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Abstract. In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in

a way that the uptake of services is maximised given certain constraints such as congestion considerations.

We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities

are added incrementally to the network (one at a time), contributing to the service levels. We first develop

a general non-linear model of this problem and then present a method to make it linear. As the problem is

of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it.

In order to gain insight into the problem, the computational studies were performed with randomly generated

instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors

not more than 1.54%.

Keywords. Preventive healthcare, Facility location, Cooperative covering, Variable neighbourhood search,

Network design.

1 Introduction

Limited resources and ageing population are two of the major challenges of the health industry in the 21st

century. The problem of managing healthcare supply chains becomes more complicated by increased customer

expectations, shortage of healthcare workers, and the need to invest on new technologies. This has brought

about increased healthcare expenditure in many countries. For instance, according to the Office of National

Statistics [1], the total healthcare expenditure in the UK as a percentage of gross domestic product had increased

from 6.2% in 1997 to 8.8% in 2013.

Preventive healthcare aims at saving lives and improving health through early detection of diseases. It is

comprised of programmes such as cholesterol screening, HIV screenings, immunisation vaccination, and diet

counseling services. These programmes can prevent a wide range of chronic diseases such as heart disease,

cancer, and diabetes which are responsible for seven out of ten deaths and account for 75% of nation’s health

spending among Americans [2]. Although most of these services are offered for no cost in most countries, the

participation rates are low and improving the uptake rates of these services is a concern to governments all over

the world. The uptake rate can be different among various groups of education and occupation (Damiani et al.

[3]), income (Fox and Shaw [4]), and gender (Meissner et al. [5]) and a variety of qualitative and quantitative

factors can influence it. For instance, the proximity of the service centres, congestion in facilities, and even

closeness of these centres to other facilities such as shopping malls can all influence the uptake rates (Refer to

Santos et al. [6] and references therein for further information). Among these, proximity to the facilities has

been known to be the most significant factor (refer to Muller et al. [7], Varkevisser et al. [8], and Haynes et al.

[9]).

The current paper deals with a discrete, incremental, and cooperative version of Preventive Healthcare
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Network Design problem (IC-PHNDP) which concerns with finding the optimal number and location of facilities

among a set of potential nodes in order to maximise the uptake of services. We assume that the network is built

gradually and over the periods (incrementally) and once a facility is opened, it should remain operational until

the last period. Similar to any other real-world optimisation problem, it has a set of constraints such as the

congestion constraint. There is an analogy between our problem and the competitive facility location problem

in the sense that both make use of the idea of gravity-based attraction (Hotelling [10]) to model the attraction

of clients to facilities. In this model, the probability of a customer patronizing a facility is proportional to the

attractiveness of the facility and inversely proportional with the distance. This idea was later extended by many

scientists such as Nakanishi and Cooper [11]. A review of these contributions can be found in Bell et al. [12].

We assume that facilities cooperate in providing services to the clients (in line with the seminal paper of

Berman et al. [13]). In such a setting, the coverage of a demand node is not determined by only the closest

facility, but all the facilities in its vicinity. In other words, each facility j emits signals decaying over distance

based on a known non-negative and non-increasing function of distance φ(d(i, j)) (e.g. φ(d(i, j)) = 1
d2ij

or

φ(d(i, j)) = exp(−dij)) and each demand point i is affected by an aggregation of all the signals received. This

aggregation operator can take different forms such as summation, maximum, and truncated sum (Figure (1)

). Regardless of the coverage type used, a demand point is covered if the aggregated signal exceeds a certain

threshold Θ. For instance, in the case of a summation operator and assuming p established facilities, demand

point i is covered if and only if:

p∑
j=1

φ(d(i, j)) ≥ Θ (1)

Figure 1: Heat map of different aggregation operators

In this paper, we model IC-PHNDP as a mixed-integer programming model and provide a method to linearize

it. Then, we propose an efficient Variable Neighbourhood Search heuristic to solve it with optimality gaps of

not more than 1.54% while the average optimality gap is 0.71%. The contributions of this paper are as follows:

• To the best of our knowledge, there is no publication in the literature for modelling the incremental or

cooperative version of a preventive healthcare network design. This paper contributes to the literature by

modelling this problem.

• We propose an efficient heuristic procedure to solve the problem and analyse its performance with a set

of hypothetically generated test problems.

The outline of this paper is as follows: It proceeds with a literature review of relevant publications in section

(2). The mathematical model of the paper is presented in section (3). In section (4), our proposed solution
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procedure is elaborated. Numerical experiments and some analysis appear in section (5), and finally, conclusions

and some future research avenues are provided in section (6).

2 Background and Literature Review

To the best of our knowledge, Hakimi [14] was the first scholar addressing the problem of healthcare network

design in the literature. Later, a lot of research has been carried out on different problems in the area of

healthcare network design such as public healthcare facility location (Kim and Kim [15]), health care facility

location-allocation (Syam and Cote [16]), and healthcare facility location/vehicle routing (Veenstra et al. [17]).

Interested readers can refer to a recent survey by Ahmadi et al. [18] for further information about the healthcare

facility location literature.

One of the relatively less studied variants of the healthcare network design is the problem of designing

preventive healthcare networks. As far as we know, Verter and LaPierre [19] was the first publication in

the literature addressing this problem where case studies in Georgia, USA and Montreal, Canada were given.

Following on from that, Zhang et al. [20] presented the problem of preventive healthcare network design on

a graph with optimal choice allocation aiming at maximising service uptake and compared the performance

of four heuristics in terms of their accuracy and computational requirements. Zhang et al. [21] studied a

different version of the problem where a bi-level non-linear optimisation model was developed with equilibrium

constraints and a tabu search heuristic was proposed to solve it. Another study in the area of PHNDP is Gu et

al. [22] in which the impact of client choice behaviour on the network was studied as a bi-objective model which

was solved using an interchange algorithm. Zhang et al. [23] was another study of the client choice behaviour

on the network presenting both an optimal choice model and a probabilistic choice model. The problem was

formulated as a mixed integer programming problem and a genetic algorithm was presented to solve it. The

bi-objective fuzzy variant of the problem was studied in Davari et al. [24] where a fuzzy goal programming and

a chance constrained solution procedure were proposed to solve the problem. Haas and Muller [25] employed a

multinomial logit model to model the client choice behaviour and solved the problem with instances up to 20

potential nodes and 400 demand zones. They presented a procedure for finding lower bounds for larger sizes

and a definition of clients’ utility. Davari et al. [26] considered PHNDP with impatient clients and budget

constraints and proposed an efficient VNS heuristic to solve it.

The problem of multi-period facility location is not new to the literature and there has been numerous

publications dealing with this problem. Table (1) gives an overview of the recent research on multi-period

models. Although this table does not cover an exhaustive list of features of each paper, it mainly aims at

linking our study to the literature and providing an overview of the solution procedures used in the literature.
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Table 1: Literature review of some recent multi-period facility location models

Paper Year Problem Solution approach
Gen and Syarif [27] 2005 Production/distribution planning Genetic algorithm
McKendall and Shang [28] 2006 Dynamic facility layout Simulated annealing
Ko and Evans [29] 2007 Integrated forward/reverse logistics network for 3PLs Genetic algorithm
Yi and Ozdamar [30] 2007 Evacuation and support in disaster response Exact method
Ndiaye and Alfares [31] 2008 Health services for moving population groups Exact method
Wang et al. [32] 2008 Two-echelon integrated competitive/Uncompetitive facility location problem Genetic algorithm
Rajagopalan et al. [33] 2008 Dynamic redeployment of ambulances Tabu search
Manzini et al. [34] 2008 Multi-stage, multi-commodity location allocation Exact method
Gourdin and Klopfenstein [35] 2008 Capacitated location with modular equipments Polyhedral properties
Hinojosa et al. [36] 2008 Dynamic supply chain design with inventory Lagrangian relaxation
Albareda-Sambola et al. [37] 2009 Multi-period incremental service facility location problem Lagrangian relaxation
Lee and Dong [38] 2009 Dynamic location and allocation models Heuristic method
Mahar et al. [39] 2009 On-line fulfilment assignment problem Branch & bound, Dynamic programming
Schmid and Doerner [40] 2010 Ambulance location-relocation problems with time-dependent travel times Variable neighbourhood search
Basar et al. [41] 2011 Emergency medical stations Tabu search
Fazel Zarandi et al. [42] 2011 Large-scale dynamic maximal covering location problem Simulated annealing
Torres and Uster [43] 2011 Capacitated facility location with relocations and changing demand Lagrangian relaxation
Beneyyan et al. [44] 2012 Single and multi-period location-allocation models in the health sector Exact method
Sha and Huang [45] 2012 Emergency blood supply scheduling model Heuristic based on Lagrangian relaxation
Rottkemper et al. [46] 2012 Inventory relocation and distribution in humanitarian logistics Rolling horizon solution method
Schmid [47] 2012 Dynamic ambulance relocation and dispatching problem Approximate dynamic programming
Albareda-Sambola et al. [48] 2012 Multi-period Location-Routing with Decoupled Time Scales Heuristic
Albareda-Sambola et al. [49] 2013 Multi-period location-allocation problem under uncertainty Fix-and-Relax-Coordination
Ghaderi and Jabalameli [50] 2013 Budget-constrained dynamic uncapacitated facility location network design Exact method and simulated annealing
Correia et al. [51] 2013 Two-echelon supply chain network design problem with sizing decisions Valid inequalities
Zhen et al. [52] 2014 Emergency medical stations Genetic algorithm
Gelareh et al. [53] 2015 Multi-period hub location problem Benders decomposition
Chung and Kwon [54] 2015 Location of electric car charging station Heuristic (myopic methods)
Elbek and Wohlk [55] 2016 Scheduling of recyclable materials collection Constructive variable neighbourhood search
Duhamel et al. [56] 2016 Location-allocation problem for post-disaster operations Decomposition approach
Correia and Melo [57] 2016 Facility location under delayed demand satisfaction Valid inequalities
Markovic et al. [58] 2016 Stochastic facility location problem with independent demand Lagrangian relaxation
Vatsa and Jayaswal [59] 2016 Multi-period maximal covering facility location problem with server uncertainty Benders decomposition
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From the above and to the best of our knowledge, there is not any attempt in the literature towards modelling

the multi-period design of a preventive healthcare network. Another gap in the literature of PHNDP is the

realistic assumption of cooperativeness in covering nodes in a preventive helathcare setting. In line with some

of the existing literature, our paper aims at filling these two gaps by proposing an efficient integer programming

model and presenting an efficient variable neighbourhood search procedure which is capable of solving large

instances with errors not worse than 1.54% to the best known solutions.

3 Mathematical model

Consider a region (say a city) with a set of nodes representing demands in different sub-regions. The decision

maker is interested in minimising the costs while ensuring that a minimum level of coverage is guaranteed for

all the nodes. There are candidate locations to establish facilities and the proximity of clients to facilities is

the key factor in making facilities more attractive. Besides, there are congestion considerations in the problem.

We assume that there is no existing facility in the network; however, the model is easily generalizable for the

case where facilities exist. Moreover, facilities cooperate in providing service to the population centres and the

network is established incrementally.

The model is studied in a discrete space with N as the demand nodes (|N | = m) and a set of V ⊂ N to

be the set of potential nodes to establish a facility. The demand associated with node i ∈ N at time t ∈ T
is denoted as pit. The shortest path between each demand zone i ∈ N and a potential facility at node j ∈ V
is represented as dij . Moreover, we follow a similar approach to Pastor [60] in defining the attractiveness.

Like that, the attractiveness of each facility j ∈ V to clients living at node i ∈ N is shown as φij and found

using a negative exponential function as φij = e−ηdij where η is an empirically defined value (different decay

functions can be used such as the power function φij = d−η. However, based on the empirical study of Drezner

[61], we use the exponential function in this study). It should be noted that this attractiveness measure can

be modified in order to address other attractiveness parameters such as the appearance of a facility, its size,

and other factors (see Drezner [62] and references therein). Moreover, in each period t ∈ T , a minimum of πt

people should be covered. The π function is defined as a non-decreasing function of t (linear, piecewise, etc.)

to gradually increase the service level in the network.

We assume that the demand of node j ∈ V is partially met by each opened facility and inversely proportional

to the distance between the demand node and the facility (based on the basic concept of gravity rule by Reily

[63]). Last but not least, the cooperative aggregation operator is shown as Φit which can take different forms.

In this paper, we assume that the aggregate coverage of a node i at time t (Φit) is found as:

Φit = min{1,
∑
j∈V

φijxjt} (2)

where xjt is defined as follows:

xjt =

1 If there is a facility at node j ∈ V at time t ∈ T

0 Otherwise

The other parameters of the problem are as follows:

Parameters
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aij The attractiveness of facility at node j ∈ V to the demand node at node i ∈ N
dij The distance between nodes i ∈ N and j ∈ V
pit The population of node i ∈ N at time t ∈ T
fjt Cost of establishing a facility at node j ∈ V at time t ∈ T
ojt Operation cost of node j ∈ V at time t ∈ T
πt The total population to be covered at time t ∈ T
λ The maximum number of clients each server can serve

Tmax Number of periods of the study

Let ζijt to be the share of the facility at node j ∈ V from the demand at node i ∈ N at time t ∈ T . Spatial

interaction models assume that this ratio equals the relative utility of facility at node j ∈ V compared to other

facilities available on the network which can be represented as follows.

ζijt =
φijxjt∑

l∈V
φilxlt + ε

(3)

where a sufficiently small ε is added to the denominator to avoid undefined values for ζ. Now, the problem can

be formulated as follows.

min
∑
j∈V

∑
t∈T

fjt(xjt − xj(t−1)) +
∑
j∈V

∑
t∈T

ojtxjt (4)

Φit ≤ 1 ∀i ∈ N,∀t ∈ T (5)

Φit ≤
∑
j∈V

φijxjt ∀i ∈ N,∀t ∈ T (6)

xjt ≤ xj(t+1) ∀j ∈ V, t ∈ T\{Tmax} (7)∑
i∈N

φijxjt∑
l∈V

φilxlt + ε
pit ≤ λ̄xjt ∀j ∈ V , ∀t ∈ T (8)

∑
i∈N

Φitpit ≥ πt ∀t ∈ T (9)

xjt ∈ {0, 1} ∀j ∈ V , ∀t ∈ T (10)

The objective function (4) minimises the total cost of the network which is a function of fixed establishment

costs and the variable server costs. Constraints (5) and (6) linearize the equation (2). Constraint set

(7) ensures that while a facility is opened, it should operate for the remaining periods. In other words, the

problem is modelled as an uninterrupted facility location problem which is a more realistic one in practice. The

congestion constraint is enforced to the model through Constraint (8). Constraint (9) states that in each

period t ∈ T , a minimum population of πt should be covered. As stated earlier, the π function can be defined

as a non-decreasing function of t ∈ T to gradually improve the service level in the network. Finally, constraint

(10) is the integrality constraint for the variable xjt. The model is a non-linear one owing to constraint (8)

which can be linearized using Proposition (1).

Proposition 1. Constraint (8) can be rewritten as:∑
i∈N

pitφijzijt ≤ λ̄xjt ∀j ∈ V , ∀t ∈ T (11)

Proof. Define the auxiliary variable wit to represent the following component of constraint (8):

wit =
1∑

l∈V
φilxlt + ε

(12)
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and the variable zijt to represent the following component of constraint (8).

zijt = witxjt (13)

Note that there will be a need to add the following constraints to the model.

zijt ≤Mxjt ∀i ∈ N,∀j ∈ V , ∀t ∈ T (14)

zijt ≤ wit ∀i ∈ N,∀j ∈ V , ∀t ∈ T (15)

wit − zijt ≤M(1− xjt) ∀i ∈ N,∀j ∈ V , ∀t ∈ T (16)

zijt ≥ 0 ∀i ∈ N,∀j ∈ V , ∀t ∈ T (17)∑
j∈V

zijtφij = 1 ∀i ∈ N,∀t ∈ T (18)

in which M is a sufficiently large positive number.

Now, the linearized mathematical model can be rewritten as follows.

min
∑
j∈V

∑
t∈T

fjt(xjt − xj(t−1)) +
∑
j∈V

∑
t∈T

ojtxjt (19)

∑
i∈N

Φitpit ≥ πt ∀t ∈ T (20)

Φit ≤ 1 ∀i ∈ N,∀t ∈ T (21)

Φit ≤
∑
j∈V

φijxjt ∀i ∈ N,∀t ∈ T (22)

∑
i∈N

pitφijzijt ≤ λ̄xjt ∀j ∈ V , ∀t ∈ T (23)

xjt ≤ xj(t+1) ∀j ∈ V, t ∈ T\{Tmax} (24)∑
j∈V

zijtφij = 1 ∀i ∈ N,∀t ∈ T (25)

zijt ≤Mxjt ∀i ∈ N,∀j ∈ V , ∀t ∈ T (26)

zijt ≤ wit ∀i ∈ N,∀j ∈ V , ∀t ∈ T (27)

wit − zijt ≤M(1− xjt) ∀i ∈ N,∀j ∈ V , ∀t ∈ T (28)

zijt ≥ 0 ∀i ∈ N,∀j ∈ V , ∀t ∈ T (29)

xjt ∈ {0, 1} ∀j ∈ V , ∀t ∈ T (30)

IC-PHNDP belongs to the class of NP-hard problems since its relaxation makes it an uncapaciated facility

location problem which has been proven to be an NP-hard problem. Therefore, owing to its combinatorial

optimization nature, we propose an efficient VNS to solve it.

4 Solution procedure

Variable Neighbourhood Search (Mladenović and Hansen [64]) is a local search procedure based on systematically

improving the incumbent solution by applying a set of neighbourhood search structures. VNS has been a popular

heuristic in a variety of problems from scheduling (Karimi et al. [65]) and vehicle routing (Belhaiza et al. [66])

to facility location (Davari et al. [67]). Interested readers can refer to Hansen et al. [68] and references therein

for further applications of VNS.

Similar to other heuristics, one of the main issues in designing a VNS is to keep a balance between the

intensification and diversification of the algorithm. Since its introduction, different scholars have proposed
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various mechanisms to improve this balance. In this paper, we will apply a general skewed version of VNS as

given in Algorithm (1).

Algorithm 1 Skewed Variable Neighbourhood Search

1: procedure VNS

2: Initialization;

3: Define neighbourhood structures Nk; k = 1, ..., kmax

4: Find an initial solution s ∈ S
5: Choose stopping criteria

6: while stopping criteria is not met do:

7: Set k = 1

8: while k ≤ kmax do:

9: Shaking :

10: Generate a point s′ ∈ Nk(s) at random;

11: Local search:

12: Obtain the local optima s′′ by applying some local search to s′;

13: Move or not :

14: If f(s′′) < f(s)(1 + κρ(s, s′′)) then

15: s = s′′;

16: k = 1;

17: else

18: k = k + 1;

19: end if

20: end while

21: end while

For the distance function (ρ), we propose a function to find the dissimilarity between s and s̄. Considering

θit as a binary variable taking a value of 1 if a facility at node i is opened at time t and 0 otherwise (the same

for s̄), Equation (31) finds the distance between the two solutions s and s̄.

ρ(s, s̄) =

N∑
i=1

T∑
t=1
|θit − θ̄it|

|N ||T |
(31)

In order to increase the diversification ability of the proposed procedure, we allow infeasible solutions to be

explored as well. There are two types of infeasibilities in our problem as the violation of the coverage (Constraint

(20)) and violation of the congestion (Constraint (23)). We add two penalty terms to the objective function

as ϕ and ψ for each unit of violation for the two constraints respectively. These two parameters are updated

dynamically during the run to have an optimal trade-off between the intensification and diversification of the

procedure. Algorithm (2) presents the procedure to update these parameters.
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Algorithm 2 Updating the penalization parameters

1: procedure ParamUpdate

2: if
∑
i∈N

Φitpit ≥ πt then

3: ϕ = ϕ(1− εϕ)

4: else

5: ϕ = ϕ(1 + εϕ)

6: if
∑
i∈N

pitφijzijt ≤ λ̄xjkt then

7: ψ = ψ(1− εψ)

8: else

9: ψ = ψ(1 + εψ)

In this section, we will elaborate the encoding scheme, initialisation procedure, and neighbourhood search

structures.

4.1 Solution Representation

Solution representation plays a crucial role in success of any heuristic method and VNS is not an exception. In

this paper, we have used a vector to represent a solution. Assuming n potential facilities to locate and Tmax

as the number of periods, each vector is composed of n elements each with a value in the range of [0, Tmax]

showing the index of the period the facility starts to operate. Since the problem is studied in an uninterrupted

settings, this compact representation can be easily transferred to a vector/matrix showing the location of each

facility at each time period. The sample solution in Figure (2) shows a problem with eight facilities where a

facility is located at node two in the second period and another facility is established at node four in the first

period.

0 2 0 1 0 0 0 0

Figure 2: Solution representation

This representation facilitates carrying out neighbourhood search structures quickly which leads to a fast

and efficient heuristic. Moreover, the sparse nature of the vector enables the algorithm to benefit from massive

memory savings. Hence, we believe that this solution representation is efficient.

4.2 Initial solution construction

We employed a fuzzy c-means procedure to generate initial solutions which are feasible (interested readers can

refer to Sato and Jain [69] for further information about fuzzy c-means algorithm and its variants). A sketch of

this procedure is given in Algorithm (3).

9



Algorithm 3 FCM-based Initialisation

1: procedure FCM-based initialisation

2: t = 1;

3: while t ≤ Tmax do:

4: Cluster the data using a fuzzy c-means procedure

5: Find the closest nodes to each cluster centre and locate a facility there

6: If solution is feasible then

7: t = t+ 1;

8: else

9: while there is an infeasibility do:

10: Find the cluster(s) in which an infeasibility occurs

11: Locate the facility in that cluster which has the lowest cost of establishment

12: t = t+ 1;

13: end if

14: end while

4.3 Neighbourhood Operators

We defined a set of five different neighbourhood structures to guide the search and to maintain a balance between

intensification and diversification as N={N1, N2, N3, N4, N5}. The moves N3-N5 have a nested relation as

N3 ⊆ N4 ⊆ N5. The following sections explain each structure using an example.

4.3.1 Backward Shift (N1)

The neighbourhood structure shifts back the establishment period of an existing facility. Figure (3) depicts a

sample solution where the establishment of facility (2) has been rescheduled to period (1). Please note that this

neighbourhood structure can improve the solution by closing a facility or by shifting its establishment period to

an earlier one and also make a solution feasible by providing higher service levels for the earlier periods. This

operator is invoked repeatedly for all the possible values of t ∈ T in order to find a better solution.

0 2 0 0 5 0 3 3 0 0 1 0 0 0 2

0 1 0 0 5 0 3 3 0 0 1 0 0 0 2

Figure 3: Pushing Back

4.3.2 Forward Shift (N2)

The neighbourhood structure performs in an opposite way to N1 by shifting forward the establishment period

of an existing facility. The move is applicable for non-existing facilities as well by locating them in a consequent

period. Figure (4) shows a sample solution where the establishment period of facility (7) has been rescheduled

to period (4) from period (3). This operator is used repeatedly for all the possible values and the best one is

opted for.

0 2 0 0 5 0 3 3 0 0 1 0 0 0 2

0 2 0 0 5 0 4 3 0 0 1 0 0 0 2

Figure 4: Pulling Forward
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4.3.3 Swap (N3 −N5)

A neighbour of a solution s is obtained by exchanging the values of q pairs of it where 1 ≤ q ≤ 3. In other

words, the values of a set of q bits are exchanged with the values of a different set of q bits in the solution.

Figure (5) presents a sample solution obtained using q = 2 where the values of two pairs of bits are exchanged

(second bit with the eleventh and the sixth bit with the eighth). Our preliminary analysis showed that using

the values of more than three for q perturbs the solution to a level that might negatively affect the quality of

solutions.

0 2 0 0 5 0 3 3 0 0 1 0 0 0 2

0 1 0 0 5 3 3 0 0 0 2 0 0 0 2

Figure 5: Swap(2)

We will use operators N3 − N5 for the shaking phase and the structures N1 − N2 as the local search

procedures. The shaking structures are able to perturb the local optima strongly to increase the diversification

of the algorithm and the local search procedures are intensification operators exploring the neighbourhood of a

solution to find a better one by slightly changing it.

4.3.4 Stopping Criteria

Our experiments showed that for small-scale problems (|N | ≤ 25), running the procedure for more than 60

seconds rarely brings about improvement in the solution quality. Hence, the proposed procedure stops after

running for 60 seconds regardless of the problem size and its parameters. However, for large-scale problems, we

adopted a different stopping criterion based on the number of nodes (|N |) and time periods (|T |) as stopping

after 60 |N ||T |50 seconds. This time corresponds to the wall-clock time of the algorithm including the pre-processing

tasks and the reporting time. It should be noted that these stopping criteria are dependent on the hardware

specification and the programming language.

5 Numerical experiments

Since no benchmark instances exists in the literature for IC-PHNDP, we generated a hypothetical set of 216

test problems with different settings1. In particular, we considered three dimensions of |N | ∈ {15, 20, 25}. We

assumed that there is a direct link between any two nodes enabling the demand to access services in the shortest

time.The other settings are shown in Table (2). It should be noted that the third option of λ̄ in Table (2) is

basically the uncapcitated version of the problem where there is no congestion in facilities. For the node distri-

butions, we used the Beta distribution with different (α,β) values to have symmetric/non-symmetric and also

dense/sparse distributions. Figure (6) depicts the four types of node distributions on the plane with different

values of (α, β). For the sake of reading the table easier, the total population over the periods is denoted as ∆

as is shown in Equation (32). Finally, the π vector was generated using two different parameters imposing

different rates of constraint on the problem. In order to address the test problems throughout the paper, we

adopt the |N |/|T |/(α, β)/λ̄/π notation.

∆ =
∑
i∈N

∑
t∈T

pit (32)

1Test problems can be shared upon request via email.
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Table 2: Parameter settings for the test problems

Parameter Levels

|N | 15 20 25

|T | 1 3 6

(α,β) (1,1) (2,5) (5,5) (1,5)

λ̄ 2∆
|N ||T |

5∆
|N ||T | ∞

πt (1− 0.7)t (1− 0.95)t
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Figure 6: Four demand profiles

All experiments described in this section have been carried out on a laptop with Intel i5 2.30 GHz CPU and

16 gigabyte RAM memory. The proposed VNS algorithm was coded in C++ on Visual Studio 2015 and the

Gurobi Optimizer was used to solve the MILP model. We allowed the optimizer to run for at most five hours

regardless of the problem size. For those instances that Gurobi failed to find the optimal fitness, the lower

bound has been reported for the sake of comparison with the proposed VNS. Moreover, we ran our heuristic

ten times on each test problem and reported the worst, average, and best performances in terms of the gap to

the best found solution.

12



5.1 Parameter tuning

There are four parameters to be optimised before running the proposed heuristic: the time limit, the maximum

neighbourhood size (kmax), and the values of εϕ and εψ. We found that running the proposed VNS for more

than 60 seconds is rarely effective in improving the solution (marginal improvements in seven out of 500 random

instances). Hence, we opted for a termination criterion of reaching 60 seconds. Needless to say, running the

heuristic for a longer time still improves the solution, but the pace of improvements slows down. It should be

mentioned that plotting the solutions shows that the heuristic does not need the whole 60 seconds to reach an

optimal solution for the small-scale problems.

The value of kmax has been already tuned as explained earlier to be five. This can be attributed to the fact

that for the values of k above five, there is occasionally an improvement seen and the search becomes almost

random, negatively affecting the structure of current solution.

In order to find the optimal value of εϕ and εψ, we ran the algorithm ten times with values in the range of

[0-0.1] with increments of 0.01 to solve 36 test problems with different number of nodes, number of periods, and

distribution of demand nodes and reported the average gaps to the optimal solution. The results for εψ were

inconclusive and its value has been set to zero. However, as Figure (7) shows, a value of 0.04 for the εϕ leads

to the best results in terms of the error.

In order to test the superiority of using εϕ = 0.04 over the other values, we performed a Wilcoxin signed-rank

test on top of the visual test which showed that the results obtained using εϕ = 0.04 leads to better results

compared to the other values.
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Figure 7: Box-plot of errors using eleven values of εϕ
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6 Results and discussion

Each of the 216 instances were solved to optimality using Gurobi Optimizer Version 6.5.1 and also ten times

using the proposed algorithm. Table (3) summarise the obtained results for both the Gurobi and heuristic

runs. The table contains the results for the average performance of the proposed heuristic compared to the

Gurobi outputs. While the first four columns represent the problem parameters, the last four columns report

on the average gap of the proposed heuristic for each of the demand distribution types.

A detailed summary of the results for each distribution can be found in Tables (4)-(7) in the appendix.

While the first six columns of these tables show the problem parameters, the two columns under ”Gurobi” give

the optimal solution and runtime for each instance respectively whereas the three columns under ”Heuristic”

give the best, average, and worst results found of the ten runs of the heuristic. Finally, the last three columns

report the gaps found in the ten runs of the heuristic. We did not report the runtime needed for heuristics as

they were set as 60 seconds for all the instances regardless of the problem settings. Please note that for those

instances Gurobi was unable to reach an optimal solution in five hours, the lower bound has been reported and

the corresponding row has been made boldfaced. Besides, the rows of those instances for which the heuristic

reached the optimal solution at least once have been highlighted.
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Table 3: Summary of the heuristic performance

Parameters Average Gap
|N | |T | λ̄ π (1,1) (1,5) (2,5) (5,5)
15 1 2 0.7 0.00% 0.00% 0.16% 0.15%
15 1 2 0.95 0.00% 0.00% 0.11% 0.21%
15 1 5 0.7 0.00% 0.00% 0.17% 0.16%
15 1 5 0.95 0.00% 0.00% 0.21% 0.29%
15 1 ∞ 0.7 0.00% 0.00% 0.32% 0.18%
15 1 ∞ 0.95 0.00% 0.00% 0.16% 0.15%
15 3 2 0.7 0.82% 0.75% 0.52% 0.24%
15 3 2 0.95 0.58% 0.35% 0.35% 0.82%
15 3 5 0.7 0.51% 0.83% 0.64% 0.35%
15 3 5 0.95 0.56% 0.58% 0.30% 0.94%
15 3 ∞ 0.7 0.45% 0.36% 0.46% 0.17%
15 3 ∞ 0.95 0.31% 0.29% 0.55% 0.24%
15 6 2 0.7 0.53% 0.91% 1.13% 0.95%
15 6 2 0.95 1.07% 0.65% 0.96% 1.33%
15 6 5 0.7 0.51% 0.85% 0.86% 1.22%
15 6 5 0.95 0.59% 0.39% 1.14% 0.40%
15 6 ∞ 0.7 0.07% 0.35% 0.33% 0.38%
15 6 ∞ 0.95 0.35% 0.08% 0.63% 0.40%
20 1 2 0.7 0.12% 0.13% 0.26% 0.27%
20 1 2 0.95 0.21% 0.36% 0.22% 0.47%
20 1 5 0.7 0.04% 0.29% 0.34% 0.51%
20 1 5 0.95 0.12% 0.19% 0.12% 0.41%
20 1 ∞ 0.7 0.00% 0.09% 0.18% 0.22%
20 1 ∞ 0.95 0.00% 0.16% 0.09% 0.14%
20 3 2 0.7 0.88% 0.84% 1.33% 1.12%
20 3 2 0.95 1.15% 1.08% 0.88% 1.36%
20 3 5 0.7 0.85% 1.08% 0.97% 1.58%
20 3 5 0.95 0.81% 0.96% 0.72% 1.44%
20 3 ∞ 0.7 0.74% 0.77% 0.77% 1.43%
20 3 ∞ 0.95 0.56% 0.76% 0.29% 0.94%
20 6 2 0.7 1.05% 1.39% 1.62% 1.39%
20 6 2 0.95 1.06% 1.20% 1.32% 1.29%
20 6 5 0.7 0.99% 0.95% 1.18% 1.47%
20 6 5 0.95 1.32% 1.18% 1.13% 1.33%
20 6 ∞ 0.7 0.78% 0.86% 1.02% 1.34%
20 6 ∞ 0.95 0.32% 0.40% 0.90% 0.96%
25 1 2 0.7 0.37% 0.42% 1.01% 0.74%
25 1 2 0.95 0.47% 0.45% 0.85% 0.46%
25 1 5 0.7 0.49% 0.44% 0.44% 0.64%
25 1 5 0.95 0.05% 0.51% 0.69% 0.66%
25 1 ∞ 0.7 0.12% 0.62% 0.82% 0.35%
25 1 ∞ 0.95 0.05% 0.49% 0.42% 0.34%
25 3 2 0.7 1.77% 0.73% 1.07% 1.63%
25 3 2 0.95 1.23% 0.89% 1.18% 1.51%
25 3 5 0.7 1.12% 1.08% 1.04% 1.68%
25 3 5 0.95 1.76% 0.70% 1.47% 2.26%
25 3 ∞ 0.7 0.85% 0.53% 0.91% 1.76%
25 3 ∞ 0.95 1.25% 0.38% 0.77% 1.64%
25 6 2 0.7 2.31% 1.65% 1.56% 1.79%
25 6 2 0.95 4.25% 2.03% 1.08% 1.21%
25 6 5 0.7 2.32% 1.22% 2.40% 1.26%
25 6 5 0.95 1.67% 1.26% 1.29% 1.50%
25 6 ∞ 0.7 1.20% 0.94% 1.11% 1.41%
25 6 ∞ 0.95 1.52% 0.84% 0.85% 0.92%
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Results show that while for the instances with 15 nodes, Gurobi was able to solve all the instances to

optimality within 11 minutes, it needed more than two hours to solve some instances with |N | = 20, and

failed to reach an optimal solution for some of the instances with |N | = 25 within five hours. Our experiments

showed that for larger node sizes, Gurobi failed to reach an optimal solution in much longer times. However,

the proposed heuristic consumed considerably lower times (60 seconds) to reach solutions which are not worse

than 0.55% from the optimal solution on average. In particular, for the large-scale problems, the proposed

heuristic reached solutions which are 0.81% higher than the optimal solutions on average. However, as Figure

(8) shows, for a case with 25 nodes and six periods, Gurobi was unable to reach an optimal solution with less

than 15% gap to the optimal within two hours. It should be emphasised that there is no guarantee with the

proposed heuristic to reach an optimal solution. However, for larger instances in which Gurobi is unable to find

the optimal solution, the heuristic can offer a near-optimal solution as shown in the numerical experiments.
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Figure 8: Performance of Gurobi on an instance of 25/6/(1,5)/2/0.7

One of the observations is that the computational requirement grows exponentially by an increase in the

number of nodes and periods, whereas an increase in the value of congestion parameter (λ̄) is strongly correlated

with a decrease in the runtime. While all the instances with a λ = ∞ were solved in less than a minute, only

24 out of 48 with λ = 2 or λ = 5 and |N | = 25 were solved optimally in less than ten minutes. Moreover, the

heuristic reached the optimal solution in 36 and resulted in solutions within an error margin of one percent in

186 out of 216 instances which are clear indications that the proposed heuristic performs significantly better in

terms of the runtime while its solution quality is comparable to Gurobi.

Another observation in the running of the heuristic was the ability of the proposed heuristic to avoid getting

stuck in local optima. For instance, Figure (9) depicts a sample run of the heuristic for 60 seconds where the

algorithm reduced the gap gradually without being stuck in local optima.
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Figure 9: Performance of the algorithm on an 25/6/(1,1)/5/0.7

In order to analyse the efficiency of the proposed heuristic, we used two measures simultaneously, namely

the runtime and also the Relative Percentage Deviation (RPD) as Equation (33):

RPD =
z − z∗

z∗
(33)

where z and z∗ are the best found fitness using the proposed VNS and the optimal value found using Gurobi

respectively. While for small-sized problems, we compared the performance of the proposed procedure with the

optimal solution found with Gurobi, the performance for the larger ones, for which Gurobi was unable to find

the optimal solution within five hours, was compared with the lower bounds.

We observe that the performance of the proposed heuristic is not far from the Gurobi results with an average

error of 0.81% for those instances Gurobi managed to solve. However, in terms of the runtime, VNS is better

by an order of magnitude. The gap of VNS is higher for those instances with a lower value of λ̄ which can be

attributed to the fact that these instances are more difficult to solve. However, this issue is offset considering

the fact that the time needed to solve these instances to optimality is high as Gurobi fails to reach an optimal

even in five hours (For some instances, no optimal solution is found within even twelve hours). Furthermore,

in 50% of test instances, the proposed general SVNS could reach the optimal solution in at least one of the

runs and in almost 20% of the cases, it gets the optimal results in all the ten runs. Therefore, the proposed

algorithm is capable in reaching high quality solutions in considerably less time than Gurobi.

In order to examine the performance of the proposed heuristic for larger datasets, we have carried out a set

of complimentary analysis for larger datasets of |N | ∈ {100, 1000} with increments of 100 and the results are

given in Tables (8)-(10). Since Gurobi fails to find the optimal solutions for these instances in a reasonable

time (even a week), we were unable to compare the performance of heuristic with the optimal results. However,

the best, average, and worst solutions of the ten runs are reported along with the standard deviation of the
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results in the last column which has been shown as σ.

We have done a set of additional tests to find out if the performance of the heuristic is affected by using

incomplete graphs. To this end, we used the standard p-median test problems of Beasley [70] for |N | ∈
{100, 200, 300, 400, 500}, |T | ∈ {1, 3, 6}, λ̄ = 50 and π = 0.7. Results of these test problems are given in Table

(11) showing that the heuristic performs well for the incomplete graphs as well, leading to consistent results.

We carried out an additional test to examine the efficiency of the skewed VNS and if it makes a significant

difference compared to the general VNS. To do so, we ran the same test problems with a general VNS (κ = 0)

and compared the means using the unpaired t-test. These analyses have led to p-values equal to 0.093, 0.066,

0.041, and 0.085 for (α, β) = (1, 1), (α, β) = (1, 5), (α, β) = (2, 5), and (α, β) = (5, 5) respectively. Therefore,

we can conclude that there is a significant difference between the general VNS and the proposed skewed VNS

at ten percent level of confidence.

7 Conclusion and future research

The literature of facility location models has relatively less publications for multi-period models than single-

period ones which can be attributed to the complexity of these problems and the high computational effort

needed to solve them. Moreover, the cooperative facility location problem is relatively new. In this paper, we

tried to fill this gap by considering a multi-period cooperative facility location problem for preventive health

care centres. We proposed a linear integer programming model and developed an efficient heuristic to solve

it. Our experiments using a set of randomly generated data showed that the proposed heuristic is able to

reach near-optimal solutions in considerably less runtimes compared to the optimal solutions found by Gurobi

Optimizer.

We believe that future research stems from considering probabilistic choice environment, assuming uncertain

travel times or developing other heuristics. Another appealing future research is to assume a case in which pre-

ventive facilities are dynamic, like immunisation programs. Then, the problem is to locate facilities dynamically

and to decide on the time the locations should be changed. As another possible extension to the IC-PHNDP,

other qualitative factors such as quality of the healthcare facility, availability of amenities near the facility, etc.

which also influence the attractiveness of the healthcare facility besides the proximity, can also be incorporated

while modelling participation to preventive programs. Another interesting area of research would be to com-

pare the performance of Gurobi with other solvers to find out if any solver shows a better performance to solve

IC-PHNDP. Last but not least, one can model the participation by means of fuzzy numbers rather than crisp

numbers and to utilise fuzzy mathematical programming approaches.
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Appendix. Numerical Results

Table 4: Results for the instance with (α,β)=(1,1)

|N | |T | α β λ̄ π
Gurobi Heuristic Gap
Objective Time (s) Best Average Worst Best Average Worst

15 1 1 1 2 0.7 334,687 2.0 334,687 334,687 334,687 0.00% 0.00% 0.00%
15 1 1 1 2 0.95 334,687 2.1 334,687 334,687 334,687 0.00% 0.00% 0.00%
15 1 1 1 5 0.7 86,914 1 86,914 86,914 86,914 0.00% 0.00% 0.00%
15 1 1 1 5 0.95 86,914 1.1 86,914 86,914 86,914 0.00% 0.00% 0.00%
15 1 1 1 ∞ 0.7 29,626 <1 29,626 29,626 29,626 0.00% 0.00% 0.00%
15 1 1 1 ∞ 0.95 29,626 <1 29,626 29,626 29,626 0.00% 0.00% 0.00%
15 3 1 1 2 0.7 412,718 <1 414,823 416,086 416,423 0.51% 0.82% 0.90%
15 3 1 1 2 0.95 412,718 <1 414,905 415,124 416,568 0.53% 0.58% 0.93%
15 3 1 1 5 0.7 141,895 4.5 142,548 142,613 142,900 0.46% 0.51% 0.71%
15 3 1 1 5 0.95 107,187 4.2 107,734 107,788 108,330 0.51% 0.56% 1.07%
15 3 1 1 ∞ 0.7 107,929 1.0 108,231 108,413 108,509 0.28% 0.45% 0.54%
15 3 1 1 ∞ 0.95 44,809 <1 44,926 44,949 45,047 0.26% 0.31% 0.53%
15 6 1 1 2 0.7 607,902 283.1 610,394 611,142 611,790 0.41% 0.53% 0.64%
15 6 1 1 2 0.95 607,902 250.0 611,975 614,419 616,374 0.67% 1.07% 1.39%
15 6 1 1 5 0.7 263,743 6.5 264,640 265,088 265,626 0.34% 0.51% 0.71%
15 6 1 1 5 0.95 163,405 47.0 164,042 164,361 165,221 0.39% 0.59% 1.11%
15 6 1 1 ∞ 0.7 246,927 2.4 247,075 247,090 247,204 0.06% 0.07% 0.11%
15 6 1 1 ∞ 0.95 79,688 <1 79,919 79,965 80,159 0.29% 0.35% 0.59%
20 1 1 1 2 0.7 452,865 19.9 452,865 453,408 453,898 0.00% 0.12% 0.23%
20 1 1 1 2 0.95 452,865 21.1 452,865 453,816 454,006 0.00% 0.21% 0.25%
20 1 1 1 5 0.7 107,534 1.6 107,534 107,577 107,620 0.00% 0.04% 0.08%
20 1 1 1 5 0.95 107,534 1.5 107,534 107,663 107,740 0.00% 0.12% 0.19%
20 1 1 1 ∞ 0.7 29,626 <1 29,626 29,626 29,626 0.00% 0.00% 0.00%
20 1 1 1 ∞ 0.95 29,626 <1 29,626 29,626 29,626 0.00% 0.00% 0.00%
20 3 1 1 2 0.7 581,278 496.4 585,521 586,370 588,916 0.73% 0.88% 1.31%
20 3 1 1 2 0.95 581,278 446.3 585,463 587,974 594,671 0.72% 1.15% 2.30%
20 3 1 1 5 0.7 165,260 17.2 166,334 166,656 167,355 0.65% 0.85% 1.27%
20 3 1 1 5 0.95 150,619 20.8 151,432 151,839 152,937 0.54% 0.81% 1.54%
20 3 1 1 ∞ 0.7 122,044 2.4 122,642 122,941 123,031 0.49% 0.74% 0.81%
20 3 1 1 ∞ 0.95 44,809 <1 44,975 45,058 45,306 0.37% 0.56% 1.11%
20 6 1 1 2 0.7 703,727 6274.2 710,412 711,081 716,964 0.95% 1.05% 1.88%
20 6 1 1 2 0.95 737,308 1,937.2 743,796 745,094 752,880 0.88% 1.06% 2.11%
20 6 1 1 5 0.7 342,645 315.6 344,769 346,044 347,744 0.62% 0.99% 1.49%
20 6 1 1 5 0.95 219,152 705.9 221,081 222,045 224,359 0.88% 1.32% 2.38%
20 6 1 1 ∞ 0.7 298,106 7.6 300,223 300,434 301,831 0.71% 0.78% 1.25%
20 6 1 1 ∞ 0.95 81,201 2.1 81,436 81,460 81,719 0.29% 0.32% 0.64%
25 1 1 1 2 0.7 427,843 42.3 428,827 429,417 430,834 0.23% 0.37% 0.70%
25 1 1 1 2 0.95 427,843 41.1 429,683 429,867 431,688 0.43% 0.47% 0.90%
25 1 1 1 5 0.7 122,433 6.8 122,862 123,033 123,153 0.35% 0.49% 0.59%
25 1 1 1 5 0.95 122,433 7.0 122,666 122,735 123,008 0.19% 0.25% 0.47%
25 1 1 1 ∞ 0.7 29,626 <1 29,659 29,662 29,680 0.11% 0.12% 0.18%
25 1 1 1 ∞ 0.95 29,626 <1 29,626 29,641 29,647 0.00% 0.05% 0.07%
25 3 1 1 2 0.7 589,540 1,808.7 596,497 599,975 608,323 1.18% 1.77% 3.19%
25 3 1 1 2 0.95 589,540 2,200.0 594,728 596,803 598,256 0.88% 1.23% 1.48%
25 3 1 1 5 0.7 197,395 326.0 199,408 199,610 200,496 1.02% 1.12% 1.57%
25 3 1 1 5 0.95 173,639 186.1 175,983 176,686 179,429 1.35% 1.76% 3.33%
25 3 1 1 ∞ 0.7 127,596 <1 128,591 128,691 128,800 0.78% 0.86% 0.94%
25 3 1 1 ∞ 0.95 43,970 <1 44,335 44,517 44,846 0.83% 1.25% 1.99%
25 6 1 1 2 0.7 838,646 9472.7 851,561 858,019 867,705 1.54% 2.31% 3.47%
25 6 1 1 2 0.95 727,461 18,000 740,046 743,821 745,457 3.73% 4.25% 4.47%
25 6 1 1 5 0.7 382,977 889.7 388,530 391,862 395,416 1.45% 2.32% 3.25%
25 6 1 1 5 0.95 246,099 2802.2 249,520 250,204 251,025 1.39% 1.67% 2.00%
25 6 1 1 ∞ 0.7 322,585 15.6 325,553 326,443 329,530 0.92% 1.20% 2.15%
25 6 1 1 ∞ 0.95 79688 2.5 80,493 80,895 81,257 1.01% 1.52% 1.97%
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Table 5: Results for the instance with (α,β)=(1,5)

|N | |T | α β λ̄ π
Gurobi Heuristic Gap
Objective Time (s) Best Average Worst Best Average Worst

15 1 1 5 2 0.7 276,585 1.9 276,585 27,6585 276,585 0.00% 0.00% 0.00%
15 1 1 5 2 0.95 276,585 1.9 276,585 276,585 276,585 0.00% 0.00% 0.00%
15 1 1 5 5 0.7 87,198 <1 87,198 87,198 87,198 0.00% 0.00% 0.00%
15 1 1 5 5 0.95 87,198 <1 87,198 87,198 87,198 0.00% 0.00% 0.00%
15 1 1 5 ∞ 0.7 13,661 <1 13,661 13,661 13,661 0.00% 0.00% 0.00%
15 1 1 5 ∞ 0.95 13,661 <1 13,661 13,661 13,661 0.00% 0.00% 0.00%
15 3 1 5 2 0.7 368,519 72.1 370,656 371,298 371,575 0.58% 0.75% 0.83%
15 3 1 5 2 0.95 368,519 56.1 369,588 369,801 369,930 0.29% 0.35% 0.38%
15 3 1 5 5 0.7 115592 4.2 116,228 116,546 116,927 0.55% 0.83% 1.16%
15 3 1 5 5 0.95 115592 3.6 116,008 116,258 116,591 0.36% 0.58% 0.86%
15 3 1 5 ∞ 0.7 37,090 <1 37,194 37,225 37,266 0.28% 0.36% 0.47%
15 3 1 5 ∞ 0.95 22250 <1 22,297 22,315 22,322 0.21% 0.29% 0.32%
15 6 1 5 2 0.7 449,711 189.8 452,634 453,803 454,622 0.65% 0.91% 1.09%
15 6 1 5 2 0.95 449,711 176.3 452,364 452,630 455,548 0.59% 0.65% 1.30%
15 6 1 5 5 0.7 149,682 16.2 150,745 150,957 151,722 0.71% 0.85% 1.36%
15 6 1 5 5 0.95 143,061 10.0 143,562 143,612 143,667 0.35% 0.39% 0.42%
15 6 1 5 ∞ 0.7 100,754 1.4 101,046 101,105 101,350 0.29% 0.35% 0.59%
15 6 1 5 ∞ 0.95 31,885 <1 31,901 31,909 31,918 0.05% 0.08% 0.11%
20 1 1 5 2 0.7 355,451 6.5 355,842 355,920 356,061 0.11% 0.13% 0.17%
20 1 1 5 2 0.95 355,451 6.4 356,304 356,731 358,010 0.24% 0.36% 0.72%
20 1 1 5 5 0.7 113,597 2.5 113,801 113,924 114,251 0.18% 0.29% 0.58%
20 1 1 5 5 0.95 113597 2.4 113,733 113,815 114,033 0.12% 0.19% 0.38%
20 1 1 5 ∞ 0.7 13661 <1 13,672 13,673 13,680 0.08% 0.09% 0.14%
20 1 1 5 ∞ 0.95 13661 <1 13,661 13,683 13,703 0.00% 0.16% 0.30%
20 3 1 5 2 0.7 510207 238.8 514,085 514,472 514,899 0.76% 0.84% 0.92%
20 3 1 5 2 0.95 510,207 214.3 515,207 515,707 518,457 0.98% 1.08% 1.62%
20 3 1 5 5 0.7 155,869 29.4 157,163 157,551 158,728 0.83% 1.08% 1.83%
20 3 1 5 5 0.95 155,869 31.3 157,225 157,361 158,554 0.87% 0.96% 1.72%
20 3 1 5 ∞ 0.7 37,090 <1 37,327 37,375 37,460 0.64% 0.77% 1.00%
20 3 1 5 ∞ 0.95 22,250 <1 22,370 22,418 22,452 0.54% 0.76% 0.91%
20 6 1 5 2 0.7 602,010 1,968.5 607,247 610,390 615,418 0.87% 1.39% 2.23%
20 6 1 5 2 0.95 602,010 1,299.4 606,826 609,234 612,124 0.80% 1.20% 1.68%
20 6 1 5 5 0.7 200,509 214.1 201,772 202,404 204,299 0.63% 0.95% 1.89%
20 6 1 5 5 0.95 200,509 238.7 202,334 202,881 205,253 0.91% 1.18% 2.37%
20 6 1 5 ∞ 0.7 95,198 3.1 95,712 96,021 96,350 0.54% 0.86% 1.21%
20 6 1 5 ∞ 0.95 31,885 <1 31,965 32,013 32,038 0.25% 0.40% 0.48%
25 1 1 5 2 0.7 471,281 35.4 472,930 473,260 474,052 0.35% 0.42% 0.59%
25 1 1 5 2 0.95 471,281 33.5 473,213 473,406 473,619 0.41% 0.45% 0.50%
25 1 1 5 5 0.7 127,433 21.1 127,803 127,987 128,542 0.29% 0.44% 0.87%
25 1 1 5 5 0.95 127,433 18.7 127,930 128,079 128,531 0.39% 0.51% 0.86%
25 1 1 5 ∞ 0.7 13661 <1 13,717 13,745 13,795 0.41% 0.62% 0.98%
25 1 1 5 ∞ 0.95 13,661 <1 13,709 13,728 13,741 0.35% 0.49% 0.59%
25 3 1 5 2 0.7 585,441 771.1 589,305 589,691 592,667 0.66% 0.73% 1.23%
25 3 1 5 2 0.95 585,441 601.9 590,183 590,657 595,352 0.81% 0.89% 1.69%
25 3 1 5 5 0.7 172,858 101.1 174,189 174,721 176,585 0.77% 1.08% 2.16%
25 3 1 5 5 0.95 172,858 88.0 173,791 174,071 174,557 0.54% 0.70% 0.98%
25 3 1 5 ∞ 0.7 37,090 <1 37,220 37,285 37,460 0.35% 0.53% 1.00%
25 3 1 5 ∞ 0.95 21,720 <1 21,783 21,802 21,859 0.29% 0.38% 0.64%
25 6 1 5 2 0.7 748,191 15,628.0 757,020 760,551 767,967 1.18% 1.65% 2.64%
25 6 1 5 2 0.95 74,8191 6,351.3 757,693 763,394 772,516 1.27% 2.03% 3.25%
25 6 1 5 5 0.7 246,657 1,579.4 249,395 249,669 250,271 1.11% 1.22% 1.47%
25 6 1 5 5 0.95 246,657 802.0 248,877 249,765 251,319 0.90% 1.26% 1.89%
25 6 1 5 ∞ 0.7 95,964 3.9 96,713 96,862 97,491 0.78% 0.94% 1.59%
25 6 1 5 ∞ 0.95 31,885 <1 32,064 32,153 32,314 0.56% 0.84% 1.34%
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Table 6: Results for the instance with (α,β)=(2,5)

|N | |T | α β λ̄ π
Gurobi Heuristic Gap
Objective Time (s) Best Average Worst Best Average Worst

15 1 2 5 2 0.7 334,751 3.2 334,751 335,287 335,769 0.00% 0.16% 0.30%
15 1 2 5 2 0.95 334751 3.2 334,952 335,119 335,340 0.06% 0.11% 0.18%
15 1 2 5 5 0.7 97552 <1 97,552 97,718 97,884 0.00% 0.17% 0.34%
15 1 2 5 5 0.95 97,552 <1 97,581 97,757 97,798 0.03% 0.21% 0.25%
15 1 2 5 ∞ 0.7 13,661 <1 13,661 13,705 13,718 0.00% 0.32% 0.42%
15 1 2 5 ∞ 0.95 13,661 <1 13,661 13,683 13,692 0.00% 0.16% 0.22%
15 3 2 5 2 0.7 418,084 77.0 419,756 420,258 422,215 0.40% 0.52% 0.99%
15 3 2 5 2 0.95 418084 74.6 419,046 419,526 420,680 0.23% 0.35% 0.62%
15 3 2 5 5 0.7 129,164 6.7 129,913 129,988 130,730 0.58% 0.64% 1.21%
15 3 2 5 5 0.95 129,164 8.8 129,513 129,548 129,855 0.27% 0.30% 0.53%
15 3 2 5 ∞ 0.7 52,040 <1 52,212 52,280 52,521 0.33% 0.46% 0.92%
15 3 2 5 ∞ 0.95 22559 <1 22,654 22,682 22,719 0.42% 0.55% 0.71%
15 6 2 5 2 0.7 504,970 652.1 509,717 510,666 512,944 0.94% 1.13% 1.58%
15 6 2 5 2 0.95 504,970 518.6 509,363 509,803 512,702 0.87% 0.96% 1.53%
15 6 2 5 5 0.7 206,586 39.0 207,949 208,359 208,890 0.66% 0.86% 1.12%
15 6 2 5 5 0.95 175,112 62.8 176,355 177,101 178,295 0.71% 1.14% 1.82%
15 6 2 5 ∞ 0.7 155,336 4.2 155,724 155,841 156,144 0.25% 0.33% 0.52%
15 6 2 5 ∞ 0.95 47,475 <1 47,689 47,774 47,924 0.45% 0.63% 0.95%
20 1 2 5 2 0.7 457,064 20.3 457,795 458,234 458,936 0.16% 0.26% 0.41%
20 1 2 5 2 0.95 457,064 19.0 457,064 458,070 458,572 0.00% 0.22% 0.33%
20 1 2 5 5 0.7 133,322 4.0 133,735 133,777 134,095 0.31% 0.34% 0.58%
20 1 2 5 5 0.95 133,322 3.1 133,469 133,483 133,516 0.11% 0.12% 0.15%
20 1 2 5 ∞ 0.7 13,661 <1 13,661 13,686 13,710 0.00% 0.18% 0.36%
20 1 2 5 ∞ 0.95 13,661 <1 13,661 13,673 13,676 0.00% 0.09% 0.11%
20 3 2 5 2 0.7 562,675 1,128.3 568,921 570,170 576,915 1.11% 1.33% 2.53%
20 3 2 5 2 0.95 562,675 1,042.1 566,783 567,604 569,576 0.73% 0.88% 1.23%
20 3 2 5 5 0.7 163,021 48.5 164,456 164,599 164,757 0.88% 0.97% 1.06%
20 3 2 5 5 0.95 163,021 39.2 164,081 164,187 164,536 0.65% 0.72% 0.93%
20 3 2 5 ∞ 0.7 63,447 1.6 63,821 63,934 64,420 0.59% 0.77% 1.53%
20 3 2 5 ∞ 0.95 22,559 <1 22,609 22,624 22,662 0.22% 0.29% 0.46%
20 6 2 5 2 0.7 563,738 12,028.7 569,432 572,848 574,670 1.01% 1.62% 1.94%
20 6 2 5 2 0.95 579,115 10,571.0 584,559 586,737 592,071 0.94% 1.32% 2.24%
20 6 2 5 5 0.7 248,071 498.2 250,328 251,006 251,593 0.91% 1.18% 1.42%
20 6 2 5 5 0.95 225,091 933.5 227,049 227,637 228,146 0.87% 1.13% 1.36%
20 6 2 5 ∞ 0.7 169325 4.5 170,561 171,056 171,402 0.73% 1.02% 1.23%
20 6 2 5 ∞ 0.95 53805 1.4 54,106 54,287 54,335 0.56% 0.90% 0.99%
25 1 2 5 2 0.7 544,986 101.8 549,237 550,512 554933 0.78% 1.01% 1.83%
25 1 2 5 2 0.95 544,986 96.9 548,310 549,640 550,571 0.61% 0.85% 1.02%
25 1 2 5 5 0.7 161,749 32.7 162,218 162,453 162,945 0.29% 0.44% 0.74%
25 1 2 5 5 0.95 161,749 21.1 162,445 162,862 163,196 0.43% 0.69% 0.89%
25 1 2 5 ∞ 0.7 13,661 <1 13,731 13,772 13,806 0.51% 0.82% 1.06%
25 1 2 5 ∞ 0.95 13,661 <1 13,697 13,718 13,746 0.26% 0.42% 0.62%
25 3 2 5 2 0.7 652,828 973.9 658,638 659,800 665,378 0.89% 1.07% 1.92%
25 3 2 5 2 0.95 652,828 2358.6 659,813 660,512 661,280 1.07% 1.18% 1.29%
25 3 2 5 5 0.7 197,837 230.2 199,420 199,895 200,718 0.80% 1.04% 1.46%
25 3 2 5 5 0.95 197,837 212.0 199,776 200,745 202,490 0.98% 1.47% 2.35%
25 3 2 5 ∞ 0.7 56,428 1.1 56,857 56,943 57,046 0.76% 0.91% 1.09%
25 3 2 5 ∞ 0.95 21720 <1 21,824 21,887 21,987 0.48% 0.77% 1.23%
25 6 2 5 2 0.7 761,326 18,000.0 770,462 773,203 783,892 1.20% 1.56% 2.96%
25 6 2 5 2 0.95 799570 18,000.0 807,406 808,189 815,947 0.98% 1.08% 2.05%
25 6 2 5 5 0.7 278,346 2,220.0 282,521 285,026 287,030 1.50% 2.40% 3.12%
25 6 2 5 5 0.95 272,862 3,222.0 275,209 276,382 279,198 0.86% 1.29% 2.32%
25 6 2 5 ∞ 0.7 165,051 13.5 166,355 166,876 167,059 0.79% 1.11% 1.22%
25 6 2 5 ∞ 0.95 48,569 1.7 48,865 48,984 49,274 0.61% 0.85% 1.45%
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Table 7: Results for the instance with (α,β)=(5,5)

|N | |T | α β λ̄ π
Gurobi Heuristic Gap
Objective Time (s) Best Average Worst Best Average Worst

15 1 5 5 2 0.7 285,263 3.6 285,263 285,691 285,905 0.00% 0.15% 0.23%
15 1 5 5 2 0.95 285,263 3.5 285,263 285,862 286,102 0.00% 0.21% 0.29%
15 1 5 5 5 0.7 87,198 <1 87,198 87,338 87,463 0.00% 0.16% 0.30%
15 1 5 5 5 0.95 87,198 <1 87,198 87,451 87,577 0.00% 0.29% 0.44%
15 1 5 5 ∞ 0.7 13,661 <1 13,661 13,686 13,700 0.00% 0.18% 0.29%
15 1 5 5 ∞ 0.95 13,661 <1 13,661 13,681 13,684 0.00% 0.15% 0.17%
15 3 5 5 2 0.7 364,987 50.1 365,790 365,870 366,224 0.22% 0.24% 0.34%
15 3 5 5 2 0.95 364,987 47.2 366,848 367,965 368,859 0.51% 0.82% 1.06%
15 3 5 5 5 0.7 113,337 3.7 113,700 113,736 113,856 0.32% 0.35% 0.46%
15 3 5 5 5 0.95 113,337 4.5 114,006 114,407 115,263 0.59% 0.94% 1.70%
15 3 5 5 ∞ 0.7 51,731 <1 51,731 51,819 51,898 0.00% 0.17% 0.32%
15 3 5 5 ∞ 0.95 22,250 <1 22,299 22,304 22,352 0.22% 0.24% 0.46%
15 6 5 5 2 0.7 455,523 275.6 458,621 459,860 463,329 0.68% 0.95% 1.71%
15 6 5 5 2 0.95 455,523 244.7 460,169 461,563 465,791 1.02% 1.33% 2.25%
15 6 5 5 5 0.7 179,837 19.9 181,204 182,024 183,336 0.76% 1.22% 1.95%
15 6 5 5 5 0.95 157,942 40.5 158,511 158,567 158,630 0.36% 0.40% 0.44%
15 6 5 5 ∞ 0.7 138,651 3.3 139,053 139,174 139,383 0.29% 0.38% 0.53%
15 6 5 5 ∞ 0.95 47,475 1.3 47,632 47,663 47,851 0.33% 0.40% 0.79%
20 1 5 5 2 0.7 359,325 23.6 359,936 360,302 361,084 0.17% 0.27% 0.49%
20 1 5 5 2 0.95 359,325 21.9 360,439 360,996 361,330 0.31% 0.47% 0.56%
20 1 5 5 5 0.7 106,636 2.3 106,636 107,180 107,343 0.00% 0.51% 0.66%
20 1 5 5 5 0.95 106,636 2.2 106,945 107,069 107,156 0.29% 0.41% 0.49%
20 1 5 5 ∞ 0.7 13,661 <1 13,661 13,691 13,697 0.00% 0.22% 0.26%
20 1 5 5 ∞ 0.95 13,661 <1 13,676 13,681 13,700 0.11% 0.14% 0.29%
20 3 5 5 2 0.7 469,628 415.5 473,996 474,869 479,586 0.93% 1.12% 2.12%
20 3 5 5 2 0.95 469,628 454.4 474,935 475,996 479,817 1.13% 1.36% 2.17%
20 3 5 5 5 0.7 156,222 43.0 157,769 158,697 160,429 0.99% 1.58% 2.69%
20 3 5 5 5 0.95 156,222 44.0 157,831 158,475 160,277 1.03% 1.44% 2.60%
20 3 5 5 ∞ 0.7 56,571 <1 57,148 57,379 57,460 1.02% 1.43% 1.57%
20 3 5 5 ∞ 0.95 22,250 <1 22,399 22,459 22,584 0.67% 0.94% 1.50%
20 6 5 5 2 0.7 576,945 10,812.0 583,118 584,970 589,785 1.07% 1.39% 2.23%
20 6 5 5 2 0.95 619,430 9,358.8 625,129 627,408 630,600 0.92% 1.29% 1.80%
20 6 5 5 5 0.7 205,960 136.0 207,855 208,992 210,508 0.92% 1.47% 2.21%
20 6 5 5 5 0.95 196,848 268.4 199,033 199,470 201,568 1.11% 1.33% 2.40%
20 6 5 5 ∞ 0.7 145,360 4.9 146,755 147,314 148,290 0.96% 1.34% 2.02%
20 6 5 5 ∞ 0.95 37,114 <1 37,337 37,470 37,684 0.60% 0.96% 1.54%
25 1 5 5 2 0.7 451,850 28.2 454,245 455,203 455,538 0.53% 0.74% 0.82%
25 1 5 5 2 0.95 451,850 27.8 453,567 453,910 455,971 0.38% 0.46% 0.91%
25 1 5 5 5 0.7 122,717 6.7 123,318 123,499 123,655 0.49% 0.64% 0.76%
25 1 5 5 5 0.95 122,717 6.9 123,257 123,527 123,851 0.44% 0.66% 0.92%
25 1 5 5 ∞ 0.7 13,661 <1 13,692 13,708 13,727 0.23% 0.35% 0.48%
25 1 5 5 ∞ 0.95 13661 <1 13,661 13,707 13,740 0.00% 0.34% 0.58%
25 3 5 5 2 0.7 573124 759.6 578970 582477 583,413 1.02% 1.63% 1.80%
25 3 5 5 2 0.95 573,124 706.8 580,976 581,761 585,216 1.37% 1.51% 2.11%
25 3 5 5 5 0.7 164,402 87.0 166,128 167,164 169,374 1.05% 1.68% 3.02%
25 3 5 5 5 0.95 164,402 108.7 166,720 168,111 170,173 1.41% 2.26% 3.51%
25 3 5 5 ∞ 0.7 51,201 <1 51,892 52,100 52,639 1.35% 1.76% 2.81%
25 3 5 5 ∞ 0.95 21,720 <1 21,957 22,075 22,288 1.09% 1.64% 2.62%
25 6 5 5 2 0.7 698,295 18,000.0 707,233 710,809 723,322 1.28% 1.79% 3.58%
25 6 5 5 2 0.95 695,576 18,000.0 702,045 703,985 707,349 0.93% 1.21% 1.69%
25 6 5 5 5 0.7 245,205 1,905.9 247,583 248,297 250,771 0.97% 1.26% 2.27%
25 6 5 5 5 0.95 225,201 629.8 227,791 228,568 231,598 1.15% 1.50% 2.84%
25 6 5 5 ∞ 0.7 150,292 9.6 151,705 152,411 154,106 0.94% 1.41% 2.54%
25 6 5 5 ∞ 0.95 37,114 1.2 37,426 37,457 37,697 0.84% 0.92% 1.57%
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Table 8: Results of |T | = 1

Parameters (1,1) (1,5) (2,5) (5,5)

|N | λ̄ π Time Best Average Worst σ Best Average Worst σ Best Average Worst σ Best Average Worst σ

100 50 0.7 120 30,614 30,882 31,001 129 30,692 30,845 31,061 113 31,234 31,390 31,578 111 29,956 30,166 30,407 128
100 50 0.95 120 30,363 30,651 30,822 168 29,944 30,064 30,244 100 30,734 30,918 30,949 71 29,956 30,226 30,438 150
200 50 0.7 240 63,056 63,687 63,687 284 62,522 63,085 63,211 256 65,146 65,146 65,667 165 62,526 62,588 63,151 174
200 50 0.95 240 64,619 64,656 65,001 144 64,606 64,864 65,513 251 63,582 64,101 64,333 223 62,526 62,963 63,467 283
300 50 0.7 360 96,350 97,314 97,314 520 94,748 95,222 95,793 348 93,979 94,073 94,073 127 93,979 94,073 94,637 208
300 50 0.95 360 97,133 98,104 99,085 607 93,965 94,529 94,718 296 94,762 95,236 95,998 387 93,979 94,355 94,449 239
400 50 0.7 480 130,900 131,011 131,090 289 131,885 132,808 134,003 623 128,692 129,593 130,889 703 127,628 128,649 129,935 688
400 50 0.95 480 127,707 128,984 130,274 911 128,694 129,209 130,243 506 128,692 129,722 130,371 505 127,628 128,649 129,550 690
500 50 0.7 600 162,766 162,991 163,114 386 162,733 163,547 165,019 674 161,390 162,358 162,845 453 161,393 162,684 164,148 822
500 50 0.95 600 162,766 162,766 164,394 483 165,423 165,423 166,581 366 168,115 169,796 169,796 492 161,393 161,715 162,685 456
600 50 0.7 720 201,469 201,554 201,615 395 196,575 197,754 197,952 707 194,945 194,945 194,945 312 194,949 195,339 196,120 461
600 50 0.95 720 196,595 196,595 198,561 591 199,824 201,423 201,423 864 194,945 195,140 195,335 271 194,949 195,728 196,315 518
700 50 0.7 840 233,666 233,666 236,003 721 237,480 239,142 241,533 1,220 239,398 239,637 241,314 573 229,821 231,200 232,356 837
700 50 0.95 840 237,497 239,872 239,872 1,274 229,819 231,658 231,658 932 231,737 231,969 233,825 617 229,821 230,510 231,202 593
800 50 0.7 960 265,438 266,019 266,991 618 261,040 261,823 262,870 701 265,391 267,249 267,783 721 261,040 261,301 262,346 528
800 50 0.95 960 269,789 272,487 275,212 1,648 271,917 272,461 273,278 621 271,917 272,461 272,461 325 261,040 261,040 263,389 730
900 50 0.7 1,080 301,066 301,412 301,879 589 303,467 306,502 306,502 1,514 293,678 295,440 296,622 943 293,678 294,853 296,327 820
900 50 0.95 1,080 305,962 309,022 309,022 1,550 301,020 301,923 302,225 487 303,467 304,377 304,681 457 293,678 293,678 293,972 491
1,000 50 0.7 1,200 337,543 337,810 338,004 691 324,042 326,958 327,285 1,780 334,843 336,852 338,199 1,073 324,042 325,338 328,266 1,304
1,000 50 0.95 1,200 337,543 337,819 338,111 682 324,042 324,690 325,664 693 329,442 331,089 333,407 1,248 324,042 325,986 327,290 1,296

100 ∞ 0.7 120 15,541 15,541 15,696 39 14,927 15,017 15,122 64 14,563 14,650 14,767 63 14,563 14,665 14,738 56
100 ∞ 0.95 120 15,417 15,417 15,571 45 14,927 15,002 15,107 53 15,170 15,185 15,276 32 14,563 14,651 14,768 57
200 ∞ 0.7 240 30,838 30,922 31,004 68 31,191 31,472 31,598 152 30,735 30,766 31,012 87 29,955 30,015 30,015 65
200 ∞ 0.95 240 31,339 31,652 31,652 151 30,692 30,753 30,968 89 31,234 31,484 31,704 153 29,955 30,105 30,286 105
300 ∞ 0.7 360 45,467 45,922 45,922 201 45,772 46,092 46,507 226 46,181 46,366 46,644 148 44,663 45,065 45,200 213
300 ∞ 0.95 360 46,213 46,675 47,142 302 44,656 44,835 45,104 161 45,809 46,002 47,443 550 44,663 44,797 45,111 143
400 ∞ 0.7 480 62,428 62,428 63,052 194 61,409 61,962 62,458 355 61,433 61,740 61,863 133 60,904 61,209 61,821 272
400 ∞ 0.95 480 62,428 62,428 63,052 185 61,916 62,226 62,848 283 60,925 61,412 61,535 195 60,904 61,392 61,699 313
500 ∞ 0.7 600 80,454 81,259 81,259 401 79,163 79,717 80,275 385 79,830 80,548 80,951 358 77,237 77,701 78,167 311
500 ∞ 0.95 600 77,236 78,008 78,008 374 77,876 78,032 78,344 135 77,255 77,564 78,262 318 77,237 77,778 78,556 415
600 ∞ 0.7 720 96,948 96,948 97,917 284 93,822 93,916 93,916 197 97,739 98,032 99,012 406 93,815 93,815 94,566 234
600 ∞ 0.95 720 94,603 95,549 96,504 600 93,822 94,291 94,574 339 95,393 96,252 96,926 198 93,815 94,097 95,038 346
700 ∞ 0.7 840 114,250 115,393 115,393 565 113,317 114,450 115,022 546 112,401 112,738 113,076 337 110,557 111,331 111,776 518
700 ∞ 0.95 840 111,486 112,601 113,727 741 111,474 112,031 112,255 329 110,558 110,669 111,776 700 110,557 111,331 111,554 434
800 ∞ 0.7 960 125,077 125,077 126,328 369 128,165 128,421 129,192 335 130,264 130,525 131,569 251 125,045 125,420 125,545 336
800 ∞ 0.95 960 126,119 127,380 127,380 572 129,207 129,724 130,892 536 125,053 125,303 125,554 633 125,045 125,170 126,297 393
900 ∞ 0.7 1,080 145,849 146,144 146,221 344 145,800 145,800 147,258 447 144,641 145,653 145,799 665 139,970 141,370 141,511 756
900 ∞ 0.95 1,080 145,849 147,307 148,780 925 141,134 141,416 142,547 437 139,975 141,375 142,223 724 139,970 140,810 142,218 823
1,000 ∞ 0.7 1,200 157,831 159,409 161,003 1,022 155,182 155,337 155,648 328 159,043 159,202 159,361 204 153,902 154,364 155,908 560
1,000 ∞ 0.95 1,200 153,981 155,521 155,521 718 159,030 159,984 160,784 619 156,477 157,572 158,517 639 153,902 155,441 156,840 957
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Table 9: Results of |T | = 3

Parameters (1,1) (1,5) (2,5) (5,5)

|N | λ̄ π Time Best Average Worst σ Best Average Worst σ Best Average Worst σ Best Average Worst σ

100 50 0.7 360 177,495 177,691 177,995 378 42,511 42,639 42,852 111 59,880 60,359 60,419 166 60,212 60,573 60,815 211
100 50 0.95 360 44,017 44,718 45,002 348 43,208 43,251 43,554 110 42,870 43,170 43,386 159 41,814 42,148 42,232 140
200 50 0.7 720 195,994 196,006 196,054 258 89,951 90,041 90,941 285 93,747 94,403 94,875 344 89,953 90,492 91,306 420
200 50 0.95 720 89,968 90,868 90,868 392 93,699 94,542 95,109 474 90,747 91,654 92,021 400 89,953 90,043 90,673 229
300 50 0.7 1,080 201,084 203,095 205,126 1,240 132,860 133,657 134,994 742 135,083 135,488 136,843 539 131,767 132,952 133,484 620
300 50 0.95 1,080 132,904 134,233 134,233 735 131,762 132,948 134,012 727 136,181 136,181 136,317 179 131,767 132,821 132,954 614
400 50 0.7 1,440 207,841 209,919 212,018 1,357 179,017 179,554 180,811 610 181,958 183,232 183,415 457 176,073 177,481 178,546 1,017
400 50 0.95 1,440 179,097 180,888 182,697 1,107 176,082 176,258 176,963 308 181,958 183,596 184,698 861 176,073 177,481 179,078 973
500 50 0.7 1,800 243,900 244,151 244,226 332 235,533 236,946 239,079 1,132 226,115 227,019 228,835 855 226,093 227,223 227,223 627
500 50 0.95 1,800 228,068 228,068 230,349 669 229,880 230,340 232,643 787 233,653 234,120 234,822 363 226,093 226,997 227,678 574
600 50 0.7 2,160 277,407 280,181 282,983 1,475 288,885 290,329 290,329 810 286,572 286,859 288,293 540 277,307 279,526 281,762 1,522
600 50 0.95 2,160 279,719 280,009 281,445 560 281,951 283,361 284,778 900 277,328 278,160 279,273 534 277,307 278,971 281,203 1,272
700 50 0.7 2,520 333,356 336,690 340,057 2,047 330,569 332,883 334,547 1,455 327,828 327,828 328,811 461 327,811 328,467 330,438 970
700 50 0.95 2,520 327,891 331,170 334,482 1,889 327,837 328,493 330,792 871 338,756 341,466 342,149 992 327,811 328,139 330,108 733
800 50 0.7 2,880 385,240 389,092 392,983 2,685 372,706 376,060 377,940 1,705 382,024 382,944 383,003 490 372,706 374,570 378,316 1,627
800 50 0.95 2,880 385,240 386,104 386,267 974 375,812 376,564 379,200 1,189 372,706 372,706 374,942 744 372,706 375,315 377,942 1,871
900 50 0.7 3,240 428,295 432,578 432,578 2,287 421,262 423,368 426,755 1,698 421,262 422,105 423,793 795 417,780 418,198 420,289 892
900 50 0.95 3,240 424,813 429,061 433,352 2,720 428,225 432,079 435,104 2,623 417,780 419,869 421,129 1,071 417,780 420,705 421,126 1,810
1,000 50 0.7 3,600 458,629 458,629 463,215 1,349 466,273 466,273 469,537 896 466,273 470,003 473,293 2,237 458,629 462,757 465,534 2,049
1,000 50 0.95 3,600 462,451 462,881 463,014 1,124 462,451 462,913 466,153 1,159 470,095 473,386 477,173 2,228 458,629 460,005 462,765 1,438

100 ∞ 0.7 360 178,962 180,752 182,560 1,141 36,982 37,315 37,688 206 55,441 55,829 56,052 199 54,428 54,972 55,137 224
100 ∞ 0.95 360 32,981 33,311 33,644 202 21,217 21,387 21,473 85 21,371 21,521 21,672 98 20,533 20,697 20,863 109
200 ∞ 0.7 720 183,653 183,910 184,005 257 44,434 44,656 44,969 180 57,748 58,037 58,559 246 57,205 57,720 57,893 230
200 ∞ 0.95 720 43,536 43,781 44,001 181 42,732 42,817 42,903 79 42,798 42,884 43,013 72 41,365 41,614 41,739 147
300 ∞ 0.7 1,080 183,093 184,924 186,773 1,106 63,593 64,165 64,486 299 67,244 67,782 67,850 190 63,749 64,195 64,644 251
300 ∞ 0.95 1,080 65,171 65,823 66,481 382 65,170 65,561 65,561 191 63,105 63,484 63,611 146 63,077 63,266 63,899 240
400 ∞ 0.7 1,440 181,499 183,314 185,147 1,076 87,312 87,574 88,362 324 88,141 88,758 89,024 281 84,517 85,109 85,109 283
400 ∞ 0.95 1,440 85,917 86,776 87,644 511 87,312 87,399 87,923 201 86,631 87,044 80,101 2,403 84,502 84,840 84,925 226
500 ∞ 0.7 1,800 178,678 179,004 179,412 327 110,178 111,059 111,836 627 110,196 111,188 111,744 483 107,495 107,925 108,788 443
500 ∞ 0.95 1,800 111,085 112,196 112,196 467 110,178 110,729 110,950 413 111,988 112,996 113,561 504 107,495 108,140 108,248 329
600 ∞ 0.7 2,160 194,695 194,695 196,642 556 135,264 136,211 137,028 569 134,171 134,708 135,920 553 130,876 131,007 131,400 269
600 ∞ 0.95 2,160 130,951 132,261 133,584 738 131,992 132,388 133,712 513 133,080 134,145 134,145 347 130,876 131,662 132,847 623
700 ∞ 0.7 2,520 199,823 200,005 200,112 448 155,346 155,346 156,744 419 157,918 158,708 159,978 645 154,049 155,589 156,678 859
700 ∞ 0.95 2,520 160,545 162,150 163,772 1,067 156,630 156,630 156,943 247 154,066 154,066 155,607 443 154,049 155,435 156,368 790
800 ∞ 0.7 2,880 214,751 216,899 216,899 1,139 184,061 184,981 185,906 686 182,595 183,508 184,426 552 176,690 177,221 178,816 562
800 ∞ 0.95 2,880 182,668 182,921 183,056 364 181,116 181,297 182,747 504 182,595 182,960 184,424 590 176,690 176,867 177,044 324
900 ∞ 0.7 3,240 223,364 225,598 227,854 1,443 198,950 199,149 199,348 338 202,230 203,848 204,256 640 197,292 199,265 199,464 889
900 ∞ 0.95 3,240 199,002 199,002 200,992 584 200,594 202,600 204,221 1,092 205,518 206,340 206,546 330 197,292 197,489 197,489 391
1,000 ∞ 0.7 3,600 229,802 232,100 232,100 1,133 177,634 178,522 179,593 593 179,090 180,523 180,704 447 174,722 174,896 175,596 319
1,000 ∞ 0.95 3,600 218,400 218,400 220,584 603 177,634 177,812 179,412 535 176,178 176,883 177,944 551 174,722 174,722 176,120 422
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Table 10: Results of |T | = 6

Parameters (1,1) (1,5) (2,5) (5,5)

|N | λ̄ π Time Best Average Worst σ Best Average Worst σ Best Average Worst σ Best Average Worst σ

100 50 0.7 720 463,597 468,233 468,233 1,907 122,803 123,908 123,908 505 167,433 167,768 168,104 275 156,238 157,332 157,961 651
100 50 0.95 720 102,487 102,487 103,512 324 64,582 64,969 65,229 222 64,056 64,056 64,633 171 63,528 63,972 64,612 321
200 50 0.7 1,440 461,913 466,532 471,197 2,871 160,358 161,641 163,096 786 184,818 185,557 185,928 324 177,408 179,005 180,795 971
200 50 0.95 1,440 131,786 131,919 132,102 220 137,235 137,235 137,784 213 134,015 135,087 136,168 693 131,763 132,949 134,146 773
300 50 0.7 2,160 431,989 431,989 436,309 1,345 202,787 203,801 205,024 727 213,900 215,397 217,120 1,038 197,314 199,090 200,285 1,087
300 50 0.95 2,160 191,956 193,876 193,876 924 195,072 195,072 195,852 297 188,906 190,417 190,607 519 187,285 188,221 189,915 726
400 50 0.7 2,880 460,056 464,657 469,304 2,543 262,665 264,241 264,241 825 262,480 263,005 264,846 717 253,873 255,650 257,951 1,177
400 50 0.95 2,880 256,059 258,620 258,620 1,517 258,115 258,373 258,631 418 264,498 266,349 268,213 1,169 253,873 253,873 255,142 514
500 50 0.7 3,600 483,055 487,886 487,886 2,219 323,750 324,398 326,669 941 331,721 335,038 337,048 1,725 318,416 318,734 320,965 849
500 50 0.95 3,600 329,085 329,085 332,376 944 318,443 319,398 321,314 897 318,452 318,452 321,637 962 318,416 319,690 322,887 1,342
600 50 0.7 4,320 510,566 510,566 515,672 1,480 397,019 399,004 401,797 1,769 406,765 410,019 410,839 1,265 390,462 391,243 391,634 902
600 50 0.95 4,320 390,548 390,548 394,453 1,154 393,764 394,552 397,708 1,192 397,003 400,973 404,582 2,439 390,462 393,195 395,161 1,526
700 50 0.7 5,040 543,160 545,171 548,101 1,650 483,361 484,328 486,750 1,071 464,026 465,418 468,676 1,449 464,026 465,418 466,349 1,216
700 50 0.95 5,040 471,436 471,436 476,150 1,402 483,029 486,893 489,327 2,193 483,029 484,478 486,900 1,178 463,707 464,635 465,100 958
800 50 0.7 5,760 583,223 589,055 589,055 2,744 526,936 531,678 536,463 2,697 514,290 514,290 516,861 825 505,859 509,400 509,400 1,368
800 50 0.95 5,760 546,874 552,343 557,866 3,179 546,874 551,796 553,451 2,821 555,767 555,767 560,213 1,407 533,536 537,271 541,569 2,695
900 50 0.7 6,480 626,602 632,868 632,868 3,195 555,384 560,382 561,503 2,189 555,384 557,050 557,050 727 555,384 558,716 562,627 2,519
900 50 0.95 6,480 612,787 612,996 613,199 805 607,845 608,229 609,005 907 602,903 607,726 610,765 2,505 593,019 597,763 600,154 2,733
1,000 50 0.7 7,200 636,238 638,110 638,544 1,592 611,917 612,154 612,228 935 616,975 623,145 627,507 3,353 606,860 611,715 613,550 2,520
1,000 50 0.95 7,200 645,270 645,661 645,910 1,258 650,559 657,065 657,065 2,680 639,981 641,901 647,036 2,180 634,692 637,231 640,417 2,192

100 ∞ 0.7 720 459,797 464,395 464,395 1,711 117,446 117,798 118,976 442 161,263 161,263 161,586 182 154,391 154,855 155,165 389
100 ∞ 0.95 720 98,910 99,002 99,441 215 30,735 30,981 31,074 153 32,195 32,195 32,292 44 31,937 31,937 32,129 57
200 ∞ 0.7 1,440 457,000 457,000 461,570 1,264 123,393 124,504 125,500 681 156,439 157,534 158,322 587 152,148 152,452 153,214 348
200 ∞ 0.95 1,440 98,278 98,278 99,261 293 64,507 65,088 65,348 307 63,479 63,923 64,434 305 61,930 62,116 62,675 212
300 ∞ 0.7 2,160 432,017 432,017 436,337 1,177 133,352 133,485 134,152 224 174,664 174,918 175,198 198 151,615 152,221 152,373 357
300 ∞ 0.95 2,160 106,361 106,555 106,918 204 91,344 91,801 92,627 446 89,119 89,565 90,013 266 89,118 89,118 89,653 160
400 ∞ 0.7 2,880 424,819 429,067 429,067 2,387 146,487 147,512 147,955 618 177,867 177,867 179,646 569 162,779 162,942 163,594 269
400 ∞ 0.95 2,880 125,443 126,697 126,697 609 122,272 123,372 123,742 594 120,271 120,752 121,477 378 120,278 120,278 120,879 223
500 ∞ 0.7 3,600 429,503 433,798 438,136 2,876 169,866 169,866 170,206 234 194,674 194,998 195,503 277 179,597 180,495 181,578 720
500 ∞ 0.95 3,600 154,056 154,056 155,597 444 155,238 155,238 156,169 296 157,766 159,186 159,345 485 151,460 152,823 152,823 722
600 ∞ 0.7 4,320 429,579 429,888 430,006 781 200,486 200,686 200,887 320 205,160 205,570 207,626 732 198,542 199,137 200,133 458
600 ∞ 0.95 4,320 190,981 192,891 192,891 744 189,426 189,426 190,752 436 187,886 189,389 191,094 1,033 184,806 185,545 185,545 416
700 ∞ 0.7 5,040 446,239 450,701 450,701 1,834 207,728 208,351 208,976 387 199,419 200,017 200,817 452 199,419 200,615 200,615 742
700 ∞ 0.95 5,040 218,945 221,134 221,134 923 200,001 201,401 203,012 1,095 201,614 203,630 204,445 901 193,549 195,098 196,464 927
800 ∞ 0.7 5,760 445,925 446,111 446,925 788 212,389 212,601 214,514 659 214,102 215,815 217,757 1,143 205,538 205,538 206,360 346
800 ∞ 0.95 5,760 236,510 238,875 241,264 1,329 206,102 206,102 207,751 464 199,453 200,450 200,450 354 199,453 201,049 201,853 783
900 ∞ 0.7 6,480 436,947 441,316 441,316 2,195 208,593 209,427 210,893 800 208,593 209,219 209,428 330 206,869 208,731 209,148 1,029
900 ∞ 0.95 6,480 246,977 246,977 249,447 722 206,401 207,020 207,434 534 208,093 209,342 209,761 472 203,017 203,423 204,847 530
1,000 ∞ 0.7 7,200 442,057 446,478 450,943 2,943 210,676 212,361 214,060 1,086 208,935 209,562 210,610 475 208,935 209,771 209,771 482
1,000 ∞ 0.95 7,200 265,695 265,891 266,012 536 214,036 215,962 216,178 1,013 208,900 209,109 210,782 589 205,475 207,324 208,153 885
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Table 11: Results of the Beasley [70] instances

Instance |N | |T | = 1 |T | = 3 |T | = 6
Time Best Average Worst σ Time Best Average Worst σ Time Best Average Worst σ

pmed1 100 120 113,777 114,573 115,490 547 360 1,113,922 1,115,036 1,120,611 1,829 720 2,621,262 2,626,505 2,629,132 2,608
pmed2 100 120 107,862 108,941 109,921 878 360 1,055,433 1,056,488 1,061,770 1,866 720 2,433,800 2,436,234 2,441,106 2,515
pmed3 100 120 112,493 113,280 114,413 714 360 1,132,450 1,134,715 1,139,254 2,029 720 2,679,723 2,682,403 2,687,768 2,950
pmed4 100 120 110,465 110,686 111,682 400 360 1,126,159 1,129,537 1,134,055 2,485 720 2,714,670 2,720,099 2,725,539 3,633
pmed5 100 120 98,460 98,755 99,644 378 360 852,209 853,061 856,473 1,244 720 2,278,011 2,282,567 2,284,850 2,162
pmed6 200 240 165,888 167,547 168,050 755 720 1,630,259 1,635,150 1,640,055 2,912 1,440 3,737,267 3,741,004 3,748,486 3,718
pmed7 200 240 141,719 143,136 143,852 876 720 1,512,401 1,515,426 1,519,972 2,459 1,440 3,761,620 3,769,143 3,776,681 4,628
pmed8 200 240 137,589 138,965 139,660 736 720 1,588,046 1,591,222 1,594,404 2,227 1,440 3,964,318 3,968,282 3,976,219 4,096
pmed9 200 240 162,155 162,804 163,130 390 720 1,480,788 1,483,750 1,488,201 2,356 1,440 3,762,916 3,766,679 3,770,446 3,073
pmed10 200 240 127,704 128,215 129,369 612 720 1,140,789 1,141,930 1,145,356 1,518 1,440 3,194,135 3,200,523 3,206,924 3,930
pmed11 300 360 141,719 143,136 143,422 526 1,080 1,455,797 1,457,253 1,460,168 1,421 2,160 3,932,233 3,940,097 3,947,977 4,977
pmed12 300 360 146,026 146,902 148,224 774 1,080 1,386,920 1,391,081 1,395,254 2,560 2,160 3,823,420 3,827,243 3,834,897 3,515
pmed13 300 360 148,690 149,285 149,584 266 1,080 1,363,244 1,367,334 1,370,069 1,892 2,160 4,040,619 4,044,660 4,052,749 4,020
pmed14 300 360 163,332 164,475 165,133 626 1,080 1,375,588 1,378,339 1,381,096 1,839 2,160 3,906,544 3,910,451 3,914,361 4,118
pmed15 300 360 151,639 152,397 153,159 504 1,080 1,337,956 1,339,294 1,343,312 1,730 2,160 3,849,205 3,853,054 3,860,760 3,539
pmed16 400 480 156,984 158,397 159,031 668 1,440 925,736 926,662 928,515 863 2,880 2,967,213 2,973,147 2,979,093 3,909
pmed17 400 480 145,961 147,275 148,306 715 1,440 859,030 859,889 864,188 1,546 2,880 2,810,868 2,813,679 2,819,306 3,095
pmed18 400 480 155,194 155,660 157,217 636 1,440 1,247,759 1,250,255 1,255,256 2,287 2,880 3,499,936 3,503,436 3,506,939 2,882
pmed19 400 480 151,259 151,562 152,623 449 1,440 940,258 943,079 945,908 1,542 2,880 3,075,437 3,078,512 3,084,669 3,177
pmed20 400 480 159,126 160,399 161,843 895 1,440 1,016,720 1,017,737 1,020,790 1,475 2,880 3,054,630 3,057,685 3,060,743 2,495
pmed21 500 600 178,223 179,114 180,547 405 1,800 631,814 632,446 634,976 918 3,600 2,137,946 2,140,084 2,144,364 2,254
pmed22 500 600 182,250 183,708 185,361 889 1,800 809,235 811,663 815,721 1,893 3,600 2,629,539 2,634,798 2,640,068 3,329
pmed23 500 600 176,327 177,914 179,337 918 1,800 772,260 773,032 774,578 823 3,600 2,572,788 2,575,361 2,580,512 2,560
pmed24 500 600 177,973 179,575 181,191 961 1,800 724,235 725,683 727,860 1,051 3,600 2,296,600 2,298,897 2,301,196 1,937
pmed25 500 600 184,306 184,675 186,522 818 1,800 765,699 767,996 769,532 1,125 3,600 2,552,448 2,557,553 2,560,111 2,467
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[56] Christophe Duhamel, Andréa Cynthia Santos, Daniel Brasil, Eric Châtelet, and Babiga Birregah. Con-
necting a population dynamic model with a multi-period location-allocation problem for post-disaster relief
operations. Annals of Operations Research, 247(2):1–21, 2016.

[57] Isabel Correia and Teresa Melo. Multi-period capacitated facility location under delayed demand satisfac-
tion. European Journal of Operational Research, 255(3):729 – 746, 2016.

[58] Nikola Markovic, Ilya O. Ryzhov, and Paul Schonfeld. Evasive flow capture: A multi-period stochastic
facility location problem with independent demand. European Journal of Operational Research, 257(2):687
– 703, 2017.

[59] Amit Kumar Vatsa and Sachin Jayaswal. A new formulation and benders decomposition for the multi-
period maximal covering facility location problem with server uncertainty. European Journal of Operational
Research, 251(2):404 – 418, 2016.

29



[60] Jesus T Pastor. Bicriterion programs and managerial location decisions: application to the banking sector.
Journal of the Operational Research Society, 45(12):1351–1362, 1994.

[61] Tammy Drezner. Derived attractiveness of shopping malls. IMA Journal of Management Mathematics,
17(4):349–358, 2006.

[62] Tammy Drezner. A review of competitive facility location in the plane. Logistics Research, 7(1):1–12, 2014.

[63] William John Reilly. The law of retail gravitation. New York: Knickerbocker Press, 1931.
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