
Applying Caching to Two-level Adaptive Branch Prediction

Colin Egan, Gordon B. Steven Won Shim Lucian Vintan
University of Hertfordshire
Hatfield, Hertfordshire, U.K. Seoul, Korea Sibiu-2400, Romania

email: C.Eean($herts.ac.uk wonshim(dduck. snut.ac.kr vintanCics.sibiu.ro

Seoul National Univ. of Technology University of Sibiu

ALlO 9AB 13 9-743

Abstract

During the 1990s Two-level Adaptive Branch
Predictors were developed to meet the requirement for
accurate branch prediction in high-performance
superscalar processors. However, while two-level
adaptive predictors achieve very high prediction rates,
they tend to be very costly. In particular, the size of
the second level Pattern History Table (PHT) increases
exponentially as a function of history register length.
Furthermore. many of the prediction counters in a PHT
are never used; predictions are frequently generated
from non-initialised counters and several branches
may update the same counter, resulting in interference
between branch predictions. In this paper, we propose
a Cached Correlated Two-Level Branch Predictor in
which the PHT is replaced by a Prediction Cache.
Unlike a PHT. the Prediction Cache saves only
relevant branch prediction information. Furthermore,
predictions are never based on uninitialised entries
and interference between branches is eliminated. We
simulate three versions of our Cached Correlated
Brunch Predictors. The first predictor is bused on
global branch history information while the second is
based on local branch history information. The third
predictor exploits the ability of cached predictors to
combine both global and local history information in a
single predictor. We demonstrate that our predictors
deliver higher prediction accuracy than conventional
predictors at a significantly lower cost.

Key Words

Two-level Adaptive Branch Predictors, Cached
Correlated Branch Predictors, Prediction Cache.

1. Introduction

High-performance processors typically use
dynamic branch prediction to avoid pipeline stalls
whenever a branch is taken. A traditional Branch Target
Cache (BTC), based on the previous history of each
branch, gives a prediction accuracy of between 80 to

More recently, the advent of superscalar processors
95% [I] .

has given renewed impetus to branch prediction research.
On a scalar processor, an incorrect branch prediction
costs only a small number of processor cycles and only
one or two instructions are lost. In contrast, in a
superscalar processor many cycles may elapse before a
mispredicted branch instruction is finally resolved.
Furthermore, each cycle lost now represents multiple
lost instructions. As a result branch mispredictions are
far more costly on a superscalar processor.

This renewed interest in branch prediction led to a
dramatic breakthrough in the 1990s with the
development of Two -Level Adaptive Branch Predictors
by Yale Patt’s group [2] and by Pan, So and Rahmeh [3].
Although researchers report very high success rates with
two-level adaptive predictors, this success is only
achieved by providing very large arrays of prediction
counters or PHTs (Pattern History Tables). Patt [4]
argues that it will be practical to implement these large
predictors in the early 21st century and suggests that
between 256K bytes and 1024K bytes of the silicon
budget should be devoted to branch prediction. We argue
that such profligate use of silicon area is unlikely to be
cost effective.

Two-level Adaptive Branch Predictors have two
other disadvantages. Firstly, in most practical
implementations each prediction counter may be shared
between several branches. There is therefore
interference between branch predictions. Secondly,
large arrays of prediction counters require extensive
initial training. Furthermore, the amount of training
required increases as additional branch history is
exploited. As a result, training requirements limit the
amount of branch history that can be successfully
exploited.

We have developed a Two-level Branch Predictor
that addresses the three problems of conventional two -
level predictors: cost, interference and initial training.
We have called this novel predictor the Cached
Correlated Branch Predictor. Through a disciplined use
of silicon area, we dramatically reduce the cost of a
Two-level Adaptive Branch Predictor. At the same time,
our predictor outperforms the traditional
implementations. For equal cost models, this
performance advantage is particularly significant.

These advantages are achieved for three reasons.
Firstly, our cached predictor only holds those prediction
counters that are actually used. Secondly, interference

0-7695-1239-9/01 $10.00 0 2001 IEEE
186

http://C.Eean($herts.ac.uk

between branches is eliminated; each branch prediction
is determined solely by historical information related to
the branch being predicted. Thirdly, a simple default
prediction mechanism is included that is initialised after
a single occurrence of each branch. This avoids the high
number of initial mispredictions sustained during the
warm-up phase of conventional two -level predictors and
minimises the impact of misses in the Prediction Cache.

2. Two-level Adaptive Branch Prediction

Two-level branch predictors are usually classified
using a system proposed by Yeh and Patt 121. The six
most common configurations are GAg, GAP, GAS, PAg,
PAp and PAS. The first letter specifies the first-level
mechanism and the last letter the second level, while the
"A" in the middle emphasises the adaptive or dynamic
nature of the predictor. GAg, GAp and GAS rely on
global branch history while PAg, PAp and PAS rely on
local branch history.

GAg uses a single global history register, that
records the outcome of the last k branches encountered,
and a single global PHT containing an array of two-bit
prediction counters. To generate a prediction, the k bit
pattern in the first-level global history register is used to
index the array of prediction counters in the second level
PHT. Each branch prediction seeks to exploit
correlation between the next branch outcome and the
outcome of the k most recently executed branches. The
prediction counter in the PHT and the global history
register are updated as soon as the branch is resolved.
Finally, it should be emphasised that a separate BTC is
still required to provide branch target addresses.

Unfortunately, since all the branches in a GAg
predictor share a common set of prediction counters, the
outcome of one branch can affect the prediction of all
other branches. Although this branch interference limits
the performance, the prediction accuracy improves as the
history register length is increased. At the same time,
the number of counters in the PHT also increases, which
in turn increases both the number of initial
mispredictions and the cost of the PHT. Eventually, the
increased number of initial mispredictions negates the
benefit of additional history register bits and the
prediction accuracy stops improving.

Several researchers have attempted to reduce
interference in the PHT. The Gshare Predictor [5 ,6] , for
example, hashes the PC and history register bits before
accessing the PHT, in an attempt to spread accesses
more evenly throughout the PHT. Alternatively, the
Bimodal Predictor [7] uses twin PHT arrays to decrease
destructive interference between branch predictions and
to maximise positive interference.

GAp was first proposed by Pan et a1 [3] and called
Correlated Branch Prediction. Like GAg, GAp uses a

single history register to record the outcome of the last
k branches executed. However, to reduce the
interference between different branches, a separate per-
address PHT is provided for each branch. Conceptually
in GAP, the PC and the history register are used to index
into an array of PHTs. Although this ideal model
eliminates interference between branches, it leads to an
exceptionally large PHT array. For example, with a 30-
bit PC, Z3' + 2-bit counters are required. In practice, to
limit the size of the predictor, only a limited number of
PHT arrays is provided; each PHT is therefore shared by
a group of PCs with the same least significant address
bits. Since a separate set of PHT counters is provided
for each set of branch addresses, this configuration is
classified as GAS. However, while the size of the PHT
array is significantly reduced, limited branch
interference is reintroduced. As in the case of GAg, a
separate BTC is required to furnish branch target
addresses in both the GAp and GAS configurations.

The Two-Level Adaptive Branch Prediction
mechanism originally proposed by Yeh and Patt in 1991
[8] was later classified as PAg. PAg uses a separate local
history register for each branch, or a per-address history
register, and a single shared global PHT. Each branch
prediction is therefore based entirely on the history of
the branch being predicted. The local history registers
can be integrated into the BTC by adding a history
register field to each entry. Since all branches share a
sifigle PHT, PAg is also characterised by interference
between different branches.

Interference can be reduced in the PAg
configuration by providing multiple PHTs. If we retain
the Per-Address Branch History Table and provide a
separate PHT for each address or a Per-Address PHT we
have the PAp configuration. As in the case of GAP, the
size of the PHT array is excessive, and the initial training
problem is exacerbated. A separate PHT is therefore
usually provided for sets of branches, giving rise to the
PAS configuration.

Both PAg and PAS predictors require two
sequential table accesses, one to the BTC to obtain the
appropriate local history register and a second to the
PHT, to obtain the prediction. However, to achieve high
performance the prediction must be made in one clock
cycle from the time the branch address is known.
Fortunately, the next prediction for each branch can be
determined as soon as the current instance of the branch
is resolved. The next prediction can therefore be
obtained as part of the predictor updating pocess and
cached in the BTC [SI.

3. Cached Correlated Branch Prediction

The high cost of Two-level Adaptive Branch
Predictors is a direct result of the excessive size of the

187

second level PHTs. In a Cached Correlated Predictor
[IO], the second-level table is therefore replaced with a
Prediction Cache, while the first level is unchanged.
Unlike PHTs in conventional two -level predictors, the
number of entries in a Prediction Cache is not a direct
function of the history register length. Instead, the size
of the cache is determined by the number of prediction
counters that are xtually used. Since the Prediction
Cache only needs to store active prediction counters,
most of the entries in a traditional PHT can be discarded.
However, to implement caching, a tag field must be
added to each entry. A Cached Correlated Branch
Predictor will therefore only be cost effective if the cost
of the redundant counters removed from the PHT
exceeds the cost of the added tags.

Two Cached Correlated Branch Predictors are
presented in this section. The first predictor employs a
global history register, while the second employs
multiple local or per-branch history registers. In an
earlier feasibility study [1 I], we presented a Cached
Correlated Branch Predictor that used a fully associative
Prediction Cache. Although the concept of a cached
PHT was successfully demonstrated, a fully associative
Prediction Cache would be too costly to implement in
practice. In contrast, all the Cached Correlated Branch
Predictors, presented in this paper use a set-associative
Prediction Cache that is indexed by hashing the PC with
the history register.

3.1. Global Cached Correlated Predictor

Figure 1 shows a four-way set-associative Global
Cached Correlated Branch Predictor.

Global History Register

Prediction Cache hash

0 1 2 3

I BTC

I I
BTC medictions

hit

pnonty selector

t
actual prediction

Figure 1: A Global Cached Correlated Branch
Predictor.

Each entry in the Prediction Cache consists of a PC
tag, a history register tag, a two-bit prediction counter, a
valid bit and a LRU (Least Recently Used) field. A four-
way set-associative BTC is also provided to furnish the
branch target address. Each BTC entry is augmented with
a two-bit default prediction counter and consists of a
branch target address, a branch address tag, a two bit
prediction counter, a valid bit and a LRU field.

The BTC is accessed using the least significant bits
of the PC, while the Prediction Cache index is obtained
by hashing the PC with the global history register bits.
As long as there is a miss in the BTC, the predictor has
no previous record of the branch and defaults to predict
not taken. Whenever there is a BTC hit a prediction is
attempted. If there is also a hit in the Prediction Cache,
the corresponding two -bit counter from the Prediction
Cache entry is used to generate the prediction. In this
case the prediction is based on the past behaviour of the
branch with the current history register pattern. If,
however, there is a miss in the Prediction Cache, the
prediction is based on the default prediction counter held
in the BTC and is therefore based on the overall past
behaviour of the branch. Once the branch outcome is
known, the relevant saturating counters are updated in
both the Prediction Cache and the BTC. In the case of
misses in either cache, new entries are added using an
LRU replacement algorithm. Finally, the global history
register is updated.

Adding a default prediction counter to each BTC
entry has several advantages. Firstly, the default
predictor is initialised after only one execution of the
branch. In contrast, with a k bit history register, up to 2k
Prediction Cache entries must be initialised for each
branch before the two -level predictor is fully trained.
Adding a default predictor should therefore reduce the
number of initial mispredictions. Secondly, the default
predictor minimises the impact of misses in the
Prediction Cache.

Hybrid predictors [5] also use two or more
predictors to generate each prediction. A hybrid
predictor, however, chooses dynamically between two or
more predictors on the basis of each predictor’s past
success. In contrast, our priority prediction mechanism
uses the Prediction Cache whenever possible, and only
uses the BTC when no other prediction is available.

3.2. Local Cached Correlated Predictor

The Local Cached Correlated Predictor also
replaces the PHT with a Prediction Cache. However
since a history register is now required for every branch,
a local history register field is added to each BTC entry
(Figure 2). As with the Global Cached Correlated
Predictor, a prediction counter is also included in each
BTC entry.

The BTC is accessed using the least significant bits

188

of the PC. On a BTC hit, the history register associated
with the PC is obtained along with a default prediction.
The history register is then hashed with the PC and the
resulting bit pattern is used to access the Prediction
Cache. Whenever possible a prediction counter stored in
the Prediction Cache is used to make a prediction.
However, in the case of a Prediction Cache miss and a hit
in the BTC, the prediction from the BTC is used.

One problem with the local predictor as described
is that two sequential table accesses are required to make
a prediction, one to access the BTC and a second to
access the Prediction Cache. This problem can be
overcome by caching local predictions in the BTC so that
the prediction is available after only one table access. As
soon as the outcome of a branch is known the local
history register and the Prediction Cache are updated. At
this point, the prediction for the next encounter of the
branch is fully determined. The prediction is then saved
in the BTC entry for the branch to allow the next
prediction to be made in one cycle.

PC

BTC

Prediction Cache

Pred Cache

predlctlon Selector

BTC hit

actual predicnon

Figure 2: A Local Cached Correlated predictor.

4. A Combined Global and Local Predictor

Global predictors perform better with some
branches, while local predictors perform better with
others. It is therefore highly desirable to combine both
forms of prediction within a single predictor.
Unfortunately, combining both global and local history
registers within a conventional two-level predictor is
very costly since both the size and cost of the PHTs
increase exponentially as a function of history register
length. For example, consider combining a 16-bit global
history register with a 16-bit local register; the PHT
would require Z3' entries, a prohibitive size.

One possibility, used in the Alloyed Predictor [121,
is to reduce the PHT size by hashing the history register
bits before accessing the PHT. Alloyed Predictors
improve the accuracy of conventional two -level
predictors by over 20% [121. However, the initialisation
problem is not addressed and the hashing exacerbates the
branch interference that is already an undesirable feature
of conventional two -level predictors.

Alternatively, separate global and local predictors
can be combined in a hybrid predictor [5]. Here two
distinct predictors are provided and a further table of
counters is used to dynamically select the most effective
predictor for each branch at run time.

In contrast, it is very easy to combine global and
local history information in a Cached Predictor since
there is no explosive cost increase corresponding to the
exponential growth of the PHT size. Instead, the total
cost of the predictor increases only slowly as a function
of history register length. Firstly, the size of the history
register field in each cache entry must be increased.
Secondly, the total size of the cache must be slowly
increased to accommodate additional entries.

In this paper, we present a combined wrsion of our
Cached Correlated Branch Predictor for the first time
(Figure 3). As in the local predictor, the PC is used to
access the BTC which contains a local history register
and a default prediction counter for each branch. The
local history register is then hashed with the PC and the
global register to obtain the index for the Prediction
Cache. Tag fields in the Prediction Cache ensure that a
hit is only recorded if the PC, local and global history
register all match. Whenever possible the next
prediction is taken from the Prediction Cache. However,
as in our other cached predictors, a default prediction
from the BTC is used whenever there is a miss in the
Prediction Cache and a hit in the BTC.

189

BTC
PC

actual oredicnon

Figure 3: A Combined Cached Correlated Predictor.

5. Prediction Cache Access

We originally used a fully associative Prediction
Cache to test our Cached Correlated Branch Predictor
[I I] . Clearly, a practical branch predictor must use
either a direct mapped cache or a set associative
organisation. However, the detailed organisation of this
cache requires careful consideration.

Both a BTC and an instruction cache are usually
indexed by the least significant bits of the PC. However,
this solution is completely unsatisfactory for a
Prediction Cache. Consider, for example, an 8-way set
associative cache. In the absence of collisions with
other branches, each branch is restricted to only eight
entries. However, if k history re ister bits are used by
the predictor, as many as 2' cache entries may
theoretically be required for each branch. Although most
history register patterns will never occur, a PC indexed
cache will clearly suffer from excessive collisions, even
with modest history register lengths.

A second alternative is to use the history register to
index the Prediction Cache. This solution also has
disadvantages. Firstly, if only a small number of history
register bits is used, only part of the Prediction Cache
will be used. Secondly, when the number of history
register bits exceeds the number of bits in the cache
index, sufficient collisions occur to prevent the
predictor from reaching its full potential.

In general, we found that the most accurate
predictions were obtained when the history register bits
were XORed with the PC bits to form the Prediction
Cache index. A single XOR followed by truncation was
found to be non optimum. Instead, the following hashing

algorithm was adopted. First, the PC was concatenated
with the history register. Second, the resulting bit
pattern was divided into groups that contained the same
number of bits as the required index. Finally, all the
groups were XORed to generate the Prediction Cache
index.

As an example, consider a 16-bit history register
(HR), a 30-bit PC and a Prediction Cache with 4K
entries. A cache index of 12 bits is required. The
following 12-bit groups are therefore XORed to
generate the Prediction cache index:

HR: bits 11-0
PC: bits 9-2; HR: bits 15-12
PC: bits 21-10
PC: bits 31-22

In practice, the most significant bits of the PC
change so infrequently that the final group can be
discarded.

6. Simulation Results

In this section we quantify the performance of our
three Cached Correlated Predictors and compare their
performance and cost with conventional two -level
predictors. Our simulations used a set of eight integer
programs known collectively as the Stanford
benchmarks. Since the programs are shorter than the
SPEC benchmarks, each branch is executed fewer times.
The branches are therefore more difficult to predict and
initial training problems are more acute. A classic BTC
therefore achieves an average prediction accuracy of
only 88.14% with the Stanford benchmarks.

The benchmarks were compiled for the Hatfield
Superscalar Architecture (HSA) [13], a high-
performance multiple-instruction-issue architecture
developed to exploit instruction-level parallelism
through static instruction scheduling. The HSA
instruction-level simulator was then used to generate
instruction traces for our branch prediction simulations.
All the predictors simulated in this paper use a four-way
set-associative BTC with 1K entries; sufficient entries
are always available to minimise BTC misses.

6.1. Conventional Two -level Predictors

For comparative purposes, we first simulated a GAg
predictor, a GAS predictor with 16 sets (GAs(l6)) and a
GAp predictor (Figure 4). The average misprediction
rate initially falls steadily as a function of the history
register length before flattening out at a misprediction
rate of around 9.5%. The best average misprediction rate
of 9.23% is achieved with the GAs(l6) configuration and
26 history register bits. In general, however, there is
little benefit from increasing the history register length

190

beyond 16-bits for GAg and 14-bits for GAsIGAp.
Beyond this point, there is either no benefit from new
correlations or any benefit is negated by the additional
training required in the PHTs.

22
20

5 18

2 16
5 14

?-.

E 12

IO
g 8

6

4

6 8 10 12 14 16 18 20 22 24 26 28 30

History register length (bits)

Figure 4: Conventional Global misprediction rates.

We also simulated conventional PAg, PAS and PAp
predictors (Figure 5). Conventional local predictors
achieve average misprediction rates of around 7.5%,
significantly better than GAg/GAs predictors. The best
conventional local performance of 7.35% is achieved
with a PAp predictor and a 30-bit history register length.
Local predictors are therefore able to benefit from
longer history registers than their global counterparts.

13
I2

I I
-

5

4
6 8 IO 12 14 16 18 20 22 24 26 28 30

History register length (bits)

Figure 5: Conventional Local misprediction rates.

6.2. Global Cached Predictors

The average misprediction rates achieved with a
four-way set-associative version of our Global Cached
Correlated predictors are shown in Figure 6. The number
of entries in the Prediction Cache is varied from 1K to
32K. Initially, the misprediction rate steadily improves
as a function of history register length for all cache

Cache sizes, the prediction rate continues to improve
until a history register length of 26 bits is reached. Not
surprisingly, the Brger the Prediction Cache the better
the misprediction rates. The best misprediction rate of
5.99% is achieved with a 32K entry Prediction Cache
and a 20-bit history register. This represents a 54%
reduction over the best misprediction rate achieved by a
conventional global two -level predictor.

4
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

History register length [bits)

Figure 6: Global Cached Correlated Predictor
misprediction rates.

6.3. Local Cached Predictors

The misprediction rates achieved by our Local
Cached Correlated Predictor are recorded in Figure 7.
The number of entries in the Prediction Cache is varied
between 1K and 32K. Initially the misprediction rate
falls steadily as a function of history register length.
Then as more and more predictions need to be cached,
the larger caches deliver superior prediction rates.
However, no hrther benefit is derived from increasing
the cache size beyond 16K. The best misprediction rate
of 6.28% is achieved with a 16K cache and a 32-bit
history register. This figure is marginally worse than the
best global predictor, but represents a 15% improvement
over the best PAg/PAp configuration.

13

-12
$1 I
$10

.- s 9

s 5

.- E 8

2 7
U

.-

4
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

History register length (bits)

sizes. However, after history register iengths of 12 bits, Figure 7: Local Cached Correlated Predictor
the limited capacity of the 1 K Prediction Cache prevents
further improvement. In contrast, with larger Prediction

misprediction rates.

19 1

6.4. Combined Cached Predictors

The misprediction rates achieved by our combined
global and local cached predictors are given in Figure 8.
In all cases, an equal number of local and global history
register bits is provided. As before the size of cache is
varied between 1K and 32K. This predictor is the only
one that achieves a misprediction rate significantly
below 6%. The lowest misprediction rate of 5.68% is
obtained with a cache size of 32K, 24 global history
register bits and 24 local history bits. This represents a
5.46% improvement over the best Global Cached
Predictor and a 10.56% improvement over the best Local
Cached Predictor. These results demonstrate that a
Cached Correlated Branch Predictor can successfully
exploit both global and local branch correlation within a
single predictor.

I I

10

9

8

7

6

5

4
2 4 6 8 IO 12 I4 16 18 20 22 24 26 28 30

History register length (bits)

Figure 8: Combined Cached Correlated Predictor
misprediction rates.

6.5. Cost Comparisons

predictors with a maximum storage requirement of 250
Kbytes. As can be seen, the 1K Cached Correlated
Predictor is more cost effective than any low-cost
conventional global predictor. Similarly, the 16K
Cached Correlated Branch Predictor outperforms
conventional predictors with comparable cost. Local
Cached Correlated Predictors deliver very similar cost
advantages.

Finally, in Figure 10 we compare the costs of
Combined Cached Predictors with conventional two -
level predictors. Again, the Cached Predictors are more
cost effective. However, in order to achieve
misprediction rates under 6%, the total storage cost of
the predictor must be increased to around 150K bytes.

The most important difference illustrated by Figure
9 and Figure 10 is the sharply contrasting impact on
costs of increasing history register length. Cached
Correlated Predictors can reasonably seek to exploit
additional branch correlation by increasing the history
register length to as much as 30 bits. In contrast, with
conventional two-level predictors storage cost becomes
a major concern with history register lengths in the 12 to
16 bit range.

22

20

3 18 - 2 16

14

E 12
2 p I O
3 8

6

4

0 50 100 150 200 250 300

Cost (Kybtes)

Misprediction rates are only one metric; cost is
also important. For example, the best Global Cached
Correlated predictor requires 87 Kbytes of storage, and
the best Local Cached Correlated Predictor requires
93.75 Kbytes of storage. However, these figures are
completely dwarfed by the staggering 268 gigabytes of
storage required by the best PAp predictor. Table 1
summarises the storage requirements of the Cached
Correlated Predictors simulated in this paper. As can be
seen, the cost of our cached predictors increases linearly
as a function of history register length. In contrast, in
traditional two-level predictors, the size of the PHT
increases exponentially as a function of the history
register length and as a result the total cost also rises
exponentially as a hnction of history register length.
For this reason, cached predictors are cheaper for larger
history register sizes, and are therefore better placed to
exploit additional branch correlation information.

In Figure 9, \h.e compare the performance of global

Figure 9: A comparison of Global predictor
performance as a function of cost.

1 1

4
2 4 6 8 I O 12 14 16 18 20 22 24 26 28 30

History register length (bits)

Figure 10: A comparison of Combined predictor
performance as a function of cost.

192

7. Conclusions

Our simulations demonstrate that our Cached
Correlated Branch Predictors are significantly more
accurate and require less silicon area than conventional
Two-level Adaptive Predictors. Our best global
predictor is 54% better than the best GAS predictor and
our best local predictor is 15% better than the best
PAg/PAp predictor. We ascribe this higher accuracy to
our more disciplined approach. Our predictions are
always based on counters that have been trained using at
least one previous encounter with the branch being
predicted. Furthermore, there is never any interference
between branch predictions.

The higher accuracy is also due to the addition of
default predictors in the BTC. As history register
lengths increase, predictors require an increasing number
of counter initialisations and therefore suffer an
increasing numbers of initial mispredictions. In contrast,
the default counter is initialised after only one execution
of a branch, significantly reducing the number of initial
mispredictions. Furthermore, the default counter
effectively reduces the impact of misses in the
Prediction Cache.

A major advantage of Cached Correlated Branch
Predictors is their ability to exploit correlations from a
large number of history bits. In our Combined Cached
Predictor, h i s advantage is exploited to combine local
and global history information in a single predictor. This
combined predictor delivered a misprediction rate of
5.68%, the lowest figure achieved by any predictor
simulated in this paper and 29.4% better than the best
conventional two -level predictor.

Finally, throughout this paper, we have been
concerned with development of more cost-effective
individual predictors. Nonetheless, all the predictors
presented can be used as components in a hybrid
predictor.

[I] .I. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach, (Morgan
Kaufmann, 1996).

[2] T. Yeh. and Y. N. Patt. Alternative /mplementations of
Two-Level Adaptive Branch Prediction, ISCA-19, Gold
Coast, Australia, pp. 124 - 134, 1992.

[3] S. Pan, K. So and J. T. Rahmeh improving the Accuracy
of Dynamic Branch Prediction Using Branch Correlation,
ASPLOS-V, Boston, pp. 76 - 84, 1992.

[4] Y. N. Patt, S. 1. Patel, M. Evers, D. H. Friendly and J. Stark
One Billion Transistors, One Uniprocessor, One Clup,
Computer, pp. 51 - 57, 1987.

[5] S. McFarling. Combining Branch Predictors, Western
Research Laboratories Technical Report TN-36, June 1993.

[6] P. Chang, E. Hao, T. Yeh and Y. N. Patt. Branch
Classification: A New Mechanism for Improving Branch
Predictor Performance, Micre27, San Jose, California, pp.
22-3 I , November 1994.

[7] C. C. Lee, I. C. K. Chen and T. N. Mudge. The Bi-Mode
Branch Predictor, Micr-30, Research Triangle Park, North
Carolina, pp. 4 13, December 1997.

[8] T. Yeh and Y. N. Patt. Two-Level Adaptive Training
Branch Prediction, Micro-24, Albuquerque, New Mexico,
pp. 5 1 - 6 1, November 199 1.

[9] T. Yeh and Y. N. Patt. A Comparison of Dynamic Branch
Predictors that use Two Levels of Branch History. lSCA -
20, pp. 257 - 266, May 1993.

[lo] C. Egan Dynamic Branch Prediction in High
Performance Superscalar Processors, PhD thesis,
University of Hertfordshire, August 2000.

[l l] G . B. Steven, C . Egan, P. Quick and L. Vintan A Cost
Effective Cached Correlated Two-level Adaptive Branch
Predictor, 1 SIh IASTED International Conference on Applied
Informatics (AI 2000), Innsbruck, February 2000.

[12] K. Skadron, M. Martonosi and D. W. Clark A Taxonomy
of Branch Mispredictions. and Alloyed Predicfion as a
Robust Solution to Wrong-History Mispredictions. PACT-
2000, Philadelphia, October 200.

[I31 G. B. Steven, D. B. Christianson, R. Collins, R. D. Potter
and F. L. Steven. A Superscalar Architecture to Exploit
instruction Level Parallelism, Microprocessors and
Microsystems, 20(7), pp. 391 - 400, 1997.

References

oca1 16K entnes

Table 1: Cached Correlated Predictor Costs in Kbytes.

193

