , cr2, cr3which di�er from 1 and from each other, hence either t ≥ 2 or sj ≥ 1.Now if t ≥ 2, then ∥∥∥p(n)
b

∥
∥
∥ ≥ 2n + 4 by (3.28). If t = 1 and there exists

1 ≤ i ≤ n such that |Bi| ≥ 4, then again ∥∥∥p(n)
b

∥
∥
∥ ≥ 2n + 4. If t = 1 and thereexists 1 ≤ i ≤ n such that |Bi| = 3, then s1 ≥ 1, hence ∥∥∥p(n)

b

∥
∥
∥ ≥ 2n + 4.Therefore if ∥∥∥p(n)

b

∥
∥
∥ ≤ 2n + 3, then t = 1, |Bi| = 2 for every 1 ≤ i ≤ n, theconstants in the form (3.27) are in one block, and either all constants arethe same or there are at most two di�erent constants. Hence we proved thefollowing:Proposition 83. For every n ≥ 2 we have

2n ≤ v
(

f
(n)
b

)

≤ V · nlog V ,

2n + 2 ≤
∥
∥
∥f

(n)
b

∥
∥
∥ ≤ 2 · V · nlog V + 1,where V = v

(

f
(2)
b

). Moreover if ∥∥∥f (n)
b

∥
∥
∥ < 2n+4, then every variable occursexactly twice in the shortest representation of f

(n)
b , and using the form (3.27)there are at most two di�erent constants.The lower bounds for the variable occurrences and for the length of f

(n)
bare linear in n. On the other hand the upper bound is at least quadratic fromProposition 84. Our conjecture is that the truth is rather closer to the upperbound than the lower bound. Unfortunately there are no known methods forproving a quadratic lower bound on the length for a function over an algebra.Now with the help of this proposition we prove that the minimal lengthof f

(2)
b is at least 9. In Proposition 90 we prove that length 9 can be achievedfor the group Am (m ≥ 5).



3.4 Finite groups 69Proposition 84. Let V = v
(

f
(2)
b

). Then we have
4 ≤ V ≤ 4 · KG\{ 1 },b,

9 ≤
∥
∥
∥f

(2)
b

∥
∥
∥ ≤ 8 · KG\{ 1 },b + 1.Proof. Applying Proposition 83 to n = 2 we have that v

(

f
(2)
b

)

≥ 4 and
∥
∥
∥f

(2)
b

∥
∥
∥ ≥ 6. Let c ∈ G be a constant for which [b, bc] 6= 1. Such c exists byLemma 20. Now p[b,bc],b ([x, yc]) is realizing f

(2)
b , hence v

(

f
(2)
b

)

≤ 4 ·KG\{ 1 },bfor some c, where [b, bc] 6= 1. The upper bound for the length follows fromProposition 74. Now we only have to prove that ∥∥∥f (2)
b

∥
∥
∥ ≤ 8 is not possible.Let p

(2)
b be a shortest representation of f

(2)
b . We deal with the di�erentlengths separately:Case 1: The length ∥∥∥f (2)

b

∥
∥
∥ ≤ 7. By the observations which led to Propo-sition 83 we know that there are at most two di�erent constants in the form(3.27). The index sets B1 and B2 are two-element sets, and neither of themcan contain only consecutive numbers. The constants for the two occur-rences of the variable x1 have to be the same, and the constants for the twooccurrences of the variable x2 have to be the same. Moreover there mustbe at most one `change' in the sequence of constants, which leaves only onepossibility: p

(2)
b (x1, x2) =

([
x1, x

±1
2

]±1
)c. Now p

(2)
b (b, b) = 1 6= b.Case 2: The length ∥∥∥f (2)

b

∥
∥
∥ = 8. If ∥∥∥f (2)

b

∥
∥
∥ = 8 then by formula (3.28) wehave the following possibilities:1. s = 6, t = 1 and s1 = 0. If |Bi| = 3 for any i ∈ { 1, 2 }, then s1 ≥ 1.Therefore either |B1| = 4 and |B2| = 2 or vice versa. Without loss ofgenerality we can assume |B1| = 4 and |B2| = 2. t = 1 and s1 = 0,hence there is only one constant c and it is in one block. If c conjugatesany of the two occurrences of variable x2, then it conjugates the other,too. If c conjugates both occurrences, then when calculating p

(2)
b (b, b)we can move xc

2 and (x−1
2

)c next to each other. Their product is 1,therefore p
(2)
b (b, b) = p

(2)
b (1, b) · p

(2)
b (b, 1) = 1 6= b contradiction. Thesame happens if c does not conjugate the occurrences of x2, then wecan move all the x1's next to each other and have p

(2)
b (b, b) = p

(2)
b (1, b) ·

p
(2)
b (b, 1) = 1 6= b contradiction.2. s = 5, t = 1 and s1 = 1. It is easy to see that p

(2)
b (1, x) = (xj1)

c1 (xj2)
c2 xj3or p

(2)
b (1, x) = xj3 (xj1)

c1 (xj2)
c2 and p

(2)
b (x, 1) = xj4x−j4 (or the other



70 LENGTH OF POLYNOMIAL EXPRESSIONSway around, let us assume it happens this way). Either way, when wecalculate f
(2)
b (x, x), using the fact that x and x−1 centralizes each other,we can sort the factors in such a way that the factors of p

(2)
b (1, x) areappearing after each other, i.e.: p

(2)
b (x, x) = g1(x) · p(2)

b (1, x) · g2(x) forsome terms g1 and g2 where g1(x)g2(x) = p
(2)
b (x, 1). Then p

(2)
b (x, x) =

g1(x) ·p(2)
b (1, x) ·g2(x) = g1(x) ·g2(x) = p

(2)
b (x, 1) = 1, which contradictswith p

(2)
b (b, b) = b.3. If s = 4, t = 2 and s1 = s2 = 0. Then p

(2)
b (x, y) is basically yj2 · (xj1)

c ·
y−j2 · (x−j1)

c or (xj1)
c · yj2 · (x−j1)

c · y−j2. From b = p
(2)
b (b, b) we canconclude to bb±c

= b2. Let k be the order of b. Now k is odd, as b and
b2 are conjugates, hence they have the same order. Moreover, b±c hasorder k, too. Now

b = b1 = b(b±c)
k

= b2k

,hence k | 2k − 1. Let p be the smallest prime divisor of k, let k = p ·mand let t be the smallest positive integer for which p | 2t − 1. ByFermat's Theorem we know that 2p−1 ≡ 1 (mod p), hence t | (p − 1).Now 2k ≡ 1 (mod p) if and only if t | k, which means that k has asmaller prime divisor than p, as t < p.4. s = 4, t = 1 and s1 = 2. In this case there should be two constants
c1 and c2 corresponding to the variables x1 and x2. They are orderedeither as c1, c2, c1, c2 or as c2, c1, c2, c1, and we obtain s1 ≥ 3. Thecontradiction �nishes the proof.We can give a constant upper bound on V using the following theoremfrom [42]:Theorem 85. Let G be a �nite group. Then the following are equivalent:1. G is solvable;2. no non-trivial element g is the product of 56 commutators of the form
[gh, gk] (with h, k ∈ G);3. no non-trivial 2-element g is the product of 126 commutators of theform [gh, gk] (with h, k ∈ G). (The element g is a 2-element if theorder of g is a 2-power.)The following proposition is an immediate corollary of this theorem:



3.5 The alternating group Am 71Proposition 86. For every �nite simple non-Abelian group G there exists
b ∈ G such that

v
(

f
(2)
b

)

≤ 224.Moreover there exists b ∈ G such that the order of b is a power of 2 and
v
(

f
(2)
b

)

≤ 504.Proof. We use the fact that if b =
[
bh1 , bk1

]
. . .
[
bht , bkt

], then the polyno-mial p (x, y) =
[
bh1 , bk1

]
. . .
[
bht , bkt

] represents the partial function f
(2)
b . Thenumber of variable occurrences in polynomial p is 4 · t. Applying Theorem 85�nishes the proof.Now we can take a closer look at the results of Theorem 45 and of Theo-rem 75. Applying the �rst one to rings gives us an n factor, while Theorem 75has a factor at least n2 (as V ≥ 4). The reason for that is that rings have themultiplication as a basic binary operation next to the addition, but groupshave only one operation. We cannot use Theorem 48 on groups for the samereason. One wonders whether there exists another operation (correspondingto the ring multiplication) which we can take as basic operation for the groupso that we obtain similar bounds as for rings or can apply Theorem 48. Thisis indeed the case: taking the commutator changes the algebra in a way thatwe can derive similar bounds to those for rings. We investigate this idea indetails in Section 3.6.3.5 The alternating group AmIn Section 3.1 we investigated partial functions and in Proposition 55 westated that if a functionally complete algebra can be embedded into anotherone, then the length of a partial function and the number of variable oc-currences for the partial function do not increase. First we prove in thisSection that every �nite simple non-Abelian group can be embedded into

Am for some m, therefore we only have to consider these groups when we arelooking for shortest possible realization among �nite groups. The statementholds for every �nite group, so for this proposition the notation of G means�nite group, not necessarily simple or non-Abelian.Proposition 87. Let G be any �nite group. Then there exists m for which
G can be embedded into Am.Proof. We can choose m = |G| + 2, since the Cayley table of G gives anembedding into S|G| and for every positive integer k there exists a subgroup



72 LENGTH OF POLYNOMIAL EXPRESSIONSin Ak+2 which is isomorphic with Sk. This ϕ : Sk → Ak+2 embedding is thefollowing: for every permutation π ∈ Sk

ϕ (π) =

{
π, if π is even
π · (k + 1, k + 2) , if π is odd .Composing the two isomorphism gives us an isomorphism between G and asubgroup of Am for m = |G| + 2.In Theorem 75 we saw that one employs bounds on v

(

f
(n)
b

) and on theproduct KG\{ 1 },b ·Kb,G\{ 1 } in order to obtain a proper bound on the numberof variable occurrences for an arbitrary partial function f . In Proposition 93we give a sharper quadratic bound on v
(

f
(n)
b

) than in Proposition 84, thenwe prove that b can be chosen as a 3-cycle to reach that bound. In Sub-section 3.5.2 we move on to give bounds on the product KG\{ 1 },b · Kb,G\{ 1 }(Proposition 98). We summarize all the results in the following theorem:Theorem 88. Let m ≥ 5 and let N = |Am|. Let f be an arbitrary n-ary (possibly partial) function over the group Am with at most e-many non-identity values. Then the following inequalities hold:
v (f) ≤ 1

2
· m ·

(
3n2 − 3n + 2

)
·
(
3N2 − 9N + 8

)
· e,

‖f‖ ≤ m ·
(
3n2 − 3n + 2

)
·
(
3N2 − 9N + 8

)
· e + 1.If 4 - m, then we can replace the factor m by bm/2c.Proof. The proof follows by applying Propositions 98 and 93 below, Propo-sition 74 and Theorem 75.Let us summarize our bounds for Am:Corollary 89. Let m ≥ 5 and let N = |Am|. For an arbitrary n-ary function

f over Am we have
‖f‖

Am
≤ m · (N − 1) ·

(
3N2 − 9N + 8

)
·
(
3n2 − 3n + 2

)
· Nn−1 + 1.If 4 - m then we can replace the factor m by bm/2c.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 such that

‖f0‖Am
≥ log N

1 + ε
· Nn

log n
.Proof. We apply Theorem 88, Remark 76 and Theorem 46.



3.5 The alternating group Am 733.5.1 Bounds on v
(

f
(n)
b

) over AmFrom now on by Am we mean the alternating group Am for some m ≥ 5. Inthe following propositions we determine v
(

f
(2)
b

) for Am, give some exampleshow b can be chosen to achieve the lowest possible v
(

f
(2)
b

) and give a sharpupper bound for v
(

f
(n)
b

).Proposition 90. There exists b ∈ Am (m ≥ 5) such that V = v
(

f
(2)
b

)

= 4and ∥∥∥f (2)
b

∥
∥
∥ = 9.Proof. For 1 6= b ∈ G there exists a polynomial [xc1 , yc2] (for some constants

c1 and c2) representing f
(2)
b (x, y) if and only if there exists a conjugate bcsuch that [b, bc] is a conjugate of b. This is the case for Am (m ≥ 5) with

b = (1 2 3) or with b = (1 2 3 4 5) (the multiplication is from right to left):
(2 5 3) = [(1 2 3) , (3 4 5)]

(1 3 4 2 5) = [(1 2 3 4 5) , (1 5 3 2 4)] ,where (1 5 3 2 4) = (2 4 5)−1(1 2 3 4 5)(2 4 5) and (1 3 4 2 5) = (2 4 3)−1(1 2 3 4 5)(2 4 3).The other conjugate relations are clear.In the case of Am for m ≥ 6 we can even choose b from the conjugacyclass of (1 2)(3 4) or (1 2 3)(4 5 6) as the following equations show:
(1 4) (2 3) = [(1 2) (3 4) , (2 3) (5 6)]

(1 4 3) (2 5 6) = [(1 2 3) (4 5 6) , (1 3 5) (2 6 4)] .The conjugate relations are clear. These examples show that for every m ≥ 5we can choose 1 6= b ∈ Am such that v
(

f
(2)
b

)

= 4 and ∥∥∥f (2)
b

∥
∥
∥ = 9, moreoversuch b can be chosen as an element of order 2 if m ≥ 6.Actually, any odd cycle can be chosen as b for large enough m. For provingthis we �rst need some preliminaries. Later on, for an element u ∈ Am let usdenote the conjugacy class of u in Am with Cu and if u and v are conjugatethen we use the notation introduced earlier: u ∼ u. Let us denote the set ofall permutations with the same cycle structure as u with Du. The followinglemma is quite known about conjugacy classes of Am and cycle structure [4]:Lemma 91. Let u1 ∈ Am. Then there exists u2 ∈ Am with the same cycle-structure as u1 and u2 is not conjugate with u1 in Am if and only if the



74 LENGTH OF POLYNOMIAL EXPRESSIONScycle structure of u1 (and u2) contains only odd cycles with pairwise di�erentlengths (considering 1-cycles as well). If such a u2 exists, then for every
u3 ∈ Am with the same cycle structure as u1 (and u2) we have either u3 isconjugate to u1 in Am or u3 is conjugate to u2 in Am.We note as an easy consequence that if u1 ∈ Sm and u2 ∈ Sm havethe same cycle structure then u1 is conjugate to u2 in Sm. For m ≥ 5 if
u1, u2 ∈ Am have the same cycle structure but u1 6∼ u2 in Am, then u1 has acycle with length at least 5. If u1 and u2 share the same cycle structure and
u1 stabilizes at least two points then u1 ∼ u2 in Am.Proposition 92. If b is an odd cycle in Am (m ≥ 5) of length at most 2m−1

3
,then v

(

f
(2)
b

)

= 4 and ∥∥∥f (2)
b

∥
∥
∥ = 9.Proof. Let b be an arbitrary 2l + 1-cycle, where 5 ≤ 3l + 2 ≤ m. Withoutloss of generality we can suppose that b = (1, 2, . . . , 2l, 2l + 1). Now let

u = (2l + 2, 2l + 3, . . . , 3l + 1, l + 1, l + 2, . . . , 2l + 1) ,

v = (1, 2l + 2, 2, 2l + 3, 3, 2l + 4, . . . , l − 1, 3l, l, 3l + 1, 3l + 2) .Now b ∼ v as they share the same cycle structure and they stabilize at least
m− (2l + 1) ≥ l + 1 ≥ 2 points. Hence there is a constant c ∈ Am such that
v = bc. Moreover it is easy to check that u = bv and

b−1 · u = (l, l − 1, . . . , 2, 1, 2l + 1, 2l + 2, 2l + 3, . . . , 3l + 1) .Now b−1u has the same cycle structure as b and stabilizes at least 2 points,hence b ∼ b−1 · u = b−1 · bbc

= [b, bc]. This means v
(

f
(2)
b

)

= 4 and ∥∥∥f (2)
b

∥
∥
∥ =

9. We do not use this proposition later on, only that b can be chosen as a3-cycle and for m ≥ 6 we can choose (1 2) (3 4) for b. We just mentionedthis in order to show that there are many possibilities in Am for choosing bin order to realize v
(

f
(2)
b

)

= 4 and ∥∥∥f (2)
b

∥
∥
∥ = 9, so we still have a chance tochoose when we want to minimize the product KG\{ 1 },b ·Kb,G\{ 1 } afterwards.By Lemma 44 we already now that v
(

f
(n)
b

)

≤ V · nlog V = 4 · n2. Finallywe give a sharper upper bound for v
(

f
(n)
b

) than this. The bound is stillquadratic, but the constant is improved.Proposition 93. Let p (x, y) = [xc1 , yc2] with some constants from G. Let
p(n) be de�ned as in Lemma 44. Then v

(
p(n)
)
≤ 3/2 · n2 − 3/2 · n + 1.



3.5 The alternating group Am 75Proof. We prove the statement by induction on n. It is true for n = 1, 2:
v
(
p(1)
)

= 1 ≤ 3/2 · (1 − 1) + 1, v
(
p(2)
)

= 4 ≤ 3/2 · (4 − 2) + 1 and for every
n ≥ 3

v
(
p(n)
)

= 2 ·
(
v
(
p(bn/2c)

)
+ v

(
p(dn/2e)

))
.Let us assume that the statement is true for every k < n. If n = 2l, then

v
(
p(n)
)

= 4 · v
(
p(l)
)
≤ 4 ·

(
3/2l2 − 3/2l + 1

)
=
(
3/2n2 − 3/2n + 1

)
.If n = 2l + 1, then

v
(
p(n)
)

= 2v
(
p(l)
)

+ 2v
(
p(l+1)

)

≤ 2 ·
(
3/2l2 − 3/2l + 1

)
+ 2 ·

(
3/2 (l + 1)2 − 3/2 (l + 1) + 1

)

= 6l2 + 4 ≤ 6l2 + 3l + 1 = 3/2 (2l + 1)2 − 3/2 (2l + 1) + 1

= 3/2n2 − 3/2n + 1.This proof shows not only that v
(

f
(n)
b

)

≤ 3/2 (n2 − n)+1, but the boundis sharp for n ≤ 4, too. For a quadratic bound we cannot expect any betteras this is sharp at more than 2 points.3.5.2 Bounds on v (pu,v) over AmNow we know that b ∈ Am can be chosen so that V = v
(

f
(2)
b

)

= 4. As weshown in Proposition 92 there are several choices for b. In this Section weprove that b can be chosen as a 3-cycle so that we can obtain a reasonablygood (if not the best) upper bound on the product KG\{ 1 },b · Kb,G\{ 1 } inTheorem 75. First we try to bound KG\{ 1 },(1 2 3).Lemma 94. Let u ∈ Am (for some m ≥ 5) and let Du = Cu ∪ Cu−1. If u isnot a product of disjoint 2-cycles, then D2
u = { u1 · u2 | u1, u2 ∈ Du } containsa 3-cycle. If u is a product of disjoint 2-cycles and stabilizes at least 1 point,then D2

u contains a 3-cycle. If u is a product of disjoint 2-cycles and movesevery m point, then D2
u contains a product of two disjoint 3-cycles.Proof. Let the longest cycle be a k-cycle in u. Without loss of generality wecan assume that this cycle is the ck = (1, . . . , k) cycle in u. If k ≤ 4, thenby Lemma 91 the conjugacy class Cu contains the elements in Am with thesame cycle-structure as u.



76 LENGTH OF POLYNOMIAL EXPRESSIONS1. k ≥ 5. Let v = c−1
k u, v′ = v−1 = (1 3)(2 4) · v−1 · (1 3)(2 4) andlet c′k = (2, 1, 4, 3, k, k − 1, . . . , 5) = (1 3)(2 4) · c−1

k · (1 3)(2 4). Then
u′ = c′k · v′ ∈ Cu−1 ⊆ Du and (multiplying from right to left)

u′ · u = c′kv
′ · ckv = c′kck · v′v = c′k · ck = (2 k 4) .2. k = 4. Let v = c−1

k u, v′ = v−1 and let c′k = (1 2 4 3). Then u′ =
c′kv

′ ∈ Cu ⊆ Du (since k ≤ 4) and (multiplying from right to left)
u′ · u = (1 4 2).3. k = 3. Let v = c−1

k u, v′ = v−1 and let u′ = ck · v′. Now u′ ∈ Cu ⊆ Du(since k ≤ 4) and (multiplying from right to left) u′ · u = (1 3 2).4. k = 2 and u stabilizes an element from { 1, . . . , m }. Without loss ofgenerality we can assume that u = (1 2) v and stabilizes 3, then let
u′ = (1 3) v. Now u′ ∈ Cu ⊆ Du (since k ≤ 4) and (multiplying fromright to left) u′ · u = (1 2 3).5. k = 2 and u moves all the elements from { 1, . . . , m }. Then u is theproduct of 2-cycles. Without loss of generality we can assume that
u = (1 2) (3 4) (5 6) · v. Let u′ = (1 6) (2 3) (4 5) · v. Then u′ ∈ Cu ⊆ Du(since k ≤ 4) and (multiplying from right to left) u′ ·u = (1 3 5) · (2 6 4).The following proposition indicates what we are going to choose as b fordi�erent Am's.Proposition 95. Let m ≥ 5. Then

KG\{ 1 },(1 2 3) ≤ 2, if 4 - m,

KG\{ 1 },(1 2 3) ≤ 4, if 4 | m.Proof. From Lemma 94 it is quite clear that for any u ∈ Am we have
Ku,(1 2 3) ≤ 2 if 4 - m and Ku,(1 2 3) ≤ 4 if 4 | m.Now we continue to estimate K(1 2 3),G\{ 1 }. Let us start with a trivialobservation:Lemma 96. Let u = (1, . . . , k + 1), let v1 = (1, k + 2, k + 3, . . . , k + l) andlet v2 = (k + 1, 1, k + 2, k + 3, k + 4, . . . , k + l − 1). Then (multiplying fromright to left)

v1 · u = (1, 2, . . . , k + l − 1, k + l)

v2 · u = (1, 2, . . . , k − 1, k) · (k + 1, k + 2, . . . , k + l − 1) .



3.5 The alternating group Am 77This lemma simply shows that by multiplying with the proper l-cyclewe can increase a cycle's length by l − 1 or decrease it by 1 and create anadditional cycle with length l−1. In the �rst case the resulting permutationmoves k+l points, in the second case it moves k+l−1 points. This, however,is the basic lemma on proving the following proposition.Proposition 97. The following inequality holds for Am (m ≥ 5):
K(1 2 3),G\{ 1 } ≤ bm/2c .Proof. Using the idea of Lemma 96 it is easy to see (by induction) that every

2k + 1-cycle can be obtained by multiplying k-many 3-cycles. Moreover thedisjoint product of an arbitrary 2k-cycle and an arbitrary 2l-cycle can beobtained by multiplying k + l-many 3-cycles. Therefore it can be provedby induction that if u ∈ Am moves r-many points then it is a product of
br/2c-many 3-cycles, which proves the inequality.Proposition 98. For m ≥ 5 we have

KG\{ 1 },(1 2 3) · K(1 2 3),G\{ 1 } ≤ 2 · bm/2c , if 4 - m,

KG\{ 1 },(1 2 3) · K(1 2 3),G\{ 1 } ≤ 2m, if 4 | m.Proof. The proof is combining the results of Propositions 95 and 97.Finally we prove that K(1 2 3),G\{ 1 } ≥ bm/2c:Proposition 99. Let w ∈ Am such that w moves m points, and acts transi-tively on at least m− 2 points (m ≥ 5). If u1, . . . , ur ∈ Am are 3-cycles suchthat ur · ur−1 · · · · · u2 · u1 = w, then r ≥ bm/2c.Proof. First we note that r ≥ dm/3e, otherwise u1 . . . ur moves less than mpoints. Let O be the orbit with at least m− 2 points. If m is even, then w isa product of a 2-cycle and an m−2-cycle. If m is odd, then w is an m-cycle.We prove the statement by induction on m. If m = 5, then r ≥ d5/3e = 2.If m = 6, then the only way for two 3-cycles to move all 6 points is if theyare disjoint. Then they do not act transitively on at least 4 points. Hence if
m = 6 then r ≥ 3.Let aj be the number of ui's, which contain the point j (j = 1, . . . , m).Clearly ∑m

j=1 aj = 3r. Let k = |{ aj | aj = 1 }|. We distinguish 2 cases:1. k ≤ r. Now 3r =
∑m

j=1 aj ≥ 2 · (m − k) + k = 2m− k ≥ 2m− r, whichimplies r ≥ m/2 ≥ bm/2c.



78 LENGTH OF POLYNOMIAL EXPRESSIONS2. k > r. Now there exists i0 such that ui0 moves exactly two points from
{ aj | aj = 1 } (if it contained three, then there would be a 3-orbit in
w). Without loss of generality we can assume that these points are mand m − 1. Now let w′ = ur · · ·ui0+1ui0−1 · · ·u1. Now w′ ∈ Am−2, itmoves m − 2 points and acts on at least m − 4 points transitively astaking out ui0 from the product decreases the number of elements of
O exactly by 2 (for elements m and m − 1). By induction r − 1 ≥
b(m − 2) /2c = bm/2c − 1, hence r ≥ bm/2c.Corollary 100. For G = Am (m ≥ 5) we have KG\{ 1 },b ·Kb,G\{ 1 } ≥ bm/2c.Proof. For every u we have Ku,G\{ 1 } ≤ Ku,b · Kb,G\{ 1 }. Applying Proposi-tion 99 with u = (1 2 3) �nishes the proof.3.6 The commutator as a basic operationIn Theorem 48 we gave an upper bound for several functionally complete al-gebras. Theorem 48 used some strict conditions, though, namely that thereexist operations + and · with the properties described in Theorem 6 and

‖+‖ = v (+) = v (·) = ‖·‖ = 2. This condition can be ful�lled by theBoolean algebra or rings, hence for these structures we were able to applythe theorem (Section 3.2 and Section 3.3). On the other hand, groups onlyhave one basic binary operation: the group multiplication which correspondsto the operation + mentioned above. Groups have no natural operationcorresponding to the ring-multiplication ·, at least not something which hasthe required properties. They do have another operation, which is somehowanalogous to ring multiplication: the commutator. In this Section we con-sider functionally complete groups when they have the commutator as anadditional basic operation. We observe that the commutator indeed behavessimilar to the ring multiplication. We prove Theorem 101, which gives sim-ilar bounds for the length of an arbitrary function over a two-element baseset as Theorem 48 does.Let G = (G, ·,−1 ) be a functionally complete group and let us considerthe algebra (G, [, ]) = (G, ·,−1 , [, ]) whose underlying set is G and basicoperations are the group multiplication, the inverse and the commutator
[x, y] = x−1y−1xy. According to the de�nition of length if p and q are poly-nomial expressions we have ‖[p, q]‖ = ‖p‖+ ‖q‖ and v ([p, q]) = v (p) + v (q).The following theorem shows that using the commutator as a basic opera-tion allows us to get rid of the nlog V and of the (N − 1)log V factors in the



3.6 The commutator as a basic operation 79upper bounds of Theorems 75 and 88 for a two-element base set. We derivea bound depending linearly on the number of non-identity values e of thefunction f with the same factor n− log e as in Theorem 48. This shows thatthe commutator seems to act similarly to the multiplication in rings or the
∧ operation in the two-element Boolean algebra.Theorem 101. Let G = (G, ·,−1 , 1) be a functionally complete group and let
G

c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is the commutator operation of G.Let 1 6= u ∈ G, let f be an arbitrary n-ary function f : { 1, u }n → { 1, u }with at most e-many non-identity values. Then
‖f‖

Gc ≤ KG\{ 1 },u · ((10 + 3 · (n − log e)) · e − 5) + 1.When G = Am (m ≥ 5) and u is a 3-cycle, then
‖f‖

Ac
m
≤ 4 · ((10 + 3 · (n − log e)) · e − 5) + 1.If 4 - m, then we can change the constant factor 4 by 2.In order to prove this theorem, we �rst have to introduce a series of non-identity elements ui ∈ G. Let 1 6= u ∈ G and let u0 = u. We de�ne un recur-sively: if un−1 6= 1 is de�ned, then by Lemma 20 there exists cn−1 ∈ G suchthat [un−1, u

cn−1] 6= 1. Let us �x this element cn−1 and let un = [un−1, u
cn−1].The following lemma has key importance in proving Theorem 101.Lemma 102. Let G = (G, ·,−1 , 1) be a functionally complete group andlet G

c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is the commutator operationof G. Let un be the element de�ned above. Let f be an arbitrary n-aryfunction f : { 1, u }n → { 1, un } with at most e-many non-identity values(1 ≤ e ≤ 2n). Then
‖f‖

Gc ≤ (10 + 3 · (n − log e)) · e − 6.Proof. The idea of the proof is that using the commutator we are able toexpress f recursively as we did in the proof of Theorem 48. We prove thelemma by induction on n.For n = 1 it is easy to see that
f (x1) =

[
u0,
(
c−1
0 u
)
x−1

1 c0

]
·
[
u0, c

−1
0 x1c0

]
, if f(1) = f(u) = u1,

f (x1) =
[
u0,
(
c−1
0 u
)
x−1

1 c0

]
, if f(1) = u1, f(u) = 1,

f (x1) =
[
u0, c

−1
0 x1c0

]
, if f(1) = 1, f(u) = u1.It is easy to see that in every case the length is at most

4 · e ≤ (10 + 3 · (1 − log e)) · e − 6.



80 LENGTH OF POLYNOMIAL EXPRESSIONSAs for the general case, we de�ne some new functions. Let f1 (x1, . . . , xn−1)and fu (x1, . . . , xn−1) be the following n − 1-ary functions:
f1 (x1, . . . , xn−1) = 1, if f (x1, . . . , xn−1, 1) = 1,

f1 (x1, . . . , xn−1) = un−1, if f (x1, . . . , xn−1, 1) = un,

fu (x1, . . . , xn−1) = 1, if f (x1, . . . , xn−1, u) = 1,

fu (x1, . . . , xn−1) = un−1, if f (x1, . . . , xn−1, u) = un.Now it is easy to check that
f (x1, . . . , xn) =

[
f1 (x1, . . . , xn−1) ,

(
c−1
n−1u

)
x−1

n cn−1

]
·

·
[
fu (x1, . . . , xn−1) , c−1

n−1xncn−1

]
. (3.29)We note that if either f1 or fu is identically 1, then we leave out the cor-responding commutator from the formula (3.29). Let f1 have e1-many non-identity values and let fu have eu-many non-identity values. If e1 ≥ 1 and

eu ≥ 1 then
‖f‖ ≤ (‖f1‖ + 3) + (‖fu‖ + 3) .Now if both e1 and eu are positive then we have

‖f‖ ≤ (e1 · (10 + 3 · (n − 1 − log e1)) − 6 + 3) + (eu · (10 + 3 · (n − 1 − log eu)) − 6 + 3)

≤ (10 + 3 · n) · (e1 + eu) − 3 · (e1 + eu + e1 · log e1 + eu · log eu) − 6

≤ (10 + 3 · n) · e − 3 · e · log e − 6

≤ (10 + 3 · (n − log e)) − 6.Again, we use Lemma 49, just as we did in the proof of Theorem 48.If one of e1 and e0 is 0, then we have
‖f‖ ≤ e · (10 + 3 · (n − 1 − log e)) − 6 + 3

≤ e · (10 + 3 · (n − log e)) − 6.Proof of Theorem 101. Let f be an arbitrary function f : { 1, u }n → { 1, u }.Let f ′ be the n-ary function with the same domain as f and
f ′ (x1, . . . , xn) = 1, if f (x1, . . . , xn) = 1,

f ′ (x1, . . . , xn) = un, if f (x1, . . . , xn) = u.It is easy to see that f = pun,u (f ′). After applying Lemma 102, Propo-sition 79 and Corollary 42 we obtain the desired bound for a functionallycomplete group G. If G = Am, then applying Proposition 95 gives us thesecond bound of the theorem.



3.6 The commutator as a basic operation 81The idea of Lemma 102 unfortunately cannot be used for an arbitraryfunction f : Gn → G. We still can obtain better bounds than those in Theo-rem 75. The result looks similar to (3.9) in Theorem 45.Theorem 103. Let G = (G, ·,−1 , 1) be a functionally complete group andlet G
c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is the commutator operation of

G. Let f be an arbitrary n-ary (possibly partial) function over G with e-manynon-identity values. Let N = |G| and let K = 1+max
{

KG\{ 1 },b, Kb,G\{ 1 }

}.Thenthe following inequalities hold:
vGc

(

f
(n)
b

)

≤ KG\{ 1 },b · n, (3.30)
∥
∥
∥f

(n)
b

∥
∥
∥

Gc
≤ KG\{ 1 },b · (3n − 1) + 1 ≤ 3 · KG\{ 1 },b · n, (3.31)

vGc (χ1;b) ≤ KG\{ 1 },b · vGc

(

f
(N−1)
b

)

≤ K2
G\{ 1 },b · (N − 1) , (3.32)

‖χ1;b‖Gc ≤
∥
∥
∥f

(N−1)
b

∥
∥
∥

Gc
+ vGc

(

f
(N−1)
b

)

· max
u∈G\{ 1 }

‖pu,b‖Gc , (3.33)
‖χ1;b‖Gc ≤ 2 ·

(
KG\{ 1 },b + 1

)2 · (N − 1) , (3.34)
‖χ1;u‖Gc ≤ Kb,u ·

(
‖χ1;b‖Gc + 1

)
+ 1, (3.35)

‖χa1,...,an;b‖Gc ≤
∥
∥
∥f

(n)
b

∥
∥
∥

Gc
+ vGc

(

f
(n)
b

)

·
(
‖χ1;b‖Gc + vGc (χ1;b)

)
, (3.36)

‖χa1,...,an;u‖Gc ≤ Kb,u ·
(
‖χa1,...,an;b‖Gc + 1

)
+ 1, (3.37)

‖f‖
Gc ≤ e · max

{
‖χa1,...,an;u‖Gc : 1 6= u ∈ G

}
, (3.38)

‖f‖
Gc ≤ 3 · K4 · N · n · e. (3.39)If G = Am (m ≥ 5), then

‖f‖
Ac

m
≤ 176 · bm/2c · (N − 1) · n · e.If 4 - m, then we can replace the constant 176 by 28.Proof. For proving (3.30) and (3.31) let us de�ne the following sequence ofgroup elements: u1 = b and if ui−1 6= 1 is de�ned, then by Lemma 20 thereexists ci−1 such that [ui−1, b

ci−1 ] 6= 1. Let us �x this element ci and let
ui = [ui−1, b

ci ]. We note that this sequence is the same as the sequence wede�ned earlier in this Section, but with a di�erent indexing. Now let us de�nethe following polynomials: p(1) (x1) = x1 and for i ≥ 2 let p(i) (x1, . . . , xi) =
[pi−1 (x1, . . . , xi−1) , xci

n ]. It is easy to see that v
(
p(n)
)

Gc = n and ∥∥p(n)
∥
∥

Gc =

3n − 2. Now pun,b

(
p(n) (x1, . . . , xn)

) realizes f
(n)
b . By Lemma 40 we have

vGc

(

f
(n)
b

)

≤ Kun,b·n. By Corollary 42 we have ∥∥∥f (n)
b

∥
∥
∥

Gc
≤ Kun,b·(3n − 1)+1.Similarly for any function f we have ‖pu,v (f)‖ ≤ Ku,v · (‖f‖ + 1) + 1.



82 LENGTH OF POLYNOMIAL EXPRESSIONSThe inequalities (3.32), (3.33), (3.35), (3.36), (3.37), (3.38) follow fromLemma 40 and Corollary 42 using the following representations based on theproof of Theorem 18:
χ1;b(x) = f

(N−1)
b

(
bpu2,b (x)−1 , . . . , bpuN ,b (x)−1) ,

χ1;u(x) = pb,u (χ1;b(x)) ,

χa1,...,an;b(x1, . . . , xn) = f
(n)
b

(
χ1;b

(
x1a

−1
1

)
, . . . , χ1;b

(
xna−1

n

))
,

χa1,...,an;u(x1, . . . , xn) = pb,u (χa1,...,an;b(x1, . . . , xn)) ,

f (x1 . . . , xn) =
∏

(a1,...,an)∈Gn

16=u=f(a1...,an)

χa1,...,an;u (x1, . . . , xn),

where b 6= 1, u 6= 1, G = { 1, u2, . . . , uN } and Ku,v = v (pu,v). The inequality3.34 simply follows from the earlier inequalities. Then (3.39) follows fromthe other inequalities:
‖χa1,...,an;b‖Gc ≤

∥
∥
∥f

(n)
b

∥
∥
∥

Gc
+ vGc

(

f
(n)
b

)

·
(
‖χ1;b‖Gc + vGc (χ1;b)

)

≤ 3 · (K − 1) · (3n − 1) + (K − 1) · n · (N − 1) ·
(
2K2 + (K − 1)2)

≤ 3 · (K − 1) · n ·
(
3 + (N − 1)K2

)
− 3 · (K − 1)

≤ 3 · K3 · N · n − 1,

‖f‖
Gc ≤

(
(K − 1) ·

(
‖χa1,...,an;b‖Gc + 1

)
+ 1
)
· e ≤ 3 · K4 · N · n · e.We used in the estimations that K ≥ 2.If G = Am, then we choose b = (1 2 3). Then KG\{ 1 },b ≤ 4 or 2 (de-pending on whether 4 | m or not) and Kb,G\{ 1 } ≤ bm/2c. Therefore if 4 | mthen

vGc

(

f
(n)
b

)

≤ 4n,
∥
∥
∥f

(n)
b

∥
∥
∥

Ac
m

≤ 12n − 3,

vGc (χ1;b) ≤ 16 (N − 1) = 16N − 16,

‖χ1;b‖Ac
m
≤ 16(N − 1) + 12(N − 1) − 3 = 28N − 31,

‖χa1,...,an;b‖Ac
m
≤ 12n − 3 + 4n · (44N − 47) = 176 · n · (N − 1) − 3,

‖f‖
Ac

m
≤ ((176n (N − 1) − 2) · m/2 + 1) · e
≤ 88 · m · (N − 1) · n · e.



3.6 The commutator as a basic operation 83If 4 - m then
vGc

(

f
(n)
b

)

≤ 2n,
∥
∥
∥f

(n)
b

∥
∥
∥

Ac
m

≤ 6n − 1,

vGc (χ1;b) ≤ 4 (N − 1) = 4N − 4,

‖χ1;b‖Ac
m
≤ 4(N − 1) + 6(N − 1) − 1 = 10N − 11,

‖χa1,...,an;b‖Ac
m
≤ 6n − 1 + 2n · (14N − 15) = 2 · n · (14N − 12) − 1,

‖f‖
Ac

m
≤ (2n (14N − 12) · bm/2c + 1) · e
≤ 28 · bm/2c · (N − 1) · n · e.Comparing the result of Theorem 103 to those of Theorem 88 we observethat the commutator shortens the length of the functions f

(2)
b and f

(n)
b to belinear in n. Therefore using the commutator improves our upper bounds onthe length of an arbitrary function. Indeed, the upper bound (3.39) is nowlinear in n and the constant is linear in the size of the group, too. Withoutusing the commutator our bounds in Theorem 88 are at least quadratic inthese values.We �nish the Section by summarizing our bounds if the commutator is abasic operation:Corollary 104. Let G = (G, ·,−1 , 1) be a functionally complete group andlet G

c = (G, [, ]) = (G, ·,−1 , 1, [, ]), where [, ] is the commutator operation of
G. Let 1 6= u ∈ G, let N = |G| and let K be the number of conjugacy classesof G. For every arbitrary n-ary function f ′ : { 1, u }n → { 1, u } we have

‖f ′‖
Gc ≤ 13 · K · (N − 1) · Nn−1.When G = Am (m ≥ 5) and u is a 3-cycle, then

‖f ′‖
Ac

m
≤ 52 · (N − 1) · Nn−1.If 4 - m, then we can replace the constant factor 52 by 26.For an arbitrary n-ary function f over G we have

‖f‖
Gc ≤ 3 · K4 · (N − 1) · n · Nn.When G = Am (m ≥ 5), then

‖f ′‖
Ac

m
≤ 176 · bm/2c · (N − 1)2 · n · Nn−1.



84 LENGTH OF POLYNOMIAL EXPRESSIONSIf 4 - m, then we can replace the constant factor 176 by 28.Moreover for every ε > 0 and for su�ciently large n there exists an n-aryfunction f0 such that
‖f0‖G

≥ log N

1 + ε
· Nn

log n
.Proof. We apply Theorems 101, 103, Remark 76 and Theorem 46.3.7 ProblemsWe already mentioned in Remark 38 that we do not know whether ‖f‖ and

v (f) can always be realized by the same polynomial:Problem 1. Let A be a functionally complete algebra. Let f : An → A bean arbitrary function with domain An. Does a polynomial p exist over thealgebra A such that v (p) = v (f) and ‖p‖ = ‖f‖?In Section 3.4.2 we observed that there is a gap between the linear lowerbound and the at least quadratic upper bound for the functions f
(n)
b . Weconjecture that a quadratic lower bound can be found, but there are nomethods for proving such a lower bound.Problem 2. With what rate do v

(

f
(n)
b

) and ∥∥∥f (n)
b

∥
∥
∥ increase in n?



Chapter 4Computations over functionallycomplete groupsIn Chapter 3 we investigated the length of polynomials over functionallycomplete groups. We gave several upper bounds on the length of realizingpolynomials for an arbitrary n-ary function. A natural question is to askhow e�cient these realizations are. From the practical perspective, though,length of the polynomials is not necessarily the best measure for e�ciency.Nowadays, in the age of computers, the most frequent problems are thetime and resource needs of di�erent calculations. In this Chapter by `e�-ciency' we mean required computational time. To be precise, we need to �xa computational model. We consider two models in this Chapter: acycliccircuits over an algebra and �nite-state sequential circuits over simple non-Abelian groups.In our �rst approach we investigate the complexity of circuits. For a func-tionally complete algebra A, an A-circuit is essentially a directed acyclic di-graph with labelled nodes. The source nodes are labelled by variables or byconstants, the other nodes (called `gates') are labelled by basic operations of
A. A calculation at a gate is the application of the corresponding basic func-tion on the values calculated at the sources of the incoming edges. Thereforea circuit computes a function at every gate. If every calculation at a gatetakes one time-step, then the number of gates corresponds to the requiredtime for calculating a function with a single processor machine. Similarly alongest path corresponds to the required time calculating a function with amultiple processor machine.In the Section 4.2 we �nd circuits computing an arbitrary function overa functionally complete group using the ideas of Section 2.3. Then we com-pare the functionally complete groups (especially the alternating groups) toother functionally complete algebras in the terms of circuit complexity. We



86 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSinvestigate the case where the other algebra is either one of the two-elementalgebras B and B0 (in Section 4.3) or a ring (in Section 4.4). In particular weinvestigate the case when the ring is a �eld of prime order (in Section 4.4).Later in Section 4.5 we consider a completely di�erent model: the no-tion of �nite-state sequential circuits over simple non-Abelian groups, andinvestigate its e�ciency.4.1 Circuit complexityThe notion of circuit complexity emerged from the idea of �nding functionswhich can be calculated faster than others. Our main reference on circuitcomplexity are the books [33] and [40].De�nition 105. Let A = (A, g1, . . . , gm) be an algebra with underlying set
A and basic operations g1, . . . , gm. An n-ary A-circuit C consists of inputs
x1, . . . , xn and �nitely many gates G1, . . . , Gb. The gate Gi is a (ni + 1)-tuple (hi, P1, . . . , Pni

) such that hi is an ni-ary basic operation of A and
P1, . . . , Pni

are predecessors from the set A∪{ x1, . . . , xn }∪{G1, . . . , Gi−1 }.We denote by ResGi
the function computed at the gate Gi. We de�ne Resinductively on an arbitrary input x̄ = (x1, . . . , xn) ∈ An. For an inputvariable xi let Resxi
(x̄) = xi, for a constant a ∈ A let Resa (x̄) = a. For

Gi = (hi, P1, . . . , Pni
) let ResGi

(x̄) = hi

(
ResP1 (x̄) , . . . , ResPni

(x̄)
). Finallythe output of the circuit is a vector (y1, . . . , yk), where every yi is an inputvariable, or a constant, or a gate. This represents the function f : An → Akcomputed by the circuit, i.e. f = (f1, . . . , fk) such that fi is the function

Resyi
(x̄) computed at yi.Remark 106. As we already mentioned in Section 3.1, sometimes one has towork with partial functions instead of fully de�ned ones. The notion of acircuit computing a function can be naturally extended to partial functions:let us assume that C computes a function f : An → Ak. Let g : An → Ak bea partial function with domain set D. Let us assume that f

∣
∣
D

= g
∣
∣
D
. Thenwe say that the circuit C computes the partial function g. Moreover, it isclear that if an algebra A is functionally complete, then for every (possiblypartial) function f can be computed by an A-circuit.Remark 107. A circuit di�ers in an essential way from the rooted tree cor-responding to a polynomial. In a circuit, intermediate results of gates canbe used by multiple other gates further `downstream', rather than only once.Thus circuits may be viewed as a generalization of polynomials.It is easy to represent a circuit as a directed acyclic graph with nodeslabelled by the basic operations of A, variables, and constants. The source



4.1 Circuit complexity 87nodes correspond to inputs and to constants, the other nodes correspond tothe gates. Let us label the node corresponding to variable xi by xi. Letus label the node corresponding to variable c by c. Let us label the nodecorresponding to Gi by the basic function hi. There is an edge going fromevery predecessor of Gi to the node corresponding to Gi. The incoming edgesat the node Gi are ordered, where this ordering represents the ordering ofthe inputs of hi.This circuit model is quite close to how computers calculate di�erentfunctions. If we assume that each gate-computation takes one time-step,then computing f for a particular input using a circuit C takes s (C)-manytime-steps with a single processor. If, however, one can do arbitrary manycomputations parallelly (by having multiple processors) then computing ffor a particular input using C takes d (C)-many time-steps. Therefore thesize corresponds to the required time for single processor computations, whilethe depth corresponds to the required time for multi-processor computations.We want to compare the e�ciency of circuits which calculate particularfunctions over di�erent functionally complete algebras. First we need someway to measure this e�ciency.De�nition 108. The size or complexity s (C) of a circuit C is the numberof gates in C. The depth d (C) of the circuit C is the length of the longestpath in C. For a function f : An → Ak let the complexity of f with respect to
A be the size of a smallest n-ary A-circuit which computes f ; let the depthof f with respect to A be the depth of an n-ary A-circuit which computes fand has the smallest depth:

sA (f) = min { s (C) : C computes f over A } ,

dA (f) = min { d (C) : C computes f over A } .When it does not create confusion, we omit the subscript and just write s (f)for the size and d (f) for the depth.Remark 109. We de�ned circuits representing an f : An → Ak function.Throughout the thesis we only consider An → A functions, unless explic-itly indicated otherwise. This is not an essential restriction, as for a function
f : An → Ak we have f = (f1, . . . , fk), where fi : An → A. Now it is easy tosee that

max
1≤i≤k

s (fi) ≤ s (f) ≤
k∑

i=1

s (fi) ,

d (f) = max d (fi) .



88 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSIndeed, a circuit C computing f in particular computes every fi (1 ≤ i ≤ k).On the other hand if circuits C1, . . . Ck compute the functions f1, . . . , fk, thentheir union computes f .Remark 110. It is easy to see that constant functions or projections can berepresented by a circuit without any gates, therefore their size and depth is0. We now introduce a de�nition for technical purposes. We do not want tochange the usual complexity measure. We use the notions of non-unary sizeand non-unary depth for giving upper and lower bounds on the size and onthe depth.In Chapter 3 we mentioned that the length of a polynomial is the sameas the number of leaves of the corresponding branching tree. This branchingtree can be considered as a circuit. There are some di�erences, though.The main di�erence is that in the branching tree every node represents anat least binary basic function. The edges are labelled with compositions ofunary functions. We can easily obtain a circuit from a branching tree byreplacing every edge with its correspondent chain of unary gates. With thismethod we can assign a circuit to every branching tree. Let us call thiscircuit the circuit corresponding to the branching tree.We have to observe, though, that due to the unary basic operations,the relationship is not clear either between the sizes or between the depthsof the branching tree and of the corresponding circuit. This idea suggeststhe elimination of the unary part of a circuit, just like how we obtained abranching tree from a rooted tree in Chapter 3. We collapse every chain ofunary basic operations into a single edge, and we consider the size and thedepth of the obtained circuit. The precise de�nition is the following.De�nition 111. Let C be an A-circuit. Let C∗ be the circuit which weobtain from C by removing every unary gate: if Gi is a unary gate with pre-decessor P , then we remove the gate Gi, and whenever Gi was a predecessorof any other gate, then we change that predecessor to P . By iterating thismethod we obtain a circuit C∗, which has no unary gates. This circuit doesnot necessarily compute the same function as C, but they are related.The non-unary size or non-unary complexity s∗ (C) of a circuit C is thenumber of gates in C∗. The non-unary depth d∗ (C) of the circuit C is thelength of the longest path in C∗. For a function f : An → Ak let the non-unary complexity of f with respect to A be the non-unary size of a smallest
n-ary A-circuit which computes f ; let the non-unary depth of f with respectto A be the non-unary depth of an n-ary A-circuit which computes f and



4.1 Circuit complexity 89has the smallest depth:
s∗
A

(f) = min { s∗ (C) : C computes f over A } ,

d∗
A

(f) = min { d∗ (C) : C computes f over A } .When it does not create confusion, we omit the subscript and just write s∗ (f)for the non-unary size and d∗ (f) for the non-unary depth.It is clear that the depth of a branching tree is essentially the same asthe non-unary depth of the corresponding circuit. We reveal more about therelationship of these quantities. For that we need to introduce some morenotations.Let A = (A, g1, . . . , gm) be a functionally complete algebra with underly-ing set A and basic operations g1, . . . , gm. Let g0 = id the identity functionover A. Let us suppose that the functions g0, . . . , gm0 are unary, the functions
gm0+1, . . . , gm are at least binary. Then let us denote the unary part of the al-gebra by A

1, i.e. A1 = (A, g0, . . . , gm0). Let H be the unary functions whichcan be represented as polynomials over A
1 (including the identity function

id : x 7→ x). Let
U = max

f∈H
sA1 (f).Note that if H = { id }, then U = 0.Proposition 112. Let A be a functionally complete algebra, where everybasic operation is at most k-ary (k ≥ 2). Let U be the number de�ned above.Then for any arbitrary n-ary (possibly partial) function f over A we have

s∗ (f) ≤ s (f) ≤ s∗ (f) + (k + 1) · U · s∗ (f) ,

d∗ (f) ≤ d (f) ≤ d∗ (f) + U · (d∗ (f) + 1) .Proof. It is clear that s∗ (f) ≤ s (f) and d∗ (f) ≤ d (f). Let us assume that
C1 is an A-circuit which computes f and s (C1) = s (f). Let C∗

1 be thecircuit we obtain from C1 by collapsing every chain of unary basic operationsas in De�nition 111. If a chain contains more than U-many unary functions,then this chain can be replaced by a chain of at most U-many basic unaryfunctions (by the de�nition of U). This way the size of C1 can be decreased.Therefore every chain contains at most U-many unary basic functions.In C∗
1 there are s∗ (f)-many gates labelled by an at least binary basicoperation. Each of the gates has at most k-many incoming edges, whichrepresent (possibly empty) chains of basic unary functions. Moreover everygate of C∗

1 might have been a predecessor of a unary chain. As every chaincontains at most U-many basic unary operations, we can conclude that weremoved from C at most (k + 1) · U · s∗ (f)-many edges.



90 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSWe can derive the upper bound for d (f) similarly: let C2 be an A-circuit which computes f and d (f) = d (C2). Without loss of generality wecan assume that every unary chain in C2 contains at most U-many basicunary functions, otherwise we change the particular chain with an at most
U-long chain. Now collapse every unary chain and obtain the circuit C∗

2 as inDe�nition 111. The longest path in C2 can contain at most d∗ (f)-many gateslabelled with a non-unary function. Each of the gates have incoming edges,which represent (possibly empty) chains of basic unary functions. Moreoverevery gate of C∗
2 might have been a predecessor of a unary chain. As everychain contains at most U-many basic unary operations, we can conclude thatin the longest path there are at most (d∗ (f) + 1)·U-many unary gates, whichproves the last inequality.This proposition shows that it is important how the basic operationsof a functionally complete algebra are de�ned. Therefore we set that thebasic operations of a ring are the binary operations +, − and ·. The basicoperations of a group are the binary multiplication and the unary inverse.The basic operations of the two-element Boolean algebra B are the unarynegation, and the binary ∧ and ∨. The basic operations of the two-elementalgebra B0 are the binary NAND and NOR.Corollary 113. Let A be a functionally complete algebra and let f be anarbitrary function over A. If A is a functionally complete ring or A is thetwo-element algebra B0, then s (f) = s∗ (f) and d (f) = d∗ (f). If A is afunctionally complete group or the two-element Boolean algebra B, then

s∗ (f) ≤ s (f) ≤ 4 · s∗ (f) ,

d∗ (f) ≤ d (f) ≤ 2 · d∗ (f) + 1.Proof. Functionally complete rings and B0 has no unary operations. Thetwo-element Boolean algebra B and the groups have one unary operationwhich has order two, therefore U = 1. Every other basic operation is binary,hence k = 2. Applying Proposition 112 �nishes the proof.In the following we give some bounds on the size, on the depth, on the non-unary size, and on the non-unary depth of an arbitrary function. Generallyit is easier to obtain lower bounds on the size or on the depth, and it is easierto obtain upper bounds on the non-unary size or on the non-unary depth.First we give bounds on the non-unary size and on the non-unary depth byhaving information on the length.



4.1 Circuit complexity 91Proposition 114. Let A be a functionally complete algebra, where everybasic operation is at most k-ary (k ≥ 2). Then for any arbitrary n-ary(possibly partial) function f over A we have
dlogk ‖f‖e ≤ d∗ (f) ≤ s∗ (f) ≤ ‖f‖ − 1.Proof. The inequality d∗ (f) ≤ s∗ (f) is trivial. Let p be a polynomial real-izing f over A such that ‖f‖ = ‖p‖. This polynomial can be represented bya rooted tree. Let us consider an A-circuit corresponding to the rooted treeof p. This circuit contains at most ‖p‖ − 1-many non-unary gates, since pcontains at most ‖p‖ − 1-many occurrences of non-unary basic operations.Therefore s∗ (f) ≤ ‖f‖ − 1.All that remains is to prove that dlogk ‖f‖e ≤ d∗ (f) holds. Let C be an

A-circuit which computes f with non-unary depth d∗ (C) = d∗ (f). Then thecircuit can be translated to a rooted tree with the same depth, which rootedtree corresponds to a polynomial p′. The longest path in the rooted treehas d∗ (f)-many branching nodes, therefore the tree has at most kd∗(f)-manyleaves. This proves that ‖f‖ ≤ ‖p′‖ ≤ kd∗(f), hence logk ‖f‖ ≤ d∗ (f). Since
d∗ (f) is an integer number, we have dlogk ‖f‖e ≤ d∗ (f).Proposition 115. For functions f, g1, . . . , gn we have that

s (f (g1, . . . , gn)) ≤ s (f) +
n∑

i=1

s (gi) ,

d (f (g1, . . . , gn)) ≤ d (f) + max
1≤i≤n

d (gi) ,Proof. Let C, C1, . . . , Cn be circuits computing f, g1, . . . , gn respectively, suchthat s (C) = s (f) and s (Ci) = s (gi) for every 1 ≤ i ≤ n . Now byreplacing in C every variable xi by the circuit Ci we obtain a circuit of size
s (f) +

∑n
i=1 s (gi) which computes the function f (g1, . . . , gn).For the inequality about the depth, let C ′, C ′

1, . . . , C
′
n be circuits comput-ing f, g1, . . . , gn respectively, such that d (C ′) = d (f) and d (C ′

i) = d (gi) forevery 1 ≤ i ≤ n . Now by replacing in C ′ every variable xi by the circuit
C ′

i we obtain a circuit of depth d (f) + max1≤i≤n d (gi) which computes thefunction f (g1, . . . , gn).The following lemma plays a similar role as Lemma 44, and determinesthe su�cient size and depth for iterating a binary function.Lemma 116. Let f be a binary function over an algebra A. Let us de�nethe following series of functions: f (1) (x1) = x1, f (2) (x1, x2) = f (x1, x2) andfor every integer n ≥ 2:
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f (2n−1) (x1, . . . , x2n−1) = f

(
f (n) (x1, . . . , xn) , f (n−1) (xn+1, . . . , x2n−1)

)

f (2n) (x1, . . . , x2n) = f
(
f (n) (x1, . . . , xn) , f (n) (xn+1, . . . , x2n)

)
.Let S = s (f) and D = d (f). Then

s
(
f (n)

)
≤ (n − 1) · S,

d
(
f (n)

)
≤ dlog ne · D.Proof. We prove the lemma by induction on n. Both inequalities triviallyhold for n = 1, 2. Let us suppose that the inequalities hold for every k < n.Now using the recursive de�nition of f (n) and Proposition 115 we have

s
(
f (n)

)
≤ s

(
f (2)
)

+ s
(
f bn/2c

)
+ s

(
f dn/2e

)

≤ (2 − 1 + bn/2c − 1 + dn/2e − 1) · S
≤ (n − 1) · S.Similarly we have

d
(
f (n)

)
≤ d

(
f (2)
)

+ max
{

d
(
f bn/2c

)
, d
(
f dn/2e

) }

≤ (1 + dlog dn/2ee) · D
≤ dlog ne · D.Now we are ready to give bounds on the size and on the depth of anarbitrary function.Theorem 117. Let A be a functionally complete algebra, N = |A|. Let

0, 1 ∈ A be two distinct elements and let +, · , χa be functions with propertiessuch as in Theorem 6. Let χa1,...,an
be the characteristic function for the n-tuple (a1, . . . , an). Let us suppose that S, D are positive real numbers suchthat S ≥ max { s (χa) : a ∈ A } and D ≥ max { d (χa) : a ∈ A }. Let f be anarbitrary n-ary function over A with e-many non-zero values, where 1 ≤ e ≤

|A|n. Then the following inequalities hold:
s (χa1,...,an

) ≤ (n − 1) · s (·) +
n∑

i=1

s (χai
) ≤ n · (S + s (·)) − s (·) , (4.1)

d (χa1,...,an
) ≤ dlog ne · d (·) + max

1≤i≤n
d (χai

) ≤ dlog ne · d (·) + D, (4.2)
s (f) ≤ (e − 1) · s (+) + e ·

(

s (·) + max
ai∈A

s (χa1,...,an
)

)

, (4.3)
d (f) ≤ dlog ee · d (+) + d (·) + max

(a1,...,an)∈An
d (χa1,...,an

) . (4.4)



4.1 Circuit complexity 93If N ≥ 3, then
s (f) ≤ ((3 + n − logN e) · e − 2) · (s (+) + s (·) + S) , (4.5)
s (f) ≤ e · (s (+) + n · s (·) + n · S) − s (+) , (4.6)
d (f) ≤ dlog ee · d (+) + (1 + dlog ne) · d (·) + D. (4.7)If N = 2, then
s (f) ≤ ((3 + n − logN e) · e − 2) · (s (+) + s (·) + S) , (4.8)
s (f) ≤ e · (s (+) + (n − 1) · s (·) + n · S) − s (+) , (4.9)
d (f) ≤ dlog ee · d (+) + dlog ne · d (·) + D. (4.10)Proof. The inequalities apart from (4.5) and (4.8) follow from simply apply-ing Proposition 115 and Lemma 116 on the following representations:

χa1,...,an
(x1, . . . , xn) =

n∏

i=1

χai
(xi) ,

f (x1, . . . , xn) =
∑

(a1,...,an)∈An

(f (a1, . . . , an) · χa1,...,an
(x1, . . . , xn)) ,and whenever the algebra has only 2 elements, then

f (x1, . . . , xn) =
∑

(a1,...,an)∈An

χa1,...,an
(x1, . . . , xn) .Here we consider ∏ and∑ as the iterated versions of · and + in the way wedescribed in Lemma 116.The inequalities (4.5) and (4.8) are the same. The proof of the in-equality (4.5) is rather similar to the one for Theorem 48 in Chapter 3.We prove the inequality (4.5) by induction on n. If n = 1, then f(x) =

∑

a∈A f(a) · χa (x), which has size at most e · (s (·) + S) + (e − 1) · s (+) ≤
((3 + 1 − logN e) · e − 2) · (s (+) + s (·) + S) if we do not use any of thosesummands where f(a) = 0.The idea of the proof is that we try to calculate f recursively. For everyelement a ∈ A let fa be an n − 1-ary function, such that fa (x1, . . . , xn−1) =
f (x1, . . . , xn−1, a). Now f (x1, . . . , xn) =

∑

a∈A fa (x1, . . . , xn−1) ·χa (xn). Let
fa have ea-many non-zero values. Let T = s (·) + s (+) + S. Now we applythe induction hypothesis for the n − 1-ary functions. If there is only one
ea > 0, then ea = e and

s (f) ≤ s (fa) + s (·) + S + s (+) = s (fa) + T

≤ e · T · (3 + n − 1 − logN e) − 2 · T + T

≤ e · T · (3 + n − logN e) − 2 · T.
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‖f‖ ≤

∑

a∈A

(s (fa) + s (·) + S + s (+)) =
∑

a∈A

(s (fa) + T )

≤
∑

ea>0

(ea · T · (3 + n − 1 − logN ea) − 2 · T + T )

≤
∑

ea>0

ea · T · (3 + n) − T ·
(
∑

ea>0

ea +
∑

ea>0

ea logN ea

)

−
∑

ea>0

T

≤ e · T · (3 + n) − T · e · logN e − 2 · T
= e · T · (3 + n − logN e) − 2 · T.The last inequality holds by Lemma 49.Remark 118. While the idea of Theorem 48, namely iterate functions recur-sively, can be used for giving sharper bounds on the size, it cannot be usedfor building e�cient circuits minimizing the depth. We note that if e is large,e.g. e ≥ c1 · Nn−c2 , then bounds (4.5) and (4.8) are linear in e and S, whilebounds (4.6) and (4.9) are linear not only in e and S, but in n, too. On theother hand if e is small, e.g. e ≤ c3 ·N c4·n (for some c4 < 1), then all bounds(4.5), (4.6), (4.8) and (4.9) are linear in e, n and S.Unfortunately Theorem 117 cannot be applied to functionally completegroups. It can be applied to functionally complete rings, or to the two-element algebras B and B0 as the following Corollary shows. We prove someupper bounds on the size and on the depth of an arbitrary function over afunctionally complete group in Section 4.2.Corollary 119. Let A be a functionally complete ring or any of the two-element algebras B0 or B. Let N = |A|. Let us suppose that S, D are positivereal numbers such that S ≥ max { s (χa) : a ∈ A } and D ≥ max { d (χa) : a ∈ A }.Let f be an arbitrary n-ary function over A with e-many non-zero values,where 1 ≤ e ≤ |A|n. Then

s (f) ≤ ((3 + n − logN e) · e − 2) · (S + 2) ,

d (f) ≤ dlog ee + dlog ne + D + 1.Moreover, if N = 2 then
s (f) ≤ 3 · e · (3 + n − log e) − 6,

d (f) ≤ dlog ee + dlog ne + 1.



4.1 Circuit complexity 95Proof. The �rst two inequalities are simple consequence of Theorem 117.If N = 2, then A is one of the three algebras B, B0, and Z2. In any casewe have S = D = 1. The inequalities for the case of N = 2 are now an easyconsequence of Theorem 117.The following theorem gives a lower bound on the size and on the depth:Theorem 120. Let A be a functionally complete algebra. Let us suppose thatevery basic operation is at most k-ary. For every ε > 0 and for su�cientlylarge n (depending on ε) there exists an n-ary function f1 over A such that
s (f1) ≥

1

k − 1 + ε
· |A|n

n
.Moreover for every ε > 0 and for su�ciently large n (depending on ε) thereexists an n-ary function f2 over A such that

d (f2) ≥
log |A|
log k

· n − 1

log k
· log log n +

log log |A| − log (1 + ε)

log k
.Proof. The lower bound for the depth follows immediately from Proposi-tions 112, 114 and Theorem 46.As for the size we use a similar counting idea as Theorem 46 in Chapter 3.Let us consider the number of at most n-ary circuits which have size at most

s. Let this number be N(s). If S is the least number such that all n-aryfunctions have size at most S, then N(S) ≥ |A||A|n . This gives us a lowerbound on the size.Let A have m-many basic operation symbols. Let us consider an arbitrary
A-circuit with size s. Every gate can be labelled by m-many basic operations,hence for every circuit the labelling of the gates can be done at most ms-many ways. There are at most n+|A|+s−1-many possibilities to choose onepredecessor of a gate (namely the predecessor is one of the variables, or oneof the constants, or one of the other s− 1 gates). There are at most k-manypredecessors for every gate, hence there are at most (s + n + |A| − 1)ks-manyways to choose every predecessor for every gate. If a circuit has s-many gates,then it computes at most s-many functions at its gates. Moreover everycircuit with size s has been counted s!-many times, namely for the di�erentnumberings for the gates. Therefore we have

N (s) ≤ (s + n + |A| − 1)ks · ms · s · (s!)−1 .Let f be an n-ary function such that it has the largest size. Let S = s (f).Now applying N(S) ≥ |A||A|n we have that
|A|n · log |A| ≤ k · S · log (S + n + |A| − 1) + S · log m + log S − log S!.



96 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSBy Stirling formula (see e.g. [32]), S! ≥ c0 ·SS+1/2 · e−S, where c0 =
√

2π and
e is the natural base. Now
|A|n · log |A| ≤ k · S · log (S + n + |A| − 1) + S · log m + log S + S · log e

− (S + 1/2) · log S − log c0.Since the lefthand-side of the inequality is exponential in n, and the righthand-side is polynomial in n and in S, for su�ciently large n we have n+|A|−1 ≤ S.Now we have
|A|n · log |A| ≤ (k − 1) · S · log S + (k + log m + log e) · S + 1/2 · log S.For su�ciently large n we have k+log m+log e ≤ ε/2·log S and 1/2 ≤ ε/2·S.Thus we obtain

log |A|
k − 1 + ε

· |A|n ≤ S · log S.Let c = 1
k−1+ε

. Now if S < c · |A|n /n, then for su�ciently large n we have
S · log S < c · |A|n

n
· (log c + n · log |A| − log n)

< c · |A|n
n

· n · log |A| =
log |A|

k − 1 + ε
· |A|n ,contradiction. Therefore s (f) = S ≥ c · |A|n /n.Corollary 121. Let A be a functionally complete ring or a functionallycomplete group or one of the two-element algebras B or B0. For every ε > 0and for su�ciently large n (depending on ε) there exists an n-ary function

f1 over A such that
s (f1) ≥

1

1 + ε
· |A|n

n
.Moreover for every ε > 0 and for su�ciently large n (depending on ε) thereexists an n-ary function f2 over A such that

d (f2) ≥ n · log |A| − log log n + log log |A| − log (1 + ε).Proof. We apply Theorem 120 with k = 2.We summarize our bounds for some two-element functionally completealgebras.



4.1 Circuit complexity 97Corollary 122. Let A be one of the two-element algebras B, B0 or Z2. Foran arbitrary n-ary function f over A we have
s (f) ≤ 6 · (2n − 1) ,

d (f) ≤ n + dlog ne + 1.For every ε > 0 and for su�ciently large n (depending on ε) there exists an
n-ary function f1 over A such that

s (f1) ≥
1

1 + ε
· |2|

n

n
.Moreover for every ε > 0 and for su�ciently large n (depending on ε) thereexists an n-ary function f2 over A such that

d (f2) ≥ n − log log n − log (1 + ε) .Proof. We apply Corollaries 119 and 121.Remark 123. Lupanov [24] considered the algebra A over { 0, 1 } which con-tains all 16 binary operations as basic operations. He proved that for anarbitrary n-ary function f over { 0, 1 } we have s (f)
A

≤ (1 + o (1)) · 2n/n.Gaskov [8] proved that for an arbitrary n-ary function f over { 0, 1 } we have
d (f)

A
≤ n − log log n + 2 + o (1).The de�nition of size and depth of a function is robust in the sense that acomplexity of a function over di�erent functionally complete algebras di�ersonly by a constant factor depending on the algebras:Proposition 124. Let A1 and A2 be two functionally complete algebras withunderlying sets A1 and A2. Let e : A1 ↪→ Al

2 be an embedding of A1 to Al
2 forsome l. For every m, let em : Am

1 ↪→ Al·m
2 be the mth power of the embedding

e and let (em)−1 be the partial inverse of em. Let f : An
1 → Ak

1 be an arbitrary(possibly partial) function.
−−−−−−−−−−−−−→f

↪−−−−−→ en

↪−−−−−→ ek

−−−−−−−−−−−−→
ek◦f◦(en)−1

An
1 Ak

1

An·l
2 Ak·l

2Then there exist constants cs = cs (A1,A2, e) , cd = cd (A1,A2, e) suchthat
sA2

(
ek ◦ f ◦ (en)−1) ≤ cs · sA1 (f) ,

dA2

(
ek ◦ f ◦ (en)−1) ≤ cd · dA1 (f) .



98 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSProof. The idea of the proof is to compute the basic functions of A1 withcircuits over A2. Then replace by these circuits every gate in the circuitcomputing the function f . We prove the inequality for the size, the sameargument works for the depth.Let the basic operations of A1 be g1, . . . , gm with arity n1, . . . , nm. Nowlet g′
i = e◦gi ◦(eni)−1 : Al·ni

2 → Al
2 and A2 is functionally complete, therefore

g′
i can be computed by a A2-circuit Ci. We can assume without loss ofgenerality that sA2 (g′

i) = s (Ci). Now let
cs = max

1≤i≤m
s (Ci) = max

1≤i≤m
sA2 (g′

i) .Let Cs be an A1-circuit computing f , such that s (Cs) = sA1 (f). Nowwe replace in Cs every gate, labelled by gi (for every 1 ≤ i ≤ m), by itscorresponding circuit Ci. Moreover, we replace the variable xj (for 1 ≤ j ≤ n)by the variables xj,1, . . . , xj,l. The circuit we obtain computes ek ◦ f ◦ (en)−1and has size at most cs · s (Cs) = cs · sA1 (f).This proposition shows that whenever we want to compute functions overdi�erent functionally complete algebras, we only have to compute the basicoperations of one algebra using the other algebra, and we can then deriveupper bounds on the complexities. In the following Section we �nd circuitscomputing an arbitrary function over a functionally complete group usingthe ideas of Section 2.3. Then we compare the functionally complete groups(especially alternating groups) to other functionally complete algebras in theterms of circuit complexity. We investigate especially the case where theother algebra is a �eld of prime order or one of the two-element algebras Band B0.4.2 Functionally complete groupsIn this Section we consider functionally complete groups G from the circuitcomplexity perspective. For an arbitrary n-ary function f : Gn → G we builda circuit which computes f . Then we give upper bounds on the size and onthe depth of the constructed circuit (we gave lower bounds in Corollary 121).Let us start with some easy observations.Proposition 125. Let G be a functionally complete group, let f be an arbi-trary n-ary (possibly partial) function over G. Then
dlog ‖f‖e = d∗ (f) ≤ s∗ (f) ≤ ‖f‖ − 1,

s∗ (f) ≤ s (f) ≤ ‖f‖ + n − 1,

dlog ‖f‖e ≤ d (f) ≤ dlog ‖f‖e + 1.



4.2 Functionally complete groups 99Proof. Let p be a polynomial realizing f over G such that ‖f‖ = ‖p‖. ByProposition 74 we can assume that every inverse in the polynomial p is usedon variables. Let us consider a G-circuit C1 corresponding to the polyno-mial p. This circuit contains at most ‖p‖ − 1-many non-unary gates, since
p contains ‖p‖ − 1-many binary group multiplications, therefore s∗ (f) ≤
s∗ (C1) ≤ ‖f‖ − 1. As every inverse is used only on variables, we need touse at most n-many unary gates (labelled by the inverse operation), hence
s (f) ≤ s∗ (f) + n ≤ ‖f‖ + n − 1.Moreover, by the associativity of the group multiplication, the ‖f‖ −
1-many multiplications can be executed in any order, not only as in thepolynomial p. Let l = ‖p‖ and let p = w1w2 . . . wl (omitting the parentheses),where every wi is a constant, or a variable, or an inverse of a variable. Thenthe following circuit C2 has non-unary depth dlog ‖f‖e: �rst execute every
w2i−1 · w2i for every 1 ≤ i ≤ l/2 parallelly. Then execute every (w2i−1w2i) ·
(w2i+1w2i+2) for every 1 ≤ i ≤ l/4 parallelly, etc. Using this idea we doexactly dlog ‖f‖e-many parallel multiplications, and so d∗ (f) ≤ d∗ (C2) ≤
dlog ‖f‖e. As every inverse is used only on variables, we have d (f) ≤ d∗ (f)+
1 ≤ dlog ‖f‖e + 1.The remaining inequalities follow from Propositions 112 and 114.Remark 126. The connection between the depth and the length is certainly animportant property of functionally complete groups. For every other algebrawe are only able to give the logarithmic lower bound which might not besharp. Proposition 125 shows that the trivial lower bound for depth canalmost be achieved, moreover by a circuit which corresponds to a minimallength polynomial realization. It is open whether the length and the size canbe minimized with the same circuit.We remind the reader of some notations from Chapter 3. Let G be afunctionally complete group, let N = |G|. For every 1 6= u ∈ G and forevery v ∈ G let pu,v be the unary partial function for which pu,v (1) = 1and pu,v (u) = v. Let f

(n)
b (for b 6= 1) be the n-ary partial function de�nedin Lemma 21, i.e. f

(n)
b (b, . . . , b) = b and f

(n)
b (x1, . . . , xn) = 1 if xi = 1 forsome 1 ≤ i ≤ n. Let χ1;u (for u 6= 1) be the unary characteristic functiondescribed in Lemma 23, i.e. χ1;u (1) = u and χ1;u (x) = 1 if x 6= 1. Finallylet χa1,...,an;u be the n-ary characteristic function described in Lemma 25, i.e.

χa1,...,an;u (a1, . . . , an) = u and χa1,...,an;u (x1, . . . , xn) = 1, whenever xi 6= aifor some i.Let V = v
(

f
(2)
b

). For every 1 6= u ∈ G, for every v ∈ G, and for every



100 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSsubset S ⊆ G let
Ku,v = v (pu,v) ,

KS,v = max {Ku,v : 1 6= u ∈ S } ,

Ku,S = max {Ku,v : v ∈ S } .Let K = 1 + max
{

KG\{ 1 },b, Kb,G\{ 1 }

}. We note here that K is boundedby the number of conjugacy classes of G by Proposition 79. Using Proposi-tion 125 we can give an upper bound on the depth:Theorem 127. Let G be a functionally complete group. Let f be an arbitrary
n-ary (possibly partial) function over G with e-many non-identity values (e ≥
1). Then the following inequalities hold:

d (f) ≤ 2 + log KG\{ 1 },b + log Kb,G\{ 1 } + log V · (2 + log (N − 1) + log n)

+ log e,

d (f) ≤ 14 + 2 log (K − 1) + 8 log (N − 1) + 8 log n + log e.If G = Am (m ≥ 5), then
d (f) ≤ 1 + log m + 2 · (log 3 + log N + log n) + log e.If 4 - m, then the constant 1 at the beginning of the formula can be omitted.Proof. We apply Theorems 75, 88 and Proposition 125.The following theorem gives upper bounds on the size of several (possiblypartial) functions over G.Theorem 128. Let G be a functionally complete group. Let f be an n-ary (possibly partial) function over G with e-many non-identity values. Let

N = |G| and let K = 1 + max
{

KG\{ 1 },b, Kb,G\{ 1 }

}. Then K is at most thenumber of conjugacy classes in G and
s (pu,v) ≤ 2 · Ku,v + 1, (4.11)

s
(

f
(n)
b

)

≤ 6 · n − 6 + max
u 6=1

s (pu,b) , (4.12)
s (χ1;b) ≤ s

(

f
(N−1)
b

)

+
∑

u 6=1

(2 + s (pu,b)), (4.13)
s (χa1,...,an;b) ≤ s

(

f
(n)
b

)

+ n · (1 + s (χ1;b)) , (4.14)
s (χa1,...,an;u) ≤ s (χa1,...,an;b) + s (pb,u) , (4.15)

s (f) ≤ e ·
(

1 + max
u 6=1

s (χa1,...,an;u)

)

− 1, (4.16)



4.2 Functionally complete groups 101
s (f) ≤ e ·

(
9nN − 7n − 3 + 2Kb,G\{ 1 } + 2 (nN + 1)KG\{ 1 },b

)
− 1, (4.17)

s (f) ≤ e · (9nN · (2K + 7) − 7n − 7 + 4K) − 1. (4.18)Moreover if G = Am (m ≥ 5), then
s (f) ≤ e · ((27N − 14) · n + m − 2) − 1.If 4 - m, then we can replace the factor (27N − 14) by (13N − 11) and thefactor m by 2 · bm/2c.Proof. The inequality (4.11) follows from Propositions 74 and 125. For prov-ing inequality (4.12) we introduce a series of elements un of G. Let u1 = b,we de�ne ui inductively such that ui 6= 1 for every i. By Lemma 20 thereexists ci such that [ui−1, b

ci ] 6= 1. Choose ci and let ui = [ui−1, b
ci] 6= 1. Let

h1 (x1) = x1 and for every k let hk (x1, . . . , xk) = [hk−1 (x1, . . . , xk−1) , xck

k ].By Lemma 21 we know that pun,b (hn (x1, . . . , xn)) is a good representationof f
(n)
b . Now it is easy to see by induction that s (hk) ≤ 6n − 6, as commu-tating can be done in size 4: calculate x · y, y · x, then (y · x)−1 and �nally

(y · x)−1 · (x · y). Using Proposition 115 we have inequality (4.12).The inequalities (4.13), (4.14), (4.15), (4.16) follow from Proposition 115using on the following representations based on the proof of Theorem 18:
χ1;b(x) = f

(N−1)
b

(
bpu2,b (x)−1 , . . . , bpuN ,b (x)−1) ,

χa1,...,an;b(x1, . . . , xn) = f
(n)
b

(
χ1;b

(
x1a

−1
1

)
, . . . , χ1;b

(
xna

−1
n

))
,

χa1,...,an;u(x1, . . . , xn) = pb,u (χa1,...,an;b(x1, . . . , xn)) ,

f (x1 . . . , xn) =
∏

(a1,...,an)∈Gn

16=u=f(a1...,an)

χa1,...,an;u (x1, . . . , xn),

where G = { 1, u2, . . . , uN }. The inequality (4.17) follows from the formerinequalities. Finally the inequality (4.18) follows from the inequality (4.17).If G = Am, then we can choose b as a 3-cycle. Now by Proposition 95we have KG\{ 1 },b ≤ 4 and whenever 4 - m, then KG\{ 1 },b ≤ 2. By Propo-sition 97 we have Kb,G\{ 1 } ≤ bm/2c. Moreover by the proof of Proposi-tion 90 it is easy to see that for every n we can represent f
(n)
b (x1, . . . , xn)with [[[xc′1

1 , x
c′2
2

]

, x
c′3
3

]

, . . . , x
c′n
n

] for some constants c′1, . . . , c
′
n ∈ G (as we canchoose the constants of hn such that hn (b, . . . , b) is a 3-cycle). From thisrepresentation we can conclude by induction that s

(

f
(n)
b

)

≤ 6n − 4. Now



102 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSapplying the inequalities (4.13), (4.14), (4.15), (4.16) we have
s (χ1;b) ≤ 6N − 10 + 11N − 11 ≤ 27N − 21,

s (χa1,...,an;b) ≤ 6n − 4 + n · (27N − 20) ≤ (27N − 14) · n − 4,

s (χa1,...,an;u) ≤ (27N − 14) · n − 4 + 2 · bm/2c + 1 ≤ (27N − 14) · n + m − 3,

s (f) ≤ e · ((27N − 14) · n + m − 2) − 1.If 4 - m, then
s (χ1;b) ≤ 6N − 10 + 7N − 7 ≤ 13N − 17,

s (χa1,...,an;b) ≤ 6n − 4 + n · (13N − 17) ≤ (13N − 11) · n − 4,

s (χa1,...,an;u) ≤ (13N − 11) · n − 4 + 2 · bm/2c + 1

≤ (13N − 11) · n + 2 · bm/2c − 3,

s (f) ≤ e · ((13N − 11) · n + 2 · bm/2c − 2) − 1.Remark 129. We have to observe that the representations used in the proof ofTheorem 128 do not minimize the depth, e.g. d ([[[xc′1
1 , x

c′2
2

]

, x
c′3
3

]

, . . . , x
c′n
n

])

=

3n−1, but using Proposition 125 on ∥∥∥[[[xc′1
1 , x

c′2
2

]

, x
c′3
3

]

, . . . , x
c′n
n

]∥
∥
∥ = 3 · 2n−

−3 we have d
([[[

x
c′1
1 , x

c′2
2

]

, x
c′3
3

]

, . . . , x
c′n
n

])

≤ n + 1 + log 3. Generally it isnot possible to minimize the size and the depth with the same circuit.4.3 Comparison with two-element algebrasIn this Section we are going to compare functionally complete groups withtwo-element algebras. Algebras over the set { 0, 1 } have the most importancein Computer Science as computers are based on them. In particular, com-puters are based on the algebra B0 = ({ 0, 1 } , NAND, NOR). In the theoryof Boolean functions another algebra is investigated as well: the algebra withunderlying set { 0, 1 } which has all binary operations over { 0, 1 } as basicoperations. Beside these algebras we investigate the two-element Booleanalgebra B = ({ 0, 1 } ,¬,∧,∨) and the two-element �eld Z2 = ({ 0, 1 } , +, ·).We are interested about the possible e�ciency of functionally completegroups when computing di�erent functions by circuits. By Proposition 124we know that one functionally complete algebra can be more e�cient thananother by only a constant factor. Moreover, this constant factor is deter-mined by only simulating the basic operations. Therefore if we want to knowhow much faster or slower functionally complete groups can be than algebras



4.3 Comparison with two-element algebras 103over { 0, 1 }, we have to simulate one's basic operations with the other. Inthis Section we simulate every binary function over { 0, 1 } with the groupoperations of a functionally complete group.There are 16 binary functions over { 0, 1 }. Two of them are the constant 0and 1 function, four of them are unary (namely x, y, ¬x = 1−x, 6= y = 1−y)and 10 of them depending on both variables. These functions are x∧y = x·y,
x ∨ y, x + y, ¬x ∧ y, x ∧ ¬y and their negations.In order to build a G-circuit for computing these functions, we need anembedding { 0, 1 } ↪→ G. We assign the identity element 1 ∈ G of the groupfor 0 ∈ B and we assign an element 1 6= b ∈ G of the group for 1 ∈ B. Asthe function f

(2)
b plays an important role in the simulation of binary { 0, 1 }-functions, we choose b such that s

(

f
(2)
b

) or d
(

f
(2)
b

) is minimal. Moreoverlet 1 6= u ∈ G be an element of order two. If b2 = 1 then let u = b. Let
S = s

(

f
(2)
b

), D = d
(

f
(2)
b

), S1 = s (pb,u), D1 = d (pb,u), S2 = s (pu,b),
D2 = d (pu,b).Table 4.1 shows a representation of the binary functions. Moreover, itcontains trivial upper bounds on the size and the depth of these representa-tions.The following theorem compares the circuit complexity and depth of afunction for two-element algebras with the circuit complexity and depth forfunctionally complete groups.Theorem 130. Let G be a functionally complete group and let K be itsnumber of conjugacy classes. Let A denote the algebra with underlyingset { 0, 1 } which has all binary operations over { 0, 1 } as basic operations.Let B = ({ 0, 1 } ,¬,∧,∨) be the two-element Boolean algebra, let B0 =
({ 0, 1 } , NAND, NOR), and let Z2 = ({ 0, 1 } , +, ·) the two-element �eld.Then there exists 1 6= b ∈ G such that for every positive integer n and anyfunction f : { 0, 1 }n → { 0, 1 } we can �nd functions p1, p2 over G such that
p1 and p2 are the same function over { 1, b } as f is over { 0, 1 } and

sG (p1) ≤ (6K + 456) · sA (f) , dG (p2) ≤ (14 + 2 log K) · dA (f) ,

sG (p1) ≤ 456 · sB (f) , dG (p2) ≤ 14 · dB (f) ,

sG (p1) ≤ 454 · sB0 (f) , dG (p2) ≤ 12 · dB0 (f) ,

sG (p1) ≤ (6K + 448) · sZ2 (f) , dG (p2) ≤ (10 + 2 log K) · dZ2 (f) .If G = Am (for m ≥ 5) and b = (1 2 3), then for every positive integernumber n and any function f : { 0, 1 }n → { 0, 1 } we can �nd functions p1,
p2 over G such that p1 and p2 are the same function over { 1, b } as f is over



104 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSTable 4.1: Simulating binary functions over { 0, 1 }

f over { 0, 1 } p over G s (p) d (p)

0 1 0 0
1 b 0 0
x x 0 0
y y 0 0
¬x b · x−1 2 2
¬y b · y−1 2 2

x · y = x ∧ y f
(2)
b (x, y) S D

¬x ∧ y f
(2)
b (bx−1, y) 2 + S 2 + D

x ∧ ¬y f
(2)
b (x, by−1) 2 + S 2 + D

x ∨ y b ·
(

f
(2)
b (bx−1, by−1)

)−1

6 + S 4 + D

x + y pu,b (pb,u (x) · pb,u (y)) 1 + 2S1 + S2 1 + S1 + S2

¬ (x ∧ y) b ·
(

f
(2)
b (x, y)

)−1

2 + S 2 + D

¬ (¬x ∧ y) b ·
(

f
(2)
b (bx−1, y)

)−1

4 + S 4 + D

¬ (x ∧ ¬y) b ·
(

f
(2)
b (x, by−1)

)−1

4 + S 4 + D

¬ (x ∨ y) f
(2)
b (bx−1, by−1) 4 + S 2 + D

1 − x + y b · (pu,b (pb,u (x) · pb,u (y)))−1 3 + 2S1 + S2 3 + S1 + S2

{ 0, 1 } and
sAm

(p1) ≤ 13 · sA (f) , dAm
(p2) ≤ 8 · dA (f) ,

sAm
(p1) ≤ 10 · sB (f) , dAm

(p2) ≤ 5 · dB (f) ,

sAm
(p1) ≤ 10 · sB0 (f) , dAm

(p2) ≤ 5 · dB0 (f) ,

sAm
(p1) ≤ 11 · sZ2 (f) , dAm

(p2) ≤ 6 · dZ2 (f) .If G = Am for m ≥ 6 then we can choose b = (1 2) (3 4) and we can replacethe constants 13, 11, 8 and 6 by 10, 10, 5 and 5, respectively.Proof. We use the representations and upper bounds given in Table 4.1.Applying Propositions 86, 74 and 125 we obtain S ≤ 450 and D ≤ 10. ByPropositions 79 and 125 we obtain S1 ≤ 2K−1, S2 ≤ 2K−1, D1 ≤ 2+log K,
D2 ≤ 2 + log K for an arbitrary element 1 6= u ∈ G with u2 = 1. ApplyingTable 4.1 we have the desired inequalities.



4.3 Comparison with two-element algebras 105If G = Am, then we can choose b = (1 2 3) and let u = (1 3) (2 4). Thenwe know by Propositions 90 and 125 that S ≤ 10 and D ≤ 5. Moreoverit is easy to see that not only f
(2)
b (x, y) has length 9 but every polynomialin Table 4.1 which involves f

(2)
b has length 9 as well. We have S1 ≤ 3 and

D1 ≤ 2 by having pb,u (x) = x · c−1 · x · c with c = (3 4 5). As we have
pu,b (x) = c1 · x · c2 · x · c3 with c1 = (1 3) (2 5), c2 = (1 3 2), c3 = (2 5 3), weobtain S2 ≤ 4 and D2 ≤ 3.Finally if G = Am for m ≥ 6 then we can choose u = b = (1 2) (3 4),having S1 = D1 = S2 = D2 = 0 and S = 10, D = 5.As we see, we can simulate 2-element algebras quite e�ciently withAm for
m ≥ 6, as the two-element algebra can be at most 10 times faster by usinga single processor and 5 times faster using multiple processors. The casewhere m = 5 and we simulate with A5 can be interesting, as the symmetrygroup of the icosahedron is A5. Therefore if a machine which is based on thesymmetry states of an icosahedron will ever be built, then that machine willbe based on the group A5.We �nish the Section with a lower bound on the e�ciency of G-circuits.Theorem 131. Let G be a functionally complete group and let A be a func-tionally complete algebra over { 0, 1 } with at most binary basic operations.For every 1 6= g ∈ G let δ (g) be the maximal order of any subgroup of G notcontaining g and let δ (G) = min { δ (g) : 1 6= g ∈ G }. Let e : G ↪→ { 0, 1 }lbe an embedding. Let us suppose that f : { 0, 1 }2l → { 0, 1 }l is a functionsuch that f (e (x) , e (y)) = e (x · y). Then

sA (f) ≥ dlog |G|e ,

dA (f) ≥ 1 +

⌈

log log
|G|

δ (G)

⌉

.Proof. The �rst inequality is quite clear. First, l ≥ dlog |G|e, otherwise ecannot be an embedding. Since A has only binary basic operations and f hasto depend on at least dlog |G|e-many variables, we obtain sA (f) ≥ dlog |G|e.The second inequality follows from a result of Spira [35]. He derivesthe lower bound 1 +
⌈

log log |G|
δ(G)

⌉ for the required time for realizing the G-multiplication by a logical circuit. We have to observe that Spira's model(which is the same as e.g. Winograd's model in [43] and [44]) is quite similaras our circuit model, although he allows the circuits to contain cycles. Inparticular the required time in Spira's model is the same as the depth in ourcircuit model.



106 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPS4.4 Simulating rings by groupsIn this Section �rst we build a G-circuit which simulates an arbitrary ring
R. This simulation is rather `brute force', Theorem 132 gives the details.It basically compares the sizes and the depths of R-circuits and G-circuitscomputing the same functions.Then we introduce another method by which we can simulate the ring Zpfor an odd prime p. For every ring-polynomial q we build a Am-circuit (for
m ≥ p + 2), which has linear size in ‖q‖. Whenever for some constant c wehave sZp

(f) ≤ c · ‖f‖
Zp

or dZp
(f) ≤ c · ‖f‖

Zp
, then we can compute f by an

Am-circuit C, such that s (C) is linear in sZp
(f) or d (C) is linear in dZp

(f).Let us start �rst with the comparison of R-circuits and G-circuits.Theorem 132. Let G be a functionally complete group, let K be its num-ber of conjugacy classes, and let N = |G|. Let R be a �nite ring. Let
l =

⌈
log|G| R

⌉ and let e : R ↪→ G
l be an embedding. Then for any n-aryfunction f : R

n → R which can be represented by an R-polynomial we can�nd functions p1, p2 over G such that
p1 (e (x1) , . . . , e (xn)) = e (f (x1, . . . , xn)) = p2 (e (x1) , . . . , e (xn))and

sG (p1) ≤ (9lN + 1) · (4K + 14) · N2l · sR (f) ,

sG (p1) ≤ (9lN + 1) · (4K + 14) · N2 · |R|2 · sR (f) ,

dG (p2) ≤ (14 + 2 log K + 8 log N + 8 + 8 log l + 2l log N) · dR (f) ,

dG (p2) ≤ (14 + 2 log K + 8 log N + 8 + 8 log l + 2 log N + 2 log |R|) · dR (f) .If G = Am (for m ≥ 5), then for any n-ary function f : R
n → R we can�nd functions p1, p2 over G such that

p1 (e (x1) , . . . , e (xn)) = e (f (x1, . . . , xn)) = p2 (e (x1) , . . . , e (xn))and
sAm

(p1) ≤ (2l · (27N − 14) + m) · N2l · sR (f) ,

sAm
(p1) ≤ (2l · (27N − 14) + m) · N2 · |Am|2 · sR (f) ,

dAm
(p2) ≤ (3 + 2 log 3 + log m + 2 log l + 2l · log N) · dR (f) ,

dAm
(p2) ≤ (3 + 2 log 3 + log m + 2 log l + 2 · log N + 2 log |R|) · dR (f) .If 4 - m, then we can replace the factor (27N − 14) by (13N − 11) and thefactor m by 2 · bm/2c. in the bounds on sAm

(p1).



4.4 Simulating rings by groups 107Proof. By Proposition 124 we only have to build a circuit for the ring addi-tion and the ring multiplication. These are 2l-ary partial functions over G,therefore applying Theorems 127 and 128 gives us the desired bounds.Remark 133. We note that whenever |R| ≤ |G|, then we can embed R into
G. Let S be the image of R. Then we can consider the ring addition andring multiplication as partial binary functions over S, and N can be replacedby |S| = |R| in the bounds of Theorem 132.The following theorem gives us a lower bound on the e�ciency of G-circuits.Theorem 134. Let G be a functionally complete group and let R be a func-tionally complete ring. For every 1 6= g ∈ G let δ (g) be the maximal order ofany subgroup of G not containing g and let δ (G) = min { δ (g) : 1 6= g ∈ G }.Let e : G ↪→ R

l be an embedding. Let us suppose that f : R
2l → R

l is afunction such that f (e (x) , e (y)) = e (x · y), where · denotes the group mul-tiplication in G. Then
sR (f) ≥

⌈
log|R| |G|

⌉
,

dR (f) ≥ 1 +

⌈

log log|R|

|G|
δ (G)

⌉

.Proof. The �rst inequality is quite clear. First, l ≥
⌈
log|R| |G|

⌉, otherwise
e cannot be an embedding. Since R has only binary basic operations and
f has to depend on at least ⌈log|R| |G|

⌉-many variables, we obtain sA (f) ≥
⌈
log|R| |G|

⌉.The second inequality follows from a result of Spira [35]. He derives thelower bound 1 +
⌈

log log|R|
|G|

δ(G)

⌉ for the required time for realizing the G-multiplication by a circuit. We have to observe that Spira's model (which isthe same as e.g. Winograd's model in [43] and [44]) is quite similar as ourcircuit model, although he allows the circuits to contain cycles. In particularthe required time in Spira's model is the same as the depth in our circuitmodel.In the following part of the Section we show another method which can beuseful for simulating the ring Zp with the alternating group Am for m ≥ p+2.Let G = Am be such an alternating group. Let a = (1, 2, . . . , p) and let
A = 〈a〉 an Abelian subgroup of G. Let r be a primitive root modulo p.The elements a and ar have the same cycle structure, therefore there existsan element h′ ∈ Sp such that ah′

= ar. If h′ is even, then let h = h′ ∈ Am,otherwise let h = h′·(p + 1, p + 2) ∈ Am. LetH = 〈h〉. The subgroupH ≤ G



108 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSacts on A by conjugation and the action is isomorphic to B = H/CH (A).Let ϕ : H → B be the natural homomorphism. Every element of B acts as anautomorphism of B, in particular every element is an endomorphism. Since
B is commutative, the actions of B generate a �nite nontrivial commutativesubring R (B) of End A = Zp. Let b = ϕ (h), then B = 〈b〉.Now for any natural number t we have a(bt) = a(ht) = a(rt). Since r is aprimitive root modulo p, the elements b and h are of order p − 1, therefore
|B| = p − 1. Since B ∪ { 0 } ⊆ R (B) ⊆ End A = Zp and p = |B| + 1 ≤
|R (B)| ≤ |End A| = p, we have |R (B)| = p and R (B) = B ∪ { 0 } =
End A = Zp.The idea is the following: for every Zp-polynomial q (z1, . . . , zn) we builda G-circuit C (q), which computes aq(z1,...,zn) over G, where xy+z = xyxz =
y−1xyz−1xz, x−y = (x−1)

y
= y−1x−1y and xyz = (xy)z = (yz)−1xyz. Now letus consider the inputs z1, . . . , zn as elements of Zp = R (B) = End A. Thenthe circuit C (q), for a suitable encoding of the inputs z1, . . . , zn, computes

aq(z1,...,zn) ∈ A. Now we read the result of the computation as an element of
Zp considering A ' (Zp, +). This idea can be applied for simulating moregeneral �nite rings.There is a slight problem with this construction, therefore some re�ne-ments are necessary. The input zi can attain p-many values when we considerit as input for the Zp-polynomial q. On the other hand, when zi is consideredas an input of the circuit C, then it can only attain automorphisms as valuefrom R (B). More precisely zi attains values from the group B, never from
R (B) \B. On the other hand B generates R (B): the polynomial y− y′ hasthe property that if y, y′ ∈ B, then y − y′ ∈ R (B) and for every z ∈ R (B)we can choose y, y′ ∈ B such that z = y−y′. Therefore the above-mentionedidea works with substituting zi = yi − y′

i in the polynomial q.First we state a proposition which handles the situation when the polyno-mial q is `nice'. Let us recall that by v (q) we denoted the number of variableoccurrences in the polynomial q.Proposition 135. Let q′ (z1, . . . , zn) be a Zp-polynomial, which contains
add (q′)-many additions and does not contain subtraction or the constant 0.Then for m ≥ p + 2 there exists an Am-circuit C (q′) which computes the
Am-function aq′(z1,...,zn), where a = (1, . . . , p), xy+z = xyxz = y−1xyz−1xz,
x−y = (x−1)

y
= y−1x−1y, xyz = (xy)z = (yz)−1xyz and

s (C (q′)) ≤ add (q′) + vZp
(q′) + 2 ‖q′‖

Zp
≤ 4 ‖q′‖

Zp
,

d (C (q′)) ≤ 2 ‖q′‖
Zp

.



4.4 Simulating rings by groups 109Proof. We construct a circuit C ′ (q′) computing the function xq′ by inductionon q′. For a variable z let C ′ (z) be a circuit which computes z−1 · x · z insize 3 and in depth 2. Let r be a primitive root modulo p and let h ∈ Ambe an element for which ah = ar. Now every nonzero constant from Zp is ofthe form rk, represented by a 7→ a(rk) in End A. Then for 0 ≤ k ≤ p − 1let C ′
(
rk
) be a circuit which computes (hk

)−1 · x · hk in size 2 and in depth2. Now let q′ = q′1 + q′2. By induction we have circuits C ′ (q′1) and C ′ (q′2)computing xq′1 and xq′2 such that
s (C ′ (q′1)) ≤ add (q′1) + vZp

(q′1) + 2 ‖q′1‖Zp
,

d (C ′ (q′1)) ≤ 2 ‖q′1‖Zp
,

s (C ′ (q′2)) ≤ add (q′2) + vZp
(q′2) + 2 ‖q′2‖Zp

,

d (C ′ (q′2)) ≤ 2 ‖q′2‖Zp
.Now let C ′ (q′) be the circuit which contains both C ′ (q′1) and C ′ (q′2) paral-lelly, and multiplies the �nal gates of C ′ (q′1) and C ′ (q′2). Now C ′ (q′) clearlycomputes xq′ = xq′1 · xq′2 . Using the bounds on the sizes and depths of C ′ (q′1)and C ′ (q′2), it is easy to see that

s (C ′ (q′)) ≤ s (C ′ (q′1)) + s (C ′ (q′2)) + 1

≤ add (q′) + vZp
(q′) + 2 ‖q′‖

Zp
,

d (C ′ (q′)) ≤ 1 + max { d (C ′ (q′1)) , d (C ′ (q′2)) } ≤ d (C ′ (q′1)) + d (C ′ (q′2))

≤ 2 ‖q′‖
Zp

.The proof is very similar if q′ = q′1 · q′2. By induction we have circuits C ′ (q′1)and C ′ (q′2) computing xq′1 and xq′2 such that
s (C ′ (q′1)) ≤ add (q′1) + vZp

(q′1) + 2 ‖q′1‖Zp
,

d (C ′ (q′1)) ≤ 2 ‖q′1‖Zp
,

s (C ′ (q′2)) ≤ add (q′2) + vZp
(q′2) + 2 ‖q′2‖Zp

,

d (C ′ (q′2)) ≤ 2 ‖q′2‖Zp
.Now let C ′ (q′) be the circuit which contains both C ′ (q′1) and C ′ (q′2), but

C ′ (q′2) is not applied on the variables x, z1, . . . , zn, but on the �nal gate of
C ′ (q′1) and on the variables z1, . . . , zn. Now C ′ (q′) clearly computes xq′ =
(
xq′1
)q′2. Using the bounds on the sizes and depths of C ′ (q′1) and C ′ (q′2), it
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s (C ′ (q′)) ≤ s (C ′ (q′1)) + s (C ′ (q′2))

≤ add (q′) + vZp
(q′) + 2 ‖q′‖

Zp
,

d (C ′ (q′)) ≤ d (C ′ (q′1)) + d (C ′ (q′2))

≤ 2 ‖q′‖
Zp

.Finally we obtain C (q′) from C ′ (q′) by replacing every outgoing edge from
x by an outgoing edge of a: if an edge was going from x to the gate Gi, thenwe remove it and add an edge from a to Gi.Now we can state the main theorem of this Section.Theorem 136. Let p be an odd prime and let m ≥ p+2. Let a = (1, . . . , p) ∈
Am, let r be a primitive root modulo p and let h ∈ Am such that ah = ar.Let H = 〈h〉 and let A = 〈a〉. Let in : Zp ↪→ H × H and out : Zp ↪→ Abe embeddings such that for every 0 ≤ k ≤ p − 1 we have out (k) = akand in (k) =

(
hk1 , hk2

) such that rk1 − rk2 = k in Zp. Then for every Zp-polynomial q (z1, . . . , zn) there exists an Am-circuit C such that for every
n-tuple (r1, . . . , rn) over Zp the circuit C computes out (q (r1, . . . , rn)) on theinput 2n-tuple (in (r1) , . . . , in (rn)) and

s (C) ≤ 16 ‖q‖
Zp

,

d (C) ≤ 8 ‖q‖
Zp

.Proof. Let us replace in q every variable zi by yi + (p − 1) · y′
i, every con-stant 0 by 1 + (p − 1), and every subtraction q0 − q1 by q0 + (p − 1) · q1(for subpolynomials q0 and q1). Thus we obtain a polynomial q′, suchthat ‖q′‖ ≤ 4 · ‖q‖. Moreover for zi = yi − y′

i (1 ≤ i ≤ n) we have
q (z1, . . . , zn) = q′ (y1, y

′
1, . . . , yn, y

′
n). By Proposition 135 we have a circuit Csuch that C computes aq′(y1,y′

1,...,yn,y′
n,) = out (q′ (y1, y

′
1, . . . , yn, y

′
n, )) with

s (C) ≤ 4 ‖q′‖
Zp

≤ 16 ‖q‖
Zp

,

d (C) ≤ 2 ‖q′‖
Zp

≤ 8 ‖q‖
Zp

.The bounds on the size and on the depth in Theorem 136 show thatwhenever for some constant c we have sZp
(f) ≤ c·‖f‖

Zp
or dZp

(f) ≤ c·‖f‖
Zp
,then we can compute f by an Am-circuit C, such that s (C) ≤ 16c · sZp

(f)or d (C) ≤ 8c · dZp
(f). Therefore this method of simulating the ring Zp canbe more e�cient than that of Theorem 132 for certain functions.



4.5 Finite-state sequential circuits 1114.5 Finite-state sequential circuitsIn this Section we investigate a di�erent approach for function realizationsthan that introduced in Section 4.1. Krohn, Maurer and Rhodes in [22]showed a method how �nite-state sequential circuits can be used for calcu-lating an arbitrary Boolean function f : { 0, 1 }n → { 0, 1 }. They, however,did not measure the e�ciency of their method. First, we recall their method,then we give an upper bound on the time required for calculating an arbitraryBoolean function f : { 0, 1 }n → { 0, 1 }.A �nite-state sequential circuit is a 6-tuple M = (A, B, Q, q0, λ, µ), withbasic input set A, basic output set B, state set Q, starting state q0, next-state function λ : Q × A → Q and output function µ : Q → B. Let A+ bethe free semigroup generated by A, i.e. all �nite words with positive lengthconstructed from the alphabet A. For any t = a1 · · ·an ∈ A+ let us de�ne
λ′ (t) : Q → Q inductively: λ′ (a1) (q) = λ (q, a1) for a1 ∈ A and q ∈ Q. Let
λ′ (a1 · · ·ak) (q) = λ′ (ak) (λ′ (a1 · · ·ak−1) (q)) for a1 . . . ak ∈ A+ and q ∈ Q.Let Mq (a1 . . . ak) = µ (λ′ (a1 . . . ak) (q)). This is the letter which machine Mwhen started in state q outputs for the word a1 . . . ak.Let F(Q) denote the semigroup of all transformations of Q into itselfunder the multiplication ·, where for f, g ∈ F(Q) we have (f · g) (q) =
g (f (q)). Then λ′ : A+ → F(Q) is a homomorphism: λ′ (a1 . . . akb1 . . . bm) =
λ′ (a1 . . . ak) · λ′ (b1 . . . bm). Let us denote λ′ (A+) by M

S . We call M
S thesemigroup of the machine M.De�nition 137. Let M = (A, B, Q, q0, λ, µ) be a �nite-state sequential cir-cuit. We say that M is a simple non-Abelian Boolean circuit if A = B =

{ 0, 1 }, µ (Q) = { 0, 1 }, and M
S as a subsemigroup of F (Q) is a transitivesimple non-Abelian group which is generated by two elements.From the theory of permutation groups [4], all simple non-Abelian Booleancircuits can be constructed in the following way: let G be a �nite sim-ple non-Abelian group generated by the elements g0 and g1. Let H ≤ Gbe a subgroup. Let us consider the right cosets of H in G: let R =

{Hg : g ∈ G }. Let µ : R → { 0, 1 } with µ (R) = { 0, 1 } be arbitrary. Then
M = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ) is a simple non-Abelian Boolean circuitwhere λ (Hg, k) = Hggk for k = 0, 1.Remark 138. Krohn, Maurer and Rhodes in [22] consider only those circuitsfor which G acts on Q primitively, in order to ensure that the size of thecircuit (i.e. the number of states) is small.We are especially interested in the following circuit corresponding to thegroup Am for m ≥ 5: let H = Am−1 ≤ Am = {π ∈ Am : π (m) = m } is



112 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSthe stabilizer subgroup of the element m. For 2 - m, let g0 = (1 2 3) and let
g1 = (3 4 . . . m). For 2 | m, let g0 = (1 2 3) and let g1 = (1 2) (3 4 . . . m).Then g0 and g1 generates Am (see e.g. [4]). Finally let µ : R → { 0, 1 } bearbitrary such that µ (Hg0) = 0 and µ (Hg1) = 1 (such µ exists, since g0 ∈ Hand g1 /∈ H).Now we de�ne how Boolean functions correspond to special polynomialsover G:De�nition 139. Let G be a �nite simple non-Abelian group, where theelements g0 and g1 generate G. Let M = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ) be asimple non-Abelian Boolean circuit. Let p be an n-ary polynomial over Gwhich contains no inverses and every constant occurring in p is either g0 or
g1. Then B (M, p) : { 0, 1 }n → { 0, 1 } is the Boolean function of n variablessuch that
B (M, p) (y1, . . . , yn) = MH (p (gy1 , . . . , gyn

)) = µ
(
λ′ (p (gy1, . . . , gyn

)) (H)
)
.The value attained by the function B (M, p) at the input n-tuple (y1, . . . , yk)is nothing else than the output what the machine M attains for the word

p (x1, . . . , xn), where xj = q0 if yj = 0 and xj = q1 if yj = 1.Krohn, Rhodes and Maurer in [22] proved that for every �nite simplenon-Abelian circuit M and for any n-ary Boolean function f there existsa polynomial p over G such that f = B (M, p). They, however, did notinvestigate how long such a p must be. In the main theorem of the Sectionwe use the results of Chapter 3 for giving an upper bound on ‖p‖.Theorem 140. Let G be a �nite simple non-Abelian group, where the ele-ments g0 and g1 generate G. Let K be the number of conjugacy classes of
G and let N = |G|. Let M = ({ 0, 1 } , { 0, 1 } , R,H, λ, µ) be a simple non-Abelian Boolean circuit such that µ (R) = { 0, 1 }. Let f : { 0, 1 }n → { 0, 1 }be an arbitrary function with e-many non-zero values. Then there exists apolynomial p over G such that p does not contain inverses, every constant in
p is either g0 or g1, f = B (M, p), and

‖p‖ ≤ 1 605 632 · (N − 1) · (K − 1)2 · n8 · e + (N − 1) .If G = Am (m ≥ 5), H = Am−1, g0 = (1 2 3), and g1 = (3 . . . m) (if 2 - m)or g1 = (1 2) (3 . . . m) (if 2 | m) then we can choose p, such that
‖p‖ ≤ 128 · bm/2c · n2 · e + (N − 1) .Proof. Let u0, u1 ∈ G be elements such that µ (Hu0) = 0 and µ (Hu1) = 1.Since G is functionally complete, we can �nd an n-ary polynomial p′ over
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G such that p′ (gj1, . . . , gjn

) = uj, whenever f (j1, . . . , jn) = j. Moreover byRemark 77 choosing S1 = · · · = Sn = { 1, g0, g1 } and S = { g0, g1 } we have
v (p′) ≤ 3 136 · (K − 1)2 · 28 · n8 · e = 802 816 · (K − 1)2 · n8 · e.Now p′ might contain inverses and constants apart from g0 and g1. For everyoccurrence of x−1

j (for every 1 ≤ j ≤ n) we replace x−1
j by xN−1

j . Moreoverfor every constant c appearing in p′ we replace c by a product tc of g0 and
g1 such that tc = c. Thus we obtain a polynomial p such that p does notcontain inverses, every constant in p is either g0 or g1, and f = B (M, p). Allthat remains is to give an upper bound on ‖p‖.Let us de�ne the following sequence of sets: let Tj contain every elementof G which can be obtained by multiplying j-many elements from the set
{ g0, g1 }. Now T1 ⊆ T2 ⊆ · · · ⊆ TN and if Tj−1 $ Tj , then 1 + |Tj−1| ≤ |Tj |.Since g0 and g1 generate G and |T1| = 2 we have TN−1 = G. ApplyingProposition 74 we have

‖p‖ ≤ (N − 1) · ‖p′‖ ≤ (N − 1) · (2 · v (p′) + 1) ,from which we obtain the desired bound.Now let us suppose that G = Am, H = Am−1 and g0 = (1 2 3). Letus choose u0 = g0 and u1 = g1. Similarly as before we can choose p′ suchthat p′ (gj1, . . . , gjn
) = uj = gj, whenever f (j1, . . . , jn) = j. By Remark 77choosing S1 = · · · = Sn = { 1, g0, g1 } and S = { g0, g1 } we have

v (p′) ≤ Kb,{ g0,g1 } · K{ g0,g1 },b · v
(

f
(2)
b

)3

· nlog v
(

f
(2)
b

)

· e,for some b ∈ Am. Let us choose b = g0, then by Proposition 92 we have
v
(

f
(2)
b

)

= 4. Clearly K{ g0,g1 },g0 = 1, and by Proposition 97 we have
Kg0,{ g0,g1 } ≤ bm/2c. Therefore

v (p′) ≤ 64 · bm/2c · n2 · e.Similarly as above, we can obtain a polynomial p such that p does not containinverses, every constant in p is either g0 or g1, f = B (M, p) and
‖p‖ ≤ (N − 1) · ‖p′‖ ≤ (N − 1) · (2 · v (p′) + 1) ,which gives us the desired bound.If applying an element of G on the machine M takes one time-step, then

‖p‖ is the time required for calculating the function f with the machine M.This is an alternative way of representing Boolean functions than what we



114 COMPUTATIONS OVER FUNCTIONALLY COMPLETE GROUPSintroduced in Section 4.1. Our upper bound on ‖p‖, however, does not seemto be any better than that in Corollary 119. This might suggest that thisrepresentation is not better than the circuit-representation. There are ex-amples, however, when the circuit-representation is less e�cient, e.g. Krohn,Maurer and Rhodes in [22] represent the function f : { 0, 1 }3 → { 0, 1 },
f (x1, x2, x3) = x1 +x2 +x3 by a polynomial p with ‖p‖ = 4 over A5. On theother hand, sB (f) = 6 (see e.g. Theorem 3.1 on page 125 in [40]). Thereforethere are situations when the method presented in this Section can be moree�cient than the circuit representation.4.6 ProblemsSeveral gaps in our knowledge remain to be �lled. One of the most interestingis whether the method for simulating the ring Zp with the alternating group
Am (for m ≥ p + 2) can be extended to other rings.Problem 3. Find a way of e�ciently simulating an arbitrary ring R by a
G-circuit.In Section 4.5 we investigated the e�ciency of �nite-state sequential cir-cuits. We observed that in general it seems to be less e�cient to realize afunction by �nite-state sequential circuits rather than by the two-elementBoolean algebra B. On the other hand, we showed a function which can berealized more e�ciently using the �nite-state sequential machines. More ofsuch examples would be naturally welcome.Problem 4. For a �nite simple non-Abelian group G characterize the n-aryfunctions f : { 0, 1 }n → { 0, 1 } which can be represented more e�cientlyby G-circuits or by �nite-state sequential circuits over G than by the two-element Boolean algebra B.



Chapter 5Complexity and functionallycomplete algebrasUp to this point we were examining the situation when a function or partialfunction was given over a functionally complete algebra and we had to �ndsome polynomials which realize this function. While in Chapter 3 we gaveupper and lower bounds on the length of a shortest realizing polynomial,in Chapter 4 we were considering computational models and studied fastestways to compute the given function.There are situations when one has to deal with polynomials directly. Insuch a situation it is important to know what function does the polynomialsrealize. From now on we consider two main versions of this problem. The�rst problem is called the polynomial equivalence problem, when one has todecide, whether or not two polynomials realize the same function. If bothpolynomials are terms (i.e. polynomials without any constants from the al-gebra) then we call it the equivalence problem or identity checking problem.The other problem is the polynomial equation satis�ability problem or poly-nomial equation solvability problem, when one has to decide whether the twopolynomials attain the same value for at least one substitution. Among clas-sical algebras (like groups or rings) this problem is trivial if neither of thepolynomials have constants (and the answer is always `yes', not depending onthe two terms). Therefore we leave the word `polynomial' out from the nameof this problem. Compared to function realization problems, the equivalenceand the equation solvability problems make sense not only over functionallycomplete algebras, but over any �nite algebra.These problems are all decidable questions for a �nite algebra, the inter-esting question to ask is how hard is or how long it takes to decide them.Therefore we check the computational complexity of these questions.Let us start with a notation. To every term or polynomial expression
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t(x1, . . . , xn) and each algebra A we denote the naturally associated functionby tA : An → A. We recall that an algebraA satis�es an equation s(~x) ≈ t(~x)for ~x = (x1, . . . , xn), if the corresponding functions sA and tA are the samefunction. We denote it by A |= s ≈ t.De�nition 141. Equivalence problem and polynomial equivalence problem.Given: A �nite algebra A.Instance: Two term expressions (for the equivalence problem), ortwo polynomial expressions (for the polynomial equivalence problem).Let the two expressions be s and t.Question: Do the two input expressions realize the same function over

A, i.e. does A |= s ≈ t hold?De�nition 142. Equation solvability problem.Given: A �nite algebra A.Instance: Two polynomial expressions p, q.Question: Do the two input polynomials attain the same value for at leastone substitution over A, i.e. does the equation p = q have a solutionover A?We investigate these problems from Chapter 5 to Chapter 8. We startwith the case when the algebra is functionally complete.In Theorem 6 on page 752 of [29] Tobias Nipkow asserted the following:Theorem 143. The equation solvability problem for a nontrivial functionallycomplete algebra A is NP-complete.In the `proof' he claims to give a polynomial reduction from decidingwhether an equation over Z2 = ({ 0, 1 } , +, ·) has a solution (a problem whichis well-known to be NP-complete, see e.g. [7]) to the problem of whether anequation over A has a solution. Following the original proof from [29] showsthat Nipkow's construction actually yields a reduction to the problem ofwhether a system of equations over A has a solution, which proves a weakertheorem:Theorem 144. The system of equations solvability problem for a nontrivialfunctionally complete algebra A is NP-complete.The de�nition of this problem is the following:



5.1 System of equations solvability 117De�nition 145. System of equations solvability problem.Given: A �nite algebra A.Instance: A natural number n and two system of polynomials p1, . . . , pnand q1, . . . , qn over A.Question: Does the system of equations p1 = q1, . . . , pn = qn have asolution over A?In Section 5.1 we �rst give the original proof from [29] (with slight mod-i�cations) yielding Theorem 144. Then in Section 5.2 we prove the theoremthat Nipkow intended to prove. Finally in Section 5.3 we prove the followingcorollary of the method:Theorem 146. The polynomial equivalence problem for a nontrivial func-tionally complete algebra A is coNP-complete.5.1 The complexity of system of equations solv-ability problemWe give the proof of Theorem 144 in this Section.Let A be a nontrivial functionally complete algebra (|A| ≥ 2). Theproblem is in NP, since we only need to substitute a possible solution.It is well-known (see, e.g. [7] p. 251, problem AN9) that deciding whetheran equation over Z2 = ({ 0, 1 } , +, ·) has a solution is NP-complete (it isalmost the same as the SAT problem). Following the proof in [29] we give apolynomial reduction from the problem of determining whether an equationover Z2 has a solution to the problem of whether a system of equations over
A has a solution.Let f (x) = g (x) be an equation over Z2, where f and g are polynomialexpressions and x is an n-tuple of free variables. We create a system ofequations over A in polynomial time such that the system has a solutionover A if and only if f = g has a solution over Z2. The size of the systemwill be polynomial in ‖f‖ + ‖g‖.Let us denote two arbitrary distinct elements of A with 0A and 1A. Since
A is functionally complete, there exist two 2-variable polynomial expressions(let us denote them with +A and ·A) such that 0A and 1A behave underthe operations +A and ·A as 0 and 1 behave under the operations + and ·,namely:

+A (0A, 0A) = +A (1A, 1A) = 0A, +A (0A, 1A) = +A (1A, 0A) = 1A,
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·A (0A, 0A) = ·A (0A, 1A) = ·A (1A, 0A) = 0A, and ·A (1A, 1A) = 1A.There exist many possible functions for +A and for ·A, and each can beexpressed as a polynomial expression. We choose +A and ·A arbitrarily (withrespect to these properties) and �x them for the proof.There exists a 1-variable expression χ1A such that χ1A (1A) = 1A and

χ1A (a) = 0A for every a 6= 1A. Now using +A and ·A instead of + and
· and using χ1A (xi) instead of the variable xi we can encode the equation
f = g over Z2 as an equation fA = gA over A such that f = g has a solu-tion over Z2 if and only if fA = gA has a solution over A. We can observethough that if we want to express this equation using the basic operations of
A then the length of the resulting equation might be exponential in the sizeof the original equation (e.g. if any variable occurs more than once in thepolynomial expression for +A or for ·A).1 For this reason, the proof is not apolynomial reduction from deciding whether an equation over Z2 has a solu-tion to deciding whether an equation over A has a solution. However, usingan easy trick we can encode the original equation to a system of equationswith polynomial size in ‖f‖ + ‖g‖:At �rst we have the equation f (x) = g (x) over Z2. In every step wewill shorten this equation and add other equations to our system until theequation cannot be shortened any more. In each step we search reading fromleft to right in our modi�ed equation for any occurrence of x + y or of x · y,where x and y are variables or constants (polynomial expressions with length1). If we �nd an occurrence of x + y with variables or constants x, y then fora new variable z we replace every occurrence of x + y with z in the modi�edequation and add the equation z = +A (x, y) to our system of equations.Similarly, if we �nd an occurrence of x · y with variables or constants x, ythen for a new variable z we replace every occurrence of x · y with z inthe modi�ed equation and add the equation z = ·A (x, y) to our system ofequations. Each step takes at most ‖f‖ + ‖g‖ time and each step shortensthe equation f = g, hence the algorithm stops in at most (‖f‖ + ‖g‖)2 time.After the �nal step, in every equation of the system for every original variable
xi (i.e. which occurred in f = g) we replace xi with χ1A (xi).After this translation we have a system of equations over A such that thesystem has a solution over A if and only if the original equation f = g had asolution over Z2. The size of the system is linear in the size of the equation
f = g over Z2, since there are at most (‖f‖ + ‖g‖)-many equations, and byLemma 39 each equation has length at most (‖+A‖ + ‖·A‖) · ‖χ1A‖, which1An easy example for such an exponential blowup is if for a group one wants to expressthe commutator expression [[[[x1, x2] , x3] . . . ] , xn] using only the inverse operation and themultiplication of the group.



5.2 Equation solvability 119does not depend on the equation but on the algebra A. The time of thetranslation of f = g over Z2 to a system of equations over A is polynomialas well, which �nishes the proof.5.2 The complexity of the equation solvabilityproblemWe give the proof of Theorem 143 in this Section.Let A be a nontrivial functionally complete algebra (|A| ≥ 2). Theproblem is in NP, since we only need to substitute a possible solution.It is well-known (see, e.g. [7]) that deciding whether a formula written inconjunctive normal form can be satis�ed over the two-element Boolean alge-bra B = ({ 0, 1 } ,¬,∨,∧) is NP-complete (this is called the SAT problem).The formula is usually given by the clauses, which we take the conjunctionsof, where each clause is a disjunction of arbitrary many literals, i.e. variablesor negations of variables ([7] p. 259 problem LO1). The problem remains NP-complete, if every clause in the conjunctive normal form contains exactly 3literals (this is called the 3SAT problem, [7] p. 259 problem LO2). We willgive a polynomial reduction from the problem of determining whether a 3SATformula can be satis�ed over B to the problem of whether an equation over
A has a solution.Let ϕ (x) =

∧n
i=1 pi be a 3SAT formula over B. We create an equationover A such that the equation has a solution over A if and only if ϕ can besatis�ed over B. The length of the equation will be polynomial in the size ofthe formula.Let us denote two arbitrary distinct elements of A with 0A and 1A. Since

A is functionally complete, there exists a 2-variable polynomial expression ∧Asuch that 0A and 1A behave under the operation ∧A as 0 and 1 behave underthe operation ∧, namely ∧A (0A, 0A) = ∧A (0A, 1A) = ∧A (1A, 0A) = 0A, and
∧A (1A, 1A) = 1A. There exist many possible functions for ∧A, and each canbe expressed as a polynomial expression. We choose ∧A arbitrarily (withrespect to these properties) and �x it for the proof. Similarly, for each ofthe eight possible 3-variable forms of disjunctive clause qj = qj (x1, x2, x3),
(j = 1, . . . , 8) we can choose an arbitrary but �xed 3-variable expression qj,Asuch that 0A and 1A behave under the function qj,A as 0 and 1 behave underthe clause qj . Moreover there exists a 1-variable expression χ1A such that
χ1A (1A) = 1A and χ1A (a) = 0A for every a 6= 1A.For every positive integer number k we will use a polynomial ∧(k) =
∧(k)

A
(x1, . . . , xk) over A in a way that it behaves on inputs from { 0A, 1A }



120 COMPLEXITY AND FUNCTIONALLY COMPLETE ALGEBRASthe very same as ∧k
i=1 xi behaves on the inputs { 0, 1 } over B. Let us de�ne

∧(k) in the same way we de�ned the polynomials p(n) in Lemma 44: let
∧(1)

A
(x1) = x1 and ∧(2)

A
(x1, x2) = ∧A (x1, x2). For every integer i ≥ 2 let

∧(2i−1)
A

(x1, . . . , x2i−1) = ∧(2)
A

(

∧(i)
A

(x1, . . . , xi) ,∧(i−1)
A

(xi+1, . . . , x2i−1)
)

,

∧(2i)
A

(x1, . . . , x2i) = ∧(2)
A

(

∧(i)
A

(x1, . . . , xi) ,∧(i)
A

(xi+1, . . . , x2i)
)

.It is clear that ∧(k)
A
, for every integer k, has the required property.Now using the expression qj,A instead of the clause qj , using ∧(n)

A
insteadof ∧n

i=1 and using χ1A (xi) instead of the variable xi we can encode the formula
ϕ over B as an expression ϕA over A such that ϕ can be satis�ed over B ifand only if ϕA = 1A has a solution over A. The only remaining part is toprove that ‖ϕA‖ is polynomial in ‖ϕ‖.Let c = ‖χ1A‖, let l = ‖∧A‖ and let d = max { ‖qj,A‖ : j = 1, . . . , 8 }the length of the longest clause expression. For every k we have ∥∥∥∧(k)

A

∥
∥
∥ ≤

ldlog ke ≤ l · klog l, which is quite straightforward from Lemma 44 or from thefact ∥∥∥∧(k)
A

∥
∥
∥ ≤

∥
∥
∥∧(2)

A

∥
∥
∥ · max

{∥
∥
∥∧(dk/2e)

A

∥
∥
∥ ,
∥
∥
∥∧(bk/2c)

A

∥
∥
∥

}.Using Lemma 39 we can conclude that the length of the expressed 3SATformula ϕA over A is not more than c · d · l ·nlog l, which is polynomial in thelength of the original 3SAT formula ‖ϕ‖, since n ≤ ‖ϕ‖ and c, d, l dependonly on A. Thus, Theorem 143 is recovered.5.3 The complexity of the polynomial equiva-lence problemWith a slight modi�cation we can easily prove Theorem 146. Let A be anontrivial functionally complete algebra (|A| ≥ 2). The problem is in coNP,since we only need to substitute a possible counterexample.In the proof of Theorem 143, for every 3SAT formula ϕ we created anexpression ϕA over A such that ϕ can be satis�ed over B if and only if
ϕA = 1A has a solution over A. Moreover the length of ϕA was polynomialin the length of ϕ. Observe that the image of ϕA over A is a (not necessarilyproper) subset of { 0A, 1A }, hence ϕA = 1A has a solution over A if andonly if ϕA ≈ 0A is not an identity over A. This is a polynomial reductionfrom the problem of 3SAT over B to the problem of determining whether anequation is an identity over A.



Chapter 6The complexity of the polynomialequivalence problem formeta-Abelian groupsHaving investigated the polynomial equivalence and equation solvability prob-lems for functionally complete algebras, we turn our attention to classicalalgebraic structures.Early investigations into the equivalence problem for various �nite al-gebraic structures were carried out by computer scientists, in particular atSyracuse University where the terminology the term equivalence problem wasintroduced. They considered �nite commutative rings and �nite lattices. Inthe early 1990's it was shown by Hunt and Stearns (see [16]) that the equiv-alence problem of a �nite commutative ring either has polynomial time com-plexity or is coNP-complete. Later Burris and Lawrence proved in [2] thatthe same holds for rings in general.Theorem 147. Let R be a �nite ring. The equivalence problem for R is inP if R is nilpotent, and it is coNP-complete otherwise.It is not hard to see that from the proof the same follows for the polyno-mial equivalence problem. Surprisingly enough there are no published resultsabout the complexity of the equation solvability problem for �nite rings.The equivalence problem for �nite groups has proved to be a far morechallenging topic than that for �nite rings. This problem for a group Gis the problem of deciding which equations s ≈ t are satis�ed by G. Werecall a notation from Chapter 5. To every term or polynomial expression
t(x1, . . . , xn) and each group G we denote the naturally associated functionby tG : Gn → G. We recall that a group G satis�es an equation s(~x) ≈ t(~x)



122 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPSfor ~x = (x1, . . . , xn), if the corresponding functions sG and tG are the samefunction. We denote it by G |= s ≈ t. We recall that G |= s ≈ t if and onlyif G |= s · t−1 ≈ 1. Therefore we view the equivalence problem for groups asthe problem of deciding which equations t ≈ 1 are satis�ed by G.In 2004 Burris and Lawrence [3] proved that if G is nilpotent or G ' Dn,the dihedral group for odd n, then the polynomial equivalence problem for
G is in P. The groups arising for the next step of the investigation are themeta-Abelian groups.This Chapter investigates the case of meta-Abelian groups. We prove thatfor several kinds of semidirect products the polynomial equivalence problemis in P. Examples for such groups are the above-mentioned dihedral groups,the alternating group A4, or the wreath product of two cyclic group.From Theorem 146 in Chapter 5 we already know that the polynomialequivalence problem is coNP-complete for �nite simple non-Abelian groups.The result does not tell us anything about the complexity of the equivalenceproblem as it uses the constants of the group. In Chapter 7 we prove thatnot only for the simple non-Ableian groups but for every �nite nonsolvablegroup the equivalence problem is coNP-complete.Interest in the computational complexity of the equivalence problem ofa �nite algebraic structure has been steadily increasing since 2004. Thereare many results about the equivalence problem of �nite monoids [21], [37],[38]. Their initial approach came from the complexity of recognizing formallanguages. The �rst hardness result for semigroups was proved by Popov andVolkov [39], and several results were proved by Seif and Szabó in [34]. Forcommutative semigroups the topic was thoroughly investigated by Kisielewicz[19].The complexity of the system of equation solvability problem is com-pletely characterized for groups in [10] and [23]. For a �nite Abelian groupdeciding whether a system of equations has a solution is in P, otherwise it isNP-complete.The characterization of solving a single equation looks more complicated,though ([10]). Goldmann and Russell proved that for a �nite group G de-ciding whether an equation has a solution is in P if G is nilpotent andNP-complete if G is non-solvable.The result tells nothing about non-nilpotent solvable groups. Goldmannand Russell explicitly ask in [10] to decide the complexity of solving an equa-tion over S3.The equation solvability problem was �rst examined for monoids andsemigroups. Klíma [20] has analyzed the question for semigroups of size atmost 6. He proved for almost all of these semigroups that solving an equation



6.1 Semidirect products 123is in either in P or NP-complete. The only remaining case is the 6 element`monoid' S3. He conjectures that the problem is in P.In Section 6.2 we show the following: If G ' A o B, where A ' Zp and
B ' Zq for some primes p and q, then equation solvability problem is inP. Thus, with Z3 ' A and Z2 ' B we answer the questions of Goldmann,Russell and Klíma.The results suggest that the complexity of equivalence problem for a �nitealgebra A is in P if and only if the equation solvability problem for A is in P.This is far from to be true. Seif and Szabó presented a 10 element semigroup(see [34]) for which the equivalence problem is in P and the equation solvabil-ity problem is NP-complete. Klíma proved an even stronger result in [20],where he showed a semigroup of size 24 for which the equation solvabilityproblem is NP-complete but the polynomial equivalence problem is in P.It may happen, though, that the complexity of the two problems coincidein case of groups. At this point we do not even know these complexities forthe symmetric group S4.6.1 Semidirect productsIn this Section we prove for a class of non-nilpotent groups that the poly-nomial equivalence problem (and so the equivalence problem) can be solvedin polynomial time. The following method will play a crucial role in ourinvestigation.Collecting procedure: Let G ' A o B where A is Abelian and let
t = x1x2 . . . xk be a group polynomial over G. Without loss of generality weassume that the xi are constants or variables over G. Every element of Gcan be uniquely written of the form ba where a ∈ A and b ∈ B. So we write
xi of the form biai where ai ∈ A and bi ∈ B. Collecting the elements of Bto the left we obtain

t = (b1b2 . . . bk) ·
(

ab2b3...bk

1 ab3...bk

2 . . . abk

k−1ak

)

.This term is an identity if and only if both
b1b2 . . . bkand (

ab2b3...bk

1 ab3...bk

2 . . . abk

k−1ak

) (6.1)are identities (i.e. both are identically 1 for all substitutions over G). Letus examine the latter expression. Substitute ai = 1 for all i, where xi was



124 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPSa variable, not constant. Then we have t′ = cw1
1 cw2

2 . . . cwm
m , where all cis areconstants from A and wi is a word over B (let us call t′ the constant part of(6.1)). Let us �x j. Substituting ai = 1 for i 6= j (where ai is not constant)we obtain an identity of the form t′jt

′ where t′j = ah1
j ah2

j . . . ahl

j and l is thenumber of the occurrences of xj in t and hi is a semigroup polynomial over
B for every 1 ≤ i ≤ l. Obviously, (6.1) is an identity if and only if t′ and t′jare identities for every 1 ≤ j ≤ k. Hence we are looking for the complexityof checking whether or not b1b2 . . . bk, t′ and t′j are all identities.Lemma 148. Let F be a �eld of prime characteristic p and let H be a multi-plicative subgroup of F

∗: H ≤ F
∗. For a polynomial f(x̄) ∈ F[x1, x2, . . . , xk]it can be checked in polynomial time whether or not it vanishes on H.Proof. Let a be a generator of F

∗ and let H = 〈at〉. Putting zj = xt
j wehave f(x̄) is identically 0 over H if and only if f(z̄) is identically 0 over

F
∗. A polynomial g ∈ F[x1, . . . , xk] admits this latter property if and onlyif g =

∑
(xq−1

i − 1)gi(x̄) for some gi ∈ F[x1, . . . , xk], where |F| = q. Thiscondition can be checked in linear time since we only need to divide g by
xq−1

i − 1 (i.e. substitute xq−1
i = 1) for all i ∈ { 1, . . . , k } and the remainingexpression has to be 0.Theorem 149. If G ' A o B where A ' Zp for some prime p, and thepolynomial equivalence problem for B is in P then the polynomial equivalenceproblem for G is in P, too.Proof. The subgroup B acts on A. Now, Aut A ' Cp−1, the cyclic groupof order p− 1 and consists of the maps a → al for every a ∈ A for some 1 ≤

l ≤ p− 1. Thus there is a homomorphism φ : B → Cp−1 such that ab = aφ(b)for every a ∈ A. Now, using the collecting procedure it is enough to checkwhether or not b1b2 . . . bk, ah1
j ah2

j . . . ahl

j and cw1
1 cw2

2 . . . cwm
m are identities. The�rst condition can be checked in polynomial time by the assumption. For thesecond one we rewrite the expression ah1

j ah2
j . . . ahl

j = a
φ(h1)
j a

φ(h2)
j . . . a

φ(hl)
j =

aw1+w2+···+wl

j . Here wj denotes the image of hj at φ. Substituting φ(bj) = yjwe have wj as a product of some of y1, . . . yk over Zp, shortly a monomial,and f = w1 + w2 + · · ·+ wl is a k-variable polynomial over φ(B) where boththe addition and the multiplication is understood in Zp. The expression
aw1+w2+···+wl

j is an identity if and only if f attains 0 every time when wesubstitute elements of φ(B) for the variables. And this can be checked inpolynomial time by Lemma 148. Finally, cw1
1 cw2

2 . . . cwm
m can be written in theform cw′

1cw′
2 . . . cw′

m, where c is the generator, of A. Using the same idea,this is an identity if and only if w′
1 + · · ·+ w′

m attains 0 every time when wesubstitute elements of φ(B) for the variables. And this can be checked inpolynomial time by Lemma 148, again.



6.1 Semidirect products 125Corollary 150. If G ' A o B, where the polynomial equivalence problemfor B is in P, and A ' Zm where m is squarefree, then the polynomial equiv-alence problem for G is in P, too.Proof. Now, A ' ⊕p|mZp and all summands are B invariant. Every constantcan be uniquely decomposed into a product of elements from Zp for p|m. Fora polynomial p let t(p) denote the polynomial when we replace each constantby its p part. Obviously, a polynomial is an identity over G if and only if t(p)is an identity over Zp oB for every prime p dividing m. This can be checkedin polynomial time by Theorem 149.Unfortunately the same idea does not work for a noncyclic normal sub-group, A. The collecting procedure can be used in a few other cases, though.Theorem 151. Let G ' A o B such that the following hold:(a) A is Abelian and the exponent of A is squarefree;(b) the polynomial equivalence problem for B is in P;(c) for ever prime p dividing the size of A and P ∈ Sylp(A) the group
B/CB(P) is Abelian and p - |B/CB(P)|, where CB(P) denotes thecentralizer of P in B.Then the polynomial equivalence problem for G is in P.Proof. After the collection procedure we see that it is enough to check iden-tities over B and identities of the form (6.1)

ax
k11
1 x

k12
2 ...x

k1n
n ax

k21
1 x

k22
2 ...x

k2n
n . . . ax

kl1
1 x

kl2
2 ...x

kln
n , (6.2)and cw1

1 cw2
2 . . . cwm

m for the constants. The Sylow subgroups of A are B invari-ant, hence it is enough to check the identity for the Sylows of A. Thus wemay assume that A is an elementary Abelian p-group. Let A ' Z
m
p and let

ϕ : B → Aut Z
m
p ' GLm (Zp) be the action of B on A, ϕ(B) = H. Withthese notations we need to check identity (6.1) for G ' Z

m
p o H, where H isan Abelian matrix group acting faithfully on Z

m
p (note that H ' B/CB(Zm

p )).Let R denote the subring of the ring of m by m matrices generated by H.Now (6.2) can be rewritten as:
ax

k11
1 x

k12
2 ...x

k1n
n +x

k21
1 x

k22
2 ...x

k2n
n +···+x

kl1
1 x

kl2
2 ...x

kln
nand it is enough to check whether or not the exponent

xk11
1 xk12

2 . . . xk1n

n + xk21
1 xk22

2 . . . xk2n

n + · · · + xkl1
1 xkl2

2 . . . xkln
n (6.3)



126 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPSis identically 0 in R when substituting the elements of H. The ring R actssemisimply on Z
m
p , because p - |H|. By the Wedderburn�Artin Theorem [17]

R is a direct sum of matrix-rings. As H is commutative, R is commutative,as well, hence R is a direct sum of �elds: R = ⊕s
i=1Fqi

. Thus H ≤ R
∗ '

⊕s
i=1F

∗
qi
. Let Hi denote the projection of H to its i-th coordinate. Expression(6.3) is identically 0 over R if and only if it is 0 at every substitution from

Hi for every i ≤ s. By Lemma 148 this can be checked in polynomial time,and so the polynomial equivalence problem for G is in P.Finally, consider the identity cw1
1 cw2

2 . . . cwm

l ≈ 1. Here we can write every
cj as a linear combination of some �xed basis, {vi}, of A. Let cj =

∏
v

λji

i .Thus, it is enough to check, whether vλ1iw1
i vλ2iw2

i . . . vλliwl

i ≈ 1 is an identityfor all 1 ≤ i ≤ s. The exponent has to be identically 0 over Hi, and this canbe checked in polynomial time by Lemma 148.Corollary 152. Let G ' A o B, where A and B are Abelian groups, suchthat the exponent of A is squarefree and (|A| , |B|) = 1 then the polynomialequivalence problem for G is in P.Proof. The conditions of Theorem 151 trivially hold.Now, we investigate the case when neither the size nor the exponent of thenormal subgroup is squarefree. The modi�cation of the Lemma 148 remainsvalid for cyclic groups.Lemma 153. Let f (x1, . . . , xk) = w1 + · · · + wl be a sum of monomials in
k variables over Zpα (p > 2) and let H be the p− 1 element subgroup of Z

∗
pα.Then, for any M ≤ H it can be checked in polynomial time whether or not

f vanishes on M.Proof. Let a be a generator of H and let M = 〈at〉. Putting zj = xt
j we have

f(x̄) is identically 0 over M if and only if f(z̄) is identically 0 over H. Weclaim that a polynomial f ∈ Zpn [x1, . . . , xk] admits this latter property if andonly if f =
∑

(xp−1
i − 1)gi(x̄) for some gi ∈ Zpn [x1, . . . , xk]. This conditioncan be checked in linear time. Since the exponent of H is p − 1, if f is ofthe required form, it vanishes over H. On the other hand, as the elementsof H are pairwise incongruent mod p (not only mod pα), the polynomialhas to vanish over Z

∗
p, as well. By Lemma 148 this happens if and onlyif f =

∑
(xp−1

i − 1)gi1(x̄) mod p and so f =
∑

(xp−1
i − 1)gi1(x̄) + pf1

mod pα. Hence f1 is vanishing mod pα−1. By the previous arguments f1 =
∑

(xp−1
i − 1)gi2(x̄) mod p. Continuing in the same fashion we obtain that

f =
∑

(xp−1
i − 1)gi(x̄).The following theorem is a generalization of Theorem 149:



6.2 Equation solvability 127Theorem 154. Let G ' A o B such that the following hold:(a) A is cyclic;(b) the polynomial equivalence problem for B is in P;(c) for ever prime p dividing the size of A and P ∈ Sylp(A) we have
p - |B/CB(P)|.Then the polynomial equivalence problem for G is in P.Proof. Going along the lines of Theorem 151, we may assume that A ' Zpm .Moreover, after the collection procedure, it is enough to check identities over

B and identities of the form f = w1 + w2 + · · ·+ wl = 0 over B/CB(P)(Note that this works for the constant part, as well, since we can writeevery constant as a power of the generator of A). As B/CB(P) ≤ Aut Zpα ,condition (c) implies that B/CB(P) ≤ H, where H denotes the p−1 elementsubgroup of Aut Zpα. If p = 2 then H = 1, if p > 2, then identities canbe checked in polynomial time over B and H, by condition (b), and byLemma 153, respectively.6.2 Equation solvabilityA modi�cation of the collecting procedure and Lemma 148 will also helpus to �nd out the complexity of the equation solvability problem for somemetacyclic groups, including S3.Theorem 155. For any group G of order pq where p and q are primes theequation solvability problem for G is in P.Proof. Consider the case when G ' A o B where A ' Zp and B ' Zq. Wemay assume that G is not abelian, and so p 6= q.Let {t, s} be an instance of the equation solvability problem for G. Wewould like to know whether or not t = s has a solution. Multiplying by s−1and writing t for ts−1, we have to solve t = 1. After the collecting procedurewe obtain the following equation:
t(g1 . . . gk) = (b1b2 . . . bk) ·

(

ab2b3...bk

1 ab3...bk

2 . . . abk

k−1ak

)

= 1.As p and q are coprime, both
b1b2 . . . bk = 1



128 POLYNOMIAL EQUIVALENCE FOR META-ABELIAN GROUPSand
ab2b3...bk

1 ab3...bk

2 . . . abk

k−1ak = 1.must hold. Since B is cyclic, we can solve b1 . . . bk = 1 as a congruencemod q, and we can express one of the variables (say, b1) using the othervariables and constants: b1 = c
∏

bkid
i , this is what a solution looks like mod

q. Substituting this expression for b1 in t′1t
′
2 . . . t′kt

′ = 1, we only need to checkthe complexity of the solvability of this latter equation under the constraintfor b1. By a similar argument as in the proof of Theorem 149 we arrive atthe solvability of
ax

k11
1 x

k12
2 ...x

k1n
n +x

k21
1 x

k22
2 ...x

k2n
n +···+x

kl1
1 x

kl2
2 ...x

kln
n = 1,where a is a generator of A. Now, it is enough to check whether or not theexponent attains 0, that is whether or not

xk11
1 xk12

2 . . . xk1n

n + xk21
1 xk22

2 . . . xk2n

n + · · ·+ xkl1
1 xkl2

2 . . . xkln
n = 0has a solution over Zp. As p is a prime, this equation has no solution if andonly if

(xk11
1 xk12

2 . . . xk1n

n + xk21
1 xk22

2 . . . xk2n

n + · · · + xkl1
1 xkl2

2 . . . xkln
n )p−1 = 1is an identity. This can be checked in polynomial time by Lemma 148, hencethe equation solvability problem for G is in P.6.3 ProblemsKlíma's example mentioned in the beginning of the Chapter suggests thefollowing question:Problem 5. Is there an algebra A such that the polynomial equivalenceproblem for A is coNP-complete, but the equation solvability problem for Ais in P?If there is an example, it is not a group. Indeed, for a group G every in-stance f1 ≈ f2 of the polynomial equivalence problem for G can be rewrittenin the form f1f

−1
2 ≈ 1. If one can check the solvability of p = a in polynomialtime, then one only has to check the solvability of f1f

−1
2 = g for every g 6= 1.The two polynomials are equivalent if and only if none of these equationshave a solution.The smallest group not discussed in this Chapter is S4. This group can beconsidered as a semidirect product of Z

2
2 and S3. Here, the exponent of the



6.3 Problems 129�rst group is squarefree, the equivalence problem for S3 is in P, but the actionof S3 is not Abelian. If we attack this problem using our technics, then afterthe collecting procedure, going along the lines of the proof of Theorem 151or Theorem 154, we should discuss terms over M2(Z2) evaluated on theinvertible elements.Problem 6. Find the complexity of the equivalence, the polynomial equiv-alence and the equation solvability problems for S4.



Chapter 7The complexity of the equivalenceproblem for nonsolvable groupsIn this Chapter we deal with non-solvable �nite groups. A corollary of The-orem 146 is that the polynomial equivalence problem is coNP-complete for�nite simple groups. In this Chapter we prove that this result is true for notonly simple but for every non-solvable group and not only for the polynomialequivalence problem but for the equivalence problem:Theorem 156. The equivalence problem for a �nite nonsolvable group G iscoNP-complete.Let us recall a notation from Chapter 5. To every term expression
t(x1, . . . , xn) and each group G we denote the naturally associated functionby tG : Gn → G. We recall that a group G satis�es an equation s(~x) ≈ t(~x)for ~x = (x1, . . . , xn), if the corresponding term functions sG and tG are thesame function. We denote it by G |= s ≈ t. We recall that G |= s ≈ t ifand only if G |= s · t−1 ≈ 1. Therefore we view the equivalence problem forgroups as the problem of deciding which equations t ≈ 1 are satis�ed by G.Now we recall some de�nitions and easy observations about commutatorsand solvable groups (for more details see [31]).De�nition 157. a. The commutator [x, y] is a group term de�ned by

[x, y] := x−1y−1xy.b. De�ne the commutator terms cr

(
x1, . . . , x2r

) by induction: c1(x1, x2) =
[x1, x2] and for r > 1 let cr be of arity 2r:

cr(x1, x2, . . . , x2r) =
[
cr−1(x1, . . . , x2r−1), cr−1(x2r−1+1, . . . , x2r)

]
.



7 Equivalence for non-solvable groups 131c. G is solvable if and only if for some r ≥ 1, G |= cr ≈ 1. The smallestpossible r is called the solvable length of G.d. For a ∈ G let
[a,G] :=

〈{
[a, g] : g ∈ G

}〉
.Lemma 158. a. If N E G with both N and G/N are solvable then G isalso solvable.b. If N1,N2 are two normal solvable subgroups of G then the product

N1 · N2 is also a normal solvable subgroup of G.c. [a,G] is a normal subgroup of G.d. If G is a non-abelian simple group then
[a,G] =

{

1 if a = 1

G if a 6= 1
.Here are some notations and claims about the verbal subgroups of a group(see [28]).De�nition 159. a. Given a set T of group terms and let

T (G) :=
⋃

t∈T

Range(tG)the union of the ranges of the term functions tG.b. The subgroup generated by T (G), which we denote by
T ∗(G) := 〈T (G)〉is called a verbal subgroup of G.c. 1 and G are verbal subgroups of G. If these are the only verbal sub-groups of G then we say G is verbally simple.d. Given two terms s(x1, . . . , xm) and t(x1, . . . , xn), we de�ne the term stby

st

(
x1, . . . , xmn

)
:= s

(
t(x1, . . . , xn), t(xn+1, . . . , x2n), . . . , t(xmn−n+1, . . . , xmn)

)
.



132 EQUIVALENCE FOR NON-SOLVABLE GROUPSe. For a �nite group G let dG be a positive integer such that for any set
X of generators of G we have

G =
⋃

0≤k≤dG

Xk.f. Given a term s(x1, . . . , xm) and a �nite group G de�ne the term sG by
sG

(
x1, . . . , xmdG

)
:= s(x1, . . . , xm) · s(xm+1, . . . , x2m) · · ·

︸ ︷︷ ︸a product of dG terms s(· · · ), with distinct variables .Lemma 160. a. Every verbal subgroup of G is normal in G.b. A �nite group G has a unique largest solvable verbal subgroup.c. Suppose G is �nite. If T = {t1, . . . , tk} let t = t1 · · · tk. Then
T ∗(G) = tG(G).d. Thus for a �nite G, every verbal subgroup V of G is the range of asingle term function.The length of a term is important in our investigations.De�nition 161.We recall that the length of a term function is de�ned inductively (by De�-nition 35): the length of a variable or its inverse is 1, and if s and t are termswith length a and b, then the length of the product term st is a + b.Lemma 162. a. The length of st is the product of the length of t and thelength of s.b. The length of sG is the product of dG and the length of s.The following proposition plays a crucial role in the proof of Theorem 156.Proposition 163. Let G be a �nite group.a. For a verbal subgroup V let s be a term with s(G) = V. For all terms

t we have
V |= t ≈ 1 if and only if G |= ts ≈ 1.



7.1 Proving coNP-completeness 133b. Suppose G is nonsolvable but every proper verbal subgroup of G is solv-able. Let V be the largest solvable verbal subgroup of G, denote itssolvable length by r. Then for all terms t we have
G/V |= t ≈ 1 if and only if G |= crtG ≈ 1.c. If G is verbally simple and N is a proper normal subgroup of G thenfor all terms t we have
G |= t ≈ 1 if and only if G/N |= t ≈ 1.Proof. a. Let t be n-ary and s be m-ary. Let ~yi = (yi1, . . . , yim) for i =

1, . . . , n, and we consider the terms t(x1, . . . , xn) and ts
(
y11, . . . , ynm

)
=

t
(
s(~y1), . . . , s(~yn)

). While ~yi run through all tuples from G, the valuesof s(~yi) attain every element of V. Thus if t 6= 1 at some evaluation
(h1, . . . , hn) ∈ V

n, then we can choose the tuples ~yi such that s(~yi) = hi.Thus there is an evaluation of ts such that ts 6= 1.On the other hand, if ts 6≈ 1 over G, then there is an evaluation
~y1, . . . , ~yk such that ts 6= 1. Now, for the elements hi = s(~yi) we have
t(h1, . . . , hn) 6= 1, hence t 6≈ 1 over V.b. Let m be the arity of tG. If t ≈ 1 over G/V, then tG(G) ≤ V, hence
tG(G) is solvable and crtG ≈ 1 over G. On the other hand, if t 6≈ 1 over
G/V then tG(G) is non-solvable and tG(G) = G. As there are someelements g1, . . . g2r ∈ G such that cr(~g) 6= 1, and there are m-tuples ~yisuch that tG(~yi) = gi, we have crtG(~y1, . . . , ~y2r

) 6= 1. Hence crtG 6≈ 1over G.c. If t ≈ 1 over G then clearly t ≈ 1 over G/N. Now, if t ≈ 1 over G/N,then tG(G) ≤ N. As tG(G) is verbal, tG(G) = 1, hence t ≈ 1 over G.7.1 Proving coNP-completenessOur leading reference on computational complexity will be [7]. The equiv-alence problem of any �nite group G is clearly in co-NP: to check if anequation t(~x) ≈ 1 fails in G one only needs one instance ~g where tG(~g) 6= 1, and given such an instance ~g one can �nd the value of tG(~g) in polynomialtime. Thus to prove the theorem we will exhibit an NP-complete problemthat polynomially reduces to the equivalence problem of G. The most ele-gant choice we have found is to use the NP-completeness of the k-coloring



134 EQUIVALENCE FOR NON-SOLVABLE GROUPSproblem where k is the size of the group G when G is a simple non-Abeliangroup. Then we use induction for non-solvable groups in general.Theorem 164. Let G be a �nite, simple, non-Abelian group. Then theequivalence problem for G is coNP-complete.Proof. Let k = |G|. The group G is non-Abelian and simple, hence k ≥ 60.We polynomially reduce GRAPH k-COLORING to the equivalence problemof G. Let Γ = (V, E) be an arbitrary simple graph with no loops, or multipleedges, V = {v1, . . . , vn} and E = {e1, . . . , em}. We shall color the verticesof Γ by the elements of G. The color of vi will be gi. We exhibit a termfunction t over G such that t(g1, . . . , gn) 6= 1 if and only if the appropriatecoloring is a k-coloring.By Lemma 158/d we have [g,G] = G for every g 6= 1. Let dG be theconstant de�ned in De�nition 159/e. This constant is depending only on Gand for every g ∈ G

G = [g,G] =

dG∏

1

[g, yi]holds. Let
S(x, y1, . . . , ydG

) = S(x, ȳ) =

dG∏

k=1

[x, yk].Every vertex vi in V will be associated to a variable xi. Then for every edge
e = (vi, vj) we de�ne

Si,j(ȳ) = S(xix
−1
j , ȳ).Thus Si,j(G) = 1 if we substitute xi = xj and Si,j(G) = G if we substitute

xi 6= xj. The length of Si,j depends only on G: each commutator contains 3variables, repeated twice and we multiply dG of them, so the length of thisterm fuction is 6dG. We are ready to de�ne t. Let e = (vi, vj) be an edge of
Γ. Let

te(ȳ) = Si,j(ȳ) = S(xix
−1
j , ȳ).Let e1, e2, . . . , em be the list of edges of Γ and r such that 2r−1 < m ≤ 2r.Moreover let

t = cr(te1 , te2, . . . , tem
, tem

, . . . , tem
).Here we repeat tem

enough many (2r −m many) times in order to match thearity of cr. In the terms tei
the variables of ȳ are all distinct. So there arealtogether dG2r many 'y'-s and their inverses. The length of t is 6dG · 4r ≤

6dG(2m)2 = 24dGm2 hence polynomial in the size of Γ. We claim that
t 6≈ 1 over G if and only if Γ is k-colorable. Firstly, let us assume that
Γ is k-colorable by the elements of G, and let gi be the color of vi. Now,



7.1 Proving coNP-completeness 135substituting xi = gi, for every edge e of Γ we have te(G) = G. Since G is notsolvable, cr 6≈ 1 over G and so t 6≈ 1, either. Secondly, if G is not k-colorable,then at any assignment of the variables we have a monochromatic edge, e.Then te = 1 at every substitution, hence t = 1 at every substitution, thus
t ≈ 1.The �rst step of the induction is about verbal subgroups.Lemma 165. Let V be a verbal subgroup of G. If the equivalence problem for
V is coNP-complete, then the equivalence problem for G is coNP-complete.Proof. We give a polynomial reduction from the equivalence problem of Vto the equivalence problem of G. For every term function t(x1, . . . , xk) over
V we present a term function t′ over G such that t ≈ 1 over V if and onlyif t′ ≈ 1 over G. As V is verbal, there is a term s(x1, . . . , xn) over G suchthat s(G) = V. Let t′ = ts as in Proposition 163/a. Now t ≈ 1 over V ifand only if t′ ≈ 1 over G.The reduction is polynomial in the length of t because the length of t′ isthe product of the length of t and the length of s. The latter depends onlyon the group G.Now, we prove Theorem 156.of Theorem 156 . We proceed by induction on the order of G.Case 1: There exists a non-trivial, non-solvable verbal subgroup V of
G. Now, |V| < |G| and the equivalence problem for V is coNP-complete bythe assumption. Thus the equivalence problem for G is coNP-complete byLemma 165.Case 2: There are no nontrivial nonsolvable verbal subgroups of G butthere is a non-trivial solvable verbal subgroup of G. Let V be the largestsolvable verbal subgroup and r denote its solvable length. The quotientgroup G/V is non-solvable. Now, the equivalence problem for G/V is co-NP-complete by the assumption, as |G/V| < |G|. We give a polynomialreduction from the equivalence problem for G/V to the equivalence problemfor G.Let t be a term over G/V. Then we know by Proposition 163/b that
t ≈ 1 over G/V if and only if crtG ≈ 1 over G. The length of crtG is theproduct of the length of cr and the length of tG, which is the product of tand dG. The latter and the length of cr depend only on the group G, hencethe reduction is polynomial.Case 3: There are no verbal subgroups in G. If G is simple, we aredone by Theorem 164. Let N be a normal subgroup of G and t be a termfunction. By Proposition 163/c we know that t ≈ 1 over G if and only



136 EQUIVALENCE FOR NON-SOLVABLE GROUPSif t ≈ 1 over G/N. The factor group G/N is non-solvable, because G
′ isverbal and so G

′ = G. Thus by induction the equivalence problem for G iscoNP-complete.7.2 ProblemsThere is still work left to be done if one wants to prove a result similar toTheorem 147.Problem 7. Give an algebraic characterization of the class of �nite groupswith a polynomial time equivalence problem; likewise for the class of �nitegroups with a coNP-complete equivalence problem.It is not yet clear whether or not these two complexity classes exhaust all�nite groups.Problem 8. Is there a polynomial time/coNP-complete dichotomy for theequivalence problem for �nite groups?



Chapter 8The extended equivalenceproblem for groupsIn Section 3.6 we observed that the commutator as a basic operation cansigni�cantly change the length of realizing polynomials for several group-functions. For example, the expression [[[x1, x2] , x3] , . . . , xn] has length n ifthe commutator is a basic operation, but has exponential length in n whenexpressed by only the group multiplication. Such a decrease in the lengthsuggests that the complexity of the equivalence problem might change if thecommutator is taken as a basic operation. Other group operations might havea similar property. A straightforward question arises, whether the complexityof the equivalence problem changes by taking one or more new operations asadditional basic operations. Moreover, this question is interesting not onlyfor groups but for all �nite algebras. Hence we can raise the question ingeneral:De�nition 166. Let A = (A, g1, . . . , gm) be a �nite algebra with un-derlying set A and with basic operations g1, . . . , gm. Let f1, . . . , fn bepolynomial expressions over the algebra A.The algebra (A, f1, . . . , fn) is de�ned to be the algebra (A, g1, . . . , gm, f1, . . . , fn),i.e. the algebra with underlying set A and with basic operations g1, . . . , gmtogether with f1, . . . , fn as well.1. The extended equivalence problem for A.We say that the extended equivalence problem for A is in P if for allpossible term expressions f1, . . . , fn, built up from variables and thebasic operations of A, the equivalence problem over (A, f1, . . . , fn) isin P.We say that the extended equivalence problem for A is coNP-complete



138 EXTENDED EQUIVALENCE FOR GROUPSif there exist some term expressions f1, . . . , fn, built up from variablesand the basic operations of A, such that the equivalence problem over
(A, f1, . . . , fn) is coNP-complete.2. The extended polynomial equivalence problem for A.We say that the extended polynomial equivalence problem for A is inP if for all polynomial expressions f1, . . . , fn, built up from variables,constants from A and the basic operations of A, the polynomial equiv-alence problem over (A, f1, . . . , fn) is in P.We say that the extended polynomial equivalence problem for A iscoNP-complete if there exist some polynomial expressions f1, . . . , fn,built up from variables, constants from A and the basic operations of
A, such that the polynomial equivalence problem over (A, f1, . . . , fn)is coNP-complete.Remark 167. The extended equivalence problem is `harder' than the (orig-inal) equivalence problem: by introducing new operations the length of apolynomial expression cannot increase and the complexity is determined bythe length of the input expressions. Thus, if for an algebra A the equiva-lence problem is coNP-complete, then the extended equivalence problem for

A is coNP-complete. If the extended equivalence problem for A is in P, thenthe (original) equivalence problem for A is in P. Similar statements can bederived for the polynomial equivalence and the extended polynomial equiv-alence problems. Moreover, the polynomial extended equivalence problem is`harder' than the extended equivalence problem, since every term is a poly-nomial. Hence, if the extended equivalence problem is coNP-complete for
A, then the extended polynomial equivalence problem is coNP-complete for
A. If the extended polynomial equivalence problem is in P for A, then theextended equivalence problem is in P for A.In this Chapter we consider the complexity of the extended equivalenceproblem and the extended polynomial equivalence problem for �nite groups.We start with nilpotent groups in Section 8.1. The (original) equivalenceand the polynomial equivalence problems for �nite nilpotent groups are in Pby Burris and Lawrence [3]. Using the idea of their proof we prove that theextended polynomial equivalence problem is in P.Theorem 168. Let G be a nilpotent �nite group, let f1, f2, . . . , fm be polyno-mial expressions built up from variables, constants of G and the basic opera-tions of G. Then the polynomial equivalence problem for (G, f1, f2, . . . , fm)is in P.



8.1 Nilpotent groups 139We proved in Chapter 7 that for non-solvable groups the equivalenceproblem is coNP-complete. By Remark 167 we can conclude that the ex-tended equivalence and the extended polynomial equivalence problems arecoNP-complete for non-solvable groups. The complexity of the equivalenceproblem for non-nilpotent solvable groups is, for the most part, a terra incog-nita of mathematics. Only very few partial results are known (in Section 6.1we proved that for a special class of meta-Abelian groups the complexity ofthe equivalence problem is in P, e.g. for meta-cyclic groups, dihedral groups
D2k+1, S3 or A4), but we do not know the answer even for the symmet-ric group S4. The following theorem completes the characterization of theextended equivalence problem:Theorem 169. Let G be a �nite solvable non-nilpotent group. Then thereexists a term expression f (built up from variables and the basic operationsof G) such that the equivalence problem for (G, f) is coNP-complete.The function f is not uniform in these proofs; it depends on the group
G. However, we show in Section 8.5 that for a large class of groups f canbe chosen as the commutator. From these results we immediately have thefollowing corollary:Corollary 170. Let G be a �nite group. If G is nilpotent then the extendedequivalence and the extended polynomial equivalence problems are in P. If Gis not nilpotent then the extended equivalence and the extended polynomialequivalence problems are coNP-complete.Comparing the results of Section 8.5 to the results of Section 6.1 we canconclude that the complexity of the equivalence and the extended equivalenceproblems are not always the same. By Theorem 151 the equivalence problemfor A4 is in P. By Theorem 184 the equivalence problem for (A4, [, ]) is coNP-complete.8.1 Nilpotent groupsIn [3] Burris and Lawrence state the following:Proposition 171. Let G be a �nite nilpotent group with nilpotency class c.Let p (x1, . . . , xn) be a polynomial over G. Then G |= p (x1, . . . , xn) ≈ 1 ifand only if p (a1, . . . , an) = 1 for every substitution (a1, . . . , an) ∈ Gn, where
|{ i : ai 6= 1 }| ≤ c.This proposition claims that if one wants to check whether or not a poly-nomial p attains 1 for every substitution, then it is su�cient to check only



140 EXTENDED EQUIVALENCE FOR GROUPSthose substitutions where the value of at most c-many variables di�er from1. The following set contains all the necessary substitutions:
T = { (a1, . . . , an) ∈ Gn : |{ i : ai 6= 1 }| ≤ c } .Now |T | =

∑c
i=0

(
n
i

)
(|G| − 1)i ≤ (c + 1) |G|c · nc, which is polynomial notonly in the length of p but in the number of di�erent variables of p as well.Finding T is polynomial in n, too. Checking, whether p (a1, . . . , an) = 1for (a1, . . . , an) ∈ T is polynomial in the length of p. Hence checking everysubstitutions from T requires polynomial time in n and in the length of p.Proof of Theorem 168. Let f1, . . . , fk be polynomial expressions over G andlet p (x1, . . . , xn) be a polynomial over (G, f1, . . . , fk) (and not over G). Let

p′ (x1, . . . , xn) be the polynomial we obtain after expanding p over G, i.e.
p′ is a polynomial over G such that for every (a1, . . . , an) ∈ G

n we have
p (a1, . . . , an) = p′ (a1, . . . , an). Now (G, f1, . . . , fk) |= p ≈ 1 if and onlyif G |= p′ ≈ 1. To decide whether or not G |= p′ ≈ 1 we only have tocheck for every substitutions (a1, . . . , an) from T , whether p′ (a1, . . . , an) =
1. p′ (a1, . . . , an) = p (a1, . . . , an) and checking the value of p (a1, . . . , an) ispolynomial in the length of p. The number |T | and �nding the set T are bothpolynomial in n (so is in the length of p). Hence checking every substitutionsfrom T requires polynomial time in n and in the length of p.Remark 172. Notice that the algorithm does not calculate p′. We only used
p′ for proving that |T |-many substitutions are su�cient to check whetheror not (G, f1, . . . , fk) |= p ≈ 1. The length of p′ might not necessarily bepolynomial in the length of p.8.2 PreliminariesFirst we list the necessary notations and de�nitions from group theory. Wedenote the commutator in a group G with [, ]: [x, y] = x−1y−1xy. The lowercentral series for a group G is the following sequence of normal subgroups:
γ0 (G) = G, γi (G) = [G, γi−1 (G)]. It is clear that if i < j, then γi (G) ≥
γj (G). For every �nite group the lower central series terminates in γi0 (G) forsome i0. Throughout this Chapter we denote this normal subgroup γi0 (G)with N = N (G). Recall that a group is nilpotent if and only if N = 1. Fora non-nilpotent, �nite group the lower central series terminates in N 6= 1.For a normal subgroup H of G and for every non-negative integer i we have
γi (G/H) = γi (G) / (H ∩ γi (G)). Hence if H is a normal subgroup of anon-nilpotent �nite group G such that G/H is nilpotent, then N ≤ H. The



8.3 Meta-nilpotent groups 141following statement is an interesting structural theorem we use in the proofof Theorem 169:Theorem 173. Let G be a �nite group. Let V be a normal subgroup of Gsuch that G
′ ≤ V and both V and G/CG (V) are nilpotent. Let N = N (G)be as de�ned above. Then both N and G/CG (N) are Abelian.Proof. G/CG (V) means that N ≤ CG (V), and clearly N ≤ G

′ ≤ V, hence
N ≤ CG (V) ∩ V = CV (V) = Z(V), thus N is Abelian.Moreover from N ≤ CG (V) we have CG (N) ≥ CG (CG (V)) ≥ V ≥ G

′,so G/CG (N) ≤ G/G′, hence G/CG (N) is Abelian.Let us recall that a group element g ∈ G is called a left-Engel elementif for every h ∈ G there is a positive integer kh such that [[[h, g], g] . . . g] =
1 where the commutator is iterated kh-many times. The set of left-Engelelements form F (G), the Fitting subgroup (see [1]) which is by de�nition themaximal nilpotent normal subgroup in G.We prove Theorem 169 in Section 8.4. The following theorem is the key:Theorem 174. Let G be a non-nilpotent, �nite group, let N = N (G) beas de�ned above. Let us suppose that the groups N and G/CG(N) are bothAbelian. Then there exists a term expression f (built up from variables andthe basic operations of G) such that the equivalence problem for (G, f) iscoNP-complete.We prove Theorem 174 in Section 8.3. Before that we list the necessarynotations and de�nitions from ring theory. Let R be a �nite, commutative,non-nilpotent ring, let J (R) be its Jacobson radical. By the Wedderburn�Artin Theorem [17] we know that R/J (R) is the direct sum of �nite �elds
F1, . . .Fl. Recall that for every �nite ring there exist a positive integer esuch that re is idempotent (i.e. (re)2 = re) for every r ∈ R and re = 0 forevery r ∈ J (R). If R is commutative, then re = 0 implies r ∈ J (R): re = 0in R implies (r + J (R))e = re + J (R) = 0 + J (R) in R/J (R) = ⊕l

i=1Fi.This means that (r + J (R))e has 0 in each coordinate, and so has r +J (R).Hence r ∈ J (R). In other words the Jacobson radical of a commutativering is exactly the set of nilpotent elements. This is not necessarily true forarbitrary rings, e.g. the ring Mk(F) (for k ≥ 2) contains nilpotent elements,but J (Mk(F)) = 0.8.3 Meta-nilpotent groupsWe prove Theorem 174. Let G be a non-nilpotent �nite group and let
N = N (G) be de�ned as in Section 8.2. Let us suppose that N and



142 EXTENDED EQUIVALENCE FOR GROUPS
G/CG (N) are both Abelian. Let A = N (G) throughout the Section.The group G acts on A by conjugation and the action is isomorphic to
B = G/CG(A). Let ϕ : G → B be the natural homomorphism. Every ele-ment of B acts as an automorphism of A, in particular every element actsas an endomorphism. Since B is commutative, the actions of B generate a�nite nontrivial commutative subring R (B) of End A.Let us examine the elements of R (B), the ring generated by B. We writethe action as an exponent: the image of a ∈ A at the action of r ∈ R (B) willbe denoted by ar. With these notations x1 = x and for every b = ϕ (g) wehave xb = xϕ(g) = g−1xg thus xb−1 = xϕ(g)−1 = x−1+ϕ(g) = x−1g−1xg = [x, g].Sometimes we omit ϕ from the exponent: by xg we mean the conjugationwith the group element g and write xg = g−1xg. Obviously xg = xϕ(g) forevery x ∈ G.Let C = { b − 1 | b ∈ B }. Let R (C) ≤ End A be the subring generatedby the action of the commutator elements from R (B):

R (C) = 〈C〉 = 〈ϕ (g) − 1 | g ∈ G〉 .Let |B| = |C| = c and let |R (C)| = d.The idea of the proof is the following: for any ring expression t we have
at ≈ 1 for every a ∈ A if and only if End A |= t ≈ 0. This statementstill holds if we replace End A by any subring of End A. It is coNP-complete to decide over a non-nilpotent commutative ring R whether or not
R |= t ≈ 0 (see [16]). Hence if we choose a commutative non-nilpotentsubring R of End A and we are able to translate the ring operations intogroup operations, then we can reduce the equivalence problem over R to theequivalence problem over G. This subring needs to be verbal: there mustexist an integer coe�cient polynomial p such that if the variables of p runthrough over ϕ (G) then p (G) runs through on the elements of the subring
R. In our case R (C) plays the role of R as Lemma 175 and Lemma 176show.Unfortunately we cannot translate the ring operations over the group
G, we need to understand properly the structure of R (C) and follow aproof for the coNP-completeness of the equivalence problem over R (C).From Lemma 176 we know that R (C) is commutative and non-nilpotent,hence R (C)/J (R (C)) is the direct sum of �nite �elds F1, . . . ,Fl. Let
q = max1≤i≤l |Fi|. Lemma 177 tells us that q > 2.After we understand the structure of R (C), we reduce the GRAPH q-COLORING problem to the equivalence problem over G in the following way:Let Γ = (V, E) be an arbitrary simple graph with no loops, or multiple edges,
V = { v1, . . . , vn } and E = { e1, . . . , em }. With the help of Lemmas 178, 179



8.3 Meta-nilpotent groups 143and 180 we exhibit a word tΓ over R (C) such that R (C) |= tΓ ≈ 0 if andonly if Γ is not q-colorable. For every graph Γ we exhibit a word QΓ = atΓover G and Lemma 181 proves that G |= QΓ ≈ 1 if and only if Γ is not
q-colorable. This �nishes the reduction.We observe though, that this reduction is not polynomial, since QΓ is ex-ponentially long in the size of Γ when expressed using only the multiplicationand the inverse operations of G. Nevertheless there exists a term operation
f (built up from variables and the basic operations of G) such that using
f makes QΓ polynomially long in the size of Γ, i.e. the length ‖QΓ‖(G,f) ispolynomial in n (the number of vertices in Γ) and in m (the number of edgesin Γ).Therefore the proof consists of the following steps:1. In Lemma 175 we prove that R (C) is verbal.2. In Lemma 176 we prove that R (C) is not nilpotent. Thus the factor

R (C)/J (R (C)) is the direct sum of �nite �elds F1, . . . ,Fl.3. Let q = max1≤i≤l |Fi|. Lemma 177 tells us that q > 2. Thus theGRAPH q-COLORING problem is NP-complete.4. Let Γ = (V, E) be an arbitrary simple graph with no loops, or multipleedges, V = { v1, . . . , vn } and E = { e1, . . . , em }. We exhibit a word tΓover R (C) such that R (C) |= tΓ ≈ 0 if and only if Γ is not q-colorable(Lemmas 178, 179 and 180).5. We present a term expression f over G. For every graph Γ we exhibit aword QΓ = atΓ over (G, f) and Lemma 181 proves that (G, f) |= QΓ ≈
1 if and only if Γ is not q-colorable.6. We prove that the length of QΓ over (G, f) is polynomial in the size of
Γ. Thus we polynomially reduced the GRAPH q-COLORING problem(for some q > 2) to the equivalence problem over (G, f).We start �rst with step 1 of the proof. Let us recall that c = |B| = |C|and d = |R (C)|.Lemma 175. There exists an integer coe�cient polynomial p of cd-manyvariables such that R (C) = p(Bcd) = p

(
ϕ
(
G

cd
)).



144 EXTENDED EQUIVALENCE FOR GROUPSProof. Obviously, R (C) consists of all (integer coe�cient) polynomials ofthe elements bi − 1 where bi runs over the group B. As R (B) is �nite R (C)is �nite, too. Let r1, r2, . . . , rd denote the elements of R (C). For every
ri ∈ R (C) there is a polynomial pi ∈ Z[x1, x2 . . . , xc] such that

ri = pi(b1 − 1, b2 − 1, . . . , bc − 1).There are several polynomials of this form, we �x one for every i for theremaining of the proof. Let
p(x̄) =

∑

1≤i≤d

pi(x1,i − 1, x2,i − 1, . . . , xc,i − 1),where all the variables xj,i di�er from each other. We have p(Bcd) ⊆ R (C)and substituting xj,l = 1 for l 6= i and xj,i = bj , we have that ri ∈ p(Bcd).Hence R (C) = p(Bcd) = p
(
ϕ
(
G

cd
)).We continue with step 2 of the proof.Lemma 176. The ring R (C) is not nilpotent.Proof. It is enough to show that there exists a g ∈ G such that ϕ (g) − 1is not nilpotent in R (C). The element ϕ (g) − 1 is nilpotent if there existssome k such that (ϕ (g) − 1)k = 0. For a group element h ∈ G we have

hϕ(g)−1 = [h, g]. Moreover h(ϕ(g)−1)k

= [[[h, g], g] . . . g], where the commutatoris iterated k-many times. Let us recall that a group element g is called a left-Engel element if for every h ∈ G there is a positive integer kh such that
[[[h, g], g] . . . g] = 1, where the commutator is iterated kh-many times. Theset of left-Engel elements form F (G), the Fitting subgroup. The Fittingsubgroup is the maximal nilpotent normal subgroup in G (see [1]). By ourassumption F (G) 6= G. Hence every g /∈ F (G) is not an Engel elementand we can choose h ∈ G such that [[[h, g], g] . . . g] never terminates in theidentity element. Moreover, if the commutator action of g is not nilpotenton G, then it is not nilpotent on N (G), as for large enough k the element
hϕ(g)−1 ∈ N (G). As A = N (G) throughout this Section, we have that
ϕ (g)− 1 is not nilpotent for any g /∈ F (G), thus R (C) is not nilpotent.Lemma 176 implies that R (C)/J (R (C)) is the direct sum of �nite �elds
F1, . . . ,Fl. For every commutative ring there exists a positive natural number
e such that (re)2 = re for every r ∈ R (C) and re = 0 if and only if r ∈
J (R (C)). Let us �x an e with this property for this Section. We continuewith step 3 of the proof.Lemma 177. For the ring R (C) we have R (C)/J (R (C)) 6= Z

n
2 .



8.3 Meta-nilpotent groups 145Proof. If R (C)/J (R (C)) = Z
n
2 for some n, then r2+r ∈ J (R (C)) for every

r ∈ R (C). Let e′ be a natural number, such that the exponent of G divides
e′ and e′ ≥ e. Since e′ ≥ e, if r′ ∈ J (R (C)) then (r′)e′ = 0. Substituting
r = b − 1 for any b = ϕ (g) we have ((b − 1)2 + (b − 1)

)e′

= 0 for every
b ∈ B. As R (C) is a commutative subring of the commutative ring R (B),the equation ((b − 1)2 + (b − 1)

)e′

= 0 holds in R (B) as well. Now
0 = ((b − 1)2 + (b − 1))e′ = ((b − 1) · (b − 1 + 1))e′

= ((b − 1) · b)e′ = (b − 1)e′ · be′

= (b − 1)e′.The equality (b − 1)2 +(b − 1) = (b − 1) · (b − 1 + 1) holds because 1, b ∈
R (B). The following equality holds as b = b − 1 + 1. Again, as R (B) iscommutative, we have ((b − 1) · b)e′ = (b − 1)e′ · be′ . Finally be′ = 1, since theexponent of G divides e′ and G |= ge′ ≈ 1. Now 0 = (b − 1)e′ = (ϕ (g) − 1)e′means that commuting with the element g is a nilpotent action, which is nottrue for every g ∈ G. The contradiction proves the lemma.Now we move on to step 4 of the proof. Let q = max1≤i≤l |Fi|. We nowgive the polynomial reduction from GRAPH q-COLORING to the equiv-alence problem over (G, f) for a particular function f . By Lemma 177we have q ≥ 3, therefore the GRAPH q-COLORING is NP-complete. Let
Γ = (V, E) be an arbitrary simple graph with no loops, or multiple edges,
V = { v1, . . . , vn } and E = { e1, . . . , em }. Let

t′Γ(z1, . . . , zn) =
∏

vivj∈E

(zi − zj), and let
tΓ(z1, . . . , zn) = (tΓ(z1, . . . , zn))e =

∏

vivj∈E

(zi − zj)
e.Lemma 178. Let q′ be a prime power. The graph Γ is not q′-colorable ifand only if GF(q′) |= t′Γ ≈ 0.Proof. We color the vertices of Γ by the elements of GF(q′). The color of

vi will be si. We prove that t(s1, . . . , sn) 6= 0 if and only if the appropriatecoloring is a q′-coloring of Γ.First, let us assume that Γ is q′-colorable by the elements of GF(q′), andlet si be the color of vi. Now, substituting zi = si, for every edge e = vivj of
Γ we have zi − zj 6= 0, hence t 6≈ 0. Conversely, if Γ is not q′-colorable, thenat any assignment of the variables we have a monochromatic edge, e = vivj .Then t′Γ = 0 at every substitution.



146 EXTENDED EQUIVALENCE FOR GROUPSLemma 179. The graph Γ is not q-colorable if and only if ⊕l
i=1Fi |= t′Γ ≈ 0.Proof. By Lemma 178, if Γ is q-colorable, then GF(q) |= t′Γ 6≈ 0, hence

⊕l
i=1Fi |= t′Γ 6≈ 0. If Γ is not q-colorable, then it is not q′-colorable forany q′ ≤ q, thus we have that GF(q′) |= t′Γ ≈ 0 for every q′ ≤ q. Hence

Fi |= t′Γ ≈ 0 and ⊕l
i=1Fi |= t′Γ ≈ 0.Lemma 180. The graph Γ is not q-colorable if and only if R (C) |= tΓ ≈ 0.Proof. We chose the number e such that for every ring element r ∈ R (C)we have re = 0 in R (C) if and only if r ∈ J (R (C)). Now tΓ = (t′Γ)e,hence R (C) |= tΓ ≈ 0 if and only if R (C)/J (R (C)) |= t′Γ ≈ 0. Since

R (C)/J (R (C)) = ⊕l
i=1Fi, Lemma 179 �nishes the proof.An immediate consequence of Lemma 180 is that G |= atΓ(z1,...,zn) 6≈ 1(where a runs through A and zi's run through R (C)) if and only if Γ is

q-colorable. We give an expression Q over G (using a new operation f builtup from variables and the basic operations of G) such that the image of Qover G will be the same as the image of atΓ(z1,...,zn).We continue with step 5 of the proof. Let us introduce a new operation
f over the group G on 2cd + 1-many variables.

f (y, x̄1, x̄2) = y(z1−z2) = y(p(x̄1)−p(x̄2)),where zi = p(x̄i), xy+z = xyxz = y−1xyz−1xz, x−y = (x−1)
y

= y−1x−1y and
xyz = (xy)z = (yz)−1xyz.Now we polynomially reduce the GRAPH q-COLORING problem to theequivalence problem over (G, f). Let Γ = (V, E) be a graph, with n vertices,
V = {v1, . . . vn} and m edges, E = {e1, . . . em}. Let x̄1, . . . , x̄n be di�erentvectors of cd-many variables assigned to the vertices (we remind the readerthat polynomial p is of cd-many variables). So there are altogether n · cdmany `x' variables and their inverses. Let us denote all these `x' variablesby x̄ = (x̄1, . . . , x̄n). We exhibit the expressions yt′Γ(z1,...,zn) and ytΓ(z1,...,zn). inthe following way: for every edge ei let ei = vi,1vi,2 and let

w1 (y, x̄) = f(y, x̄1,1, x̄1,2),

wi (y, x̄) = f ◦ wi−1 = f (wi−1 (y, x̄) , x̄i,1, x̄i,2) ,where x̄i,j is the vector of variables assigned to the vertex vi,j. Let us denote
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p (x̄i) by zi. Now it is easy to see, that

w1 (y, x̄) = yz1,1−z1,2 ,

wi (y, x̄) = wi−1 (y, x̄)zi,1−zi,2

= y(z1,1−z1,2)...(zi,1−zi,2),

wi (y, x̄) = y(z1,1−z1,2)...(zm,1−zm,2)

= y
∏

vivj∈E(zi−zj) = yt′Γ(z1,...,zn).Now we exhibit the term expression ytΓ(z1,...,zn) by applying tΓ (z1, . . . , zn) =
(t′Γ (z1, . . . , zn))

e. Let
W1 (y, x̄) = wm (y, x̄) ,

Wi (y, x̄) = W1 ◦ Wi−1 = W1 (Wi−1 (y, x̄) , x̄) .Now it is easy to see that
W1 (y, x̄) = yt′Γ(z1,...,zn),

Wi (y, x̄) = Wi−1 (y, x̄)t′Γ(z1,...,zn)

= y(t′Γ(z1,...,zn))
i

,

We (y, x̄) = y(t′Γ(z1,...,zn))
e

= ytΓ(z1,...,zn).Now A = N is a verbal subgroup of G, let W0 (ȳ) be a word with image A.We are interested in QΓ = We (W0 (ȳ) , x̄), where e was the natural number forwhich (re)2 = re for every r ∈ R (C) and re = 0 if and only if r ∈ J (R (C)).Observe, that QΓ = W0 (ȳ)tΓ(z1,...,zn) with the notation zi = p (x̄i).Lemma 181. The graph Γ is not q-colorable if and only if (G, f) |= QΓ ≈ 1.Proof. If Γ is q-colorable, then R (C) |= tΓ 6≈ 0, hence there exists a substi-tution of z1, . . . , zn from R (C) such that tΓ (z1, . . . , zn) 6= 0 over R (C). Theimage of the polynomial p over B is R (C), hence we can choose the tuples
x̄1, . . . , x̄n from G such that p(ϕ (x̄i)) = zi. With this evaluation tΓ 6= 0over R (C), hence there exists an a ∈ A such that atΓ 6= 1 over G. Letus choose ȳ such that a = W0 (ȳ) and with this evaluation of the variableswe have that (G, f) |= QΓ 6≈ 1. If Γ is not q-colorable, then we have that
R (C) |= tΓ ≈ 0. Thus for every a ∈ A (especially a = W0 (ȳ)) we have
atΓ = 1 and (G, f) |= QΓ ≈ 1.



148 EXTENDED EQUIVALENCE FOR GROUPSFinally we �nish with step 6 of the proof. Let us denote the length ofan expression w with ‖w‖. The reduction from GRAPH q-COLORING tothe equivalence problem over (G, f) is polynomial, because the length of
QΓ = Qe is ‖QΓ‖ = ‖Qe‖ ≤ ‖f‖ ·m · e · (ncd + ‖W0‖): when building up QΓwe use the function f exactly e ·m-many times on �rst input of length ‖W0‖and on ncd-many variables. Hence ‖QΓ‖ is polynomial in the size of Γ andTheorem 174 is proved.8.4 Non-nilpotent groupsFirst we prove two lemmas which play a great role in the inductive proof ofTheorem 169.Lemma 182. Let H be a verbal subgroup of G and let f be a term operation(built up from variables and from the basic group operations). If the equiva-lence problem for (H, f) is coNP-complete, then the equivalence problem for
(G, f) is coNP-complete, too.Proof. We give a polynomial reduction from the equivalnce problem for
(H, f) to the equivalence problem for (G, f).For every word w(x1, . . . , xn) over (H, f) we present a word w′ over (G, f)such that (H, f) |= w ≈ 1 if and only if (G, f) |= w′ ≈ 1. As H is verbal,there is a word v(x1, . . . , xk) over G such that the image of v over G is H.Let w′ be the composition of w and v: substitute v into every variable xi of
w. Let ȳi = (yi1, . . . , yik) for i = 1, . . . , n and let

w′ (ȳ1, . . . , ȳn) = w (v (ȳ1) , . . . , v (ȳn)) .While ȳi runs through all tuples from G, the values of v(ȳi) attain everyelement of H. Thus if w 6= 1 at some evaluation (h1, . . . , hn) ∈ H
n, then wecan choose the tuples ȳi such that t(ȳi) = hi. Thus there is an evaluation of

w′ such that w′ 6= 1.On the other hand, if (G, f) |= w′ 6≈ 1, then there is an evaluation
ȳ1, . . . , ȳn such that w′ 6= 1. Now, for the elements hi = v(ȳi) we have
w(h1, . . . , hn) 6= 1, hence (H, f) |= w 6≈ 1.The reduction is polynomial in the length of w because the length of w′is at most the product of the length of w and the length of v (we changedevery variable to v). The latter depends only on the group G.Lemma 183. Let V be a verbal subgroup of G and let H = G/CG (V).Let f be a term operation (built up from variables and from the basic groupoperations). If the equivalence problem for (H, f) is coNP-complete, then theequivalence problem for (G, f) is coNP-complete, too.



8.5 Choosing the commutator 149Proof. As V is verbal, there is a word v(y1, . . . , yk) over G such that theimage of v over G is V. Let ȳ = (y1, . . . , yk). We give a polynomial reduc-tion from the equivalence problem for (H, f) to the equivalence problem for
(G, f). If we need to check whether or not (H, f) |= w (x1, . . . , xn) ≈ 1, thenwe consider the word

w′ = (w (x1, . . . , xn))−1 (v (ȳ))−1 w (x1, . . . , xn) v (ȳ)

= [w (x1, . . . , xn) , v (ȳ)]over (G, f). We prove that (G, f) |= w′ ≈ 1 if and only if (H, f) |= w ≈ 1.First, if (H, f) |= w (x1, . . . , xn) ≈ 1, then w (x1, . . . , xn) ∈ CG (V) if wesubstitute from G. Thus commuting it with any y0 = v (ȳ) ∈ V we have
(G, f) |= [w (x1, . . . , xn) , y0] ≈ 1. Conversely, if (G, f) |= [w (x1, . . . , xn) , v (ȳ)],then w (x1, . . . , xn) ∈ CG (V) for every substitution over G, hence (H, f) |=
w (x1, . . . , xn) ≈ 1. The reduction is polynomial, because the length of w′ isat most twice as the sum of the length of w and the length of v.Proof of Theorem 169. We proceed by induction on the order of G. Let Vbe any verbal normal subgroup with the property G 6= V ≥ G

′. Such averbal subgroup exists, e.g. V = G
′ ≤ G as G is solvable. Let us �x such a

V for the proof.Case 1: V is not nilpotent. Now |V| < |G| and by the assumption thereexists a function f (built up from variable and from basic group operations)such that the equivalence problem for (H, f) is coNP-complete. Thus theequivalence problem for (G, f) is coNP-complete by Lemma 182.Case 2: V is nilpotent but G/CG (V) is not nilpotent. Let H =
G/CG (V). Since V is nilpotent 1 6= Z(V) ≤ CG(V) and |H| < |G|.The group H is not nilpotent, hence there exists a function f (built up fromvariable and from basic group operations) such that the equivalence problemfor (H, f) is coNP-complete and so is the equivalence problem for (G, f) byLemma 183.Case 3: V and G/CG (V) are both nilpotent. Let N = N (G) be asde�ned in Section 8.2. By Theorem 173 we have that both N and G/CG (N)are Abelian. Theorem 174 �nishes the proof.8.5 Choosing the commutatorWith a deeper analysis of the structure of non-nilpotent groups, we can provethat the commutator is usually enough to obtain coNP-complete extendedequivalence problem.



150 EXTENDED EQUIVALENCE FOR GROUPSTheorem 184. Let G be a non-nilpotent group, let N = N (G) be as de�nedin Section 8.2. Let us suppose that G/CG (N) and N are both Abelian. Letus suppose that exp (G/F (G)) > 2, where F (G) is the Fitting subgroup ofthe group G. Then the equivalence problem for (G, [, ]) is coNP-complete,where [, ] denotes the commutator operation.Corollary 185. The equivalence problem for (A4, [, ]) is coNP-complete.We use similar notations as in Section 8.3. Let A = N. The group G actson A by conjugation and the action is isomorphic to B = G/CG(A). Let
ϕ : G → B be the natural homomorphism. Similarly as in Section 8.3, everyelement of B acts as an automorphism of A, in particular every element actsas an endomorphism. Since B is commutative, the actions of B generate a�nite nontrivial commutative subring R (B) of End A. Since B is commu-tative, it generates a �nite nontrivial commutative unitary subring R (B) of
End A. Let exp (G/F (G)) = q ≥ 3. R (B)/J (R (B)) is a sum of �nite�elds F1, . . . ,Fk. Let e0 be a positive natural number such that (re0)2 = re0for every r ∈ R (B) and re0 = 0 if and only if r ∈ J (R (B)).First we prove three structural lemmas about R (B) (Lemmas 186, 187and 188), then we move on to the proof of Theorem 184. Let us recall thatthe Fitting subgroup F (G) of the group G is the largest nilpotent subgroupin G. Moreover by [1] the Fitting subgroup is formed by the left-Engelelements of the group G. The following lemma shows that G/F (G) controlsthe properties of R (B)/J (R (B)):Lemma 186. Let g1, g2 be two arbitrary elements of G and let b1 = ϕ (g1),
b2 = ϕ (g2). Then b1 − b2 ∈ J (R (B)) if and only if g1g

−1
2 ∈ F (G).Proof. Suppose �rst that b1−b2 ∈ J (R (B)). Then b−1

2 (b1 − b2) = b1b
−1
2 −1 ∈

J (R (B)), thus b1b
−1
2 − 1 is nilpotent in R (B). This means that commutingin G with the element g1g

−1
2 is a nilpotent action, i.e. g1g

−1
2 is a left-Engelelement. The set of left-Engel elements form the �tting subgroup [1], hence

g1g
−1
2 ∈ F (G).Conversely, if g1g

−1
2 ∈ F (G), then commuting with g1g

−1
2 is a nilpotentaction, i.e. b1b

−1
2 − 1 ∈ J (R (B)). Then (b1b

−1
2 − 1

)
b2 = b1 − b2 ∈ J (R (B)),too.Let π : R (B) → ⊕k

i=1Fi = R (B)/J (R (B)) the natural homomorphism.For every 1 ≤ i ≤ k let πi be the projection from R (B)/J (R (B)) to Fi.Now let
S = { π (b + J (R (B))) | b ∈ B } ,

Si = { πi (b + J (R (B))) | b ∈ B } .



8.5 Choosing the commutator 151Let qi = |Si| and let q0 = max1≤i≤k qi. Let i0 be an index for which qi0 = q0.Lemma 187. The following statements hold:1. π : R (B) → ⊕k
i=1Fi is a ring-homomorphism.2. π : B → S is a group-homomorphism, which is an isomorphism between

G/F (G) and S.3. S is a multiplicative cyclic subgroup of ⊕k
i=1Fi.4. Si is a multiplicative cyclic subgroup of Fi.5. S generates the ring ⊕k

i=1Fi.6. Si generates the ring Fi.7. qi | |Fi| − 1.8. qi | q.9. Let g ∈ G such that for some integer m we have gm ∈ F (G) and
gj /∈ F (G) for every 1 ≤ j ≤ m − 1. Then there exist 1 ≤ i ≤ k suchthat m | qi.10. If for a prime p we have pα | q, then there exists an i such that 1 ≤ i ≤ kand pα | qi.Proof. Item 1 is by de�nition, item 2 is a consequence of Lemma 186. Item 3and item 4 follows from item 2. Item 5 and item 6 can be derived from thefact that B generates R (B). Item 7 follows from item 3. For item 8 let s ∈ S.There exist an element g ∈ G and an element b ∈ B such that ϕ (g) = b and

π (b) = s. Now gq ∈ F (G), therefore by item 2 we have sq is the identityelement in ⊕1≤i≤kFi. This means qi | q, which is item 8. For item 9 let g ∈ Gand element such that gm ∈ F (G) and gj /∈ F (G) for every 1 ≤ j ≤ m− 1.Let b = ϕ (g) and let s = (s1, . . . , sk) = π (b). Since gj /∈ F (G) for 1 ≤ j ≤
m− 1, and ϕ and π are homomorphisms, bj /∈ J (R (B)) and sj 6= (1, . . . , 1).However gm ∈ F (G), therefore sm = (1, . . . , 1). This means that there is acoordinate i such that the order of si is exactly m, hence m | qi. Finally foritem 10 we use item 9 with m = pα.Lemma 188. If exp G/F (G) ≥ 3 then max1≤i≤k qi = q0 ≥ 3.Proof. By item 10 from Lemma 187 we know that there exists qi such that qiis at least the largest prime power factor of q. Since q ≥ 3, its largest primepower factor is at least 3. Therefore q0 ≥ 3.



152 EXTENDED EQUIVALENCE FOR GROUPSRemark 189. By Lemma 187 we have that q0 is at most exp (G/F (G)) andis at least the largest prime power divisor of exp (G/F (G)). Both of thesebounds are sharp, as the following two groups show:
G1 =

〈
a, b | a7 = b6 = 1, b−1ab = a3

〉
(q = q0 = 6),

G2 = S3 ⊕ A4 (q = 6, q0 = 3).Now we continue on the proof of Theorem 184.Proof of Theorem 184. In the proof of Theorem 174 we introduced the fol-lowing operation:
f (y, x̄1, x̄2) = yp(x̄1)−p(x̄2) = yz1−z2,using the notation zi = p (x̄i). However, if z2 is invertible, then yz1−z2 =

(yz2)z1z−1
2 −1, and if y runs through the elements of a normal subgroup, then

yz2 runs through the elements of the same normal subgroup. Moreover, if
z1 = ϕ (g1) and z2 = ϕ (g2), then yz1−z2 =

[
yg2, g1g

−1
2

]. Using this idea wechange f to the commutator of G.The proof consists of the following steps:1. Let Γ = (V, E) be an arbitrary simple graph with no loops, or multipleedges, V = { v1, . . . , vn } and E = { e1, . . . , em }. We exhibit a word
uΓ over R (B) such that Γ = 0 in R (B) for every substitution of thevariables from B if and only if Γ is not q0-colorable (Lemmas 190, 191and 193).2. For every graph Γ we exhibit a word QΓ = auΓ over (G, [, ]) andLemma 194 proves that (G, [, ]) |= QΓ ≈ 1 if and only if Γ is not
q0-colorable.3. We prove that the length of QΓ over (G, [, ]) is polynomial in the size of
Γ. Thus we polynomially reduced the GRAPH q0-COLORING problem(for some q0 > 2) to the equivalence problem over (G, [, ]).We start with step 1 of the proof. Let Γ = (V, E) be an arbitrarysimple graph with no loops, or multiple edges, V = {v1, . . . , vn} and E =

{e1, . . . , em}. Let u′
Γ and uΓ be the following ring-expressions:

u′
Γ (x1, . . . , xn) =

∏

vivj∈E

(xix
−1
j − 1),

uΓ (x1, . . . , xn) = (u′
Γ (x1, . . . , xn))

e0 =
∏

vivj∈E

(xix
−1
j − 1)e0.



8.5 Choosing the commutator 153Lemma 190. For every 1 ≤ i ≤ k we have u′
Γ = 0 in Fi for every substitu-tions of the variables from Si if and only if Γ is not qi-colorable.Proof. We color the vertices of Γ by the elements of Si. The color of vj will be

sj. We prove that u′
Γ(s1, . . . , sn) 6= 0 if and only if the appropriate coloringis a qi-coloring of Γ.First, let us assume that Γ is qi-colorable, and let sj be the color of

vj . Now, substituting xj = sj, for every edge e = vj1vj2 of Γ we have
xj1x

−1
j2

− 1 6= 0, hence u′
Γ(s1, . . . , sn) 6= 0. Conversely, if Γ is not qi-colorable,then at any assignment of the variables we have a monochromatic edge,

e = vj1vj2. Then u′
Γ = 0 at every substitution from Si.Lemma 191. We have u′

Γ = 0 in ⊕1≤i≤kFi for every substitutions of thevariables from S if and only if Γ is not q0-colorable.Proof. If Γ is q0-colorable, then by Lemma 190 there exists a substitution ofthe variables from Si0 such that u′
Γ 6= 0 in Fi0 . Let us extend this substitutionto a substitution from S, then we have u′

Γ 6= 0 in ⊕Fi for this substitution.If Γ is not q0-colorable, then it is not qi-colorable for any 1 ≤ i ≤ k, thus
u′

Γ = 0 for every substitution from Si (for every 1 ≤ i ≤ k). Hence u′
Γ = 0 in

⊕Fi for every substitutions from ⊕Si, and so from S.Remark 192. We note here that S ≤ ⊕Si, but they are not necessarily equalas the following example shows:
G =

〈
a, b, c | a5 = b5 = c4 = 1, b−1ab = a, c−1ac = a2, c−1bc = b3

〉

' (Z5 ⊕ Z5) o Z4.Lemma 193. We have uΓ = 0 in R (B) for every substitutions of the vari-ables from B if and only if Γ is not q0-colorable.Proof. By uΓ = (u′
Γ)e0, we have uΓ = 0 for some substitution from B if andonly if u′

Γ ∈ J (R (B)) for the same substitution.If Γ is q0-colorable, then by Lemma 191 there exists a substitution from
S such that u′

Γ 6= 0 in ⊕Fi = R (B)/J (R (B)). This substitution has apre-image in B, and for the pre-image substitution we have u′
Γ /∈ J (R (B)).If Γ is not q0-colorable, then by Lemma 191 for every substitution from

S we have u′
Γ = 0 in ⊕Fi = R (B)/J (R (B)). This means that for everysubstitution from B we have u′

Γ ∈ J (R (B)).We continue with step 2 of the proof. Now, we polynomially reduce theGRAPH q0-COLORING problem to the equivalence problem over (G, [, ]).Let Γ = (V, E) be a graph, with n vertices, V = {v1, . . . vn} and m edges,
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E = {e1, . . . em}. Let x1, . . . , xn be di�erent variables assigned to the vertices.Let us denote all these `x' variables by x̄ = (x1, . . . , xn). For every edge eilet ei = vi,1vi,2 and let

w1 (y, x̄) =
[
y, x1,1x

−1
1,2

]
= y(x1,1x−1

1,2−1),

wi (y, x̄) =
[
wi−1 (y, x̄) , xi,1x

−1
i,2

]

= y(x1,1x−1
1,2−1)...(xi,1x−1

i,2−1),where xi,j is the variable assigned to the vertex vi,j . Observe, that wm =
yu′

Γ(z1,...,zn) with the notation zi = p (x̄i). Let
W1 (y, x̄) = wm (y, x̄) = yu′

Γ(z1,...,zn),

Wi (y, x̄) = W1 ◦ Wi−1 = W1 (Wi−1 (y, x̄) , x̄)

= y(u′
Γ(z1,...,zn))

i

.Now A = N is a verbal subgroup of G, let W0 (ȳ) be a word with image
A. We are interested in QΓ = We0 (W0 (ȳ) , x1,1, x1,2, . . . , xm,1, xm,2), where
e0 was the natural number for which (re0)2 = re0 for every r ∈ R (B) and
re0 = 0 if and only if r ∈ J (R (B)). Observe, that QΓ = W0 (ȳ)uΓ(x1,...,xn).Lemma 194. The graph Γ is q0-colorable if and only if (G, [, ]) |= QΓ 6≈ 1.Proof. If Γ is q0-colorable, then by Lemma 193 there exists a substitutionof x1, . . . , xn from B such that uΓ (x1, . . . , xn) 6= 0 in R (B). Thus thereexists an a ∈ A such that auΓ 6= 1 in G for the same substitution. Choose ȳsuch that a = W0 (ȳ) and with this evaluation of the variables we have that
(G, [, ]) |= QΓ 6≈ 1. If Γ is not q0-colorable, then we have that uΓ ≈ 0 in
R (B) for every substitution of the variables from B. Thus for every a ∈ A(especially a = W0 (ȳ)) we have auΓ = 1 and (G, [, ]) |= QΓ ≈ 1.We �nish with step 3 of the proof. Denote the length of an expression
w with ‖w‖. The reduction from GRAPH q0-COLORING to the equiva-lence problem over (G, [, ]) is polynomial, because the length of QΓ = Qe0is ‖QΓ‖ = ‖Qe0‖ = O (m · e0 · (n + ‖S0‖)): when building up QΓ we use thecommutator exactly e0 ·m-many times on �rst input of length ‖W0‖ and on n-many variables. Hence ‖QΓ‖ is polynomial in the size of Γ and Theorem 184is proved.8.6 ProblemsIn Section 8.5 we did not consider any non-nilpotent groups G for whichboth N = N (G) (de�ned in Section 8.2) and CG (N) are Abelian and
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exp G/F (G) = 2. Checking the proof of Theorem 169 we observe thatif the complexity of the equivalence problem for (G, [, ]) is coNP-completefor such groups, then Theorem 169 would follow by induction with f beingthe commutator of the group. If, however, this is not the case, then thecharacterization would be much harder:Problem 9. Characterize those non-nilpotent �nite groups G, for which theequivalence problem for (G, [, ]) is coNP-complete!The �rst step on the way answering Problem 9 would be to check thesmallest possible group for which we do not know this complexity.Problem 10. What is the complexity of the equivalence problem for (S3, [, ])?



Chapter 9Summary and next directionsIn the thesis we investigated the relationship of functions and their realizingpolynomials over �nite algebras. We studied functionally complete algebras,i.e. algebras over which every function can be realized by a polynomial ex-pression. In Chapter 2 we characterized functionally completeness by theStone�Weierstrass property. While the functionally complete rings and func-tionally complete groups are all described, we determined the functionallycomplete semigroups in Section 2.4 and the functionally complete semiringsin Section 2.5.From Chapter 3 we were especially interested about the computationalperspective of the function�polynomial relationships over �nite groups. Weconsidered three themes regarding polynomials over algebras.1. The e�cient representability problem.2. The equivalence problem.3. The equation solvability problem.We approached the e�cient representability problem from three direc-tions. We considered the length of functions in Chapter 3. We investigatedthe circuit complexity of functions in Sections 4.1, 4.2, 4.3 and 4.4. Finallywe analysed the �nite-state sequential machine representation of Booleanfunctions in Section 4.5. We observed that computers based on functionallycomplete groups do not seem to be more e�cient than the usual two-elementBoolean algebra based computers in general, but they might be more e�cientin special circumstances. Finding several examples of functions which can berepresented more e�ciently by functionally complete groups could be a nextstep of this research.



9 Summary and next directions 157Neither the equivalence problem nor the equation solvability problemhas been completely characterized for �nite groups. The complexity of theequivalence problem is known for nilpotent groups, and we determined thecomplexity for non-solvable groups in Chapter 7. Not much is known aboutthe case of solvable, non-nilpotent groups: we provide results for some meta-Abelian groups in Section 6.1. It is likely that, with a deeper investigation ofsolvable, non-nilpotent groups, the characterization of the equivalence prob-lem for �nite groups can be �nished.The complexity of the equation solvability problem is known for nilpo-tent groups and for non-solvable groups. There are no results about thecomplexity of the equation solvability problem for solvable, non-nilpotentgroups apart from the case of certain meta-cyclic groups that we presentedin Section 6.2.The idea of the extended equivalence problem emerged from an observa-tion of Section 3.6, namely that the commutator might signi�cantly changethe length of group-polynomials. In Chapter 8 we characterized the com-plexity of the extended equivalence problem for �nite groups. For many�nite groups G we determined the complexity of the equivalence problem for
(G, [, ]), but a complete characterization is still required.
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Appendix AStatement on joint workChapter 7 is published as a joint paper with not only my secondary supervisorCsaba Szabó, but with László Mérai and John Lawrence. My contribution tothis joint work was Lemma 165 and the �nal reduction from a non-solvablegroup to a simple group.The results of other Chapters are mine, unless explicitly indicated otherwise.


