
8

Toward Scalable Measures of Quality of Interaction:
Motor Interference

FRANK FÖRSTER, KERSTIN DAUTENHAHN, and CHRYSTOPHER L. NEHANIV,
University of Hertfordshire

Motor resonance, the activation of an observer’s motor control system by another actor’s movements, has

been claimed to be an indicator for quality of interaction. Motor interference as one of the consequences

of the presence of resonance can be detected by analyzing an actor’s spatial movements. It has therefore

been used as an indicator for the presence of motor resonance. Unfortunately, the experimental paradigm

in which motor interference has been shown to be detectable is ecologically implausible both in terms of

the types of movements employed and the number of repetitions required. In the presented experiment, we

tested whether some of these experimental constraints can be relaxed or modified toward a more naturalistic

behavior without losing the ability to detect the interference effect. In the literature, spatial variance has been

analytically quantified in many different ways. This study found these analytical variations to be nonequiv-

alent by implementing them. Back-and-forth transitive movements were tested for motor interference; the

effect was found to be more robust than with left-right movements, although the direction of interference

was opposite to that reported in the literature. We conclude that motor interference, when measured by spa-

tial variation, lacks promise for embedding in naturalistic interaction scenarios because the effect sizes were

small.
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1 INTRODUCTION

Detecting in an automatic manner whether a particular interaction between human and ma-
chine “works” is an unsolved problem in human-machine interaction. This is unsurprising given
that human-machine interactions may be classified along many “degrees of freedom,” ranging
from the functional to the social, the embodied to the disembodied, and the collaborative to the
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competitive, to name a few. Yet even when narrowing down this range to, say, the subset of embod-
ied, collaborative interactions, the same statement holds true: no computational technique exists
by which the artificial agent could perceive whether the interaction works from the viewpoint of
the human or whether interactional breakdown is likely to occur, meaning that a frustrated human
“user” gives up on the machine on that particular occasion.

1.1 Motor Resonance, Motor Interference, and Quality of Interaction

In human-robot interaction (HRI), motor resonance has been proposed as a potential candidate
for computationally assessing what might be termed ‘quality of interaction’ [12]. Chaminade and
Cheng [11] assert that “the measure of resonance indicates the extent to which an artificial agent
is considered as a social inter-actor,” which appears to be a somewhat more static qualification
than the on-the-fly assessment of an interaction in progress that we are alluding to here. More
importantly the word ‘consider’ seems to imply a conscious, rather than automatic, evaluation of
the interaction partner. The motor resonance phenomenon has been more generally been referred
to as “a plausible foundation for higher-order social cognition” [10], and motor interference may
be conceptualized as its metric [29]. The preceding statements attribute to motor resonance its
suitability as a general measure for the potential of an artificial agent to be conceived of as a social
entity. And although motor interference has been successfully used in the past for investigating
the factors involved in triggering motor resonance in principle, the question remains whether it
can be used as a (soft) real-time measure for the quality of an ongoing interaction.

In the standard paradigm for assessing the presence of motor interference introduced by Kilner
et al. [22], the effect is measured in a constrained interaction scenario. Participants execute in-
transitive, or target-less, vertical or horizontal waving motions while observing similar congruent
or incongruent motions of a model. The models employed in previous studies range from moving
dots on a screen [44] to full-fledged humanoid robots [12, 43]. In many, although not all, studies
performed within this paradigm, participants are trained before the trials proper to ensure their
movements adhere to certain constraints. Exemplary contraints are a set movement length, or a
set frequency of movement apart from the defined movement direction [21, 44]. Figure 1 visualizes
the effect of motor interference.

Most motor interference studies were designed with the purpose of identifying the factors in-
volved in triggering the interference effect. These can be divided into top-down and bottom-up
factors. Typical bottom-up factors pertain to biological properties of the model, such as joint con-
figurations [24], movement dynamics [12, 21], or the overall visual appearance [32]. Top-down fac-
tors are psychological, with examples being beliefs about the models’ agency or intentionality [26,
43, 44], or the mental states resulting from calling certain properties of the model to attention [28].

1.2 Unresolved Issues Surrounding Motor Interference Measures

Qualifications of motor resonance such as the ones cited in the previous section are too vague if
our ultimate aim is to find a quantiative measurement tool that, at least partially, measures the
quality of interaction with a sufficiently small temporal granularity. The cited qualifications do
not spell out the precise role that motor interference could have in assessing an artificial agent.
The fact that motor interference in particular has only been measured in an ecologically rather
implausible scenario raises a number of questions with regard to its potential utility as a practical
“benchmark measure.”

On a more fundamental level, it is unclear how precisely motor interference measurements re-
late to alternative indices of motor resonance, such as measures of motor synchronization [36, 46].
By extension, it is unclear how motor interference measures relate to outcome measures that are
more closely linked to motor synchrony, such as rapport [2] or the fluidity of interaction [8]. In
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Fig. 1. Reproductions of exemplary plots shown in Kilner et al. [22] depicting the impact of motor inter-
ference with a human model. Left: A participant’s movements in congruent trials. Right: Movements in
incongruent trials—that is, under the influence of motor interference.

contrast to the interactionally simultaneous setup in which motor interference is typically mea-
sured, interactional fluidity and motor synchronization can be measured and discussed based on
turn-based interaction formats that resemble more closely the way humans naturally interact with
one another [13, 45]. The following thought experiment may help to illustrate the issue.

Let us assume we were to assess artificial agents in terms of their capacity to provoke mo-
tor resonance in human observers in the established motor interference paradigm. In other
words, assume we used intransitive movements and a large number of repetitions to bench-
mark artificial agents in terms of their capacity to be considered social interactors. Let us refer
to this measure as the “social capacity benchmark.” Now imagine we had two robots, R1 and
R2, with different benchmark scores and R1 had a higher score than R2. Now let us further as-
sume we were to equip both robots with turn-taking controllers such as the one developed by
Chao and Thomaz [13], and we deployed them in some open-ended interaction involving turn
taking.

Given that the two robots have two different benchmarks based on motor interference but use
the same controller governing their turn-based behavior, what outcome with regard to the ensuing
interaction would we expect? Would we expect the human interactor to interact longer with R1
than with R2? Would we expect the human to be more tolerant with respect to interactional mis-
steps on part of R1? Would we expect the human interactor to feel more engaged when interacting
with R1 as compared to R2?

If the answer to these questions is negative, then it is questionable whether motor interference
has much utility as a benchmark in terms of informing concrete robot designs or HRI designs. If we
answer these questions positively, however, then we need to clarify how this benchmark relates to
measures such as motor synchronization. In other words, we need to clarify the precise relation-
ship between motor interference, of which we only obtain a snapshot measure in the established
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paradigm, and measures of motor synchrony, which are usually lifted from turn-based interaction
formats. Our working hypothesis is that motor interference effects are, in principle, dynamic in
the sense that their effect size fluctuates within the time window of an interaction akin to what has
been observed with measures of interpersonal coordination. We also assume that the “granularity”
of fluctuation is comparable to that of motor synchronization measures. In other words, we assume
that the issue is one of measurement rather than a difference in the way in which these different
indices—motor interference and motor sychronization—are modulated by motor resonance.

1.3 Motivation and Research Questions

The published research on motor resonance in human-machine dyads focused by and large on the
identification and disentanglement of factors attributed to the artificial agent that are either nec-
essary for or contributing to the evocation of motor resonance in the human interactor. Although
the current work still attempts to contribute to this line of research, a second and equally impor-
tant research target is to assess whether motor interference measures can be used in less artificial
setups.

There are at least three axes along which motor interference would need to be “scaled up” to
render it a relevant candidate measure for assessing the quality of an unfolding interaction.

First, it would need to scale in terms of complexity: the measurement techniques need to be
applicable to motor actions more complex than linear intransitive movements. We address this
issue by having participants use interactionally more plausible transitive—that is, goal-directed
grasp and translate—movements: grabbing an object and placing it somewhere else.

Second, it would need to scale in terms of the speed with which it can be detected. Currently,
motor interference, when measured via behavioral artifacts such as variation of a movement tra-
jectory, is only detectable after the interaction has already ended. Although not exactly in real
time, motor resonance would need to be detectable in relatively quick succession to the relevant
interaction segment if it ought to inform the behavior of the robot. This issue is only tangentially
addressed in the present experiment and remains an open problem.

Third, motor interference is currently only measured in simultaneous interaction formats, where
agents are acting at the same time. We know from the conversation analytical literature that those
human interactions that involve conversations typically unfold in turns: the actors take turns in
(inter-)acting rather than acting simultaneously [41]. We therefore attempt to assess whether mo-
tor interference scales from sequential to turn-based interaction formats.

Based on these considerations, the research questions underlying our experimental design are
the following:

(Q1) Given the proposed grasp and translate paradigm,1 do the established techniques for
detecting motor interference using spatial variation scale to our more complex motor
actions?

(Q2) If these techniques do scale, which are the relevant factors that impact upon potentially
occurring motor interference?

(Q3) Are those same techniques applicable to turn-based interaction formats? In other words,
does the interference effect last long enough to be detectable in the next turn?

(Q4) Does the presence of motor interference, widely considered a sub-conscious phenome-
non, impact on humans’ conscious, subjective evaluation of the interaction?

1The paradigm is new with respect to the measurement of motor interference. Bisio et al. [4] have used it before in the

context of detecting motor contagion.
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The experimental factors used in the present study are congruency, interaction mode, movement

direction, and prime.
Congruency is the common and defining factor in all motor interference studies where the ef-

fect is measured in terms of spatial variation of the human arm movement. Motor interference is
said to occur if a certain spatial variation of human arm movement is significantly larger during
the execution of incongruent movements between model and human as compared to congruent

movements. The spatial variation in question is the one orthogonal to the main axis of movement.
The use of interaction mode as a factor formalizes our question as to whether motor interference

“survives” the transition to consecutively executed movements rather than simultaneous ones.
Priming is a top-down factor that has been investigated in past studies. However, the established

literature is still divided as to whether it does modulate the motor interference effect. We therefore
include it as an explicit factor in our study. On a practical level, priming is interesting because it is
comparatively “cheap” in the sense that, rather than requiring a potentially costly re-design of the
(interaction) system, it consists of making a robot-related statement concerning its mental state or
cognitively relevant behavior toward the human user or interactor. If efficacious as modulator of
motor interference, it would be an easy factor to apply and test before re-designing a given robot
behavior.

Movement direction is a somewhat incidental factor in that it only arises through the presence
of a horizontal surface in our setup. Although theoretically it is the least interesting factor, it has
great practical relevance. Horizontal surfaces such as tables, shelves, or book cases are ubiquitous
in the human environment, and transitive forth-back movements are no less likely and plausible
than left-right movements. As we are investigating the scalability of motor interference measures
toward more realistic interactions, a relevant question is whether it can be detected in forth-back

movements as well.

2 MATERIALS AND METHODS

2.1 Study Design

The presented study was designed as a factorial experiment with the four factors priming, interac-

tion mode, congruency, and movement direction. Priming was the only between-group factor with
two levels: primed and not-primed. Primed participants were told that ‘Deechee’, the employed hu-
manoid robot ‘iCub’ [30], would be watching them during the experiment. Not-primed participants
were not told anything in this respect. Each of the other three within-group factors consisted of
two levels such that each participant completed eight experimental runs.2 This means that each
factor combination was realized precisely once for each participant.

In terms of the interaction mode (iMode), a run could be either simultaneous or consecutive. In
simultaneous runs, the participant and robot would perform their respective movements simulta-
neously. In consecutive runs, the participant would first watch the robot perform its movements
and start his or her own performance immediately afterward.

In each run, the movements of the respective participant were either congruent or incongruent

to the robot’s movements. If the robot moves its toy forth and back, and the participant moves
it from left to right (and back), they are moving in an incongruent manner. If they both move
their respective toy left and right, they are moving congruently. Because each of the two actors
can move along two main axes (forth-back and left-right), there are four different combinations of
movement for the dyad, two of which are congruent and two of which are incongruent. We might

2In the following, we will refer to the experimental unit corresponding to the actions of a single participant in one particular

condition as an (experimental) run.
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refer to these as the two instantiations of congruency or incongruency. Some authors, such as Shen
et al. [43], only use one instantiation of incongruency.

Movement direction (mDir). In previous research on motor interference, the participants and/or
model performed intransitive horizontal (left-right-left) or vertical (up-down-up) repetitive move-
ments. Our setup involving transitive actions on a table surface affords us naturally two horizon-
tal but no vertical movements. Whereas the left-right-left grasp-and-translate actions on the table
surface share a high degree of similarity to the established horizontal waving motions, there is no
equivalent in the literature to the forth-back movements. We decided to tentatively include forth-

back movements nevertheless, as this movement direction is plausible and natural in the given
setup. Moreover, we were curious as to whether motor interference can also be observed in this
movement direction. Analytically, however, we will separate the data in part of our analysis along
this factor, as we do not consider movement direction to be a genuine experimental factor but rather
an implementation detail originating in the specifics of the physical layout.

In addition to participants’ movement data, we were also interested in their subjective assess-
ment of the interaction. This assessment was realized via the design of a new questionnaire (cf.
Section 2.5) that was completed by participants four times, once for each instantiation of the com-
bination of congruency x iMode. The order of conditions was counterbalanced and randomly as-
signed to participants with one constraint: each of the four possible instantiations of congruency

x iMode were blocked—that is, the two instantiations of congruency were executed sequentially.
After each block, participants were asked to complete a questionnaire before they could continue
with the next run.

Participants’ arm movements were recorded with the help of the motion tracker Polhemus Lib-
erty, where a tracker is fixed to a participant’s wrist and sends signals to a receiver located on the
table between the participant and robot (cf. Figure 4). Details to the dependent variables and the
data analysis of the motion data are provided in Section 2.6.

2.2 Recruiting and Distribution of Participants

We recruited 24 participants, 22 of whom were right-handed and 2 of whom were ambidextrous.
Twelve of the 24 participants were female, the other 12 were male, and the average age was
31.2 years (SD = 12.4). Participants were recruited by the use of flyers and posters on campus,
in the area surrounding the university and from attendees of a series of scientific talks called ‘Cafe
Scientifique’.

2.3 Instructions to Participants

Prior to the experiment, participants were handed an information sheet and consent form. In the
information sheet, we explained that they would interact with the humanoid robot ‘Deechee’. We
explained the overall purpose and general structure of the experiment, namely that there would
be eight runs and a questionnaire after every second run. Within these explanations we did not
make any mention of motor resonance, as we did not want to heighten participants’ attention
to the specifics of their own movements. The overall aim was to have participants move as
naturally as possible. Apart from the priming of those participants in the primed group and some
explanation about the humanoids’ grasping capabilities, we did not make any further statements
with respect to Deechee.

Participants were told that their role in the experiment was to move the toy located in front of
them either in a forth-back or left-right-left direction. Before the start of each run, participants
were told the expected movement direction of their movements, as well as whether the run was
a simultaneous or a consecutive one. For simultaneous runs, they were instructed to start their
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movement as soon as they saw Deechee starting to move, and that they could stop once Deechee
stopped. For consecutive runs, we told participants that they should watch Deechee during its turn,
and that they should start their execution as soon as Deechee finished its turn. If participants did
not start performing their turn immediately after Deechee finished its turn, the experimenter told
participants that they should start.

2.4 Robot Behavior and Spatial Setup

When participants entered the room, the robot was in its start position, meaning its right arm was
located over the toy and its gaze fixating the toy. No eye contact with participants was established
(Figure 2, upper left). Once participants were given the explanations outlined in the previous sec-
tion and signed the consent form, they had the motion sensor attached to their wrists. Then they
were seated opposite the iCub (cf. Figures 4 and 5), and the experiment would start. The robot’s
behavior was semi-autonomous. That means the start of the robot’s behavior was triggered man-
ually by the experimenter for each run. Thereafter, the robot acted autonomously until it received
a stop signal, or until the required number of repetitions had been executed.

Upon receiving the initial start command, ‘Deechee’ would grasp the toy and start moving it
forth-back-forth or left-right-left repeatedly depending on the predetermined movement direction

of that particular run. An example of the spatial trajectory and velocity profile of the robot’s hand
movement are shown in Figure 3. Just before each respective movement segment, the robot moved
its head and eyes such that it looked at the next target position. No explicit time delay was intro-
duced into the high-level control code, yet the mere sequencing leads to a relatively naturalistic
behavior in that the gaze is shifted toward the target a few hundred milliseconds before the onset
of the arm movement.

In consecutive runs, Deechee would execute 15 movement cycles and subsequently stop at the
start position with its gaze fixated on the toy. If the run was a simultaneous one, Deechee would
execute the respective movements until it received a stop signal from the experimenter. It would
then end its movement with the toy in the start position and its gaze fixated on it. If Deechee
accidentally dropped the toy, the experimenter sent it a signal to that effect and Deechee would
go into its start position. In this case, its hand was slightly higher, and its fingers opened such that
a grasp action could be executed in the next move. The experimenter would then place the toy at
the start position on the table and send Deechee another signal triggering it to grasp the toy and
restart the movement execution for this particular run. Additional technical details are provided
in the supporting materials (Section A.1.2).

2.5 Questionnaire Design

For the purpose of assessing participants’ conscious evaluation of the interaction, we created a
new questionnaire that is an amalgamation of two existing questionnaires: the Temple Presence In-

ventory (TPI) [27] and the Networked Minds Social Presence Inventory (NMI) [3]. To our knowledge,
there is no existing questionnaire that would assess the perceived quality of an experienced inter-
action. Parts of the aforementioned two questionnaires appeared to be the closest match in this re-
spect. From both questionnaires, we included all factors and items that applied to our experimental
setup, such as factors and items that were not obviously non-sensical. Items that assumed the robot
and human were not physically co-located in the same space, for example, were not applicable.

The TPI was designed to assess different dimensions of presence in tele-presence scenarios.
This means that some factors and items were not applicable to our scenario due to the robot and
human being physically co-located in the same room. The TPI assesses eight different dimensions
of presence with 48 items in total. We incorporated 36 items from four of these eight dimensions
into our questionnaire.
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Fig. 2. iCub humanoid robot in various phases of movement. Top left: Start position prior to the start of the
first run. Top right: After a forward move (half of the forward-backward movement cycle). Bottom left: After
a left move (half of the left-right movement cycle). Bottom right: After having completed one left-right cycle.

TPI-Social Richness (TPI-R). We used all items from this dimension that consists of opposed pairs
such as Remote-Immediate or Unsociable-Sociable. Social Richness assesses “the extent to which a
medium (or an artificial agent) is perceived as sociable, warm, sensitive, personal or intimate” ([27],
clause in parentheses added by us).
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Fig. 3. Spatial and velocity profiles of single arm movements of the iCub robot (right arm). Top and bottom
left: Robot’s hand trajectory in the sagittal and frontal plane of a single forth-back and left-right movement,
respectively. Points correspond to the center of the robot’s palm as reported by the robot’s Cartesian inter-
face. Top and bottom right: Velocity profiles of the same left-right and forth-back movements, respectively.
The velocity profile was calculated based on the position information and the associated timestamps (gray
curve); the black line depicts a regression curve.

Fig. 4. Spatial setup of the experiment and coordinate system. The participant and robot are located on
opposite ends of a small office table. They move the provided toy both with their right hand and arm either
simultaneously or consecutively, either in a congruent or incongruent manner.

TPI-Social Presence–Active Interpersonal (TPI-SPA). All items from this construct were incorpo-
rated, including items such as “How often did you smile in response to Deechee?” This construct
assesses whether a medium or a robot is conceived of as a social actor or the degree of perceived
anthropomorphism.

TPI-Social Presence–Parasocial Interaction (TPI-SPP). This dimension of presence assesses to what
degree users of a medium ignore the mediated nature of the interaction, or whether the media
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Fig. 5. Still image of one instantiation of the simultaneous, incongruent condition. The participant moves
the toy from left-to-right and back, whereas the robot moves its toy forth-and-back.

personality is perceived as a genuine social actor. Despite the interaction not being mediated in
our setup, three of seven items still appeared suitable, with one example being “How often did you
want to or did you make eye contact with Deechee?”

TPI-Engagement (TPI-Eng). Three of six items from this construct were transferred into our ques-
tionnaire. TPI-Eng was originally designed to assess the degree of engagement with or mental im-
mersion into a virtual reality. We chose those three items that applied to our non-virtual scenario—
items such as “How relaxing or exciting was the experience?”

Similar to the TPI, the NMI was designed to assess a user’s sense of social presence when the
interaction is mediated. The NMI explicitly mentions its applicability in “quasi-social relationships
with new forms of artificially intelligent beings” [3]. Again, only a subset of items applied to our
experimental setup.

NMI-Co-Presence (NMI-CoP). We incorporated all eight items of this scale into our questionnaire.
Co-Presence assesses the participant’s perception of whether she felt that she was together in the
same space with the robot. “Deechee hardly noticed me” is an exemplary item from this scale.

NMI-Perceived Attentional Engagement (NMI-PAE). We only used this sub-scale from the con-
struct perceived psychological engagement. The sub-scale consists of six items, all of which were
incorporated into our questionnaire. Example items would be “I paid close attention to Deechee”
or “Deechee tended to ignore me.”

NMI-Perceived Behavioral Interdependence (NMI-PBI). This scale consists of six items, and we in-
corporated all of them. Behavioral interdependence refers to the coupling of one’s own actions to
those of another. Such couplings happen in collaborative forms of interaction but also in competi-
tive ones. Although participants’ movements were objectively not coupled to the ones of the robot
in our setup, this does not preclude the possibility that participants might perceive them as being
coupled, especially in the presence of motor resonance. Examples of items in this scale are “My
behavior was often in direct response to Deechee’s behavior” or “What I did often affected what
Deechee did.”

2.6 Overview of Analysis of Movement Data

The motion data recorded from participants’ arm movements needs to undergo several steps of
pre-processing before any statistical analysis can be conducted. As we will see in Section 3, the
particular choices made in any of these steps can have a considerable impact on the results. For
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this reason, we provide a more detailed account of the various pre-processing options than is usual
in the established literature on motor interference. Instead of just presenting one particular com-
bination of choices, we executed a multitude of analyses to determine how sensitive the detection
of motor interference is to these data processing choices.

The data processing pipeline can be decomposed into the following operations and is indepen-
dent of the particular type of motion tracker employed:

(1) Low-pass filtering of motion data
(2) Decomposition of single-run motion records into motion segments corresponding to sin-

gle left-right or forth-back movements
(3) Pruning of boundary data at both ends of each motion segment
(4) Removal of entire motion segments at either end of the recording for each run (optional)
(5) Calculation of baseline proxy data for spatial variation—either variance/standard devia-

tion in the orthogonal plane or curvature
(6) Outlier detection and removal from baseline statistics (optional)
(7) Calculation of baseline descriptive statistics based on the variation proxies
(8) Normalization of the descriptive statistics (optional)
(9) Inferential statistics operating on normalized descriptive statistics data.

The order of steps 3 and 4 may be inverted, and step 4 may not be necessary. Step 6 (outlier
removal) is often not discussed in the literature, so it may or may not be optional. Step 8 is typically
only performed if curvature is chosen as the proxy.

2.6.1 Pre-Processing of Motion Data. With ‘pre-processing’, we refer here to steps 1 through 6 of
the pipeline sketched earlier. Given the motion recordings of single runs, these recordings are first
low-pass filtered. We followed Oztop et al. [34] and filtered the data using a 25-Hz fifth-order But-
terworth filter.3 Once filtered, the run-level records were split into segments corresponding to sin-
gle motion segments. In the present study, we employed a semi-automatic segmentation process.

In step 3, individual motion segments typically are pruned. This is necessary because partici-
pants appeared to momentarily rest their hand on the extreme end of movement segments exhibit-
ing what Oztop et al. [34] referred to as “small drifts in the hand location.” Again, a semiautomatic
process was employed where an automatic boundary detection is followed by a phase of manual
checks and corrections. As this type of pruning may remove important parts of the data, we made
the decision to analyze both pruned and unpruned sets of motion segments. Gaps data in Sec-
tion 3 refers to the set of pruned motion segments, whereas No Gaps refers to the set of unpruned
segments.

In step 4, we removed the very first and the very last motion segments of a run such that only
20 motion segments remained, which corresponds to 10 complete left-right-left or forth-back-forth

movements.
Hereafter, following Gowen et al. [19], we will refer to the plane that is orthogonal to the one

that corresponds to participants’ main direction of arm movements as the error plane. Two kinds
of proxies quantifying the variation in the error plane are common in motor interference research
(step 5):

• Variance or standard deviation of the movement with respect to the error plane (cf. [19, 21,
22, 43])

• A particular kind of curvature (cf. [12, 18, 34]).

3In our case, low-pass filtering did not make much of a difference in terms of the ensuing statistical results. We applied it

nonetheless to stay as close as possible to the data processing pipelines documented in the literature.
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Table 1. 2
4 Tests on the Full Dataset

Conf. GAPS Participants Outliers Norm. Test Significant Effects and Interactions (bold)

# rm rm Type Type & Test Statistics

movement-direction. congruency ×movement-dir.

1 no yes yes N2 para (F = 5.74, p = .026, η2
G
= .030) (F = 9.84, p = .005, η2

G
= .037) *

2 no no yes N2 para (F = 5.53, p = .028, η2
G
= .027) (F = 8.07, p = .010, η2

G
= .030) *

3 no no no N2 para (F = 4.56, p = .044, η2
G
= .023) (F = 7.75, p = .011, η2

G
= .030) *

4 yes yes yes none para (F = 31.86, p < .001, η2
G
= .400) *

5 yes no yes none para (F = 35.37, p < .001, η2
G
= .390) *

6 yes no no none para (F = 38.93, p < .001, η2
G
= .390) *

7 no yes yes none para (F = 57.15, p < .001, η2
G
= .521) (F = 10.65, p = .004, η2

G
= .014)

8 no no yes none para (F = 62.94, p < .001, η2
G
= .510) (F = 8.92, p = .007, η2

G
= .011)

9 no no no none para (F = 65.64, p < .001, η2
G
= .504) (F = 8.59, p = .008, η2

G
= .013)

Shapiro-Wilk: * p < 0.001.

Note: Listed are tests and data configurations yielding significant results for both curvature and variance proxies and

the results of the so-characterized test. Curvature proxy data per motion segment is aggregated using the mean. Only

significant (p < .05) results are listed. Conf. #: Number of test configuration. GAPS (yes/no): Basis for analysis is the

Gaps dataset and No Gaps otherwise. Participants Removed (yes/no): Outliers on the level of entire participants were

removed if “Yes.” Outliers Removed (yes/no): Outliers on the level of single runs were removed if “yes.” Norm. Type: N2

or none. See the main text for an explanation of normalization N2. Test Type specifies whether the stated results are based

on a parametric ANOVA or a non-parametric test. Asterisks (*) at the very end of a row indicate that the distribution of

residuals was found to be non-normal. For these cases, the p-values of the Shapiro-Wilk test are given in the last row.

Total number of tests performed: 12 for curvature proxies and 6 for variance proxies. For space reasons, the degrees of

freedom for each F-value are not printed in the table but would be F(1,22) for all entries.

Due to the relaxation of behavioral constraints in our experimental setup as compared to the
established paradigm, we could not assume that these established methods of measuring motor
interference would automatically transfer. For this reason, we calculated both curvature and vari-
ance and subsequently performed the inferential analysis on both datasets separately. In terms of
curvature, there is an important difference between our approach and the one used by Chaminade
et al. [12] and Oztop et al. [34], which is described in Section A.1.5 of the supporting material.

2.6.2 Outlier Detection and Removal (Step 6). Prior to conducting inferential statistical tests,
it is common to remove outliers. Yet, in the motor resonance literature, the issue of outliers is
frequently not discussed. Thus, it is unclear whether the authors of the respective publications
removed outliers at all, and if they did, on what level. We analyzed the data under three different
levels of outlier removal:

• Removal of the entire participant’s data plus removal of single data points (P’s removed)
• Removal of single data points only—curvature or variance measurements (O’s removed)
• No removal of outliers.

Outliers were detected and removed separately for variance and curvature data, and details
are provided in the supporting material. As a result, participants P08 and P16 qualified as out-
liers within the curvature and participant P24 in the variance dataset. Outliers were excluded in
the analysis where the attribute Participants removed (P’s removed) holds (Table 1). In the variant
where only single outliers on the level of the baseline proxies were removed, the same outlier de-
tection criterion in terms of distance from the quartiles as explained in the supporting material
was applied. However, the outlier detection was performed for each participant and movement
direction separately but on otherwise pooled data.
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2.6.3 Baseline Descriptive Statistics (Step 7). Descriptive statistics of the proxies typically form
the basis for the inferential statistical procedures such as t-tests or analyses of variance (ANOVAs).
In other words, the inferential statistics do not operate on the proxies—variance or curvature—
directly but on derivatives or aggregates of these. The outcome of aggregation is one statistic
per participant and run, which then may or may not be normalized prior to forming the basis
for the inferential analysis. We will refer to these two practices of calculating one data point per
participant and run as mean and variance aggregation, respectively. For our analyses, we employed
both established methods to be able to compare the outcomes and establish whether all methods
lead to identical outcomes, or whether the outcome is dependent on the chosen analytical route.
This means that we used only mean aggregation for variance proxy data, and both mean and
variance aggregation for curvature proxies.

2.6.4 Normalization of Motion Segments (Step 8). Normalization only applies if curvature is the
proxy of choice and is applied to the statistics from step 7. Oztop et al. [34] appear to normalize the
variance of the curvature per trial by the mean of the curvature in that particular trial. We used
both the method of Oztop et al. [34] and a new normalization method described in the supporting
material. The two normalization methods will be referred to as N1 and N2, respectively.

2.6.5 Inferential Statistical Analysis (Step 9). The statistical analyses were performed in six sep-
arate blocks that differ from each other by the particular combination of the size of the linear
model (2×2 × 2×2 (or 24) or 2×2×2 (or 23)), the type of proxy (variance or curvature), and the type
of aggregation (variance or mean). Variance proxies are only aggregated via mean such that there
are only six instead of eight ensuing analytical blocks. In this main article, we will mostly discuss
the results from the 24 variance proxy models, as well as the 24 and 23 mean-aggregated curva-
ture models. As a reason for this preferred exposure of mean-aggregated models, we would like
to argue that mean aggregation, as used by the majority of authors, is the more sensible way of
aggregating the baseline data. When investigating motor interference, we are mostly interested
in the average magnitude of variation in the direction orthogonal to the main axis of movement
rather than the variance of this variation. Where mean aggregation seems to yield a spatially in-
terpretable measure, variance aggregation does not, but rather tells us about the “volatility” of the
spatial variation. Analyses of the “dispreferred” analytical blocks, as well as the tables listing the
results based on the 23 models, are provided in the supplementary materials. We will refer to parts
of these results in the following where necessary.

In the 23 models, curvature and variance data were both split into two parts along the factor
movement direction (mDir) such that left-right and forth-back data was analyzed separately. The
split was performed as we did not consider movement direction a genuine experimental factor:
forth-back movements were only added tentatively because they seemed plausible in this setup
but have no equivalent in previous motor interference research.

On the 23 models, we executed both parametric tests (mixed ANOVAs) and rank-based non-
parametric tests (nparLD [31]) because some test configurations violated the normality assumption
required by the parametric tests. Particularly in the full models, the normality of residuals was
frequently violated despite a Box-Cox transformation of the data (cf. Table 1). In these cases, we
need to be careful about the results of the parametric tests and should optimally perform non-
parametric tests. Unfortunately, we could not obtain non-parametric tests that were applicable
or working on the full models, and we therefore use the analytical results of the smaller models
for additional support. However, the statistical results based on the smaller models are only valid
under the assumption that the variation measurements of a run are independent of the movement
direction of the previous run.
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On all of those datasets where both participants and outliers on the run level were removed, as
well as those where only run-level outliers had been removed, both parametric and non-parametric
tests were performed. On complete datasets without outlier removal, only non-parametric tests
were performed due to the volatility of parametric tests on these types of data. Our tables list
only those tests and test configurations that yielded effects or interactions that were statistically
significant (p < .05). The total number of statistical tests performed in each analytical block is
stated in the captions of the respective tables (Table 1 in the following, and Tables 6, 8, and 10 in
the appendix).

2.7 Research Hypotheses

Given the research questions from Section 1.3 and the described experimental setup, our hypothe-
ses are the following (relevant research questions are referenced in parentheses, and curvature and
variance as dependent variables are abbreviated with DVs):

(H1) DVs will be larger in incongruent conditions as compared to congruent conditions. This
should be the case at least in the conditions that most closely resemble the established
paradigm—that is, in simultaneous × left-right conditions. (~Q1, Q2)

(H2) The difference in DVs between congruent and incongruent conditions will be larger for
primed participants. (~Q2)

(H3) DVs will be larger in incongruent than congruent forth-back movements. (~Q2)
(H4) There will be a difference in DVs in at least one of the consecutive conditions as compared

to the respective simultaneous condition. (~Q3)
(H5) Participants will rate their engagement higher in congruent as compared to incongruent

conditions. (~Q4)
(H6) Participants will rate their perceived behavioral interdependence as higher in incongruent

than in congruent conditions. (~Q4)

3 RESULTS

3.1 Motion Data

We did not take a baseline measure of participants’ movements and will therefore use the data
from the congruent-consecutive condition to describe participants’ movement lengths. Left-right

movements were on average approximately 31 cm long (M = 30.94, SD = 8.18). At approximately
27 cm, participants’ forth-back movements were on average slightly shorter but also exhibited less
variation along the main axis of movement (M = 27.09, SD = 4.81).

Table 1 shows those test and data configurations for which the statistical tests yielded significant
(p < .05) effects and interactions.4 The table contains the results for tests of both the 24 model of
the variance proxies as well as the 24 model of the mean-aggregated curvature proxies. We did not
include results approaching significance (.05 ≤ p < .1) but note that some tests results missed the
p = .05 threshold only by a small margin. Thus, the absolute count of significant results should be
regarded with a certain caution, as the particular choice of outlier removal, normalization, or data
pruning may turn significant results into non-significant ones or vice versa.

3.1.1 Full Model, Mean-Aggregated Curvature Proxies. Half of all tests, 6 of 12, which are all
tests issued on the No Gaps dataset, yield a statistically significant interaction between movement

direction and congruency. The effect size of all of these interactions is small (.01 ≤ η2
G
< .06). Post

hoc tests performed to tease apart these interactions (Table 2) show that the difference in the means
of curvatures (MoCs) between congruent and incongruent runs are only significant for participants’

4Note that we do not state the degrees of freedom for the F-statistic in the tables but only in the captions.
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Table 2. Post Hoc Test Results for 24 Tests with Mean Aggregation

Mean/SD of Aggregated Proxy

Conf. # Effect/Interaction Fixed Factor Variable Factor Result Data at Stated Factor Level (bold)

congruent incongruent

1 move.-dir. x cong move.-dir.=‘f b’ congruency χ 2 (1) = 8.0; p = .009 1.05/0.24 0.9/0.35

2 move.-dir. x cong move.-dir.=‘fb’ congruency χ 2 (1) = 6.0; p = .029 1.04/0.25 0.91/0.35

3 move.-dir. x cong move.-dir.=‘fb’ congruency χ 2 (1) = 6.6; p = .02 1.05/0.32 0.92/0.41

left-right forth-back

4 move.-dir. n/a n/a n/a 48.68/33.06 12.34/7.87

5 move.-dir. n/a n/a n/a 51.95/36.30 12.95/8.39

6 move.-dir. n/a n/a n/a 53.09/36.67 13.76/9.18

congruent incongruent

7 move.-dir. x cong move.-dir.=‘fb’ congruency χ 2 (1) = 8.9; p = .006 20.4/11.4 17.33/11.43

8 move.-dir. x cong move.-dir.=‘fb’ congruency χ 2 (1) = 7.27; p = .014 20.56/11.29 18.13/11.84

9 move.-dir. x cong move.-dir.=‘fb’ congruency χ 2 (1) = 8.2; p = .009 21.33/11.42 18.58/12.18

left-right forth-back

9 cong x move.-dir. cong=‘cong’ movm.-dir. χ 2 (1) = 47.26; p <.001 62.92/35.68 21.33/11.41

9 cong x move.-dir. cong=‘incong’ movm.-dir. χ 2 (1) = 75.26; p <.001 69.94/40.56 18.58/12.18

Note: Conf. #: Index of relevant test configuration for which the stated post hoc test was performed (cf. Table 1). Effect/

Interaction: The main effect or interaction under consideration. Fixed Factor: Fixed factor of the test and level to which

it was fixed. Variable Factor: Variable factor whose levels were compared to each other in the test. Result: p-Value and

χ 2 statistic of the post hoc test. Mean/SD: Means and standard deviations of the mean-aggregated curvature values for

the specified levels. For significant main effects that are independent of any interaction, only the descriptive statistics are

stated. cong: congruency; move.-dir.: movement-direction.

forth-back movements. Rather surprising, however, is the direction of this difference: the average
MoCs are higher in runs where participants and the robot act in a congruent manner as compared
to them performing incongruent movements, something akin to a negative or inverted motor in-
terference effect. In 3 of the 6 relevant tests, the models’ residuals are not normally distributed,
and we should therefore lower our trust in the results. The circumstance that their results are no
different from those models where the normality criterion is not violated does lend them support.
We will additionally supplement this analysis with the analytical results from the 23 models for
further reassurance in the following.

In 9 of 12 tests, movement direction is a significant main effect. In 6 of these the effect size is
large, and it is small in the remaining 3. The average MoCs of left-right movements are considerably
higher than the ones of forth-back movements.

3.1.2 Analytical Results Based on Split 23 Models. The analysis of the 23 models based on vari-
ance proxies and forth-back movement data (appendix, Section A.2.1) yields a small indication (1
of 10 tests) that among primed participants, mean variances of incongruent runs were higher than
those of congruent ones, indicating that motor interference had occurred.

The test results of the curvature-based 23 models based on forth-back data and mean-aggregated
curvature proxies are consistent with the curvature-based results from the 24 model (Section 3.1.1).
All tests based on the No Gaps dataset (10 of 20) indicate that some form of inverse motor interfer-
ence has occurred. In other words, on average, the MoCs of congruent runs are higher than those
of incongruent ones.

In addition to the support of the results based on the 24 models, the non-parametric tests
yield one additional result. On the left-right dataset, the five non-parametric tests launched on
the No Gaps dataset indicate that congruency is a main effect with small effect size. Two more
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Fig. 6. Left: Participant P20’s arm movements during two congruent runs (left) and during two incongruent

runs (right). Left-right-left movements are the horizontal movements plotted in black, and forth-back-forth

movements are the vertical movements plotted in dark gray. The units are displayed as measured by the
Polhemus Liberty sensor and relative to its coordinate system (cf. Figure 4).

non-parametric tests launched on the Gaps dataset just missed the p < .05 threshold, and a third
one was just below the p < .1 threshold. The direction of difference in this movement direction,
opposite to what was indicated for forth-back movements, is the one we would expect: on aver-
age, the MoCs of incongruent runs are higher than in congruent ones. Thus, if our analysis were
based solely on the No Gaps dataset, and if we decided to use non-parametric tests exclusively, our
conclusion would be clear: motor interference has taken place in the way it is documented in the
literature (cf. the visualisations in Figure 6).

A single test based on the left-right models additionally flags up the interaction congruency ×
interaction mode as significant. The post hoc analysis of this interaction (see Table 7) yields the
unexpected result that the differences in curvature caused by differences in congruency were only
significant in consecutive interactions. However, given that the significance of this post hoc result
is slightly below the .05 margin (p = .07), given that it is the only significant result based on the
Gaps dataset, and given that all other tests with significant results do not indicate a dependency
of congruency with respect to interaction mode, we deem this result an outlier. The effect may be a
potential random side effect of the pruning of the boundary data.

Due to space constraints, we will only summarize the results of the tests based on variance-
aggregated curvature proxies as we deem this aggregation method inappropriate. The results,
however, are largely comparable with the ones originating from the mean-aggregated curvature
proxies. Tests operating on the 24 models identify movement direction as a significant main effect
and/or part of a significant interaction (11/18, cf. Table 8). Among these interactions, we find one
with the factor prime that was not flagged up in the analysis based on mean aggregation. Congru-

ency is identified twice as significant main effect and once as part of a significant interaction with
movement direction. In the context of this interaction, differences in VoCs between congruent and
incongruent runs are only significant for forth-back movements—the same result as indicated by the
analysis of the mean-aggregated curvature models. Again the direction of difference is contrary to
what we would expect: on average, VoCs in congruent runs are higher than in incongruent runs. The
analyses of the 23 models (see Table 10) strengthen the results of the 24 models: in the forth-back

direction, congruency is a significant main effect in 21 of 30 tests. In all cases, the mean VoCs are
higher in congruent runs as compared to incongruent runs. See the supplementary materials for a
more detailed analysis of the variance-aggregated curvature models.

3.1.3 Evaluation of Hypotheses 1 through 4.

(H1) We hypothesized that the DVs would be larger in incongruent conditions as compared to
congruent conditions. The analyses of the 23 model for left-right movements give some
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Table 3. Internal Reliability of Constructs from Questionnaire
in Terms of Cronbach’s α and Results of Normality Tests Before

and After Box-Cox Transformation

Normality Test Normality Test

Construct Cronbach’s α (Original) Lambda (After Transform.)
TPI-R 0.94 S-W pass n/a n/a
TPI-SPA 0.82 p = .030 0 S-W pass
TPI-SPP 0.34 n/a n/a n/a
TPI-Eng 0.8 S-W pass n/a n/a
NMI-PBI 0.74 S-W pass n/a n/a
NMI-PAE 0.42 n/a n/a n/a
NMI-CoP 0.57 n/a n/a n/a

Note: Constructs with at least acceptable reliability and better are set in bold. The entries in

the Normality columns state whether the residuals of the respective linear model passed the

Shapiro-Wilk test (p > .05) or not, and if not, with which p-value they failed. In case of fail-

ure, the data was Box-Cox transformed and the lambda value used for the transformation is

stated in the respective column. Constructs with insufficient reliability were dropped from the

analysis, hence the n/a values.

support for this hypothesis—that is, that motor interference has indeed occurred. This
support is contingent, however, upon the use of curvature as dependent variable and
the use of the No Gaps dataset as an underlying basis. Forth-back movements exhibited
the opposite effect. The curvature of participants’ forth-back movements was larger in
congruent runs as compared to incongruent runs.

(H2) We hypothesized that the differences in DVs between congruent and incongruent condi-
tions would be larger for primed participants. In the split 23 models, we found one test
configuration using variance proxies that supported this hypothesis for left-right move-
ments. However, the other nine test configurations did not flag up prime as a significant
main effect, or as part of a significant interaction, nor did the tests based on curvature
proxies. Hence, there is only very limited support for this hypothesis.

(H3) We expected that the DVs would be larger in incongruent runs as compared to congruent

runs also for forth-back movements. We found precisely the opposite effect. Hence, H3

is not supported by our experimental data.
(H4) We hypothesized that there would be at least one consecutive condition where there was

a difference in DVs compared to the respective simultaneous conditions. Only one test
based on the 23 model of left-right movements flags up the interaction mode as part of a
significant interaction with congruency. Counter-intuitively, the post hoc test indicates
that the difference in curvature between congruent and incogruent runs were only signif-
icant in consecutive interactions but not in simultaneous ones. Only a single test yields
this results, and it is based on the Gaps dataset, which otherwise does not yield any
significant effect or interactions. We are therefore skeptical about this result and do not
consider this sufficient support for this hypothesis.

3.2 Questionnaires

3.2.1 Internal Reliability. Four of the seven constructs used in the questionnaire had acceptable
(α > 0.7), good (α > 0.8), or excellent (α > 0.9) internal reliability in terms of their Cronbach alpha
values (Table 3). These four constructs and, tentatively, co-presence (NMI-CoP) were subsequently
used as dependent variables in the statistical analyses of the questionnaire data.
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Table 4. Statistical Results for Questionnaire Data

Construct Effect/Interaction Result (Parametric Test) Result (Non-Parametric Test)

TPI-R iMode F = 11.40,p = .003,η2
G
= .019 F = 9.25,p = .002

TPI-SPA none N/A
TPI-Eng iMode F = 3.73,p = .066,η2

G
= .009 F = 3.22,p = .072

NMI-PBI cong. F = 11.58,p = .003,η2
G
= .050 F = 14.06,p < .001

iMode F = 6.68,p = .017,η2
G
= .035 F = 6.12,p = .013

NMI-CoP prime x cong. no significant effect F = 4.51,p = .034,η2
G
= .019

Note: Listed are statistically significant effects and interactions (p < .05) and effects and interactions approaching

significance (p < .1). Effect sizes (η2
G

) are reported for parametric tests only unless the significant results are exclu-

sively non-parametric. Parametric: Results of ANOVA. Non-Parametric: Results of the rank-based non-parametric test

implemented by nparLD, cong.: congruency. Degrees of freedom are not printed in the table and would be F(1,22) in

all cases.

3.2.2 Factorial Analysis. As all items were evaluated on a Likert scale, the ratings were con-
sidered interval data. We performed separate tests for each factor: Social Richness, Social Presence–

Active Interpersonal, Engagement, Perceived Behavioral Interdependence, and Co-Presence. Following
Shapiro-Wilk tests on the respective models, only the residuals of Social Presence–Active Interper-

sonal were not normally distributed (W = .97,p = .030). The measurements of this factor were
subsequently Box-Cox transformed. A Shapiro-Wilk test on the residuals of the resulting model
indicated that the transformed measurements were not violating the normality constraint any
longer. We nevertheless also performed non-parametric tests for comparison.

One participant failed to complete the items associated with Social Richness. For this participant,
we used multiple imputation to replace the missing values.

Table 4 summarizes the results of the factorial analysis. If not stated otherwise, we will by default
use the results of the parametric tests as points of reference in the following discussion, as the
results of both parametric and non-parametric tests are largely identical in terms of the factors
being marked as significant. The only exception are the analyses of Co-Presence.

The ANOVA reveals that the interaction mode had a significant effect on participants’ ratings of
social richness (TPI-R) (F (1, 22) = 11.40,p = .003). Participants in the simultaneous condition rated
the social richness of the interaction as higher (M = 4.02, SD = 1.41) than in the consecutive condi-
tion (M = 3.62, SD = 1.52, cf Table 5). In other words, they perceived the simultaneous interaction
with the robot as somewhat more sociable, more immediate, or more sensitive than when acting
consecutively relative to the robot. The effect size of this perceived difference is comparatively
small (η2

G
= .019). A similar result, although just below the significance threshold (F (1, 22) = 3.73,

p = .066), can be observed for the rating of engagement or mental immersion (TPI-Eng).
Ratings of perceived behavioral interdependence (NMI-PBI) were significantly impacted by both

the particular interaction mode (F (1, 22) = 6.68,p = .017) and whether participants’ movements
were congruent (M = 3.61, SD = 1.33) or incongruent (M = 3.01, SD = 1.37) (F (1, 22) = 11.58,
p = .003). Although the effect size of this perceived difference was still small for the interaction

mode (η2
G
= .035), it just missed medium size for congruency (η2

G
= .05).

For judgments of co-presence (NMI-CoP), the ANOVA indicated that the interaction prime x

congruency was below the significance level (F (1, 22) = 2.79,p = .109,η2
G
= .013), yet it was well

above the significance threshold in the non-parametric test (F (1, 22) = 4.51,p = .034,η2
G
= .019).

The parametric post hoc tests of this interaction yields a significant contrast between congruent

(M = 3.92, SD = 0.72) and incongruent (M = 4.20, SD = 0.91) forms of interaction (χ 2 (1) = 4.62,
p = .032) but only for participants who had not been primed prior to the interaction. The equiva-
lent non-parametric post hoc test for these two factors does not corroborate the parametric results
and, more generally, does not yield any significant result.
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Table 5. Descriptive Statistics for Levels of Main Effects or Significant Interactions

Levels

Construct Main Effect Mean/SD Mean/SD

simultaneous consecutive

Social Richness (TPI) interaction mode 4.03/1.41 3.62/1.52
Engagement (TPI) interaction mode 4.79/1.24 4.53/1.48
Perceived Behavioral interaction mode 3.56/1.36 3.06/1.37
Interdependence (NMI) congruent incongruent

congruency 3.61/1.33 3.01/1.37

Construct Interaction Fixed Factor Levels Var. Mean/SD

Factor

Co-Presence (NMI) [P] prime x prime = not congruent 3.92/0.72
congruency watching incongruent 4.20/0.81

Note: Co-Presence interaction: both parametric and non-parametric post hoc tests were performed. Only the para-

metric post hoc indicated that the stated interaction was significant (χ 2 (1) = 4.62, p = .032). [P], parametric post

hoc test.

3.3 Evaluation of Hypotheses H5 and H6

(H5) We did not find support for this hypothesis.
(H6) This hypothesis was not supported by participants’ self-reports. Contrary to our expec-

tation, participants felt more inter-dependent on the robot’s action when engaging in
congruent movements. Thus, motor interference, if anything, correlates with participants
feeling less inter-dependent from the machine rather than vice versa. Additionally, partic-
ipants perceived a higher level of interdependence during simultaneous interaction than
during consecutive interaction.

4 DISCUSSION

The average movement lengths of our participants’ transitive movements, at approximately 30 cm
(left-right) and 27 cm (forth-back), were somewhat shorter than the intransitive ones depicted or
reported in the literature.

Both Kupferberg et al. [23] and Gowen et al. [19] instructed participants to execute 50 cm long
movements in both directions. Chaminade et al. [12] do not present descriptive statistics for par-
ticipants’ movement lengths, but judging by the published exemplary trajectory plot, participants’
movements were also approximately 50 cm long in the vertical direction. Movements in the hori-
zontal direction appear to be a few centimeters longer in the depicted plot. Kilner et al. [22] do not
provide descriptive statistics on movement lengths either, but judging by their published exam-
ple plots, their participants’ vertical arm movements were just under 70 cm, and their horizontal
movements were just above 60 cm long.

Hence, comparatively speaking, our participants’ transitive movements were at least 40% shorter
than the intransitive movements documented in the literature. This may be one factor that makes it
more difficult for motor interference to be detected in transitive movements: less long movements
mean less opportunity to accumulate variance or curvature on the level of a single movement.

4.1 Answers to Research Questions

(Q1) In terms of the suitability of the established interference detection techniques toward more
naturalistic scenarios, we are only moderately optimistic. For left-right movements, we obtained
some confirmation that motor interference had occurred. The effect sizes of the effect, however,
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were small throughout such that it is questionable whether the number of repetitions could be
reduced considerably.

Furthermore, the effect only materialized when the motion segments were not pruned, which
indicates a strong sensitivity of the effect to such treatment. Whereas some authors use (semi-)
automatic segmentation methods combined with manual checks, others employ fully automatic
methods that may induce a significant amount of pruning as a side effect. Our results suggest that
the amount of pruning should be documented and made explicit in the literature.

For forth-back movements, we observed an unexpected “inverse motor interference effect,”
which we will discuss in greater detail in Section 4.3. If our guess with respect to the cause of
this effect is correct, then great care has to be exercised with regard to the spatial design of the
target setup. As a result of our decision to place the participant and robot face to face and align
them in the most natural way, namely directly opposite each other, we may have unknowingly
opened the door to a distractor interference effect.

Independent of this complication in terms of the spatial setup, we also need to acknowledge the
methodological complications that we encountered. We found the two established methods for
quantifying spatial variation, variance with respect to the orthogonal plane versus curvature, to
be not entirely equivalent (see Section 4.2).

(Q2) As already discussed under Q1, movement direction was the dominant factor in our experi-
ments. Apart from movement direction and congruency, very few factors were consistently flagged
as main effects or formed part of significant interactions. We have a weak indication that the prime

may have impacted upon motor interference in such a way that primed participants exhibited mo-
tor interference when performing left-right movements. This indication, however, is based on a
single test.

(Q3) If the incurred motor interference were to differ significantly between simultaneous and
turn-based interactions, we would expect to see statistically significant interactions between con-

gruency and interaction mode. Only a single test based on a 23 model of left-right movements flags
up such an interaction mode interaction. Given the fact that the test is based on the Gaps dataset,
which under other test configurations does not show any indications of motor interference having
occurred, we do not take this result at face value. However, those tests that indicate significant
differences between congruent and incongruent movements do not mark interaction mode as a
significant factor. This seems to indicate that motor interference extends to turn-based interaction,
as we would have expected the effect to be limited to simultaneous interactions otherwise.

(Q4) The only factor where congruency had a significant impact is perceived behavioral interde-

pendence. Assuming that motor interference, in its regular form as well as in its “inverse” form,
has indeed occurred, this result indicates that participants do have some awareness of its impact.
The “direction of impact”, however, is opposite to what we expected. Rather than reporting higher
levels of perceived interdependence under the influence of motor interference, participants re-
ported higher levels of such interdependence in the absence of the effect. A possible explanation
may have to do with the fact that congruent joint actions arguably exhibit a higher degree of
behavioral sychronization as compared to incongruent ones.

Independent of congruency, participants rated simultaneous interactions as more engaging, more
socially rich, and perceived a higher level of behavioral interdependence while engaged in these.

4.2 Differences Between Variance and Curvature Proxies

Methodologically noteworthy is the observation that our tests operating on variance proxies
marked out less factors and combinations of factors as statistically significant than did tests that
operate on curvature proxies. This means that our results are somewhat dependent on our choice
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of proxy, and the two proxies are not entirely commensurate in terms of the ensuing statistical out-
comes. Kupferberg et al. [24] decomposed the standard variance measure (SA) into three distinct
measures: tilt with respect to the error plane (TA), deviation of single movements with respect to
the “global” line fit of movements of that run (DA), and a curvature measure where an interpolated
line was used as line of reference (CA). The authors found that TA and DA correlated more strongly
with SA and hence contributed more to the SA measure than did CA.

Kupferberg et al.’s curvature measure differs from the one employed by us and Chaminade et al.
[12], Gowen et al. [18], and Oztop et al. [34] in the way the “line of reference” is set. Whereas our
measure uses the line connecting the start and end points of the respective movement, Kupferberg
et al. use the line that interpolates the respective movement best. The difference in the two ways of
quantifying curvature is presumably small. Variance or standard analysis and curvature analysis
are not commensurate in that the standard analysis is majorly impacted by movement being tilted
with respect to the reference plane, whereas curvature analysis factors out tilt by means of adapting
the line of reference. The difference between the two proxy measures diminishes the comparability
of existing research based on these two methodological strands.

We found it unhelpful that previous researchers in the field omitted to report effect sizes for
the detected significant effects. Although it is possible to assess the significance of modeled fac-
tors upon a dependent variable such as spatial variation under ignorance of effect sizes, the
non-reporting of these has been criticized in the adjacent fields of psychology [14] and human-
computer interaction [38]. In our particular case, the omission of effect sizes makes it exceedingly
difficult to assess how much the constraints of the methodology can be relaxed to render it embe-
dable in naturalistic interaction scenarios.

4.3 On “Inverse” Motor Interference

We are not aware of any other authors having observed something akin to inverse motor inter-
ference, where participants’ movement variability is higher when the movement is performed
congruently as compared to it being performed incongruently with respect to the model’s move-
ment. Our experimental setup differs from the established paradigm measuring motor interference
in three important ways:

(1) The employed movements are transitive in the sense that participants are moving an ob-
ject to a self-chosen target location. These motor actions are not perfectly transitive, how-
ever, as the grip on the object is never released and the “pick up” part of the motor action
is only performed once at the start of the run.

(2) The forth-back movements, where inverse motor interference occurred, are orthogonal to
the two main directions of movements in the established paradigm. Forth-back movements
differ from vertical and horizontal waving motions in that the interactors’ hands approach
each other in the forth-back dimension when performing the movement in a roughly syn-
chronous manner. That means both actors’ arms and hands approach the imagined middle
line of the table that separates them.

(3) We did not instruct participants with respect to the details of the movements. Instead,
we told them to move roughly forth-and-back, or left-and-right, and demonstrated these
two movements to them. The movements on demonstration were approximately straight
(i.e., parallel to the respective coordinate axis). However, we did not emphasize that par-
ticipants should move precisely this way. Yet, during the experiment, we did not observe
participants deliberately moving in a diagonal manner—that is, toward the robot’s right
hand’s factual but unmarked target location.

ACM Transactions on Human-Robot Interaction, Vol. 9, No. 2, Article 8. Publication date: December 2019.



8:22 F. Förster et al.

Bouquet et al. [5] observed that transitive (i.e., goal-directed) motor actions typically incur
stronger effects of motor interference than do intransitive, or meaningless, movements. Rizzolatti
et al. [37] go so far as to distinguish two types of motor resonance: low-level and high-level reso-
nance. This distinction is based solely on whether the movement in question is goal-directed and
is therefore a genuine motor action. If it is goal-directed, they would speak of high-level motor
resonance. If the movement is goal-less, the motor resonance invoked is considered to be low level.
This distinction is at least partially based on the authors’ observation that certain mirror neurons
appear to code exclusively for complete motor actions, whereas others code for certain types of
movements, irrespective of the larger action of which the movement forms part.

For our purposes, this means that the move from intransitive to transitive movements may
have also brought about a transition from low-level to high-level resonance. Moving to high-level
resonance, in turn, may bring about sensitivities and side effects that are not relevant to low-level
resonance.

One side effect of actions having spatial targets is the potential for competing or distracting
target locations. Welsh and Elliott [47] demonstrated in a setup employing touch actions on visual
targets that the presence of a visual distractor can impact the movement trajectories. In their case,
the trajectories deviated toward the location of the distractor.

It is conceivable that our participants consciously or subconsciously perceived either the un-
marked target location of the robot’s movements, or the robot’s hand itself as distractor location
or distractor object. If so, this could have caused their movements to veer toward that location. In
this scenario, we might see a competition between spatial effects caused through motor resonance,
imitative compatibility effects in terms of Catmur and Heyes [9], and spatial effects induced by the
mere location of the distractor, spatial compatibility effects.

In our setup, the directions of the two types of effects are opposite each other: both veering
toward the distractor and veering to and from the distractor would increase the spatial variation,
whereas the imitative compatibility should render the movement less variable.

Catmur and Heyes’ study [9] tested and confirmed the independence of imitative compatibility

effects from spatial compatibility effects. Utilizing a response-time paradigm, the authors observed
that the effect size of the spatial compatibility effects was larger than that of the effects based on
motor resonance. Although our dependent variable is of spatial rather than temporal nature, it is
conceivable that spatial compatibility effects may also dominate imitative compatibility effects if
measured in spatial terms rather than temporal terms. Thus, the effect that we identified earlier
as “inverse motor interference” may be indeed a spatial compatibility effect that works in the
opposite direction of the imitative compatibility effect. As a consequence, it may dominate the
combined interference effect, thereby rendering any potentially occurring imitative compatibility
effect invisible.

5 CONCLUSION

Our experiment provides some support that motor interference measurements based on spatial
variation do extend to transitive left-right movements. The detection, however, is very sensitive to
the pruning of boundary data between motion segments, and the detected effect sizes are small.
It is therefore questionable whether a further “relaxation of conditions” such as a reduction of
repetitions toward more naturalistic scenarios is possible without losing the effect. For forth-back

movements, we found an effect that is inverse to what has been reported in the literature. The spa-
tial variation of participants’ arm movements was smaller in incongruent interaction as compared
to congruent interaction. We hypothesize that the potentially occurring motor resonance effect
has been overridden by a simultaneously occurring spatial compatibility effect.
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Based on these observations, it does not seem likely that this method of measuring motor reso-
nance can be embedded in real-world scenarios to detect the presence of motor resonance and, by
extension, the real-time quality of interaction. Alternative indices for motor resonance based on
motor synchronization such as motor contagion may be better candidates if the intended quan-
titative assessment of an interaction ought to happen in near real time. On a more methodolog-
ical level, we found the two established methods for quantifying motor interference to be non-
equivalent. Although they may measure conceptually overlapping variants of “spatial variation,”
they do not appear to measure the same spatial concept.

6 FUTURE WORK

Given the likely presence of the distractor effect mentioned previously, future experiments involv-
ing spatial variation measures will need to be adjusted accordingly. Aligning the actors such that
the relevant arms are located in one line along the forth-back axis would probably eliminate this
effect, yet such alignment is also somewhat unnatural. Instead of aligning the actors faces such
that the line connecting them is parallel to the forth-back axis of the table, it would be their right
arms that would be aligned along this axis. This effectively produces a relative offset or shift of
their faces along the left-right axis of the table. In other words, the connecting line between the
two faces would be somewhat diagonal and not parallel to the forth-back axis any more. This may
have undesired side effects in terms of potentially ensuing social interaction. Only an experimental
implementation can shed light on this issue.

A less well-explored path for detecting motor resonance has been taken by Bisio et al. [4]. Instead
of using spatial variation or reaction time as indices for motor resonance, Bisio et al. used temporal
characteristics of participants’ movements and their degree of adaptation to the ones exhibited
by the model as dependent variables (“motor contagion”). Although motor contagion has been
used far less often in the context of motor resonance research, we deem it worthwhile to explore
whether motor contagion is triggered and modulated to a similar or even equal degree by motor
resonance as is motor interference. Compared to the complications we encountered measuring
spatial interference effects, motor contagion most likely involves fewer researchers’ degrees of
freedom and even promises to be less sensitive to tacit features of the spatial arrangement within
which the agents interact.
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