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Abstract 

BACKGROUND: The R81T mutation conferring target site resistance to 

neonicotinoid insecticides in Myzus persicae was first detected in France and has since spread 

across much of southern Europe. In response to recent claims of control failure with 

neonicotinoids in Tunisia, we have used a molecular assay to investigate the presence and 

distribution of this target site mutation in samples collected from six locations and six crops 

attacked by M. persicae. 

RESULTS: The resistance allele containing R81T was present at substantial 

frequencies (32-55%) in aphids collected between 2014 and 2016 from northern Tunisia but 

was much rarer further south. It occurred in aphids collected from the aphid’s primary host 

(peach) and four secondary crop hosts (potato, pepper, tomato and melon). Its absence in 

aphids from tobacco highlights complexities in the systematics of M. persicae that require 

further investigation.  

CONCLUSION: This first report of R81T from North Africa reflects a continuing 

expansion of its range around the Mediterranean Basin although it remains unrecorded 

elsewhere in the world. Loss of efficacy of neonicotinoids presents a serious threat to the 

sustainability of aphid control. 

Keywords: insecticide resistance; target site mutation; Taqman assay; North Africa; 

gene flow; dispersal 
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1 INTRODUCTION  

The peach-potato aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae) is a highly 

adaptable and polyphagous insect pest that feeds on more than 400 plant species of 40 plant 

families, including many economically important crops.1,2 Aside from inflicting direct feeding 

damage, M. persicae also transmits many phytopathogenic viruses causing substantial yield 

losses.3-5  

The reproductive mode of M. persicae varies geographically from holocycly to 

anholocycly.6,7 Holocyclic aphids reproduce by parthenogenesis for several generations on 

secondary hosts (many herbaceous crops and weeds) in spring and summer, followed by one 

sexual generation on the primary host peach (Prunus persica L.) in autumn. However, in 

many countries where peach is absent and/or a warmer climate permits, the life cycle is 

anholocyclic with continual parthenogenesis throughout the year.1,2 In areas where holocycly 

predominates, M. persicae can be exposed to insecticides on both primary and secondary host 

plants, enhancing the selection pressure for insecticide resistance.  

Myzus persicae has evolved strong resistance to many important classes of 

insecticide.8 The development and spread of resistance is facilitated by its high fecundity, 

short generation time and capacity for long distance dispersal.1 Resistance arises through 

target site modification and or enhanced detoxification of insecticides. Target-site resistance 

to the carbamate pirimicarb (so-called MACE resistance) involves a serine to phenylalanine 

substitution (S431F) in the target enzyme acetylcholinesterase.9-11 Knockdown resistance 

(kdr) to pyrethroids involves mutations in the voltage-gated sodium channel protein in nerve 

membranes. The main substitutions are leucine to phenylalanine (L1014F, ‘kdr’) and 

methionine to threonine (M918T) or methionine to leucine (M918L) (both termed ‘super-

kdr’).12,13,14 In contrast to target site changes, resistance to organophosphates is based largely 
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on overproduction of a carboxylesterase capable of detoxifying these insecticides.15,16 The 

frequent co-existence of these mechanisms within individuals and populations has prompted 

increasing reliance on other insecticide groups including neonicotinoids for aphid control. 8,17 

In Tunisia, M. persicae attacks arable crops including potato, sugar beet and tobacco, 

horticultural crops in the families Brassicaceae, Solanaceae and Cucurbitaceae, and top fruit 

(especially peach, apricot and citrus). The greatest damage occurs in peach orchards and open 

field plantings of potato and tomato.4,18 The history of insecticide use against M. persicae in 

Tunisia mirrors that in many other countries with the efficacy of organophosphates, 

carbamates and pyrethroids having been progressively eroded by resistance.19 In the last 

decade, control of M. persicae has become increasingly reliant on neonicotinoid insecticides, 

although the continuing effectiveness of this class has also been questioned.  

Although initially slow to develop, reports of neonicotinoid resistance in insect pests 

have increased rapidly over the last 6-7 years, especially in economically-important species of 

whitefly, aphid and planthopper.8,20 Low levels of resistance to neonicotinoids in M. persicae 

can be attributable to increased detoxification through overproduction of a P450 

monooxygenase enzyme,21 but resistance is greatly enhanced by the presence of a mutation 

(R81T) in the target site nicotinic acetylcholine receptor.22 The R81T mutation was first 

identified in southern France following failure of neonicotinoid sprays to control aphids in 

peach orchards.22,23 It has since been detected in holocyclic populations across southwestern 

Europe from Spain through Italy, a distribution consistent with progressive gene flow from its 

point of origin.17,23 Its known distribution remains closely associated with areas of peach 

production (the primary host of M. persicae) despite expectations that continued selection 

would result in the mutation being detected in other geographical regions and on a wider 

range of host plants.23  

This article is protected by copyright. All rights reserved.
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In Tunisia, foliar applications of neonicotinoids (primarily imidacloprid but also 

thiamethoxam, acetamiprid and thiacloprid) have become routine for controlling aphids, 

whiteflies, and tomato leaf miner (Tuta absoluta). Recently, there have been many claims of 

failure to control M. persicae, implying the presence of imidacloprid resistance. We report 

here on a study of the status of the R81T mutation in different cropping areas of Tunisia, 

using aphid samples collected between 2014 and 2016. For comparison, we also analysed 

aphid samples collected between 2007 and 2009 from similar parts of the country. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 MATERIAL AND METHODS 

2.1 Aphid samples 
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More than 700 apterous adults of M. persicae were sampled between 2014 and 2016 

from greenhouse and field crops in three important agricultural areas of Tunisia ranging 

southwards from the coastal sub-humid zone where rainfall is heaviest (Bizerte and Korba) to 

semi-arid (Monastir and Kairouan) and arid cropping zones (Kebili and Gabes) (Fig. 1). 27 

samples were collected from peach orchards and 38 from five adjacent herbaceous crops - 

potato (Solanum tuberosum), tomato (Solanum lycopersicum), pepper (Capsicum sp), melon 

(Cucumis melo) and tobacco (Nicotiana tabacum) – although not all crops were present in all 

locations. Peach orchards were visited in late April-early June and samples were collected 

every four to five trees along the row. In other crops, including tobacco, samples were 

collected in June-August from infested plants every four to five rows and every 5m along the 

row. Aphids collected from locations at least 25 km apart, or collected from different host 

plants at the same location, were designated as different samples. Field collected aphids were 

stored in 95% ethanol, and given additional ethanol rinses before DNA extraction. For 

comparative purposes, we also analysed twelve aphid populations (372 individual aphids) 

collected from peach and potato in Korba and Kairouan during the years 2007–2009, prior to 

concerns over the efficacy of imidacloprid. In total, 1111 individuals from 77 field samples 

were examined. The distributions of samples across locations, host plants and years are shown 

in Tables 1 to 3, respectively. 

2.2 DNA extraction 

Total genomic DNA was extracted from single adults using DNAzol (Invitrogen, 

Carlsbad, California) at one-fifth scale of the supplier’s recommended protocol. 

(http://www.invitrogen.com/content/sfs/manuals/10503.pdf). Each aphid was dried in a 

speed-vac and then crushed using a Teflon pestle in a microcentrifuge tube in 200 µl of 

DNAzol containing 1% (v/v) of polyacryl carrier (Invitrogen, Carlsbad, California). The 

homogenate was centrifuged for 12 min at 10,000g after a 30 min incubation period at room 
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temperature. The supernatant was transferred to a new tube and a half volume of 100% 

ethanol was added. The tube was cooled to -20°C for 30 min and DNA pelleted by 

centrifuging at 10,000g for 15 min. The DNA pellet was dissolved in 50 µl of distilled, 

deionized water (ddH2O) after being washed twice with 70% ethanol. The quality and 

quantity of DNA samples were assessed by spectrophotometry (Nanodrop Technologies) and 

by running an aliquot on a 1% agarose gel. All DNA samples were diluted to 40 ng/µl and 

stored at -20°C for future use. 10 to 20 adults were selected at random from each sample for 

analysis.  

2.3 Detection of the R81T mutation 

The mutation conferring neonicotinoid resistance were identified using TaqMan assay 

to discriminate between wildtype and resistance alleles.24 Reactions took place in a 

STRATAGENE MX 3000 (Agilent Technologies, Santa Clara, CA) thermocycler. Reference 

template controls representing of wildtype and resistance alleles genotype were included in 

each run to aid genotype scoring. Diagnosis of the presence or absence of the R81T in the 

nicotinic acetylcholine receptor enabled each individual to be classified as homozygous 

susceptible (SS), heterozygous (SR) or homozygous resistant (RR). 

 

 

 

 

 

 

3 RESULTS  
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Results are listed in Tables 1-3 for samples pooled across locations, host plants and 

year of collection, respectively. The frequency of the R81T allele varied geographically, 

ranging from 32-55% in the four northern and central sites to 0-2% in the two southernmost 

sites (Table 1). It was found at frequencies of 19% or more on peach and on four of the five 

secondary hosts (potato, pepper, tomato and melon) but was notably absent from tobacco 

(Table 2). R81T was present at substantial frequencies in 739 individuals collected between 

2014 and 2016. A retrospective analysis of 372 aphids collected between 2007 and 2009 from 

Korba and Kairouan failed to detect any mutant genotypes and confirmed that the 

introduction of the mutation in Tunisia is a relatively recent phenomenon (Table 3).  

 

4 DISCUSSION 

Advances with elucidating the molecular basis of insecticide resistance mechanisms 

are transforming our ability to diagnose potential resistance problems and to track their 

occurrence.8 Once the causal link between a particular mutation and a modified phenotype has  

been unequivocally established, molecular assays can be used to supplement or even replace 

conventional bioassays, which have limitations including access to live material and insectary 

facilities, and an inability to detect resistance at very low frequencies.25 Compared with 

traditional bioassay methods, a molecular assay enables direct analysis of resistance 

associated genes, even if a resistance allele is recessive and present largely in heterozygous 

form. Of the different molecular diagnostic approaches have been developed and used for 

resistance monitoring, TaqMan assays have proved to be an affordable accurate method for 

the genotyping of resistance mutations in individual insects.26  

The discovery of the R81T mutation at substantial frequencies in northern Tunisia 

represents the first report of target-site resistance to neonicotinoids in North Africa. This 
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mutation was absent in aphids collected from peach and potato at Korba and Kairouan 

between 2007 and 2009, but in the present study, only aphids collected from the southernmost 

sampling locations lacked R81T or contained it at very low frequencies. This distribution is 

consistent with a recent introduction of the mutation from its point of origin in southern 

Europe, and a probable ongoing spread southwards that will be influenced by the intensity of 

chemical control in various regions and potentially also by differences in pest biology. The 

abundance of planted peach trees (the primary host of M. persicae) varies according to 

latitude. More than 54% of the area planted to this crop is in northern Tunisia, 39% is in the 

centre and only 7% is in the south. Variation in the abundance of peach is considered the 

principal factor responsible for high regional variation in the proportion of holocyclic 

genotypes of M. persicae in Greece.27 

Our data confirm that R81T is not restricted to aphids collected from peach, as 

appeared to the case initially in southern Europe.23 It was found in aphids from four 

herbaceous secondary host plants (potato, tomato, pepper and melon) that would be expected 

to be colonized by aphids moving off the primary host in spring/early summer. The apparent 

complete absence of R81T in aphids from tobacco, which is subject to similar neonicotinoid 

use as other crops, is noteworthy and reinforces the importance of understanding the 

systematics of M. persicae across the wide range of host plants that it inhabits. Tobacco-

adapted races of M. persicae have been assigned taxonomic recognition at species (‘M. 

nicotianae’) or, more recently, subspecies (M. persicae subsp. nicotianae) level, initially on 

the basis of morphological differences.28 There is growing evidence for genetic differences 

between M. persicae sensu stricto and M. persicae nicotianae29 that could underpin 

substantially different life-histories or preclude gene transfer on the basis or reproductive 

incompatibility. Our findings support a hypothesis of genetic sub-structuring and a seeming 

lack at present of target-site resistance to neonicotinoids in M. persicae nicotianae despite its 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
ability to tolerate nicotine in the leaves of its host plant. The genetic and ecological 

implications of this intraspecific variation in M. persicae in areas where the two taxa coexist 

deserve further investigation. 

In southern Europe, R81T is well established in a band from southern Spain, through 

southern France to northern and Central Italy,17,22 and has recently been reported from 

Greece.30 This distribution remains closely coincident with the cultivation of peach and 

closely-related crops. Extensive monitoring has failed to detect its presence further north in 

Europe despite continuing and extensive reliance on neonicotinoids for aphid control in 

countries such as the UK.8 It was also absent in samples collected in Australia.31 The 

geographical spread of R81T southwards but not northwards suggests an influence of factors 

such as climate and pest biology in determining its spread rather than simply the intensity of 

neonicotinoid applications. Target site resistance conferred by R81T is incompletely 

dominant in expression,32 and less likely to be selected where M. persicae populations are 

predominantly anholocyclic (asexual), which is generally the case in Australia and UK.33 

 

5 CONCLUSIONS 

Our study has shown that target site resistance to neonicotinoids is now well 

established in M. persicae in Tunisia. The R81T mutation is a recent invader in North Africa 

and its presence reflects an ongoing expansion of its range around the Mediterranean Basin. 

Based on experience gained elsewhere, the presence of this mechanism renders the use of 

neonicotinoids ineffective for control of M. persicae. New and sustainable control strategies 

combining biological control and cultural practices with insecticide application tactics such as 

alternation of modes of action that remain effective for aphid control are urgently required. 
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Table 1. Genotype and allelic frequencies of R81T mutation in samples of Myzus persicae 

collected in Tunisia between 2014 and 2016 and pooled by geographical location.  

   R81T genotype 

Region N RR SR SS RAF1 (%) 

Bizerte 120 19 39 62 32.0 

Korba 174 31 94 49 44.8 

Monastir 132 24 48 60 36.3 

Kairouan 125 40 58 27 55.2 

Gabes 99 0 0 99 0.0 

Kebili 89 2 0 87 2.2 

Total  739 116 239 384 31.8 

 

N = number of individuals. RR = homozygous resistant; SR = heterozygote; SS = 

homozygous susceptible. 1 Frequency of resistance allele = 100 x (2 × RR + SR)/2N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Genotype and allelic frequencies of the R81T mutation in samples of Myzus persicae 

collected in Tunisia between 2014 and 2016 and pooled by host plant of origin. 
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    R81T genotype 

 Host N RR SR SS RAF1 (%) 

Primary host Peach 333 69 130 134 40.2 

 

 

 

 

Secondary host 

 

Potato 202 30 61 111 29.9 

Pepper 84 14 28 42 33.3 

Tomato 55 3 15 37 19.0 

Melon 5 0 5 0 50 

Tobacco 60 0 0 60 0 

Total 406 47 109 250 25 

 Total  739 116 239 384 31.8 

See Table 1 for an explanation of symbols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Genotype and allelic frequencies of R81T mutation in samples of Myzus persicae 

collected in Tunisia between 2007 and 2016 and pooled by year of collection.  

R81T genotype 

Date N RR SR SS RAF1 (%) 

2007 33 0 0 33 0.0 
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2008 257 0 0 257 0.0 

2009 82 0 0 82 0.0 

Total 372 0 0 372 0.0 

2014 296 40 80 176 27.0 

2015 243 30 77 136 28.1 

2016 200 46 82 72 43.5 

Total 739 116 239 384 31.8 

Total 1111 116 239 756 21.1 

See Table 1 for an explanation of abbreviations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE LEGENDS 

Figure 1. Sampling sites for Myzus persicae in Tunisia. 
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