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ABSTRACT

Computational psychiatry is increasingly establishing itself as valuable discipline for
understanding human mental disorders. However, robot models and their potential for
investigating embodied and contextual aspects of mental health have been, to date, largely
unexplored. In this paper, we present an initial robot model of obsessive-compulsive (OC)
spectrum disorders based on an embodied motivation-based control architecture for
decision making in autonomous robots. The OC family of conditions is chiefly
characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge
to carry out certain repetitive or ritualized behaviors). The design of our robot model
follows and illustrates a general design framework that we have proposed to ground
research in robot models of mental disorders, and to link it with existing methodologies in
psychiatry, and notably in the design of animal models. To test and validate our model, we
present and discuss initial experiments, results and quantitative and qualitative analysis
regarding the compulsive and obsessive elements of OC-spectrum disorders. While this
initial stage of development only models basic elements of such disorders, our results
already shed light on aspects of the underlying theoretical model that are not obvious
simply from consideration of the model.

INTRODUCTION

The growing field of computational psychiatry (Adams, Huys, & Roiser, 2016; Corlett &
Fletcher, 2014; Huys, Maia, & Frank, 2016; Montague, Dolan, Friston, & Dayan, 2012; Stephan
& Mathys, 2014; Wang & Krystal, 2014) includes within its aims the application of compu-
tational techniques to understand, and better treat, human mental disorders. This includes
the use of simulations to explore and compare theorized mechanisms for diseases. How-
ever, to date, simulations of mental disorders have largely been “disembodied”, i.e. the
simulation has been divorced from sensorimotor interaction with the environment (see (Ya-
mashita & Tani, 2012) for a rare counter-example). In order to address this gap, we advocate
the use of autonomous robots in modeling mental disorders (Lewis & Cañamero, 2017) to
augment existing computational psychiatry techniques.

Robot models complement existing biological and computational models in a num-
ber of ways. Compared to purely computational models, robots, like animals, allow us to
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model complete systems, including a closed-loop interaction with the real environment.
Compared to animal models, commonly used in psychiatric research, robot models allow
precise operationalization of theoretical models through implementation, increased repli-
cability and control of experiments, and the ability to make controlled manipulations that
may not be possible in animals for ethical, methodological, or practical reasons. Such con-
trolled manipulations include, for example, changing the values of specific parameters in
the robot model, e.g. in relation to OCD, testing different values of a threshold controlling
the tolerance to perceptual errors. Another example would be introducing errors analogous
to brain lesions, but in a highly precise and reproducible manner. A third example would
be to introduce communication errors between components of the controller, e.g. the addi-
tion of noise to signals in a neural network corresponding to errors in top-down/bottom-up
communication used by Yamashita and Tani (2012) in a robot model of schizophrenia. In
this and other cases, the analogous controlled manipulations in animals may be inaccessible
because we either do not know which specific elements or connections to manipulate, or
we do not have a technique for manipulating them consistently, or we cannot manipulate
them without causing side-effects in other parts of the system (for example, if a drug used
also binds in another part of the body). However, when carrying out such manipulations in
robots, we should have a clear hypothesis regarding the existence of analogous dynamics
or systems linked to the condition that we are seeking to understand in human patients
(construct validity – see section Evaluation of the Robot Model (Stage 7)).

Since the use of such robot models is a new area of research, we seek to establish
a design framework (methodology, guidelines and evaluation criteria) to guide research
(Lewis & Cañamero, 2017). Our motivation in choosing these guidelines is to ensure that
we learn from the extensive experience of researchers using animal models, to ground the
research in theoretical models, and to guide research towards applications. In this paper,
we present the initial development and first experiments for a robot model of obsessive-
compulsive disorders following this framework.

Obsessive-Compulsive Disorder (OCD) is a disabling mental health disorder charac-
terized by obsessions (recurrent, invasive, often unpleasant thoughts) and/or compulsions
(a strong urge to carry out certain repetitive or ritualized behaviors, such as hand washing
or excessive checking). OCD is considered as part of the obsessive-compulsive (OC) spec-
trum of disorders, which also includes conditions such as trichotillomania (TTM, patholog-
ical hair pulling), pathological skin picking (PSP), body dysmorphic disorder (BDD), and
tic disorders such as Tourette’s syndrome (American Psychiatric Association, 2013). A car-
dinal feature of these disorders is the performance of compulsions, which can be defined
as repetitive stereotyped behaviors, performed according to rigid rules and designed to
reduce or avoid unpleasant consequences but which, as a consequence of the repetition,
become a source of distress and functional disability (Fineberg et al., 2018). The behav-
iorally similar condition of obsessive-compulsive personality disorder (OCPD) is charac-
terized by excessive perfectionism, and desire for “orderliness” (e.g. a needless desire for
symmetry) and control. The main difference between OCD and OCPD is that OCPD is
part of the person’s personality and therefore perceived by them as normal, rather than un-
wanted. Whether OCPD should be considered within the OC spectrum is an open question
(Fineberg, Reghunandanan, Kolli, & Atmaca, 2014).

A number of theoretical models and underlying mechanisms have been proposed
for OCD, including cognitive-behavioral models (Shafran, 2005), a cybernetic model (Pit-
man, 1987), the signal attenuation model (Joel, 2006), exaggerated sense of danger (Apergis-

Computational Psychiatry 2



A Robot Model of OC-Spectrum Disorders Lewis, Fineberg and Cañamero

Schoute et al., 2017), exaggerated sense of responsibility (Mantz & Abbott, 2017; Salkovskis
et al., 2000), and bias toward habitual versus instrumental acts (Gillan et al., 2011; Gillan
& Robbins, 2014). Of these, our robot model takes closer inspiration from the cybernetic
model of Pitman, and the signal attenuation model.

We present and test experimentally a cybernetics- and ethology-inspired autonomous
robot control architecture for decision making that can display both adaptive (functional)
behavior as well as non-functional decision making that presents similarities with compul-
sions and obsessions in OCD.

In the remainder of the paper, we first review different types of models of mental
disorder, then give an overview of our design process, before illustrating it with our devel-
opment of a robot model for OCD. We then describe our initial experiments and discuss
our experimental results.

MODELS OF MENTAL DISORDERS

Types of Models of Mental Disorders

In previous work (Lewis & Cañamero, 2017) we described four types of model commonly
used in research into mental disorders, which we recap these here:

1. A conceptual model of a mental disorder is a theoretical construct that links underlying
causes (etiology), either proposed or observed, with observed symptoms and corre-
lates. A conceptual model serves as a framework for understanding, and should have
explanatory and predictive power with respect to the condition being modeled. There
is not necessarily one “true” model, since different models may be complementary,
having different scope, emphasis, level of abstraction, or uses.
A conceptual model may be associated with one or more specific implementations (in
the sense of the three types listed below). However, this is not always the case; for
example, Pitman’s cybernetic model of OCD (Pitman, 1987) had been so far, to our
knowledge, a purely conceptual model. A conceptual model without an implemen-
tation can nevertheless have applications to guide research into potential treatments
(notably, the initial conception of Exposure and Response Prevention as a treatment
for OCD was based on a theoretical formulation (Meyer, 1966)), to provide an ex-
planatory framework for observations, or as a theoretical basis for future research –
for example, the Cognitive–Energetic Model of ADHD (Sergeant, 2000).

2. An animal model of a mental disorder is a non-human animal used to study brain–
behavior relations with the goal of gaining insight into, and to enable predictions
about, these relations in humans (van der Staay, 2006). Animal models may be in-
duced by genetic manipulation, drugs, or by environmental manipulation. Alterna-
tively, they may be naturally occurring. They have the advantage that they model a
complete system (organism and environment) and use a real animal. However, there
are limits to how closely a non-human animal can be used to model human mental
disorders (Geyer & Marcou, 2002).

3. A computational model of a mental disorder is a realization, or partial realization, of a the-
oretical model in a computer. The field of computational psychiatry includes within
its scope the development of computational models of psychiatric disorders (Huys
et al., 2016). These models have the advantage that they are highly specified and
so any results should be replicable and can be analyzed in detail. However, due to
the complexity of implementing such a model, they are typically only partial imple-
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mentations (e.g. of a neurological subsystem, as in the model of OCD in Maia and
Cano-Colino (2015)) or they work at a relatively high level of abstraction (such as re-
inforcement and Bayesian learning models – for an overview, see Huys et al. (2016)).
In addition, they do not necessarily include any behavioral element, a true closed-
loop interaction with the environment, or the effects of contextual and environmental
elements.

4. A robot model of a mental disorder embeds a computational and hardware realization of
a conceptual model in an embodied, interacting robot and its environment. Like an
animal model, it models a complete system (agent and environment), but using an ar-
tificial agent rather than an animal. While conceptual, animal, and computer models
are widely used in research, there has thus far been relatively little use of robot mod-
els (one of the few examples is by Yamashita and Tani (2012)). However, robot models
share the advantages of computational models in terms of specificity and controllabil-
ity, while, like animal models, taking into account the agent–environment interaction.
We thus advocate the development of robot models of mental disorders, to comple-
ment existing models by offering more controllable agents in a complete system, in
which theoretical models can be more precisely implemented (Lewis & Cañamero,
2017).

In reality, the different categories of model will not be clear cut. For example the
signal attenuation model for OCD (Joel, 2006), outlined below, combines both a theoretical
and an animal model.

Design Framework for Robot Models

We have followed the iterative design process shown in Figure 1 for the development of
our robot model, with modifications to adapt it for use with robots, which we will describe
as we describe the process. This process is based on a design process for animal models
of behavioral disorders (van der Staay, 2006; van der Staay et al., 2009), which provides us
with a well-established evaluation framework used by the clinical research community, and
which is generally relevant to the development and evaluation of embodied models. The
design process that we have followed covers all the stages in the design process, starting
with a theoretical model, through experimental evaluation and refinement.

We have here refined the process that we proposed in (Lewis & Cañamero, 2017) by
changing the “Accept the model” end point into part of the flow, in order to allow the
explicit inclusion of “us[ing] the accepted model for clinically focused studies”, while also
reflecting the fact that a robot model (and indeed, any computational model) is always open
to further development and refinement.

In this paper, we will illustrate this process with the development of a robot model
for OC-spectrum disorders.

ROBOT MODEL DESIGN PROCESS: PRE-DEVELOPMENT STAGES

Theoretical Model Selection (Stage 1)

The first stage in the development process is to select a conceptual model (or multiple com-
plementary conceptual models) to serve as the basis of the robot model. While a new con-
ceptual model could be created at this stage, there would not then be the opportunity for
the wider mental health community to review it before implementation. In practice, since
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Start

Theoretical model selection:
Select conceptual model(s) to be used as basis for robot model.
①

Consensus stage:
Find consensus on concepts, definitions, assumptions.
②

Selection stage:
Select (endo)phenotypes to be modeled in the robot.
③

Deduction stage:
Generate operational definitions of (endo)phenotypes,

components of theoretical model; simplifications.

④

Build robot model:
Design robot control software and environment.

Select/design/update robot hardware.

⑤

Testing stage:
Experiments and data collection.
Analysis of experimental results.

⑥ Evaluation stage:
Expose robot & theoretical models to criticism.
⑦

Is the robot model
sufficiently advanced
to be of clinical use?

⑧

Accept the (improved) robot model
for use in clinical studies.

⑩

yes

Do the results so far
indicate the potential

for improvement?
⑨no

Is further refinement of
the robot model required?

⑪

Induction stage:
Refine or correct concepts, definitions,
assumptions based on insight gained.

⑫

yes

Success: Robot model complete.
Stop robot model development.
Continue use in clinical studies.

no

Failure: Robot model inadequate.
Stop robot model development.

Review underlying theoretical model.

yes

no

PRE-DEVELOPMENT STAGES

DEVELOPMENT STAGES

POST-DEVELOPMENT STAGES

Figure 1. Flowchart for an iterative process for designing a robot model. This is a modified version of the chart from (Lewis & Cañamero,
2017), which is based on, and closely follows, the process described in (van der Staay, 2006; van der Staay et al., 2009). Numbers in circles
are to facilitate references to individual steps in the text. Note that, even after the robot model is accepted for clinical use (Stage 10),
it is envisioned that robot model development might continue iteratively, and incremental improvements will be made with each loop
through the process.

the process of developing the robot model requires the computational and hardware imple-
mentation of the model, new components of the model will be created during development.

A variety of theoretical models exist for OC-spectrum disorders (see e.g. (Fineberg,
Chamberlain, Hollander, Boulougouris, & Robbins, 2011) for a discussion of various mod-
els). Our choice to conceptualize OCD as a disorder of decision making Sachdev and Malhi
(2005) and of a specific conceptual model (based on cybernetics, as we explain below) was
linked to our (LC and ML’s) existing research in robotics, which has extensively investi-
gated decision making (action selection) in autonomous robots from a perspective that is
close to cybernetics. Our previous work in decision making (behavior selection) in au-
tonomous robots, inspired by ethology and cybernetics, investigates the adaptive value of
decision-making strategies, measured in terms of contribution to maintenance of homeosta-
sis, in motivated and goal-oriented behavior in robots (L. Cañamero & Avila-Garcı́a, 2007;
L. D. Cañamero, 1997; Lewis & Cañamero, 2016). In that work, the overall behavior of the
robot was changed in different ways through controlled manipulation of the perceptual el-
ement of the perception-action loop, namely through modulation of perceptual properties
of incentive stimuli. Alongside adaptive benefits resulting from such benefits, we observed
maladaptive behaviors – in particular, excessive persistence in behavior execution – that
bore a similarity with decision making problems in OCD and other conditions such as ad-
dictions. Given the similarities between our model of decision making, and the cybernetic
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(Pitman, 1987) and signal attenuation models (Joel, 2006) of OCD, we selected these as the
conceptual models to be used as the basis for our robot model of OCD. As we shall discuss
later in the paper, in addition to the behavioral “compulsion” aspect stressed by animal
models, both the cybernetic model of OCD and our specific models of motivation also al-
low us to consider the internal “obsession” aspect of OCD, since elements of the model can
be viewed as “thoughts” even when they do not result in action.

Pitman’s cybernetic model (Pitman, 1987) takes the cybernetic view of behavior as an
attempt to control perception (Powers, 1973). In the cybernetic framework, behavior (of
natural or artificial systems) is the result of attempting to correct “perceptual errors”. Such
errors indicate a mismatch between an “actual” perceptual signal (such as sensed room
temperature in the archetypal example of a thermostat) and an internal reference, ideal or
“target” value that the system aims to reach (the set temperature that the thermostat tries to
maintain). The actual signal can be external, such as in the example of thermostat, although
it can also be an internal signal, such as perceived hunger. Pitman specifies that, in the field
of control systems theory, the reference signal is an internal signal (e.g. satiety signal after
satisfaction of hunger). This does not mean that the target value is fixed, since it may adapt
to some extent to adjust to internal or external environmental factors. The core element
of such cybernetic control systems is an internal comparator mechanism that computes the
mismatch between the actual (measured) value and the target value. This difference is con-
ceptualized as an error that provides a signal (called the “error signal”) for the system to
trigger behavioral output that aims to correct that error (e.g. in the example of the thermo-
stat, activating the heating mechanism). Following this model, Pitman conceptualizes OCD
in terms of behavioral control of perception, and proposes that “the core problem in OCD
is the persistence of high error signals, or mismatch, that cannot be reduced to zero through
behavioral output” (Pitman, 1987, p. 336), for example, an erroneous ever-present percep-
tion that the hands are contaminated, leading to compulsive washing that fails to make
the erroneous perception disappear. Pitman argues that his model can explain features of
OCD such as perfectionism, indecision, need for control, over-specification, and obsessive
thoughts, with the presence of the error signal itself being subjectively experienced as a
sense of incompleteness and doubt. He further considers three possible sources for the
persistent error signal: conflict between multiple control systems, comparator defect, and
attentional disturbance.

The signal attenuation model for OCD is a theory-based animal model built on the
proposition that “compulsive behaviors result from a deficit in the feedback associated with
the performance of normal goal-directed responses” (Joel, 2006). In the associated exper-
imental animal model, compulsive behavior in produced by the attenuation of the infor-
mational value of an external signal (e.g. light or sound) that has been linked, by training,
to the successful execution of some action (e.g. lever pressing for food). A more general-
ized view of this model would also include internal signals, such as interoceptive signals
for satiety after eating or drinking. Indeed, internal signals are important in goal-directed
and motivated behavior (Damasio, 2010; Frijda, 1986; Lehner, 1996; Panksepp, 1998; Pessoa,
2013), e.g. to provide to provide targets, and “stop messages” or to monitor performance.
However, internal signals are are not normally accessible (for technical, practical or ethical
reasons) in studies involving animal models, which must resort to the use of external sig-
nals and their association (typically through learning) with externally observable behavior.

We therefore select the cybernetic model of Pitman, and the signal attenuation model
(as a theoretical model, rather than its specific implementation in animals) as the basis for
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our robot model. These are brought together within the framework of our motivation-
based robot controller. We will implement our robot model of OCD using an internal signal
deficit (faulty interoception); this is something that is much simpler to do in robots than
in animals, due to our more complete control of the robot’s internal decision-making and
sensing mechanisms. The internal signal deficit falls within the category of “comparator
defect” in Pitman’s possible sources for the error signal.

Consensus Stage (Stage 2)

This stage seeks conceptual clarity regarding the selected conceptual model, and precision
in the use of its associated notions and principles. We refine and seek consensus, typically
on concepts, criteria, definitions and assumptions underlying and associated with the con-
ceptual model of the previous stage.

From our selected cybernetic and signal-attenuation conceptual models, the key no-
tions with respect to OC-spectrum disorders that are most relevant for our robot model
are:

Compulsions. According to the classic text of Fish (Fish, Casey, & Kelly, 2008), com-
pulsions are obsessional motor acts that may result from an obsessional impulse or
thought. To attempt to clarify this, we will consider a behavior to be compulsive
if it is executed repetitively and persistently, even though it might not have a clear
function, or it could even be maladaptive, or unwelcome to the individual. We note
that some habits may fall under this definition of compulsive behaviors; however, the
main difference between them might reside in the context in which they are executed.
Compulsive grooming. In research using animal models, compulsive self-grooming is
widely used to research OC-spectrum conditions. It is induced in mouse models
by gene knockout, and its link with human OC-spectrum disorders is supported by
the similar responses to pharmaceutical interventions (Camilla d’Angelo et al., 2014).
Grooming is considered related to the human conditions of trichotillomania (TTM,
pathological hair pulling), pathological skin picking (PSP) due to the high face valid-
ity. In this case, we consider grooming behavior to be compulsive if it occurs to the
extent that it either directly damages the animal, or that it causes the animal to neglect
other needs.
Obsessive thoughts. Obsessive thoughts are a defining feature of OCD. According to
Fish, obsessions are thoughts that persists and dominate an individual’s thinking,
despite the individual’s awareness that the thought is without purpose or no longer
relevant or useful.1

“Stop signals” are internal or external signals that indicate that a goal has been achieved,
a need satisfied, or a behavior successfully executed. Several models of OCD, namely
the cybernetics and signal attenuation models, postulate problems with “stop sig-
nals” linked to compulsive behavior. In the cybernetic model (Pitman, 1987), an error
signal is present, such that, when it becomes zero, signals that the behavior that was
being executed to correct the error can stop. In the signal attenuation model, a sig-

1 Note that the “obsessive thoughts” present in OCPD (which is not always considered as belonging on the
OC-spectrum) are not obsessive in the sense defined here, since they are viewed by the individual as having
a worthwhile purpose. Hence this notion of obsessive thoughts helps to distinguish between two conditions.
However, at this stage, our robot model does not have any way of assessing whether the repetitive thoughts
are worthwhile or not.

Computational Psychiatry 7



A Robot Model of OC-Spectrum Disorders Lewis, Fineberg and Cañamero

nal indicates the successful execution of a behavior; compulsive behavior then results
from an “attenuation” of that signal, which weakens the perception of the behavior’s
success, and therefore that it can stop. The signal attenuation model is typically pre-
sented in the context of an experimental paradigm (Joel, 2006) in which animals are
trained on an external signal and this signal is “attenuated” by reducing its value as
a signal. However, we will consider it more generally, and in our robot experiments
the equivalent of the stop signal will be an internal one.2

Selection Stage (Stage 3)

At this stage, we select the (endo)phenotypes of interest for our model. These may be
behavioral or internal phenotypes that we generate explicitly, or that we believe may be
generated as a consequence of how the model works.3

Since we were starting the development of our model, we choose to model one of the
the simpler conditions in the OC-spectrum: compulsive self-grooming. While compulsive
self-grooming is our behavioral phenotype of interest, we are also interested in endopheno-
types, in particular, obsessions – a major subjective symptom of OCD. The endophenotypes
that we can study depend on the nature and interaction dynamics of the robot controller.
In our case, our robot controller uses competing motivational systems that vary over time
as a function of the robot’s interaction with the environment and the dynamics of its em-
bodiment. In this model, we can use these motivational states as an indicator of obsessions.
Such subjective symptoms are not easy to analyze in animal models, where access to the
internal state is limited. The list of phenotypes of interest may expand on subsequent iter-
ations.

Deduction Stage (Stage 4)

At this stage, we create operational definitions of concepts to be used in this iteration of the
development. In some cases, simplifications of concepts may be required.

First we need to describe briefly how our robot model will work. We will have an
autonomous mobile robot that tries to survive in an environment, making decisions about
how to use the resources available to satisfy its needs. It will be endowed with some inter-
nal physiological variables (e.g. energy), the values of which will change over time as the
robot interacts with the environment, and which may fall out of the range of permissible or
viable values (Ashby, 1960), resulting in the robot’s “death”. The robot will also be able to
self-groom through interaction with appropriate objects in the environment. We will ana-
lyze the robot’s behavior and performance in terms of metrics to measure “viability” and
“wellbeing” of the robot, as well as statistics about its behaviors. These metrics (to be de-
scribed in sections Metrics and Testing Stage: Analysis of Experimental Results (Stage 6b))
will be calculated from the above-mentioned internal physiological variables that constitute
the internal state of the robot.

2 Readers familiar with the Stop Signal Paradigm (Verbruggen & Logan, 2008), should note that this
paradigm requires that the stop signal takes time to be processed; however, in this paper our analog to
the stop signal will propagate instantaneously, but can have different strengths.

3 Note that, compared to our earlier presentation of this design process (Lewis & Cañamero, 2017),
we have moved the Selection stage to after the Consensus stage, so that the conceptualization of the
(endo)phenotypes is consistent and clear before selecting the focus of our robot model.
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In this context, taking the concepts from the Consensus Stage, we refine them (for this
iteration) as follows:

Adaptive (maladaptive) behavior in the robot is behavior that positively (negatively)
affects the performance of the robot, as measured by the viability and wellbeing met-
rics.
Compulsive grooming is repeated self-grooming to the extent that it is maladaptive.
Obsessions are persistent states in the robot’s internal decision-making process that
have no benefit, either because they cannot be acted upon, or because acting on them
will have no benefit in terms of the robot’s viability or wellbeing.
The error signal of a physiological variable is the mismatch (difference) between the
current value and the target (ideal, reference) value.
The perceived error signal of a physiological variable is the robot’s “sensed” differ-
ence between the current value and the target value (in our case, the perceived error
signal may be different from the actual error signal (section Modeling Compulsive
Behavior), and our robot’s action selection code uses the perceived value).
Signal attenuation is a decrease in the strength or salience of an internal or external
cue. In the signal attenuation animal model, this cue is an external cue to indicate that
a behavior has been successfully executed, and the next stage in a chain of behaviors
can be started. However, in our case we use an internal variable that can have dif-
ferent target values under different conditions, leading to different error signals, and
hence different signals that a behavior (grooming) has had sufficient effect.

ROBOT MODEL DESIGN PROCESS: DEVELOPMENT STAGES

Build robot model of OC-Spectrum Disorders (Stage 5)

To begin this section, let us highlight the features and advantages provided by an (embod-
ied) robot model versus a computer simulation of an agent. In an embodied robot model,
the external environment (and the way it is perceived by the robot) is as important as the
internal controller in producing the robot’s behavior. The environment, in addition to pos-
ing specific decision making problems to the robot, provides the context through which the
robot’s behavior links back to and modifies its perceptions, closing the perception-action
loop (Brooks, 1991a; Pfeifer & Scheier, 2001; Powers, 1973). Given the same behavior con-
trol software and the same internal state of the robot, the behavior of the robot might be
completely different depending on factors concerning its relation with the environment,
such as: what is happening in the environment at a particular time, its ambiguity and un-
predictability, what the robot perceives of it, imprecisions in the perception-action loop
(e.g. in the case of robots, the potential “noise” coming from sensors or actuators), how the
robot can act on the environment and how the robot and the environment interact, how
what is happening in the environment affects the actions of the robot, the opportunities for
interaction that the environment “affords” to the robot, the place of the robot in the ecolog-
ical niche, etc. The dynamics of such highly complex interactions cannot be fully modeled
in a simulator, since the complexity of the real world and its effects on an agent cannot be
fully modeled. Since we are interested here in the dynamics of the pathology, and this is
something that occurs in interaction with the real world, we advocate the use of a robot
model situated and in interaction with the physical world.
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Robot hardware For our initial model, we selected a simple robot, well suited to proto-
typing and research of an exploratory nature: the Elisa-34 (Figure 3). This is a small, round
two-wheeled Arduino-based robot, 5cm in diameter and 3cm in height. It is equipped with
a ring of eight infrared (IR) “distance” sensors with a range of approximately 5cm, and
four downwards-pointing IR “ground” sensors. These sensors provide the robot with a
rudimentary (coarse and noisy) capability to detect both the proximity of objects around
it, and dark and light areas on the ground. It additionally has radio communications to
receive and transmit messages with a PC, which we use to log data for quantitative anal-
ysis of results. Finally, it has colored LED lights on the top of the robot, which we used to
visually signal its internal activity.

Since this robot has limited capabilities for manipulation and perception of external
objects5, we model grooming by having it “rub” its side sensors against objects in the en-
vironment to improve its (simulated) “integument”: the state of its external surface, analo-
gous to the state of an animal’s fur or feathers.

Environment For the purposes of data collection and analysis, we have placed the robot
in a small walled area containing objects appropriate to the sensorimotor capabilities of
the robot. Our environment had to support both “healthy” and pathological behaviors.
We therefore placed in the environment a number of resources – “energy sources” (light
patches on the floor) and “grooming posts” (plastic pipes) – that could provide the means
for the robot to satisfy its survival-related needs (energy) and its other needs (grooming for
maintenance of integument), but which could also provide the opportunity for pathological
behavior.

An internal “integrity” variable, keeps track of the (simulated) physical integrity of
the robot. It decreases following collisions and other types of contact with objects (detected
by the distance sensors): these include the arena walls and the grooming posts placed
within the arena. If this damage causes the robot’s integrity to fall to zero or below, the
robot will “die” and stop in place. In the absence of collisions, the integrity would slowly
increase as the robot “heals”. In the architecture of the robot, the integrity variable is linked
with the robot’s motivation to avoid objects, including the grooming posts, providing an
internal conflict with the motivation to groom. This gives both a cost to the grooming be-
havior and a “cue” to stop. This element of the architecture allows us to investigate the
extent to which the grooming behavior is compulsive, specifically, the extent to which it
continues even though it directly damages the robot (see the Consensus Stage (Stage 2)
section, compulsive grooming).6

In healthy (adaptive) decision making, the robot will alternate between grooming (or
seeking a grooming resource) and feeding (or seeking an energy resource). In the com-
pulsive behavior situation, the robot will groom to the extent that it adversely affects its

4 http://www.gctronic.com/doc/index.php/Elisa-3
5 Future iterations of our model may use different robot platforms, as we use it to execute more complex

behaviors. However, starting with a simple platform means that initial development does not require a
complex controller. With the rise of 3D-printing it will be possible to use robot platforms that are highly
customized to the application.

6 In the future, the inclusion of physical damage from grooming may allow us to link to research on OC-
spectrum disorders that has linked them with an increased tolerance of pain (Hezel, Riemann, & McNally,
2012).
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Table 1. The robot’s physiological variables.

Variable Fatal limit Ideal value Maintenance

Energy 0 1000 decreases over time; increases when the robot consumes from an energy resource
Integrity 0 1000 decreases on contact with objects; increases over time as the robot “heals”

Integument L none 1000 decreases over time; increases when the robots left side passes close to a grooming post
Integument R none 1000 decreases over time; increases when the robots right side passes close to a grooming post

survival, either because its energy level falls too low, or because it damages itself though
contact with the grooming post.

Robot Model of Obsessive-Compulsive Disorders

As we have seen, the theoretical cybernetic model that we have selected proposes that “the
core problem in OCD is the persistence of high error signals [. . . ] that cannot be reduced
to zero through behavioral output”. To operationalize this, our architecture will act on the
basis of the perception of internal error signals, combined with (perceived) external cues.
By manipulating internal parameters within the controller to create cases where the error
signal remains present, we can then test and explore the theoretical model. To facilitate
systematic analysis of experimental results, we test the robot in a “two-resource problem”
(Spier & McFarland, 1997), used in ethology and robotics as the simplest decision making,
or action selection, scenario. As its name suggests, in this scenario, an agent (animal or
robot) must autonomously decide which of the two resources available in the environment
it should consume in a timely fashion in order to satisfy its survival-related needs success-
fully. In order to focus on the dynamics of the perception-action loops that are proposed as
the “core problem” in OCD, our robot does not include other elements, such as memory,
learning or map building.

Software Behavior Control Architecture The specific robot model and action selection ar-
chitecture that we have implemented draws on our previous work on motivation-based
robot behavior controllers (L. Cañamero & Avila-Garcı́a, 2007; L. D. Cañamero, 1997; Lewis
& Cañamero, 2014, 2016), while also being inspired by animal models of OC-spectrum dis-
orders.

In the robot architecture used in this study, four competing motivations guide the be-
havior of the robot. These motivations are urges to action determined by a combination of
the four corresponding internal homeostatically-controlled “physiological” variables, that
provide the robot with “needs”, and by the robot’s perception of the environmental re-
sources that can be used to manage those variables. The decision making behavior control
software provides the robot with strategies to prioritize and satisfy these needs.

An overview of the behavior control (also known in the literature as action selection)
mechanism is shown in Figure 2. We describe the components of the architecture (the high-
level design of the software) in the following subsections.

Physiological Variables Our robot has four homeostatically-controlled physiological vari-
ables shown in Table 1: energy, integrity, and two integument variables (one for each side).
The physiological variables take values in the range [0,1000], with 1000 being the ideal
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Figure 2. An overview of the action selection mechanism for our robot. Rounded boxes represent individual (potentially nested)
behaviors, while square-cornered boxes represent other internal components. The actions of the actuators result in changes in the
environment and the robot’s physiology, which is fed back to the robot controller via the robot’s perceptions. Motivations are updated
and new behaviors selected every action selection loop (10Hz).

value in all cases. The variables change both over time and as a function of the robot’s in-
teractions with its environment, reflecting the current state of the robot. Following a model
of homeostatic control, the difference between the actual value and the ideal value of each
variable generates an error signal indicating the magnitude of the mismatch (in this case,
deficit).

Two of the physiological variables (energy and integrity) have a fatal limit of zero
(the robot dies if the value falls to zero). The two other variables, related to “integument”,
can be thought of as analogous to an animal’s fur or feather condition: something that
needs to be maintained for viability (e.g. waterproofing, efficient flight), but which doesn’t
directly cause death if it falls too low. In our robot implementation, low values of the
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integument variables have no physical consequences on the robot (e.g. it doesn’t affect its
physical integrity or its travel speed or any other aspects), but they will trigger a motivation
to maintain the variable within a good range of values (correct the error between the actual
and ideal values of this variable) by grooming.

Sensors, Cues and Motivations The robot uses its infrared distance sensors and ground
sensors to detect obstacles, grooming posts and energy resources in the environment. These
correspond to environmental cues or incentive stimuli that influence the motivational states
of the robot to avoid (obstacles), groom (at grooming posts) or consume (energy resources).
The numerical size of the perceived cue is in the range [0,100] and is determined by the
sensed distance of the obstacle, or by the color detected by the ground sensors for the energy
resources and grooming posts.

Following a classical model in ethology, we use the long-standing concept of moti-
vational states (Colgan, 1989), defined in terms of the drives set by the deficits or errors of
the internal variables, combined with external environmental cues (incentive stimuli). Our
robot has four different motivations, each linked to the satisfaction of a physiological vari-
able (see Figure 2). The internal drives and the external incentive cues combined, provide
a level of intensity to each motivation at each point in time, which reflects its relevance to
the current situation. The motivational intensity is calculated according to the formula pro-
posed in (Avila-Garcı́a & Cañamero, 2004) (modified from a classical formula in ethology
(Tyrrell, 1993, p. 139)):

motivationi = deficiti + deficiti × α × cuei (1)

Where deficiti (the error signal) is the difference between a variable’s current value and its
ideal value as perceived by the robot (see section Modeling Compulsive Behavior), cuei is
the size of the corresponding cue, and α is a scaling factor to scale the size of the exte-
roceptive component. In our experiments, α will equal 0.05. This value was empirically
determined in pre-trials to allow the robot with a realistic target value (non-pathological
or baseline condition 1 in our experiments below) to be able to have enough persistence in
satisfying its needs to be able to survive in the environment.

As the values indicating the intensity of the motivations change over time, depending
on the external and internal perceptions, at certain points the motivation with the greatest
intensity (i.e. the most pressing need) will be overtaken. This will result in a change of
motivational state, and hence of the behavior executed to satisfy it, and it could be viewed
as an analog for a “stop signal” for the current behavior.

Behaviors The robot has a number of discrete behaviors of different types (rounded boxes
in Figure 2). The execution of some of these behaviors allows the robot to directly satisfy
its motivations, and hence correct the errors of the physiological variables, whilst other
behaviors allow the robot to “search” (move about the environment avoiding objects) for
the resources required to satisfy these needs. Let us note that the robot will only move
around the environment or execute a behavior if at least one of its motivations is active.

We have grouped the behaviors into four “higher level” behavioral subsystems, each
one linked to a motivation: groom left group, groom right group, eat group, and avoid.
These behavioral subsystems (except for avoid) are composed of smaller simpler behav-
iors, which can be executed independently, simultaneously or sequentially depending on
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the state of the robot and the external stimuli detected. For example, the eat behavioral
group is composed of the consummatory (goal-achieving) behavior “eat”, which is exe-
cuted if the robot is hungry and food is detected and located at the mouth, “orient to food”,
which is executed if the robot is hungry and food is detected nearby, and “search (for food)”
is an appetitive (goal-seeking) behavior that will make the robot wander around the envi-
ronment until food is detected. Searching behaviors (for an energy resource or a grooming
post) involve the robot wandering around the environment (i.e. travelling in random di-
rections, while avoiding objects), typically until the incentive stimulus of the motivation
that triggered the search is found. Searching does not involve any knowledge of the envi-
ronment on the part of the robot, and does not occur in any particular direction. The only
information about energy resources and grooming posts that the robot uses in this search,
is the ability to recognize them when it encounters them.

Action Selection The robot controls its behavior as follows: At each time step (100ms),
the robot recalculates its four motivations and sorts them from highest to lowest. This
order determines the order in which it prioritizes the satisfaction of its physiological vari-
ables in that action selection step. To satisfy the motivations, we use a slightly modified
“Winner-Take-All” action selection policy, as follows. The robot will try to satisfy the high-
est ranked motivation (the “winner motivation”) first. To do so, the winner motivation
triggers the behavioral subsystem linked to it, and one or more of the simpler behaviors
that constitute this subsystem (nested rounded boxes in Figure 2) are executed, depend-
ing on whether the preconditions for their execution (e.g. in the case of the eat behavior,
presence of food detected) are met. If, while satisfying the winner motivation, a behavior
that satisfies a lower ranked motivation can also be executed, then it will be executed. This
means that two behaviors can sometimes be executed simultaneously. Our robot can exe-
cute two behaviors simultaneously only if the two behaviors use distinct sets of actuators.
For example, the “orient to food” behavior, which allows the robot to approach and stop
at an energy resource, uses the wheels, while the behavior to consume the resource uses
the virtual “mouth”, and thus the two behaviors can be executed concurrently. This allows
the robot to consume an energy resource as it aligns itself with the resource. In certain
cases, two behaviors can execute due to different motivations, for example, the eat behav-
ior can be executed opportunistically as the robot passes over a resource while searching
for a grooming post, as the mouth actuator is not otherwise occupied.

Note that, since the grooming posts are obstacles that the robot can collide with, they
will also act as a cue for the avoid behavior. Whether the avoid behavior is actually executed
depends on the intensity of the motivation to avoid, which depends on the values of the
cue and the robot’s integrity.

Modeling Damage and Grooming Damage to the robot (e.g. through collisions) and the ef-
fect of grooming on the robot’s integument are implemented using the IR distance sensors.
Damage and grooming use independent mechanisms (summarized in Figure 3) designed
with the goal that interaction with environmental objects can be potentially beneficial or
damaging to the robot: grooming involves a small possibility of damage, but not so much
that a normal amount of grooming risks serious damage to the robot. The various constants
in these calculations were determined empirically to meet these design goals.
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Figure 3. Left: An Elisa-3 robot, viewed from the front/left. Right: A diagram of the Elisa-
3’s infrared distance sensors (top view). Arrows indicate how the sensors are used to detect
grooming and damage from collisions and sustained rubbing.

To calculate damage, the distance sensors are checked every 50ms, and compared to
the previous values. The calculated damage is subtracted from the current integrity. Two
types of damage are possible: collisions, and sustained rubbing:

Collisions: if the closest IR reading crosses a “touch” threshold (a value of 850, cor-
responding to an object approximately 3mm from the robot), then a “collision” is
deemed to have occurred, and a value for the damage is calculated depending on the
size of the change in the sensor readings that have crossed the threshold. A maxi-
mum value of 100 is applied to this type of damage, to stop a single unlucky collision
killing the robot in one blow.
Sustained rubbing: when the IR sensor values maintained a value over the threshold
of 900 (indicating a very close object) then a constant value of 2 damage is applied
(hence a maximum of 40 per second).

To implement grooming, the distance sensors are checked every 100ms, and com-
pared to previous values. Two sets of sensor are used: (IR1, IR2, IR3) for the right side, and
(IR5, IR6, IR7) for the left side, corresponding to the two integuments. If a sensor value
indicates a close object (a value above 150) and the value has increased since the previ-
ous reading, while the value of the adjacent sensor towards the front of the robot has de-
creased (indicating the movement of a grooming post from front to back of the robot) then
a “stroke” counter is incremented, indicating movement in the “correct” direction (front-
to-back). Conversely, a sensor indication of a movement in the “wrong” direction (back-
to-front) is considered as a “anti-stroke” and decrements the stroke counter. The overall
value of the counter indicates whether the overall movement on one side is a stroke (> 0),
or an anti-stroke (< 0). If a stroke has occurred, then the actual value of the corresponding
integument (left or right) is increased by 20 times the count value; if an anti-stroke has oc-
curred, then the actual value of the corresponding integument is decreased by −5 times the
(negative) count value.

Modeling Compulsive Behavior Following the signal attenuation model, in this paper we
model compulsive behavior by manipulating the robots’ perception of the internal errors
linked to its physiological variables. More concretely, we manipulate the robot’s perceived
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ideal (“target”) value for the integuments. This will affect the decision making (action se-
lection) process in the calculation of the “error” in Figure 2 or the deficit in equation 1.

To model “typical” or “healthy” decision making, we consider the case where the
perceived ideal value is equal to the real “perfect” value (i.e. 1000, which is as far from the
fatal limit as possible). This value can be achieved, and so is a “realistic” target. How-
ever, as we have seen in previous work, a robot will typically stop attending to a need
before the related physiological variable reaches its ideal value, due to competition from
other needs. The point when the value of the active motivation is overtaken by another
motivation (which consequently becomes the active motivation) can be thought of as the
robot receiving the “stop signal” for that behavior (although in our model it might be more
accurately thought of as an “attend to another need and switch behavior” signal).

To model “pathological” conditions, we consider values for the perceived ideal value
that are not achievable, even theoretically: in this model, values greater than 1000, which is
the maximum possible value the variable can take. Since these values are not valid values
for the integument, having such a target value can be thought of as a “perceptual error” or
distorted perception in the robot.

As outlined in the section on Deduction Stage (Stage 4), if the signal attenuation
model of OCD holds, we would hypothesize that this manipulation, analogous to atten-
uating the signal for successful grooming as we increase the target value, would result in
an exaggerated (more intense) motivation to perform the selected behavior. In turn, this
increased motivation would out-compete the other needs, and thus produce an increase
in the performance and perseverance of the grooming behavior. If this effect is sufficiently
large, we would expect it to be maladaptive, and this would be measurable by at least some
of our metrics.

Testing Stage: Experiments and Data Collection (Stage 6a)

Figure 4. The 80cm × 80cm environment used in the experiment. Here, the robot is feeding
at an energy resource (white patch) while the grooming posts (white pipes) stand on the black
patches.

Methods The experimental setup is shown in Figure 4. It consists of a 80cm × 80cm
square surrounded by 45mm high wooden walls that can be detected with the robot’s dis-
tance sensors. The floor is covered in paper, which is printed gray, except for two light
areas and two dark areas, which can be detected by the robot’s ground sensors, and that
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indicates the presence of food and grooming resources, respectively. Two 35mm diameter
white plastic pipes are fixed in place in the centers of the dark areas to be used as grooming
posts.

We conducted twenty runs in each of the following conditions:

1. Realistic target values: Perceived ideal values for integuments = 1000
2. Mildly unrealistic target values: Perceived ideal values for integuments = 1100
3. Highly unrealistic target values: Perceived ideal values for integuments = 1200

Note that conditions 2 and 3 correspond to target values (perceived ideal values) that
are not achievable, even in theory, because they lie outside the range of the variables (see
section Modeling Compulsive Behavior). In these conditions, an error is always perceived,
even in the absence of a “real error” (a mismatch between the actual value and a realistic
ideal value within the range of the variable, which is 1000). This “distorted perception” of
the target value gives rise to “perceptual errors” that cannot be corrected through behavior
or by interaction with the environment because the target values lie outside the range of the
variable, and therefore the urge to correct it is always present. These conditions fall under
the category of “comparator defect” in Pitman’s possible sources of a persistent error signal.

The numerical values for conditions 2 and 3 were empirically determined following
some informal pre-trial runs. In these, we observed that the value of 1200 resulted in highly
persistent grooming: the robot would frequently groom until it died, so it was selected
as the most extreme value to test; while the value of 1100, halfway between the baseline
condition and our extreme value, showed very different behavior, with the robot stopping
grooming before it died.

On each run, the robot’s physiological variables were initialized to the middle value
of the range (500 out of 1000) for energy and both integuments, so that the robot would need
to work to maintain all these variables, which decrease over time if not actively maintained.
For the integrity variable, an initial value of 900 (out of 1000) was chosen to allow the robot
the approach grooming posts and maintain its integument, rather than starting in a “half
damaged” state and being over-motivated to avoid objects. The robot was started at the
center of the arena, equidistant from all four resources (see Figure 4) facing directly towards
one side of the arena in one of four alternating directions (labeled “north”, “south”, “west”
and “east”). The alternating direction was done in order to reduce any bias that the initial
direction might impose, since this may influence which resource a robot would encounter
first. Runs lasted for six minutes each, or until the robot died. The values of its physiological
variables, motivations, sensor values and the currently executing behaviors were recorded
every 250ms and transmitted to a PC via its radio link.

Select data to be collected During our experiments we will need to collect data to evaluate
the adaptive or maladaptive value of the robot’s decision-making process. In terms of OC-
spectrum conditions, to compare the balance between the satisfaction of different needs,
we need to record the values of the physiological variables, the values of the motivations,
and the behaviors that the robot is currently executing. To allow post-hoc examination of
the robot’s behavior, we additionally record its sensor readings and wheel speeds.

Metrics We evaluated the performance of the robot in each conditions and run using four
types of metric:
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Table 2. Experimental results. For each condition, from left to right: metrics for number of deaths, arithmetic and geometric wellbeings,
variance of physiological variables (which can be thought of as the robot’s “physiological balance”), percentage of the robots’ lifetime
spent grooming and eating, and the percentage of the robots’ lifetime during which either of the two integument values was zero. The
mean wellbeings and variance have been calculated by taking the means over the lifetime for each “robot” (run), and then calculating
the mean of the twenty values in each condition. The percentages in the last three columns have been calculated by concatenating the
lifetimes of the robots in the twenty runs in each condition, and calculating what percentage of this time was spent grooming etc.

No. of Mean arit. Mean geom. Mean %-age time %-age time %-age time with
Condition deaths wellbeing wellbeing variance grooming eating zero integument

1 2/20 560.9 456.5 55438 34.5 21.3 13.8
2 3/20 603.2 501.1 57435 39.4 20.6 12.5
3 19/20 556.5 344.9 101264 64.9 13.0 27.0

1. Survival related. Specifically: Death rates (the number of robots that died during the
run), and duration of life for each run (up to 6 minutes).

2. Metrics relating to the regulation of physiology (wellbeing, physiological balance, main-
tenance of physiological variables away from dangerously low values, maintenance of integu-
ment). These give a measure of the success of a living robot in managing its physio-
logical variables as a result of its decision making, either at a specific time, or over its
lifetime. These help to compare the performance of robots which do not die. They
were calculated from the recorded values of the physiological variables.

3. Behavior of the robot. The behaviors that the robot executed are included in our logged
data, so we can use this record to compare different robots’ behavior without needing
to resort to external observation.

4. Motivational balance. Since our robot controller is based on the four motivations de-
fined in the Sensors, Cues and Motivations section, we can use this internal infor-
mation to analyze the robots’ motivational balance, which reflects how much time it
spends attending to each of its physiological needs.

We provide the mathematical definitions of these measures and use them to evaluate
the results of our experiments in the following section.

Testing Stage: Analysis of Experimental Results (Stage 6b)

We now present the experimental results and analyze them in terms of the above metrics.

Death Rates, Duration of Life Death rates for each condition are shown in Table 2 (first
column). Let us first consider condition 1 (realistic target values). The two condition-1
robots to die both survived 49 seconds, and the runs were very similar. Both of them found
a grooming post in this time, spent some time grooming, and then left due to motivation
to find an energy resource. After this, they both encountered a second grooming post, and
although they both groomed, they did this for only about one second before leaving again
in search of an energy resource.

In condition 2 (mildly unrealistic target values), three robots died. Since we recorded
internal data for the robots, including their motivations, we can examine what happened,
including why they made their decisions. Let us look at what happened during the life of
the three robots that died:
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The first condition-2 robot to die survived 52 seconds. It had found a grooming re-
source soon after starting, and spent 15 seconds grooming before leaving. It soon
found another grooming post, and remained grooming for approximately 9 seconds.
It left the post with only 6 seconds worth of energy and failed to find an energy re-
source in this short time. We remark that the integument that the robot attended to
was low (only 24 greater then the energy) when the robot prioritized it over the simi-
larly low energy, meaning that the robot had two pressing competing needs.
The second condition-2 robot to die survived 297 seconds. After 200 seconds, both of
its integuments had fallen to zero, and when it found a grooming post, it stayed there
grooming for approximately one minute, increasing its integuments while its energy
level fell. By the time it left the post, it had approximately 15 seconds worth of energy
left, and it did not find an energy resource before dying. As in the first case, the low
integuments meant that the robot had multiple pressing needs.
The third condition-2 robot to die survived 124 seconds. After finding its first groom-
ing post and grooming, it left with approximately 30 seconds worth of energy and
was wandering the arena to find an energy resource. However, during this time it
found another grooming post and opportunistically groomed for 10 seconds. When
it left the second grooming post it had less than 10 seconds worth of energy with
which to find an energy resource.

Of the nineteen deaths in condition 3 (with the highly unrealistic target values), sev-
enteen occurred due to the energy falling to zero while the robot was grooming. In all of
these cases, the integument in question had already reached its ideal value (i.e. its max-
imum value of 1000), so further grooming was not achieving anything. In the remaining
two cases where the robot died, these were also caused by the energy reaching zero. In both
cases, the robot had stopped grooming within the last 5 seconds, and was now wandering
– in one case motivated to find an energy resource, in the other case motivated again to find
a grooming post. The mean survival time for condition 3 was 134 seconds (including the
robot that survived).

Wellbeing In order to evaluate the robot’s current state, in terms of its physiological vari-
ables, we used metrics that we call “wellbeing” (Lewis & Cañamero, 2016), which provide
the average level of all four the physiological variables at each point in time. Intuitively,
wellbeing gives an indication of the robot’s internal “health” at a point in time, with high
values indicating good health (the physiological variables are high, close to the ideal value),
and low values indicating poor health (the physiological variables are low, close to the fatal
limit).

We calculated two different wellbeing metrics by taking the arithmetic and the geo-
metric means of the physiological variables at each sample time, giving, respectively, the
arithmetic wellbeing and geometric wellbeing. Both means are unweighted, i.e. in both
means, the four components contribute equally to the final value. However, the value of
the geometric wellbeing is more strongly affected by those physiological variables that have
values close to the critical value of zero – which is also and fatal limit for energy and in-
tegrity – and that, for this reason, can be considered the most pressing. We also calculate
the more broadly used arithmetic wellbeing because it gives a more familiar and intuitive
way of calculating the average, since it gives the “middle” value.

Applying these metrics to our experimental data, the mean values of each wellbeing
metric over all the runs in each condition are shown in Table 2 (second and third columns).
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In both the arithmetic and geometric cases, these values were calculated in three steps.
First, in each run, in each of the conditions, we calculated the wellbeing of the robot at
each “time step” (each point in time for which data was collected). Second, we calculated
the mean wellbeing over the lifetime of the robot in each run (twenty runs per condition,
sixty in total). Finally, we calculated the overall mean for each condition as the mean of
the twenty “lifetime means” (one per run) from the previous step. The mean values of the
geometric wellbeing for each run are shown in Figure 5.

There was a statistically significant difference for the arithmetic wellbeing between
conditions (ANOVA, p = 0.020), with Tukey HSD post-hoc analysis showing that condi-
tion 3 (highly unrealistic target values) differed from condition 2 (mildly unrealistic target)
(p < 0.03), but no statistically significant differences between other pairs of conditions.
Turning now to the geometric wellbeing, there was again a statistically significant differ-
ence between the different categories (ANOVA, p = 2.5 × 10−4). In this case, Tukey HSD
post-hoc analysis showed that condition 3 (highly unrealistic target values) differed from
both condition 1 (p < 0.005) and condition 2 (p < 0.001), while conditions 1 and 2 did not
differ significantly from each other.

The fact that the difference in the geometric wellbeings was statistically more signif-
icant than the difference between the arithmetic wellbeings (both in terms of the p-value
for the ANOVA, and there being a significant difference between conditions 1 and 3) il-
lustrates a desirable property of the geometric wellbeing metric: the larger effect of small
(“critical”) physiological variables on the overall value. This means that the geometric well-
being is strongly affected by those variables with large errors, reflecting more accurately the
significance of poorly maintained variables. Conversely, for the arithmetic wellbeing one
well-maintained variable can cancel out the effect of a poorly-maintained variable, so in an
extreme case, a robot could maintain one variable well, but die quickly due to neglecting a
survival-related variable, and still have a high arithmetic wellbeing over its lifetime.

In summary, as expected, a highly unrealistic target value (condition 3) is disadvanta-
geous in that it results in a lower geometric wellbeing than either the realistic target value
(condition 1) or the mildly unrealistic target value (condition 2). However, contrary to what
we would expect, a mildly unrealistic target value (condition 2) is not disadvantageous
compared to the realistic target value (condition 1): the trend, although not statistically
significant, is that our chosen mildly unrealistic target value results in a higher mean well-
being than a realistic target value, and so may be advantageous, as measured these metrics.
This can be viewed as an advantage of a more cautious decision-making strategy for the
management of the integument variables: for the save value of integument the motivation
to groom is higher. Even if the advantage of condition 2 does not hold true in further exper-
iments, our results indicate a nonlinear response of the wellbeing metrics to the changing
perception of the target value.

Physiological Balance/Variance of the Physiological Variables We calculated the “physiolog-
ical balance” as the variance of the four physiological variables at each “point in time”
(i.e. the variance of the four values at each sampling time, rather than for the entire series
of values for each individual variable). Intuitively, this gives a measure of whether, at that
point in time, the robot has managed the physiological variables evenly – the four variables
have similar values, so the balance (their variance) is low – or whether the robot has kept
some variables high while allowing others to fall – the four variables have a wide range of
values, so the balance (their variance) is high. A high value can be thought of as a “poorly
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Figure 5. Experimental results. The means of the robot’s geometric wellbeing over the life-
time of each run. Larger values indicate better maintained physiological variables. Red crosses
indicate runs in which the robot died.
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Figure 6. Experimental results. The means of the variance of the robot’s physiological vari-
ables (which can be thought of as a measure of robot’s “physiological balance”) over the lifetime
of each run. Smaller values indicate better balance between the difference physiological vari-
ables. Red crosses indicate runs in which the robot died.
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balanced” management of the four physiological variables, although in some scenarios it
may be advantageous, e.g. it might be a good strategy for the robot to increase the value of
one variable when resources are abundant, if it is likely that the relevant resource will be
scarce in the future.

Applying this metric to our experimental data, we calculated the physiological bal-
ance in a three-step process. First, in each run in each condition, we calculated the physi-
ological balance at each “time step” (each point in time at which data was collected). Sec-
ond, we calculated the mean physiological balance over the lifetime of the robot in each run
(twenty runs per condition, sixty in total; these values are shown in Figure 6). Finally, we
calculated the overall mean for each condition as the mean of the twenty “lifetime means”
(one per run) from the previous step. These values are shown in Table 2 (fourth column).

There was a statistically significant difference between conditions (ANOVA, p <

1 × 10−6) with Tukey HSD post-hoc analysis showing that condition 3 (highly unrealis-
tic target values) differed from the other two conditions (p < 0.001), although there was no
statistically significant difference between conditions 1 and 2.

In summary, as with the wellbeing metric, a highly unrealistic target value is disad-
vantageous in terms of physiological balance. However, the chosen mildly unrealistic target
value (condition 2) is not statistically different from the realistic target value (condition 1)
for this metric.

Maintenance of Variables Away from Dangerous Values In order to evaluate how well our
robots kept their physiological variables from falling to dangerous values (near to zero, the
critical limit of the variables), we calculated the percentage of the robots’ lifetime during
which any variable was = 0, ≤ 100, ≤ 200, ≤ 300. These percentages are shown in Figure 7,
and the specific values for a variable = 0 in Table 2 (last column). Here, lower values
(smaller percentages of time) are better since they indicate less time spent with a variable
in the “danger zone” close to the critical limit7.

In summary, as with the wellbeing metrics, a highly unrealistic target value is disad-
vantageous in terms of maintaining the physiological variables above the dangerous val-
ues. However, contrary to what we would expect, the mildly unrealistic target value is not
disadvantageous compared to the realistic target value condition: given our results, it may
be advantageous compared to the realistic target value, in that the physiological variables
were better maintained away from the low values.

Maintenance of Integument Focusing more closely on the maintenance of the integument
variables, we calculated the percentage of the robots’ lifetime during which either of the
two integument variables were higher than the other two physiological variables (“best
maintained”) or lower than the other two physiological variables (“worst maintained”).
These are shown in Figures 8 and 9. Note that since we have two integuments, one side
may be the best maintained, while at the same time the other side is the worst maintained.

7 In fact, the context plays an important role in determining the significance of the fact that a value is close
to its critical limit. For example, if one resource is plentiful, then letting the corresponding physiological
variable fall close to its critical limit is not necessarily a bad thing, since it can easily be increased, and it may
be more adaptive to try to satisfy the other needs if their related resources are less available.
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Figure 7. Experimental results. Percentage of the robot’s lifetime during which the physiolog-
ical variable closest to the critical limit of zero was in four “regions” of the physiological space:
with a value of exactly 0 (the variable with a value of zero here must be an integument variable,
since if it had been one of the survival-related variables, the robot would have been dead), in the
range (0,100] (intuitively “highly critical”), in the range (100,200] (“critical”), and in the range
(200,300] (“danger”). These percentages were calculated by concatenating the lifetimes of the
robots in the twenty runs for each condition, and calculating the percentage of this time during
which the physiological variable that was closest to the critical limit was in each region. The
equal zero percentages correspond to the values in Table 2, last column.

The chart showing the percentage time as the largest physiological variable shows
a trend towards better management of at least one integument. However, this should be
considered in the context of the second chart where there is not a clear trend as to the worst
managed variable. Looking at the evolution of the physiological variables in condition 3,
the robot would often concentrate on grooming one side, at the expense of the other, and
the maintenance of integument metrics reflect this fact.

In our robot model, this concentration on grooming one side is connected with the
perception of the salience of the grooming post. In our implementation, when grooming
is happening, due to the position of the grooming post on one side of the robot, the post
cannot be perceived by the IR sensors on the other side of the robot, and therefore the post
does not provide an incentive stimulus for the motivation to maintain the integument on
the other side of the robot. When the robot has a more realistic (lower) target integument,
the action of grooming one side is more likely to be interrupted, providing more opportu-
nities to switch to the other side.

Balance of behaviors In order to evaluate how the robot divided its time among behaviors,
we used the internally logged data to calculate the amount of its lifetime spent in grooming
and eating, combined over all robots in each condition: Table 2 (fifth and sixth columns).
For its remaining lifetime, the robot was searching for a resource (this does not account
for all the time spent searching, since occasionally the robot would pass over an energy
resource and would eat opportunistically without stopping its search).

As we can see from Table 2, the percentage of time spent grooming increases with
the increased perceived ideal value of the integument in conditions 1 to 3. The percentage
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Figure 8. Experimental results. The percentage of the robot’s lifetime that either of the two
integument variables was the largest valued (i.e. most well maintained) essential variable. Red
crosses indicate runs in which the robot died.
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Figure 9. Experimental results. The percentage of the robot’s lifetime that either of the two in-
tegument variables was the smallest valued (i.e. least well maintained) essential variable (right).
Red crosses indicate runs in which the robot died.
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Table 3. Experimental results. Percentage of time during which each motivation was the high-
est, taken as a percentage of the robots’ combined lifetime (values in brackets: taken as a per-
centage of the time when the robot was searching). (Total percentages may exceed 100%, since if
two motivational values were equal largest, they were counted in both categories.)

Condition Feed Avoid Groom

1 28.7 (20.5) 6.8 (8.0) 67.5 (78.5)
2 26.4 (18.0) 2.7 (1.8) 71.0 (80.3)
3 13.2 (4.8) 0.32 (0.25) 86.5 (95.2)

time eating decreases as the target integument increases, but not as much as the grooming
increases, and there is only a small decrease between conditions 1 and 2. This indicates
that the robots with mildly unrealistic target values are spending less time searching, and
more time executing consummatory behaviors. This may be an indication that there is some
adaptive value in a mildly unrealistic target.

Balance of motivations Since we are considering OC-spectrum disorders, we wanted to
check if our robot had anything analogous to obsessions. In order to evaluate the robots’
“concerns”, we calculated the percentage of the robots’ lifetime during which the motiva-
tion with the highest intensity was either to feed, avoid or groom. We additionally calcu-
lated the corresponding percentages of time during which the robot was wandering around
in search of either an energy resource or a grooming post. The results are shown in Table 3.

These figures indicate that all robots spent the majority of their lifetime motivated
to groom (i.e. attending to either of the two integuments, either by active grooming or by
searching for a grooming post), and the smallest part of their lifetime motivated to avoid
objects (since in general the robots did not experience much damage by collisions). As
expected, as the perceived integument target value became more unrealistic through the
three conditions, the amount of time when the highest motivation was to groom increased,
and the amount of time when the other motivations were highest decreased. However,
the change was not smooth across the conditions, with a larger change in motivations to
feed and to groom occurring from Condition 2 to Condition 3. Although this result is pre-
liminary, it suggests a nonlinear response of the internal motivations (“concerns”) to the
different perceived ideal values in the different conditions.

Discussion of Experimental Results

Our clearest result is the difference in the number of deaths in the three runs (Table 2, first
column). Seventeen of the deaths in condition 3 (highly unrealistic target values) occurred
when the robot was grooming, not stopping even though in each case one integument had
reached its maximum value, and the energy was falling to its fatal limit. In contrast, the
robot in condition 1 (realistic targets) would always stop grooming before the integument
reached 1000, enabling it to search for and find an energy resource in time to feed – the
only two deaths in condition 1 could both be partially due to “bad luck” with the robot not
finding an energy resource while searching for one.

In condition 2 (mildly unrealistic target values), with the more moderate perceptual
error, in sixteen of the seventeen runs where the robot survived, at some point in the run,
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one or other integument would reach 1000. However, in this condition, it would eventually
stop grooming.

In order to examine why grooming continues, we consider the three reasons for the
robot to stop grooming:

1. Integument improves sufficiently from grooming, therefore the robot’s motivation to
groom falls sufficiently that the robot acts to satisfy another motivation.

2. Energy falls so low that the motivation to feed (even in the absence of an energy
resource acting as an external cue) exceeds the motivation to groom (even though
this is increased by the presence of an external cue).

3. Integrity falls so low that the motivation to avoid objects prompts the robot to move
away from the grooming post. This could be due to damage incurred during groom-
ing and interaction with the post.

Our results show that in conditions 2 and 3, the distorted perception interfered with
the normal dynamics of decision making, and in particular with the above reasons to stop
grooming. In conditions 2 and 3 we see from our data that the first reason to stop grooming
was made less likely compared to condition 1, since there were cases where an integument
reached its maximum value and the robot did not stop grooming, and it was only the con-
tinuing fall in the other variables (increasing the corresponding motivation) that caused the
robot to move away. Additionally, in condition 3 (highly unrealistic targets), the second
reason to stop grooming was also less likely, since there were cases where the energy fell all
the way to zero, and even with maximum integument value, the motivation to groom was
still higher than the motivation to feed. In our experimental setup, the rate of damage from
grooming was not sufficiently high for the integrity to fall low enough to prompt the robot
to move away, and therefore we cannot say if reason 3 was still a factor.

Possible Advantages of an Unattainable Target While the highly unrealistic target values
(condition 3) lead to almost inevitable death, examining condition 2 indicates that a mildly
unrealistic target value may confer an advantage to our robot. We can see this in several
of our results, listed below. With this positive perspective on the unachievable targets, we
could characterize them as “idealistic”, rather than “unrealistic”.

Firstly, an advantage of mildly unrealistic target values can be seen in the increased
arithmetic and geometric wellbeings for condition 2 compared to condition 1 (Table 2, sec-
ond and third columns), indicating better overall “health”.

Secondly, if we look at the percentage of lifetime during which our robots had zero
(worse maintained) integument (Table 2, last column), we see that in condition 2, the per-
centage is smaller than for condition 1. In a situation where maintaining integument aids
survival (as is typically the case in animals) this smaller amount of time where the value
of an integument was zero represents an advantage. We see the same advantage (reduced
times for condition 2) in considering the percentage of time that any of the physiological
variables were below particular values (Figure 7). The high values for condition 3 reflect
that the robot would typically neglect one integument while focusing on the other. How-
ever, we are cautious about drawing conclusions from this difference in condition 3, since
it may be the shorter lifetimes in condition 3 that make the percentage of lifetime larger.
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Thirdly, we can look at the balance between the time spent grooming and the time
spent feeding (Table 2, fifth and sixth columns). Comparing condition 2 to condition 1,
the percentage of time spent grooming increases by a moderate amount (from 34.5 to 39.4)
as expected, but while the time spent feeding does decrease, it does so by only a small
amount (from 21.3 to 20.6). This can viewed as due to increased persistence of the consum-
matory grooming behavior making more use of the resource when it is available. Rather
than the time eating, it is principally the time spent searching that is reduced by the in-
creased grooming.

Fourthly, the relatively small penalty that we have observed above for increasing the
target value in condition 2 is also apparent in the small increase in variance of the essential
variables (Table 2, fourth column, and Figure 6) indicating that the physiological balance is
minimally affected.

It should be noted that none of these differences between condition 1 and 2 was found
to be statistically significant, which is not unexpected since the value of 1100 was not chosen
for the purposes of testing an improved performance in the robot compared to condition 1
(there might be some target value either above or below 1100 where the improved perfor-
mance is more marked). However, these different lines of evidence all point to advantages
of a target value greater than 1000. This question of advantages of a mildly unrealistic value
is, therefore, a hypothesis for future research. It may be the case that the optimal value is
somewhere between 1000 and 1100, the exact value depending on the metric chosen and
the environment, as well as other variables. Such potential advantages of mildly unrealis-
tic target values also contribute to the debate about possible evolutionary origins of OCD
(Glass, 2012).

Computed Threshold for Unstoppable Grooming Finally, mathematical analysis of the al-
gorithm used to compute the intensity of the robot’s motivations allows us to calculate
a theoretical threshold for the perceived target integument value, above which grooming
would become unstoppable: a perceived target integument value that results in a groom-
ing behavior that will not be stopped by the motivation to feed. The value is calculated as
follows.

First, we need to deduce what the intensity of the motivation to groom is when the
grooming behavior continues indefinitely. To do this, let us consider a situation with per-
fect integument (=1000). In this situation, taking equation 1, in condition 1 the motivation
to groom is zero, in condition 2 it ranges from 100 to 600 (depending on the size of the cue),
and in condition 3 it can range from 200 to 1200. In this calculation, in which we are con-
sidering the general case of an arbitrary target value, our experimental data justifies the use
of the maximum value for the cue to groom. Examining our data, we see that, on the occa-
sions when integument reaches its maximum value, the maximum values for motivational
intensity are common; hence, the cue in equation 1 must also be at its maximum value.

In considering the competition between the motivations to groom and to feed whilst
grooming is ongoing, we will assume that there is no energy resource detected (this as-
sumption is realistic in our environment due to the separation of the resources and the
short range of the robot’s sensors). Therefore, by equation 1, the intensity of the motivation
to feed is equal to the energy deficit, and thus reaches a maximum value of 1000. Hence, we
seek the target value T for integument that would give a motivational intensity greater than
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1000 for a maximum cue (100) and perfect integument (1000). Substituting from equation 1:

motivationgroom ≥ motivationfeed

(T − 1000) + 100 × α × (T − 1000) ≥ 1000

Solving for T with our choice of α = 0.05, we get a minimum value of T = 1166.7, and
for target integument values above this, our robot will be very unlikely to stop grooming
once started. This is in agreement with our experimental results, where in condition 3 our
perceived target value (1200) is greater than T, and the robot was highly likely to die from
lack of energy while grooming.

Larger values of α would result in values of T closer to 1000; therefore, from this
calculation, we can predict that smaller errors in the perceived target value would result in
pathological behavior.

ROBOT MODEL DESIGN PROCESS: POST-DEVELOPMENT STAGES

Evaluation of the Robot Model (Stage 7)

After assessing the model through analysis of the experimental results, we now expose
the robot model and its underlying theoretical model to criticism in order to evaluate the
quality of the model and, in subsequent stages, whether it is of clinical use and how to
improve it in the next iteration of our design process.

In order to evaluate our robot and its interaction as a model of an OC-spectrum disor-
der, we consider four criteria based on their use to evaluate animal models: face validity, con-
struct validity, predictive validity and reliability (Geyer & Markou, 2000; Lewis & Cañamero,
2017; van der Staay, 2006).

Face Validity Face validity refers to the descriptive similarity (van der Staay et al., 2009)
or “phenomenological” similarity (Willner, 1986) between the robot model and specific fea-
tures of the phenomenon that is being modeled, in this case, OC-spectrum disorders. This
similarity would concern, for example, a specific symptom or a behavioral dysfunction ob-
served in both the patient and the robot model, and is not related to the experiential quality
that the term “phenomenological” has in philosophy (in the phenomenological tradition).
Therefore, the robot behavior should resemble the OC-spectrum disorders being modeled
by showing features of the disorders, and not showing features that are not seen in the
disorders.

Our results show that we achieved high face validity within the scope of our model,
focused on compulsions and obsessions: the self-grooming behavior was executed for long
periods in conditions 2 and 3, and itself is related to OC-spectrum conditions TTM and
PSP. The continuation of the grooming behavior beyond the point where the condition 1
robot would have stopped, can be viewed as perfectionism – a characteristic of several OC-
spectrum and related disorders (OCD, TTD, body dysmorphic disorder, OCPD) (Fineberg
et al., 2015; Fineberg, Sharma, Sivakumaran, Sahakian, & Chamberlain, 2007; Pélissier &
O’Connor, 2004). Hence, our work provides experimental support for the theoretical claims
about Pitman’s model being able to generate persistent repetitive behavior – i.e. that Pit-
man’s model can generate behavior with face validity.
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Our model also shows face validity with respect to the sense of “incompleteness” – an
inner sense of imperfection, or the perception that actions or motivations have been incom-
pletely achieved (Hellriegel, Barber, Wikramanayake, A. Fineberg, & Mandy, 2016; Pitman,
1987; Summerfeldt, 2004; Wahl, Salkovskis, & Cotter, 2008) – which is widely viewed as a
key aspect of OCD and can be linked with our persistent internally sensed error. In our
motivation-based architecture, the motivational systems are goal-oriented embodied sen-
sorimotor loops, and in the pathological case the perceived need is never satiated, even if
an outside observer would say that the goal – grooming to improve integument – has been
achieved. In other words, in the pathological case, goal-oriented behavior is never com-
plete because the perceived need is never satiated, and therefore the corrective behavior
continues even if the error of the physiological variable has actually been corrected.

In addition, considering the results from our experiments regarding maintenance of
integument, the concentration of the robot on grooming one side, even to the neglect of the
other side, bears a potential phenomenological similarity with PSP, in which, in some cases,
a person may concentrate their skin picking in one place, causing skin lesions.

Our model does not yet include other characteristics of OCD, such as additional non-
functional ritual behaviors (Amitai et al., 2017; Eilam, Zor, Fineberg, & Hermesh, 2012) or
indecision aspects (Sachdev & Malhi, 2005) that can occur in OCD and TTM. At its present
level of development, our model lacks some key mechanisms hypothesized to be behind
such non-functional ritual behaviors. For example, our robot has no learning capability, and
therefore if the development of non-functional rituals is, as some theorize (Eilam, 2017), due
to a disrupted behavior learning process, there is no opportunity the robot to develop such
learned rituals. Similarly, indecision is theorized as resulting from an inability to choose
between strong competing goals (Pitman, 1987). However, our current model has limited
capacity for such conflict, because in the experimental setup presented here, only one re-
source (and hence only one cue for action) would be detectable by the robot’s short-range
sensors, so such competition would be unlikely.

Adding further complexity would allow us to produce such non-functional ritual be-
haviors using different mechanisms such as those mentioned above, and to compare exper-
imentally these different hypotheses.

In summary, although our robot’s behavior does not exactly match an OC-spectrum
condition, it exhibits those aspects that we would expect, given the scope and complexity
of our model. A simple model like ours also allows for an incremental investigation of the
behavior, in which different aspects of the condition are the result of specific additions to
the model.

Construct Validity Construct validity indicates the degree of similarity between the under-
lying mechanisms of the model and of the condition (Epstein, Preston, Stewart, & Shaham,
2006). In the context of animal models, Joel (2006) specifies that the underlying mechanisms
for construct validity may be either physiological or psychological. According to van der
Staay et al. (2009), construct validity reflects the “soundness of the theoretical rationale”. In
our robot model, we don’t directly model psychological constructs, and we see them as be-
ing more related to face validity (e.g. the sense of incompleteness discussed in the previous
section).
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When talking about underlying mechanisms, animal models have tended to focus
on specific elements, such as the involvement of specific brain areas, receptors, chemicals
or genes (Camilla d’Angelo et al., 2014, Table 1). Construct validity in this case is then
based on finding specific mechanisms underlying a phenomenon (e.g. symptoms) in the
animal model and the human condition. Such a view of construct validity might be crit-
ically questioned by approaches that emphasize species-specific features and differences,
such as models grounded in ethology.

Such a view of construct validity also implies that the idea of robot models hav-
ing construct validity might be problematic, and questioned on various grounds. For ex-
ample, the fact that robots and biological systems are made of different matter, or that
the models and algorithms implemented in robots are simplifications of biological con-
structs. However, what critics consider as weaknesses of these models can also be consid-
ered as strengths. The fact that robot models are simplifications allows us to capture key
selected structural, functional, or dynamics elements for a focused, rigorous investigation.
The adoption of a cybernetics perspective that focuses on interaction dynamics, processes
and general principles, also means that we can model aspects of underlying physiological
mechanisms relevant to OCD that are more general than the specific types of underlying
mechanism that animal models have focused on; for example, we can implement processes
that model effects on perception that may be hypothesized to involve specific chemicals,
without having to model the specific chemicals themselves. In addition, in robot models,
mechanisms underlying a phenomenon can be modeled at different levels of granularity
from different theoretical perspectives. These complementary constructs, models and levels
could be experimentally tested and compared, bridging gaps across levels and conceptual
perspectives, which is a crucial issue in cross-disciplinary and translational research.

From a conceptual perspective, construct validity for our robot model would be linked
to the construct validity of the cybernetic and signal attenuation models of OCD, since the
underlying mechanisms that we use to model OCD are closely related to the mechanism
they postulate. In all of the three models (the robot model and the two conceptual models),
the emphasis is on the dynamics of interaction among the elements of a regulatory system,
rather than than attempting to locate the problem in and modeling specific brain areas or
specific genes. All these models share the use of cybernetics notions, and conceive of OCD
as a disorder in the decision making process, in particular the presence of a high error signal
that cannot be eliminated by behavioral output. One of the causes that Pitman proposes for
this persistent high error signal is an intrinsic comparator defect, and our pathological case
is generated by a fault in the robot’s comparator system that gives rise to an error signal
that cannot be eliminated through the robot’s behavior. In terms of the signal attenuation
model, the robot’s behavior does not result in feedback as to the success of the behavior
since the error signal remains high, so the behavior continues.

Whereas the signal attenuation model has received more attention and has provided
more examples of construct validity, we have found little direct investigation of Pitman’s
model as it applies to humans with OC-spectrum disorders; it thus remains largely theo-
retical. At this early stage of our research, we can therefore only claim limited and indirect
construct validity for our robot model.

Robot models that we have used in previous work, based on similar motivational
architectures, have included elements that could allow us to link to anxiety, perception of
harm or an excessive reliance on habits (as opposed to instrumental acts), all of which have
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been the basis of conceptual models of OCD. This could potentially allow us to expand the
construct validity of our model in relation to other theoretical models.

Reliability An animal or robot model is said to be reliable if the experimental outputs
are reproducible (in the sense that the exact experiments can be reproduced, possibly by
different experimenters, producing the same results) and extended replications can be run
(e.g. conceptual replications, in which the same underlying concepts can be tested in differ-
ent ways).

As a robot model with an explicitly programmed controller and a highly controlled
environment, we would expect the reliability of our model to be high (highly reproducible)
compared to animal models. Indeed, with relatively few runs, we obtained statistically
significant results.

Predictive Validity Predictive validity indicates that the behavior of the robot model can
be used to make reliable predictions about the condition being modeled. A particularly
important aspect of this is that the model can be used to make predictions about outcomes
in the human condition, and which interventions will, or will not, work with some degree
of accuracy.

This aspect of predictive validity, highly important for clinical research purposes, is
currently lacking in our model. In our experiments we did not investigate any “treatments”,
and at this early stage in the development of the model, we could expect only limited pre-
dictive validity. However, this is an important point to be developed in future work, so that
our experiments can inform future clinical research.

Is the Robot Model Sufficiently Advanced to be of Clinical Use? (Decision Point 8)

We consider if our model might be sufficiently advanced for clinical use. If the model was
sufficiently advanced, then we would move to Stage 10 in our design process; otherwise,
we need to ask if the results so far indicate if there is a potential for improvement or not
(see Decision Point 9 below).

Strictly speaking, at this point, the answer is that our model is not yet sufficiently
advanced for clinical use. However, we already have suggestions for potential avenues to
clinical use. Even at the current stage of development, the robot could be used as a working
model to help OCD patients understand their condition, and reduce negative feelings about
it. For example, seeing how compulsive behavior in the robot results from the perception
of a high persistent error that is not corrected through behavior, can help them understand,
and feel relieved, that similar behavior in them may be the result of a processing error,
rather than their often held assumption that they are “morally wrong”, which can be very
emotionally disturbing for them. Although, to our knowledge, robots have not been used
in the treatment of OC-spectrum disorders, they have been used as therapeutic tools in
other areas, for example in autism spectrum disorder (ASD) (see Diehl, Schmitt, Villano,
and Crowell (2012), Pennisi et al. (2016) for reviews). However, our proposed use would
differ significantly from this other robots, since they are tools to be used in therapy, mostly
as stimuli for interaction, but they do are not models of the condition (they do not “have”
the condition) whereas our robot is a model (it “has” an OC-spectrum disorder) that we also
aim to use as a tool. A closer match for our proposed use would be to our own robot Robin,
which is controlled by a related software architecture and includes a model of diabetes.
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Robin was designed as a tool to support diabetes education and management in children
with diabetes (L. Cañamero & Lewis, 2016), focusing particularly on affective elements of
diabetes self-management (Lewis & Cañamero, 2014).

Do the results so far indicate the potential for improvement? (Decision Point 9)

At this stage, we need to ask if the results so far indicate if there is a potential for improve-
ment, particularly with respect to our evaluation criteria, and in the direction of clinical
relevance. Let us thus assess potential improvements to our model in the direction of clini-
cal applications.

One of the main treatments for OCD is exposure and response prevention (ERP),
which involves habituation to the urges to perform compulsions, resulting in the compul-
sions being extinguished (Storch & Merlo, 2006). Currently in our model, while we could
prevent the robot from grooming, there is no adaptive capability in its controller that would
make this change its future behavior. Both this and our model’s lack of capability neces-
sary to develop non-functional rituals point to a direction for future research: introducing
adaptation in its behavior. This could be done, for example, by making reference values sus-
ceptible to change (modulation) through external environmental factors, such as exposure
“treatments”; by adding receptors for the internal signals that could in turn be modulated
by long-term signal strength, allowing reinforcement or habituation of behaviors (Lones,
Lewis, & Cañamero, 2018); or by adding a capability to inhibit behaviors thus separating
obsessions and compulsions. Such additions would be aimed at improving the model’s
face validity (non-functional behaviors) and predictive validity (potential treatments) and
hence improving its clinical relevance.

Allowing the robot to adapt and respond to treatment in this way may also provide
another avenue to clinical application. Showing the working robot model to patients, as
in the previous section, but in this case, also showing the patient the robot’s improvement
after applying therapy to the robot, might help them to understand and accept the often
stressful ERP treatment, in which they are exposed to the triggers for their compulsions.

Accept the robot model for use in clinical studies (Stage 10)

In the case that the robot model was sufficiently advanced for clinical trials (Decision Point
8 above) we would move the Stage 10: “Accept the (improved) robot model for use in
clinical studies”. This contrasts with the process so far, which has concentrated on model
development, more in the domain of robotics research. The details of this stage would
depend on the proposed clinical research. One possible route would be to investigate po-
tential treatments by manipulating targeted elements of the model in different ways, either
internally in the robot (e.g. by amplifying particular internal signals where problems have
been hypothesized in humans), or externally, in the environment (e.g. by exposing the robot
to problem situations in order to analyze whether and how it adapts). If adjusting an el-
ement of the robot model reduces symptoms in the robot, then the analogous adjustment
in human patients could be investigated as potential targets for intervention. We expect
that, initially, such applications of the robot model would result in very broad targets for
intervention, but as the robot model is refined, these predictions could also be refined.

In any case, even as more clinically-focused research begins, development of the robot
model would continue, following the process described in this paper. However, feedback
from the clinical researchers could be brought to different stages of the robot model devel-
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opment process. For example, phenotypical targets in the selection stage (Stage 3) could be
drawn from observations in human subjects in the clinical studies, or from elements that
are theorized as potential pharmaceutical targets. As another example, the design of robot
experiments (Stage 6) could be done with the design of corresponding clinical studies in
mind.

Is further refinement of the robot model required? (Decision Point 11)

This decision point is similar to Decision Point 9 above, with the difference that, in point
9, the robot model has not yet been considered sufficiently advanced for clinical research.
Consequently, if further model development was not possible, then the robot model would
be rejected as inadequate for clinical use, although it may still shed light on the underlying
theoretical model used as the basis for the robot model. In contrast, at Decision Point 11,
the model is already considered sufficiently advanced for some clinical research, and this
research can potentially continue even as model development stops.

Induction Stage (Stage 12)

Having given some indication of how we can refine our model, we now reach the Induc-
tion stage. Here we use the knowledge gained from the Evaluation stage to refine our
assumptions and definitions, both those identified at the Consensus stage, and any implicit
assumptions that we had made and not identified. In our case, we see that we should think
carefully about the different properties of what we have called variously a “target”, “ref-
erence” or perceived “ideal” value, and the generation of the error signal, and what the
range of adaptive values might be. Specifically, a “good” reference value for the compara-
tor mechanism for a cybernetic model may not be one that is achievable, and an error signal
that can never be reduced to zero may not be an indication of a pathology.

While in our case, the Induction stage has shed light on an underlying assumption
of the cybernetic model, and hence is relevant to research into both conceptual and robot
models, the induction stage may also re-evaluate the assumptions made about the clinical
aspects of the model. For example, the nature of the phenotypes might be reconsidered if
the behavior of the robot deviated in some unexpected way from the clinical description,
perhaps by showing additional behaviors or internal states. These unexpected observations
could indicate either that the model was in error, or that the clinical description of the
condition was incomplete.

CONCLUSIONS

In this paper, we have discussed and illustrated the use of robot models to complement
existing computational and animal models in psychiatric research. We have described a
design process for robot models of mental disorders stemming from animal models, and il-
lustrated this design process with the initial development of a robot model for OC-spectrum
disorders, including initial experiments and results. Our model builds on our work on
architectures for decision making in autonomous robots, and also on existing models of
OCD – specifically the cybernetic model and the signal attenuation model – to link with
existing research. The design process has also given directions for future work with a view
to the model’s clinical relevance.

Although this initial stage of development only models the most basic aspects of such
disorders, and does not approach the complexity of OCD in humans, our results already
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serve to shed light on aspects of the theoretical model on which they are based that are not
obvious simply from consideration of the model: specifically the non-linear relationship
between the perceived target value and the onset of pathological behavior, and the possible
advantage of a mildly unrealistic target. This result might have implications in clinical
research and treatment, for example by helping us understand why some members of a
family develop OCD while others do not.

This initial development work on a robot model has also generated a hypothesis for
future research: that mildly unrealistic target values may provide some advantages for our
robot. Such potential advantages may also be explored in humans, in animal models and
in cybernetic systems in general.

To conclude, we would like to add some remarks on the nature of robot models and
their relation to other models relevant to computational psychiatry.

As models, robots present very different features to other types of models such as
computational models or simulated environments. To characterize the main differences
between computational and robot models, we find it useful to think of the distinction that
Herbert Simon, one of the founders of Artificial Intelligence, drew between types of models
in his book “The Sciences of the Artificial” (Simon, 1981), when trying to characterize the
meaning of the terms “artificial” and “simulation”. Simon distinguished between models
that simulate a system by predicting its behavior and deriving consequences from premises
(e.g., a system for weather prediction), and models that are a simulation of a system by em-
bodying a few key features of that system and being put to behave in the same environment,
governed by the same laws (e.g., a satellite is not a simulation of a moon, it is a moon, the
“real thing”). While computational models fall in the first category, embodied autonomous
robot models, such as ours, fall in the second. According to Simon, the first type of models
are appropriate for achieving understanding of systems with many parameters, for which
it is difficult to predict behavior without complex or extensive calculations, whereas the
second type is most useful as a source of new knowledge to understand, by synthesis, the
behavior of poorly understood systems. The choice between one or the other type of model
will depend on the type of research questions under investigation.

Some would perhaps argue that a simulated agent in a simulated environment might
also belong to the second type of models and might be preferable to robot situated in the
physical world because replicability of experiments can be higher. We do not think such
type of models belong to the second category, but to the first. The complexity (includ-
ing important features such as unpredictability and “noise”) of physical world, a physical
agent, and their interactions, cannot be fully simulated (Brooks, 1991b; Pfeifer & Scheier,
2001). In a simulated environment, we can only see the consequences of the features that
we have included in it, even if we simulate some noise and unpredictability; however, in
the real world, unexpected noise and unpredictable elements that we had not anticipated
might give rise to significant behavior. This is the case in both robots and humans. As
a “trade-off”, these features might reduce exact replicability, although replicability is still
very high when using robots and, if data are properly logged during experiments, it is often
possible to analyze when unexpected behavior might be due to noise. In the other direction,
this “trade-off” means that the easier replicability of experiments using a simulated agent
in a simulated environment comes at the cost of an impoverished model that might leave
out features that had not been anticipated by the designer, but might end up being sig-
nificant. Therefore, in addition to the same considerations made above regarding the two
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different types of simulations distinguished by Simon, the choice between a physical robot
situated in the physical (and social) environment, and a simulated agent in a simulated
environment, also depends on how important features such as dynamics of interaction or
embodied sensorimotor loops, are to address the question under investigation.
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Damasio, A. (2010). Self comes to mind: Constructing the conscious
brain. London: William Heinemann.

Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The
clinical use of robots for individuals with autism spectrum dis-
orders: A critical review. Research in Autism Spectrum Disorders,
6(1), 249–262. doi: 10.1016/j.rasd.2011.05.006

Eilam, D. (2017). From an animal model to human patients: An
example of a translational study on obsessive compulsive dis-
order (OCD). Neuroscience & Biobehavioral Reviews, 76, 67–76.
doi: 10.1016/j.neubiorev.2016.12.034

Eilam, D., Zor, R., Fineberg, N., & Hermesh, H. (2012). Animal be-
havior as a conceptual framework for the study of obsessive–
compulsive disorder (OCD). Behavioural Brain Research, 231(2),
289–296. (Quo Vadis Behavioral Neuroscience: A Festschrift
for Philip Teitelbaum) doi: 10.1016/j.bbr.2011.06.033

Epstein, D. H., Preston, K. L., Stewart, J., & Shaham, Y. (2006). To-
ward a model of drug relapse: an assessment of the validity of
the reinstatement procedure. Psychopharmacology, 189(1), 1–16.
doi: 10.1007/s00213-006-0529-6

Fineberg, N. A., Apergis-Schoute, A. M., Vaghi, M. M., Banca, P.,
Gillan, C. M., Voon, V., . . . Robbins, T. W. (2018). Mapping
compulsivity in the DSM-5 obsessive compulsive and related
disorders: Cognitive domains, neural circuitry, and treatment.
International Journal of Neuropsychopharmacology, 21(1), 42–58.
doi: 10.1093/ijnp/pyx088

Fineberg, N. A., Chamberlain, S. R., Hollander, E., Boulougouris,
V., & Robbins, T. W. (2011). Translational approaches to
obsessive-compulsive disorder: From animal models to clini-
cal treatment. British Journal of Pharmacology, 164(4), 1044–1061.
doi: 10.1111/j.1476-5381.2011.01422.x

Fineberg, N. A., Day, G. A., de Koenigswarter, N., Reghu-
nandanan, S., Kolli, S., Jefferies-Sewell, K., . . . Laws, K. R.
(2015). The neuropsychology of obsessive-compulsive person-
ality disorder: a new analysis. CNS Spectrums, 20(5), 490–499.
doi: 10.1017/S1092852914000662

Fineberg, N. A., Reghunandanan, S., Kolli, S., & Atmaca, M.
(2014). Obsessive-compulsive (anankastic) personality disor-
der: Toward the ICD-11 classification. Revista Brasileira de
Psiquiatria, 36, 40–50. doi: 10.1590/1516-4446-2013-1282

Fineberg, N. A., Sharma, P., Sivakumaran, T., Sahakian, B.,
& Chamberlain, S. (2007). Does obsessive-compulsive
personality disorder belong within the obsessive-compulsive
spectrum? CNS Spectrums, 12(6), 467–482. doi:
10.1017/S1092852900015340

Fish, F., Casey, P., & Kelly, B. (2008). Fish’s clinical psychopathol-
ogy: Signs and symptoms in psychiatry (3rd ed.). London, UK:
Gaskell.

Frijda, N. H. (1986). The emotions. Cambridge, U.K.: Cambridge
University Press.

Geyer, M. A., & Marcou, A. (2002). The role of preclinical mod-
els in the development of psychotropic drugs. In K. L. Davis,
J. T. Coyle, & C. Nemeroff (Eds.), Neuropsychopharmacology: The
fifth generation of progress (pp. 445–455). Philadelphia, PA: Lip-
pincott Williams & Wilkins.

Geyer, M. A., & Markou, A. (2000). Animal models of psychiatric
disorders. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharma-

cology: The fourth generation of progress (pp. 787–798). Philadel-
phia, PA: Lippincott Williams & Wilkins.

Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J.,
Fineberg, N. A., Robbins, T. W., & de Wit, S. (2011). Disruption
in the balance between goal-directed behavior and habit learn-
ing in obsessive-compulsive disorder. American Journal of Psy-
chiatry, 168(7), 718–726. doi: 10.1176/appi.ajp.2011.10071062

Gillan, C. M., & Robbins, T. W. (2014). Goal-directed learning
and obsessive–compulsive disorder. Philosophical Transactions
of the Royal Society of London B: Biological Sciences, 369(1655).
doi: 10.1098/rstb.2013.0475

Glass, D. J. (2012). Evolutionary clinical psychology,
broadly construed: Perspectives on obsessive-compulsive dis-
order. Evolutionary Behavioral Sciences, 6(3), 292–308. doi:
10.1037/h0099250

Hellriegel, J., Barber, C., Wikramanayake, M., A. Fineberg, N., &
Mandy, W. (2016). Is “not just right experience” (NJRE) in
obsessive-compulsive disorder part of an autistic phenotype?
CNS Spectrums, 22(1), 1–10. doi: 10.1017/S1092852916000511

Hezel, D. M., Riemann, B. C., & McNally, R. J. (2012). Emotional
distress and pain tolerance in obsessive-compulsive disorder.
Journal of Behavior Therapy and Experimental Psychiatry, 43(4),
981–987. doi: 10.1016/j.jbtep.2012.03.005

Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Com-
putational psychiatry as a bridge from neuroscience to clin-
ical applications. Nature Neuroscience, 19(3), 404–413. doi:
10.1038/nn.4238

Joel, D. (2006). Current animal models of obsessive com-
pulsive disorder: A critical review. Progress in Neuro-
Psychopharmacology and Biological Psychiatry, 30(3), 374–388.
doi: 10.1016/j.pnpbp.2005.11.006

Lehner, P. N. (1996). Handbook of ethological methods (2nd ed.).
Cambridge, U.K.: Cambridge University Press.

Lewis, M., & Cañamero, L. (2014). An affective autonomous
robot toddler to support the development of self-efficacy in
diabetic children. In Proc. 23rd annual IEEE international sym-
posium on robot and human interactive communication (IEEE RO-
MAN 2014) (pp. 359–364). Edinburgh: IEEE. doi: 10.1109/RO-
MAN.2014.6926279
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