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Duality of Antennas and Subcarriers in
Massive MIMO-OFDM Downlink System

Ahmed Bannour ∗ and Yichuang Sun ∗∗

Massive multiple-input multiple-output (MIMO) can outperform
conventional MIMO in terms of spectrum efficiency and link
reliability significantly . For massive MIMO, there are still
theoretical and practical issues that have to be addressed. In this
work, we derive and analyze the capacity of massive MIMO-
OFDM downlink system and demonstrate the duality of antennas
and subcarriers in such system analytically and by simulation. A
detailed comparison between massive MIMO, massive MIMO-
OFDM and MIMO-OFDM with large subcarriers is presented.

Introduction: To satisfy the demands for high throughput
communications massive numbers of antennas (massive
MIMO) [1, 2] can be adopted for 5G systems, since massive
MIMO helps to reduce transmit power, noise and fast fading.
The reliability and spectral efficiency are much more improved
compared to conventional MIMO techniques. Large-scale MIMO
can also provide a real capacity enhancement. However there
are a number of problems that need to be solved such as the
estimation of large number of channels between nt transmit
antennas and nr receive antennas, the use of tremendous pilot
overhead which results in pilot contamination and the increase
of the computational power. While the theoretical aspects of
massive MIMO systems have gained significant attention in the
research community [3, 4], much less is known about practical
transmission schemes. As pointed out in [5], practical realizations
of large-scale MIMO systems will require the use of low cost and
low-power radio-frequency (RF) components. Practical wireless
channels typically exhibit frequency selective fading, which
requires high cost RF component. The combination of massive
MIMO with Orthogonal frequency division multiplexing OFDM
can overcome the frequency selective problems and reduce the
burden on RF components.

This paper discusses massive MIMO-OFDM based on capacity
and achievable rate. The contribution of the research are :

• Analytic capacity of massive MIMO-OFDM system is derived.
• We prove theoretically and by simulation the duality between

the number of antennas in MIMO and the number of subcarriers
in OFDM.

• We show the benefit of MIMO-OFDM with high subcarrires
compared to massive MIMO and massive MIMO-OFDM.

System Model: The MIMO-OFDM system in baseband model,
equipped with nt transmit antennas and nr users antenna is
considered (nr = nt). To simplify the discussion we give the
overall mathematical model as presented in [6]. MIMO-OFDM
symbols are supposed to be transmitted over frequency and
time selective Rayleigh channel. The channel taps are assumed
constant when transmission occur. The channel impulse response
(CIR) distribution follow the Rayleigh law between the qth

transmitting antenna and pth receiving antenna and h
p,q
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k and L is the largest order among all impulse responses. The
mathematic model of the kth MIMO-OFDM symbol at the pth
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where u
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is the symbol vector transmitted by the qth antenna and

w
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is zero mean white Gaussian complex noise of variance N0

2
.

Capacity of Massive MIMO-OFDM System: The mathematic
expression of MIMO-OFDM system using the maximization of
mutual information is presented in detail in a previous work by
Bannour et al in [6–8]. To achieve the maximum capacity for a large

number of antennas, one can derive the theoretical limit of the
capacity C as when nt goes to infinity as :
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Based on the big number law and large scale random matrix
theory one can develop :
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So when combining (3) and (2) one can get:
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If we set σh =1 then:
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The capacity performed over ncnt narrowband channels can be
written as
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From equation (6), one can conclude that a small antenna number
nt can achieve similar performance as a large antenna number
when an OFDM modulator is included due to the factor of ncnt.
Rather than focusing on the antenna number, one can target
the number of subcarrier nc, in another word we speak about
(nc, nt) duality. Without loss of generality, we start with the couple
(nt, nc)nt→∞ at this stage and we can inverse the situation to
(nc, nt)nc≥β where β is a big subcarrier number. In general,
a very large number of antenna will result in much more RF
modules, including Low Noise Amplifier (LNA), frequency down-
converter, and analog-to-digital converter (ADC). To reduce the
cost associated with RF modules, the OFDM technique can be used
to achieve the needed capacity with a smaller number of antennas.

Simulations: The Cumulative Complementary Density Function
(CCDF) is used as tool to give the probability that the capacity C

is larger than the capacity abscissa Cx. Fig. 1 depicts the CCDF of
the capacity developed in (6), for massive MIMO, MIMO-OFDM
and massive MIMO-OFDM configurations.

In Fig. 1, the CCDF windows is spread for up to 10dB.
The capacity is larger than 18 bits/s/Hz, 24 bits/s/Hz and
32 bits/s/Hz respectively for massive MIMO, MIMO-OFDM
and massive MIMO-OFDM for 90% of probability. The capacity
increase when the couple (nc, nt) increase. We note gap of 10
bits/s/Hz at 60% of probability, between massive MIMO and
massive MIMO-OFDM and a negligible gap between massive
MIMO-OFDM and conventional MIMO-OFDM with high number
of subcarriers nc = 1024. It could be noticed that for high number
of subcarrier nc the high number of antennas is no longer needed,
because we can achieve the theoretical limit of the downlink
capacity with reduced antenna number due to the ncnt effect.

Fig. 2 shows clearly the impact of subcarrier number on the
capacity. We notice 10 bits/s/Hz gap at 600 antennas between
massive MIMO and MIMO-OFDM with high nc values, and a

ELECTRONICS LETTERS 13th December 2014 Vol. 00 No. 00



16 18 20 22 24 26 28 30 32 34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cx

C
C

D
F

nc = 48, nt = 1000

nc = 1024, nt = 1000

nt = 1000, no OFDM

nc = 512, nt = 500

MIMO-OFDM

Massive MIMO

Gap=10bits/s/Hz

Gap=4bit/s/Hz

Fig. 1 Complementary Cumulative Density Function of massive MIMO,
MIMO-OFDM and massive MIMO-OFDM, SNR=10dB
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Fig. 2 Asymptotic behavior of capacity for massive MIMO, MIMO-OFDM
and massive MIMO-OFDM, SNR=10dB with respect to antenna number
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Fig. 3 Capacity for massive MIMO, MIMO-OFDM and massive MIMO-
OFDM with respect to SNR

negligible gap between massive MIMO-OFDM and MIMO-OFDM
with high nc.

In Fig 3, for both the approximate capacity expression, as
function of SNR per receive antenna, derived in (6) and the
theoretical result using (2), is shown that the match between the
two gets closer as the SNR increases.

Fig. 4 illustrates the impact of subcarrier number on the capacity
for both small and very large numbers of antennas. We notice that
the capacity increases asymptotically as the number of subcarrier
increases. It can be observed also, that the gap between the

two curves get wide as the number of subcarriers increases and
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Fig. 4 Capacity for MIMO-OFDM and massive MIMO-OFDM with respect
to subcarrier number, SNR=10dB

increasing the number of subcarriers is more effective for large
number of antennas than a small number of antennas because the
duality of subcarriers and antennas only exists when when the
number of antennas is very large.

Conclusion: We studied a MIMO-OFDM configuration in massive
MIMO context. It has been shown analytically that in rich
scattered channels, MIMO-OFDM can achieve the same capacity
efficiencies with high subcarrier number nc, as those using the
recently proposed massive MIMO scheme. Simulations showed
the effectiveness of the proposed method for the case where nc

is high and nt still in conventional value. The proposed scheme
can use a fewer transmit antennas combined with a high number
of OFDM subcarriers to reduce the high cost of RF components in
practical wireless systems.
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