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Abstract

City planners and architects employ graph-theoretic measures to analyse models of the built en-

vironment and predict human navigational behaviour. A recent breakthrough in the neuroscience

of spatial cognition has shown that activation in the human hippocampus tracks the change in

centrality for subjects navigating a virtual Soho in a fMRI scanner. Based on a well understood

information-theoretic framework for modelling intelligent behaviour under cognitive constraints,

the existing measures empowerment and relevant goal information, and novel quantity relevant

goal information uptake were applied to a graph of the Soho street network navigated in the exper-

iment. Empowerment, relevant goal information and relevant goal information uptake are shown

to correlate with graph centrality for the primal graph, and to a lesser extent with centrality for

the dual graph as used in the Soho experiment. These results, consistent with the hypothesis, pro-

vide preliminary evidence that human navigation employs an empowerment maximisation strategy,

and to the author’s knowledge, linking empowerment and relevant goal information with empirical

neuroscience in a collaborative study for the first time.
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1 Introduction

When asking directions to a destination in a city it is common to say “What is the easiest route?”.

The adjective “easiest” encapsulates the optimum blend of a set of competing priorities. Is it the

route with the shortest distance, the route with fewest junctions, or the route that passes through

the best connected streets? When navigating, humans choose a route that combines these and

other factors, balancing the trade-off of physical effort, cognitive effort and travel time.

A substantial body of work at the intersection of artificial intelligence and cognitive science,

developed by Daniel Polani’s Sepia Lab in the Adaptive Systems Group at the University of Hert-

fordshire, has provided information-theoretic formalisms for the quantification of cognitive effort

and constraints. These formalisms have been applied to analyse models of intelligent behaviour

including navigation (Polani et al., 2001; Klyubin et al., 2005b,a; Polani, 2009; Van Dijk and Polani,

2013; Salge et al., 2014b).

City planners have long depended on the graph-theoretic analysis of street networks to predict

pedestrian and traffic flow (Hillier and Hanson, 1984). Influential work on the neuroscience of spatial

cognition by Hugo Spiers’ Lab, in the Spatial Cognition Group at University College London, has

shown that activation in the right posterior hippocampus, a brain region associated with navigation,

scales in proportion to changes in graph centrality (Javadi et al., 2017).

The aim of this work is to develop a simple artificial intelligence agent model of human navi-

gation, and to compare the information-theoretic predictions for navigational behaviour from the

model with a graph-theoretic analysis of the topology of the street network used in the Soho nav-

igation experiment reported in (Howard et al., 2014) and (Javadi et al., 2017). I argue that the

information-theoretic treatment is more general than the graph-theoretic because it is grounded

by the concept of organisms as information-processing entities. Where graph theory deals specifi-

cally with the abstract representation of pairwise relationships, information theory has significantly

more general applications and provides tools for analysing the flow of information that naturally

extend beyond the simple discrete model described in the present work, to continuous domains

and stochastic environments more like the real world. This study takes the first step towards

demonstrating that aspects of human navigational behaviour can be predicted by the information-

theoretic measures empowerment and relevant goal information (detailed in Section 4). The results

(Section 5) show that, consistent with my hypothesis (Section 1.7) that when applied to a model

of an agent navigating in the Soho street network, empowerment and relevant goal information

correlate with the graph-theoretic measures degree centrality and closeness centrality used in the

Spiers Lab study. Furthermore the results show that change in empowerment correlates with the

change in degree centrality, which was found to correlate with activation in the right posterior

hippocampus in Javadi et al. (2017). Having provided indirect evidence of the ability of these mea-

sures to predict brain activation through the correlation with graph centrality, the present study

provides a foundation for a direct comparison with fMRI brain activation data in future work.

In the remainder of this section there is a brief review of the literature from psychology, proba-

bility, information theory, neuroscience, spatial cognition and artificial intelligence that underpins

the present work, before outlining the hypothesis and contribution to knowledge in Sections 1.7

and 1.8.
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1.1 Organisms and information

The principle of natural selection, via competition for finite resources, ensures that living things

have evolved effective strategies to maximise the chance of propagating their genetic code to future

generations (Darwin, 1859). An effective strategy for life must optimise the acquisition and util-

isation of energy. In animals, most of the energy consumption in the body is due to maintaining

homeostatic functions and movement, but a significant proportion, is consumed by the sensory

systems, nervous system and brain. In resting humans up to 20% of total energy used is consumed

by the brain (Kandel et al., 1991). Humans have evolved such expensive brains for good reason –

the subtlety and complexity of the strategies that the human brain may acquire and execute, have

allowed us to adapt successfully to live almost everywhere on our planetary landmass, with ever

increasing lifespans and population size.

In 1948 communications scientist Claude Shannon published his seminal work, developing the

mathematical tools of information theory, to quantify information over noisy communication chan-

nels (Shannon, 1948). Central to Shannon’s work is the concept of entropy, a measure of disorder

that quantifies the information that may be transmitted over a channel. Informational entropy has

an analogous concept in thermodynamics (after which it was named), and the relationship between

informational and thermodynamic entropy, implies a connection between Gibbs free energy and

the amount of information processable by a system (Jaynes, 1957a,b; Polani, 2009).

The idea that perception depends on a probabilistic mechanism can be traced back to Her-

mann von Helmholtz, who described visual perception as a process of “unconscious inferences”

(Von Helmholtz, 1867). The concept that information is acquired through the senses and processed

by the nervous system and brain, is rooted in work by McCulloch and Pitts (1943), extended to

a formal computational theory of mind by Hillary Putnam and Jerry Fodor in the 1960’s, 70’s

and 80’s (Rescorla, 2015). A central concept enabling the analysis of cognition with information

theory is the perception-action loop which describes the cybernetic cycle of information from the

environment through an agent’s sensors, and back via the agent’s actuators. This concept, based

on early work by William T. Powers (1973), gained popularity in psychology, psychiatry and neu-

roscience literature during the 1980’s (Fuster, 1990). The quantitative analysis of perception and

action through information theory was suggested by Ashby (1956), developed in work on control

theory by Touchette and Lloyd (2000), and linked to utility theory with the concept of relevant

information (Polani et al., 2001). The relevant information formalism, detailed in Section 2.4.1,

from which relevant goal information that is used in the present study is derived, enables us to

quantitatively answer the question “What is the minimum information required to take action?”,

and to model optimal decision making in terms of information processing cost via Shannon’s tools.

Considering the perception-action loop to be a communication channel, enables the quantifi-

cation of the information flow from the environment into the organism via sensors and back out

again via actuators. The channel capacity (Shannon, 1948) of this actuation channel is known as

empowerment (Klyubin et al., 2005b,a), because it measures the perceived potential for an agent to

influence the world, either by changing its own state, or by changing the environment (Salge et al.,

2014a). Empowerment has been computed in discrete and continuous models (Jung et al., 2011;

Salge et al., 2013). Empowerment can capture properties of the environment, and can be employed

as a task-less intrinsic motivation for agents that maximises opportunity. Salge et al. (2014b) state

the behavioural empowerment hypothesis as “The adaptation brought about by natural evolution

produced organisms that in absence of specific goals behave as if they were maximising their em-

powerment”. Skiers and snowboarders understand the concept of maximising their empowerment
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due to gravity, staying high until the goal is clear because a premature descent results in a gruelling

trudge. The empowerment formalism is detailed in Section 4.1.

The quantity of information that an organism can acquire through its sensory machinery is

limited by physical and biological constraints, and represents a small fraction of the information

available in the environment. A central theme of the present study is the information parsimony

principle (Polani et al., 2007a) which holds that organisms must have evolved sensors and neural

architecture to capture only the most relevant information (Polani et al., 2001), and to capture an

amount of information, where the costs of acquisition and processing are optimised with respect to

other energy demands. In other words, an organism must “trade-off” informational costs, against

other energy costs (e.g. from movement), to best exploit the opportunities provided by the world

(Polani, 2009).

This trade-off means that human decision-making is not always “rational” – cutting cognitive

corners inevitably leads to inaccuracies and biases. Cognitive constraints as the source of bias

in economic decision-making were investigated by Herbert Simon from the 1950’s (Simon, 1957,

1978), and the study of cognitive biases has continued to expand in psychology and behavioural

economics, including influential work by Amon Tversky and Daniel Kahneman (Kahneman and

Tversky, 1979; Kahneman et al., 1982; Kahneman, 2011). Lending weight to the information

parsimony hypothesis, aversion to cognitive demand was demonstrated experimentally by Kool

et al. (2010). The information-theoretic analysis of the perception-action loop models influence of

cognitive constraints on decision-making performance in work by Van Dijk and Polani in the early

2010’s that provides the theoretic basis for the present study(Van Dijk et al., 2010; Van Dijk and

Polani, 2011, 2013).

Much of the present work depends on two cornerstones of artificial intelligence theory, the

Markov decision process (MDP) and Reinforcement Learning. Richard Bellman developed dynamic

programming for MDPs (Bellman, 1953), and Ron Howard first described the policy evaluation

method described in Section 3.3 (Howard, 1960). For a comprehensive review of dynamic program-

ming see Bertsekas (2005). Reinforcement learning for artificial intelligence was first developed

by Andrew Sutton and William Barto in the early 1980s (Sutton and Barto, 1998). A sizeable

body of work relates the formalism of reinforcement learning to neural activity to determine if,

and where, values, rewards, policies and transition-models are stored and accessed in the brain of

humans and animals (Botvinick et al., 1995; Lee et al., 2012). Reinforcement learning models of

decision making and learning have, in turn, elucidated empirical work identifying brain regions and

suggesting neural correlates for reward-based learning and goal-based decision making (Solway and

Botvinick, 2012).

Agents in a model-based reinforcement learning experiment may begin with a model of the

dynamics of the world, known as the state-action transition function (see Section 3.3), and they

must learn a policy, typically by maximising some reward function, which enables them to select

actions according to state. Model-based decision making has been studied by psychologists for a

long time, including the concept of the cognitive map (Tolman, 1948), which may allow mammals

to switch policies easily as goals and rewards change. More recently Penny et al. (2013) propose a

dynamic Bayesian model of model-based planning and spatial cognition, mapped onto the function

of the entorhinal cortex and hippocampus.

In contrast, for model-free experiments, the dynamics of the world is not already known to

the agent, but it may learn a policy nonetheless, for example via Q-learning (Russell and Norvig,

2009). Differences in brain activation under these two regimes have been demonstrated in fMRI

studies of humans navigating (Hartley et al., 2003). In the Spiers Lab experiment described in
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Section 1.4 (Howard et al., 2014; Javadi et al., 2017), subjects were extensively trained on the area

of Soho in which they would be virtually navigating – by the start of the experiment they had

already acquired an accurate cognitive map. The participants were not expected to learn about

the environment during the experiment, justifying the use in this work of a model-based approach,

where the transition function is already known (Section 3.3).

Relevant information (Polani et al., 2001), unlike earlier attempts to assess the value of in-

formation (Howard, 1966), provides a method of evaluating the pertinence of sensor information

by measuring the minimum sensor information required to achieve a certain level of performance

(utility). The extension of the relevant information formalism to goal-directed activity is termed

relevant goal information, which measures the minimum amount of information about the goal,

under a similar utility constraint (Van Dijk et al., 2010). An agent acting in such a way as to

minimise the goal relevant information needed to take action on average, will choose a routes that

are most likely to be shared across goals, with beneficial implications for spatial cognition in terms

of memory and processing. An agent following an empowerment maximising strategy will also

tend to navigate through the same states for multiple journeys, however empowerment is a local

quantity with a limited horizon, whereas relevant goal information is a global quantity and it the

two measures uncover different properties of the environment.

The information-theoretic measures of graph topology utilised in the present study are em-

powerment, relevant goal information (RGI), and the novel extension of RGI (based on a similar

quantity formulated by Van Dijk (2013)) to include knowledge about the history of the agent

dubbed relevant goal information uptake (RGIU). These measures are detailed in Section 4 with

data for a grid world model of interior space, and data for the Soho street network from Javadi

et al. (2017) used as illustrative examples.

1.2 Embodied cognition and the Bayesian brain

Embodied cognition, or embodiment, is the theory that cognitive processes, perception, and in-

telligence are tightly bound to the physical organs that enable their function, and these sensory

organs are in turn morphologically coupled to the environment. The mind evolved with the body,

and intelligence is the outcome of the development of embodied cognitive processes, optimising

the processing of information by exploiting the structure of the environment. By considering life

as information-processing it becomes difficult to define where the processing starts and ends in

the perception-action loop of world state information, perceived state information and actions and

decisions. Is the brain the information-processing unit? Should we include the nervous system as

a whole? Or extend the definition to the sensors? The shape of the human ear filters sound to

improve intelligibility, pre-processing auditory information before it reaches the timpanum. The

embodiment of an organism induces a structure in the flow of information into the brain, conferring

an advantage by processing that information to be more salient to the organisms needs, reducing

the demand on the neural part of the chain. The causal Bayesian model of the perception-action

loop, as applied in the present study, formalises the embodied dynamics of information as a family

of probability distributions, permitting the quantitative analysis of the information flow between

an agent and the environment (Polani et al., 2007b).

Bayesian models have been successfully applied to brain activation, neural activity, and senso-

rimotor processes, and are proposed as the “underlying computational infrastructure of the brain”

(Penny, 2012). Besides the formalisms derived from the interpretation of the perception-action

loop as a causal Bayesian network (Section 2.4), a number of other approaches have been taken
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to modelling fundamental properties of intelligent behaviour with Bayesian models, revitalising

the Helmholtzian view (Dayan et al., 1995). The formalism of predictive information (Bialek and

Tishby, 1999) has been used in artificial agents as an intrinsic utility function which exhibit various

“intelligent” behaviours (Ay et al., 2008). The free energy principle (Friston et al., 2006), describes

how organisms try to reduce “surprise”, by minimising the difference between their model and the

world as perceived, or by acting to change the world to more closely match the predicted model

(Friston, 2009, 2010). Work by Friston and others on free energy and active inference, has formed

the basis of a large body of literature in computational neuroscience, experimental psychology, and

philosophy, including the predictive processing theory of mind (Clark, 2013). Recent work suggests

that theses strands of research have much in common - empowerment, predictive information and

free energy are different ways of formulating the Bayesian minimisation of the difference between

the posterior and prior beliefs about the world, and can be reformulated to emphasise their similar-

ity (Biehl et al., 2015, 2018). Bayesian models of embodied cognition, via the reduction of sensory

uncertainty by predictive processing, have been extended to interoception, emotion and the sense of

self (Seth, 2013). Other researchers have investigated information-theoretic explanations for neural

activity, in experiments by Strange et al. (2005) the anterior hippocampus was found to be sensitive

to the entropy of visual stimulus.

The concept of intrinsic motivation describes how an agent can be driven to behave in the

absence of external goals. Computational approaches to intrinsic motivation have given artificial

agents the ability to exhibit explorative curiosity (Schmidhuber, 2010), an important component in

intelligent behaviour. Agents motivated to maximise their empowerment, an information-theoretic

approach to intrinsic motivation employed in the present study, exhibit intelligent-like behaviour

in a number of settings as individuals (Salge et al., 2014b), and collectively (Capdepuy et al., 2007,

2012; Clements and Polani, 2017). Other related variational information approaches to intrinsic

motivation include infotaxis (Vergassola et al., 2007) and infotropism (Thornton, 2014). Free

energy maximisation also provides a mechanism for the intrinsic motivation, with the benefit of

biological plausibility when used as an objective function for active inference. Biehl et al. (2015)

present a unified mathematical treatment of active inference with alternative objective functions

including empowerment. Research into intrinsic motivation may also play a role in the development

of artificial general intelligence, perhaps in helping solve the famous value alignment problem (Salge

and Polani, 2017).

1.3 Spatial cognition

The first moving organisms may have appeared as long ago as 2.1 billion years ago (Albani et al.,

2019). For almost all animals, including humans, the ability to successfully navigate the environ-

ment to find food, or prospective mates, is of paramount importance. In the mammalian brain,

the hippocampus plays a central role in navigation, and there is a growing body of evidence that

the same neural structures that have evolved to support navigation also support abstract spatial

representations (Epstein et al., 2017; Garvert et al., 2017). The role of brain regions, primarily used

for spatial cognition, in other aspects of decision making is hinted at by our use of spatial language

when describing problem solving in other domains e.g. “Finding a solution”, “Project milestones”,

“Development road map”. The concept of the cognitive map was first suggested by Tolman (1948),

and located in the hippocampus with the discovery of place cells (O’Keefe and Dostrovsky, 1971;

O’Keefe and Nadel, 1978).

In a study by the Spiers Lab at UCL, human subjects were placed in a fMRI scanner and asked

10



to navigate to a familiar location in a video simulation of a walk through the streets of Soho. The

hippocampus was found to track spatial parameters including egocentric goal direction, as well as

path distance, and euclidean distance to the goal (Howard et al., 2014). In a further study using

the same experimental data, activation in the right anterior and posteror hippocampal regions were

found to correlate with changes in degree centrality and closeness centrality respectively (Javadi

et al., 2017). The centrality data from (Javadi et al., 2017) forms the basis of the collaboration

reported in the present study.

The centrality measures used in Javadi et al. (2017) were computed using a suite of methods

known as space syntax, pioneered by Bill Hillier and Julienne Hanson in the 1980’s (Hillier and

Hanson, 1984), that are commonly used to predict pedestrian and vehicular flow, in planning the

built environment (Al Sayed et al., 2014). The three measures used – connectivity, choice and

integration, are closely related to degree centrality, closeness centrality and betweenness centrality

respectively. Betweenness centrality was first formalised by Linton Freeman in the study of social

networks (Freeman, 1977), Brandes and Erlebach provided a comprehensive review of centrality

measures including degree centrality and closeness centrality (Brandes and Erlebach, 1998).

Does the hippocampus directly encode a measure of centrality, or can an information-theoretic

treatment of cognitive constraints shed more light on the correlation between centrality and brain

activation? A cognitive explanation of the correlation of graph-theoretical space syntax quantities

with human urban movement pattern has been suspected for some time (Hiller and Iida, 2005).

Masucci et al. (2009) describe an “interaction between the metrical and informational space” and

how “a principle of least effort” explains human urban navigation, hinting at the information

parsimony principle (Polani et al., 2007a), but they do not apply Shannon’s tools to the perception-

action loop in their analysis.

1.4 Soho navigation study

The Spiers Lab navigation study used ten different video routes through Soho. Each route has an

origin somewhere along a street, and ends on another street after a series of junctions. A cohort

of 25 participants were well trained in navigating the local street network, and their knowledge of

the map was tested and confirmed before beginning the experiment. Results have been published

in several papers including Howard et al. (2014) and Javadi et al. (2017).

During the experiment participants, prone in a fMRI scanner, were shown videos from a first-

person perspective of a journey by foot through Soho. Each route begins with the participant being

shown the name and photo of the goal for 8 seconds. The video then proceeds to follow the shortest

path to the goal. At certain “decision” points in the journey, the video stopped and they responded

to navigational questions, such as “Goal L/R?”, by pressing “Left” or “Right” buttons on a hand

held controller. Each participant was shown a video for one navigation route, where they were

asked to think about navigating the optimal route, and had to answer the navigation questions,

and one control route where they were asked not to think about navigation or way-finding, and

no questions were asked. Navigation and control routes were allocated to participants at random.

At certain junctions the video does not follow the optimal route, but instead a detour from the

optimal path is taken, so the participants were forced to re-plan before responding at the next

decision point.

The fMRI data was continually recorded, and the spatial measures in the analysis were compared

with brain activity at key events including junction entry, street entry (junction exit) – when a

turn through a junction had completed and the virtual journey had entered a new street, decision
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points, and travel points at randomly jittered intervals during traversal of streets.

The main results reported in Javadi et al. (2017) were:

1. The change in degree centrality ∆CD is tracked by the right posterior hippocampus during

street entry events.

2. The change in closeness centrality ∆CC is tracked by the right anterior hippocampus during

street entry events.

3. Activity in the lateral prefrontal cortex scales with demands of a breadth-first search at forced

detours.

1.5 Space Syntax and the dual graph

As described, in Section 3.2.1, street networks can readily be represented by a primal graph where

the vertices are junctions and the streets are edges. Space Syntax however, deploys the dual graph1

where the vertices are streets and the edges are junctions. This representation is described as

the “information-space” of the street network (Masucci et al., 2014), and there is a considerable

body of work considering the application of the dual graph to street network analysis and urban

planning (Porta et al., 2006; Masucci et al., 2009, 2014). The dual representation lends itself well to

analysis of street names because several segments can be connected together as a single vertex. The

angles between the streets may be represented by edge weights in the dual representation allowing

vertices (street segments) to be merged according to axial lines. Both these ways of compressing

the state space in the dual representation by merging street segments are important concepts in city

planning (Hiller and Iida, 2005). The measures described in Javadi et al. (2017) are street segment

values – in other words, centrality of the vertices in the dual graph. It is beyond the scope of this

work to consider the dual graph. Applying the information-theoretic treatment to the dual graph

representation of streets and junctions requires significant further theoretical study and evolution

of the formalisms, and as such is left to future work.

Despite the success of Space Syntax, the dual graph is not universally accepted as more suitable

for urban spatial analysis than the primal graph – the primal graph is more suitable for representing

the street network when used alongside other spatial and geographical features including length,

width, circuitry and position of buildings (Boeing, 2017). Taking these advantages into account, it

seems reasonable to propose that the primal representation may share enough with the structure

of spatial information in the human brain, to complement the dual graph results in Javadi et al.

(2017), in terms of brain activity correlation during navigation.

1.6 Aims and method

One of the most exciting outcomes of the study of artificial intelligence is how the models de-

veloped can advance our understanding of animal and human intelligence. Artificial agents em-

ploying policies utilising empowerment and relevant goal information have been shown to exhibit

intelligence-like behaviour in a range of modelled environments. The future goal towards which

this work takes the first steps, is to connect artificial intelligence with empirical neuroscience by

testing whether animals and humans employ an empowerment-like, or relevant goal information

minimisation strategy during navigation.

1This is a special form of dual graph known as the edge-vertex dual graph, or line graph, referred to in this text as

dual graph for consistency with the city planning and architecture literature.
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Graph-theoretic tools such as Space Syntax have been shown to predict human navigational

behaviour in cities and architectural spaces. If the information-theoretic quantities measured in

these environments modelled with a graph are correlated with the graph-theoretic quantities, then

there is a sound basis to investigate a direct correlation between the information-theoretic measures

and brain activation in the Spiers lab Soho navigation study.

I deploy a simple discrete probabilistic agent-based model, widely used in the study of artificial

intelligence, of an agent navigating interior space and apply it to street networks via a shared

representation of the agent’s environment and dynamics as a graph. The present study consists of

a series of parameterised experiments computing the information-theoretic quantities and the graph-

theoretic quantities for each scenario modelled. The results show in tabular form the correlation

between the information-theoretic measures and the graph-theoretic measures.

1.7 Hypothesis

I hypothesise that the information-theoretic quantities empowerment and relevant goal informa-

tion are correlated with the graph-theoretic measures degree centrality, closeness centrality and

betweenness centrality when applied to graph representations of a model of interior space and the

Soho street network.

1.8 Contribution to knowledge

The information-theoretic measures empowerment, relevant goal information, and relevant goal

information uptake, based on a simple artificial intelligence agent model, are correlated with the

graph-theoretic measures degree centrality, closeness centrality and betweenness centrality in a

typical grid world used in the study of artificial intelligence, and in a graph representation of

the Soho street network. Correlation with these quantities provides indirect evidence of the ability

of the information-theoretic measures to predict navigational behaviour via prior work in city

planning, and implies a link to hippocampal brain activation during navigation via an empirical

study Javadi et al. (2017).

This work connects the information-theoretic study of artificial intelligence and agent-based

modelling with empirical neuroscience. To my knowledge this thesis presents the first evidence for

the connection of the information-theoretic quantities empowerment and relevant goal information,

(via correlation with urban planning graph centrality measures), with human hippocampal brain

activation during navigation.

The correlation with graph centrality for the street networks in Section 5 suggest that empower-

ment and relevant goal information could provide new insights into human navigational behaviour

in urban environments for city planners, and the application of the measures to a model of internal

space suggest applications for architecture and building management. The model presented here

based on a graph representation unifies these applications into a single framework for analysis,

providing a foundation for future work in both domains.

Relevant Goal Information Uptake (RGIU), described in Section 4.3 is a novel quantity devel-

oped here based on Sander Van Dijk’s concept Inew(Van Dijk and Polani, 2013) represents the

uptake of new information about the goal required by the agent in a given state. RGIU is for a

limited number of steps of history, whereas Inew considers the full state history.
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1.9 Structure of chapters

Section 2 provides an overview of the concepts from information theory, graph centrality, Markov

decision processes, reinforcement learning and relevant information. The discrete probabilistic

agent-based model, familiar from the artificial intelligence literature and deployed in the experi-

ments is detailed in Section 3. Section 4 develops the concepts outlined in Section 2 in the context of

the experimental model, and provides the derivation and interpretation of the information-theoretic

measures empowerment, relevant goal information and relevant goal information uptake. The re-

sults consisting of a comparison of the information-theoretic measures with graph centrality are

presented in Section 5. Lastly, in Section 6 I briefly discuss the findings and suggest directions for

further research.
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2 Technical Background

2.1 Information Theory

This section largely follows Shannon’s original work (Shannon, 1948), and the comprehensive review

of information theory by Cover and Thomas (Cover and Thomas, 2006).

2.1.1 Notation

The probability distribution of a random variable X with alphabet X from which an event x is

drawn is Pr(X = x),∀x ∈ X , replaced in this text by p(x) for readability, when the random variable

is obvious. By similar abuse of notation, where the probability distribution of X is conditioned

on a specific value y of a second random variable Y , Pr(X = x|Y = y),∀x ∈ X is written p(x|y).

A sum or product will omit the set from which values are drawn, the full alphabet is implied e.g.∑
x∈X is replaced by

∑
x. The cardinality of X is written |X |. The expectation of a probability

distribution p(x) is written E[p(x)].

2.1.2 Entropy

The entropy of a random variable H(X) quantifies the uncertainty about the value of X, and is

the minimum descriptive complexity of X. The information contained in a random variable, can

be considered to be the reduction in uncertainty that comes with knowing the value of the variable.

Since I use the binary logarithm throughout, entropy and information are measured in bits.

H(X) = −
∑
x

p(x) log p(x) (1)

Introducing a second random variable Y with alphabet Y, the uncertainty about the value of

Y given X is the conditional entropy.

H(Y |X) = −
∑
x,y

p(x, y) log p(y|x) (2)

If X and Y are independent, knowing the value of Y does not reduce the uncertainty about X,

H(X) = H(X|Y ). Conversely if knowing the value of Y allows perfect prediction of X then

H(X) = 0.

2.1.3 Mutual Information

The mutual information I(X;Y ) can be thought of as reduction of uncertainty in one variable

provided by knowledge of the other, and quantifies the communication rate of a channel with

transmitted signal X and received signal Y .

I(X;Y ) = H(Y )−H(Y |X) (3)

Properties of mutual information:

• symmetric I(X;Y ) = I(Y ;X) = H(X)−H(X|Y )

• non-negative I(X;Y ) ≥ 0
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• zero if and only if X and Y are independent I(X;Y ) = 0 ⇐⇒ H(Y |X) = H(Y ), H(X|Y ) =

H(X)

• bounded by the entropy of each variable I(X;Y ) ≤ H(X), I(X;Y ) ≤ H(Y ).

With the introduction of a third variable Z with alphabet Z we can consider the conditional mu-

tual information, I(X;Y |Z) which can be thought of as the reduction in uncertainty that knowing

the value of Y provides about X, given the value of Z.

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z) (4)

2.1.4 Communication over a channel

A memoryless communication channel, without feedback, is modelled by the random variable X as

the transmitted signal, with alphabet X distributed according to p(x), and the received signal Y

with alphabet Y distributed according to p(y|x).

X
p(y|x)−−−→ Y

With a perfect, noiseless channel, there is no uncertainty about the received signal H(Y |X) = 0,

hence the mutual information is the full information of the transmitted signal I(X;Y ) = H(X). At

the other end of the scale, a channel where the received signal bears no relation to the transmitted

signal there is no mutual information I(X;Y ) = 0. The trade-off between distortion and bandwidth

is formulated both ways by Shannon as the variational information problems, rate distortion and

channel capacity.

2.1.5 Rate Distortion

The rate-distortion formulation permits us to calculate how little information can be transmitted

in this channel without distorting the original signal too much by quantifying the cost of mistakes

as the distortion Dp caused by p(y|x), and placing an upper bound on the distortion Dmax – the

maximum allowed distortion (or cost), over all possible valid probability distributions of p(y|x):

min
p(y|x)

I(X;Y ), subject to : Dp ≤ Dmax (5)

The distortion, or the cost of transmitting a symbol x and receiving y is commonly represented

by a fixed distortion matrix d(x, y), that does not depend on the dynamics of the channel p(y|x).

In this case, the total cost Dp is the expected value of the distortion matrix over the channel for

all x and y.

Dp := E[d(X,Y )] =
∑
x,y

p(x) p(y|x) d(x, y) (6)

The convex constrained optimisation problem formulated in Equation 5 can be solved by the

use of Lagrange multipliers. The first step is to convert the problem into an unconstrained problem

by adding the mutual information term, which is to be minimised, to the distortion term, which is

constrained, multiplied by a Lagrange multiplier β. There is now a new problem with the Lagrange

function Λ(p(y|x)):

16



min
p(y|x)

Λ(p(y|x), β) = min
p(y|x)

I(X;Y ) + βE[d(X,Y )] (7)

With β fixed, the convexity of the Langrangian is assured (Cover and Thomas, 2006). Differ-

entiating, the unique minimum can be found at

δ

δp(y|x)
Λ(p(y|x), β) = 0 (8)

2.1.6 Blahut-Arimoto algorithm

Finding the derivative and solving for p(y|x) gives

p(y|x) =
1

Z
p(y) exp[−βd(x, y)] (9)

where Z is a normalising factor Z =
∑

y′ p(y
′) exp[−βd(x, y′)]. The output distribution p(y), can

be determined from the conditionals by marginalising out X.

p(y) =
∑
x

p(y|x) p(x) (10)

The formulas for p(y|x) and p(y) given by Equations 9 and 10 are self-referential, but by

initialising with any β ∈ (0,∞), any random set of conditional distributions for p(y|x), and iterating

between the two, the distributions converge on a solution. This elegant dual-minimisation iterative

algorithm was invented simultaneously by two scientists (Blahut, 1972; Arimoto, 1972), so it is

known as the Blahut-Arimoto algorithm.

Armed with the conditional distribution p(y|x), the mutual information I(X;Y ) is straightfor-

ward to compute via Equation 3. The channel distribution p(y|x) is optimal in the sense that for

a required distortion, the mutual information I(X;Y ) is minimised. If the requirement is for no

distortion, as β → ∞, the mutual information I(X;Y ) will approach the minimum required for

no distortion in this channel. β can be used to parameterise the trade-off between distortion and

bandwidth for the channel, and this approach is used to similarly parameterise the trade-off be-

tween information and utility during the computation of policies based on minimising goal relevant

information in Section 4.2.

2.1.7 Channel capacity

The channel capacity of the channel described in Section 2.1.4 above, is the maximum mutual

information between X and Y.

C := max
p(x)

I(X;Y ) (11)

The channel capacity, and corresponding source distribution p(x) that maximises I(X;Y ), can be

found using a similar approach to rate distortion, also formulated by Arimoto (1972) and Blahut

(1972). The gothic C is used to denote channel capacity here, to distinguish channel capacity from

C for graph centrality in Section 2.5.

The flow of information in the perception-action loop, between the organism and its environ-

ment, can be modelled as a communication channel between states and actions. The information-

theoretic tools outlined in this section will be applied to analysis of the perception-action loop in

Section 2.4. The channel capacity of the actuation channel formulated via the treatment of the

perception-action loop as a causal Bayesian network is empowerment, which is defined in Section

4.1.
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2.2 Markov Decision Processes

2.2.1 Markov chains

In the early 20th century, the Russian mathematician Andrei Markov studied a type of stochastic

process where the outcome of an event can influence the outcome of the next event. These sequences

are known as Markov chains. A Markov chain is defined by a set of states S = {s1, s2, ..., sr}, and

a transition matrix Pij = p(sj |si) where each element represents the probability of the process

moving from state si to sj . The process proceeds from an initial state, step-by-step, according

to the transition probabilities. If u is a probability vector representing the initial distribution of

states, then the probability of being in state si after t steps is the ith entry in the vector u(t) where:

u(t) = uPt (12)

Markov chains are described as regular if for some power of P it has only positive entries. For

regular Markov chains, the Fundamental Limit Theorem (Grinstead and Snell, 2006, p.447-451)

states that there exists a unique matrix W = lim
t→∞

Pt where each row of W is equal to a fixed

probability row vector w, which is straightforward to compute as it is the left eigenvector of W.

Furthermore, for any initial distribution of states u, uPt → w as t → ∞. This fixed distribution

of states w in the limit of t is known as the stationary distribution.

2.2.2 MDP

A Markov decision process (MDP) is a discrete-time stochastic control process (Bellman, 1953;

Howard, 1960). An MDP describes a model of an agent taking decisions, motivated by rewards at

each time step t, and is defined by the tuple
(
S,A, P

st+1
stat , R

st+1
st

)
, where S ∈ S is a random variable

modelling state, A ∈ A is a random variable modelling actions, P
st+1
stat = p(st+1|st, at) is the state-

action transition function, and R
st+1
st 7→ R gives the reward rt the agent receives for transitioning

from state st to state st+1. The states of the agent over time form a first-order Markov chain,

so the probability of transition from state st to st+1 depends only on at, st and P , and not on

any previous state p(st|st−1, at−1) = p(st|s1, a1, ..., st−1, at−1). Figure 1 depicts a MDP as a causal

influence diagram (Howard and Matheson, 1984) with three states beginning at st−1.

�

P ��+1P��−1

���

��−1R��−1 ��

��

R

��−1R

R

Figure 1: Markov Decision Process. The dashed arrow indicates the

decision in the process, being the choice of action, made according to

the stochastic policy π.
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2.3 Reinforcement Learning

An agent acts in the world defined by a MDP to maximise the expected reward received, or minimise

expected cost (rewards can be negative). The agent’s strategy for choosing actions, depending on

state, is implemented by a stochastic policy π := p(at|st), which gives the probability of taking

action a when in state s at time t. Beneficial actions are “reinforced” by reward, and the task of

the agent is to learn a policy that maximises expected rewards. The policy and the reward function

define a value function V π(st) that gives the time-unlimited expected sum of future rewards starting

at state st.

V π(st) = rt + γrt+1 + γ2rt+2... = E
[ ∞∑
t=0

γtRst+1
st

]
(13)

The discount factor γ ∈ [0, 1] controls the relative importance of short and long term rewards,

and with a value of less than 1, has the practical effect of preventing an infinite sum for bounded

rewards.

The value function can be written in recursive form as a Bellman equation (Bellman, 1953).

This function is linear, so can be solved exactly using linear algebra methods, if the MDP is small

enough for inverting the matrix to be tractable, or estimated to arbitrary precision by using the

value iteration algorithm (Bellman, 1957).

V π(st) =
∑
at

π(at|st)
∑
st+1

P st+1
stat

[
Rst+1
st + γV π(st+1)

]
(14)

With the value function the agent can learn an optimal policy. Learning the policy with the

transition and value functions already acquired is known as model-based learning, because the agent

already has a model of the world, and just has to find an optimal policy.

π∗ = arg max
π

V π(s) (15)

If maximising utility is the only constraint, the optimisation problem in Equation 15 can be solved

approximately and efficiently with a modified form of value iteration known as policy iteration

(Russell and Norvig, 2009).

To evaluate the utility of actions under a policy, the action-utility function Qπ(st, at) gives the

time-unlimited expected sum of rewards after choosing an action at at state st.

Qπ(st, at) =
∑

st+1∈S
p(st+1|st, at)

[
Rst+1
st + γV π(st+1)

]
(16)

In the Spiers lab Soho navigation experiment the participants were well trained on the map of

Soho. The agent-based model of navigation employed in the present study correspondingly utilises a

model-based approach where the transition function is known to the agent - it has a fully-observable

model of the environment. The policy evaluation formula in Equation 16 is deployed across goals in

Equation 28 in Section 4.2 to find a policy that satisfies a given utility constraint while minimising

the required information in a dual-minimisation algorithm based on the Blahut-Arimoto algorithm

in Equations 9 and 10.
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2.4 Information in the perception-action loop

From the concept of living things as information processing entities, agent state, sensory observa-

tions (perception) and actions can be represented as a cyclical flow of information known as the

perception-action loop (Polani et al., 2001).

S

AO

Figure 2: Perception-action loop. S represents agent and world state, O sensor observa-

tions about the state, and A actions taken by the agent.

Unrolled over time, the perception-action loop can be represented by a linked family of prob-

ability distributions known as Causal Bayesian Network (CBN) (Pearl, 1988). The agent receives

information about the environment (observation) and acts on that information (action) to change

state in a series of discrete time steps as shown in Figure 3 where the arrows represent the direction

of causal influence. Random variables are only dependent on the other random variables from

which they have an incoming arrow.

St-1 St St+1

At-1 AtOt-1 Ot

Figure 3: Perception-action loop unrolled into a Causal Bayesian Network. Random

variables Sn, On, An model the state of the world, sensor observations and actions at

time t = n

The CBN can be considered to model both the dynamics of the “flow of information” from

the environment to the agent via its sensors, and the ability of the agent to detect changes it

has made to the environment via its actuators (Klyubin et al., 2004). The mutual information

I(S;O) quantifies the average amount of information the agent acquires about the environment.

The mutual information I(O;A) quantifies how much of this information, on average, is used to

select actions. If the sensors are perfect and the environment is fully-observable, the CBN can

be reduced to a network of states and actions (Figure 4) which, with the introduction of rewards

and a policy, becomes a Markov Decision Process (Figure 1). In this simplified model the mutual

information between state and action I(S;A), is the amount of information acquired and processed

by the agent taking actions in the world.

St-1 St St+1

At-1 At

Figure 4: Simplified CBN for fully observable model.
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2.4.1 Relevant Information

With the evolutionary driver to minimise information processing cost (information parsimony) in

mind, the CBN induced by unrolling the perception-action loop can be considered as a communi-

cation channel, enabling the quantification of the amount of information an agent needs to take in

from the world to make decisions. Considering the flow of information between states and actions

as a communication channel, characterised by the agent decision making policy:

St
π(at|st)−−−−−→ At

I(S;A), the mutual information between the random variables modelling state and actions, is

the amount of information that the agent needs to acquire from the environment to take action.

I(S;A) can also be thought of as the reduction in uncertainty about the action, given knowledge

of the state.

I(S;A) = H(A)−H(A|S) (17)

I(S;A) varies according to the policy π(at|st) selected by the agent. The agent is driven, by

the information parsimony principle, to choose a policy with the lowest cost possible, while still

operating successfully in the world. Finding the minimum average state-action information needed

under a minimum utility constraint Umin formulates a new variational information problem. This

quantity is known as relevant information (Polani et al., 2001, 2006) that quantifies the average

information required to take action, and can be considered a measure of the cognitive burden of

the agent (Polani, 2009).

min
π
I(S;A) subj. to E

[
Qπ(S,A)

]
≥ Umin (18)

Equation 18 turns out to be formally equivalent to the rate distortion problem in Equation

5, with the distortion replaced by the negative utility and can be solved similarly by deploying a

Lagrangian:

Λ(π, β) = I(S;A)− βE
[
Qπ(S,A)|π

]
(19)

Differentiating, so that an equation for the fixed point can be derived:

δ

δπ
Λ(π, β) = p(s) log

π(a|s)
p(a)

− β p(s)Qπ(s,A) (20)

Setting δ
δπΛ(π, β) = 0, and rearranging, gives the self-consistent solution

π(a|s) =
1

Z
p(a) exp

[
βQπ(s, a))

]
(21)

The marginal distribution p(a) is given by:

p(a) =
∑
s

p(a|s) p(s) (22)

Equations 21 and 22 are iterated to minimise I(S;A) while achieving the utility given by

Qπ(s, a) as controlled by β. β controls the maximum utility, permitting the trade-off between

utility and relevant information. While narrowing in on the minimum information, by minimising

the difference between the action entropy and the action entropy given the state, the algorithm
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also finds the policy π(a|s) that satisfies the utility/information trade-off requirement controlled

by β. As β → ∞ the policy will tend to only include optimal actions. Where one action leads to

a higher utility than others, under this regime the agent is certain to take that action. However

if two actions have equal utility, the policy found will ensure the minimum relevant information is

required, and the two actions will have equal probability.

As β → 0 the optimisation minimises the average relevant information without regard to utility.

The policy will tend to a random walk, where the agent requires no information at all to take action.

Notably this does not necessarily result in zero expected utility, (or infinite cost).

The algorithm iterates between Equation 21 and 22, converging on an signal encoding that

minimises the expected distortion for a given level of compression. A heavily compressed signal

has the advantage of requiring less bandwidth, at the expense of the accuracy of the received signal

when compared to the transmitted signal. In line with our consideration of intelligent agents as

information processing entities, less bandwidth (relevant information) means less processing cost,

which may be worth some loss of signal accuracy (utility).

Although β seems similar to a parameter controlling the balance of goal-directed and explorative

behaviour used in artificial intelligence, it has a different role. As β is lowered the policies generated

remain goal-directed (until β = 0), albeit at a cost of reducing utility, but with a commensurate

reduction in the informational burden. The outcome of a lower β for the navigating agent is a

policy where actions are shared across goals reducing the average information processing cost to

the agent, at the expense of some increase in average distance.

An important difference in the formulation of relevant information, compared to the rate-

distortion algorithm in Section 2.1, is that the utility function Qπ(s, a), which determines the cost

of the mapping, is not a fixed matrix, but depends on the policy. While iterating between the

two minimisations, the utility function must be updated, by policy evaluation at each iteration, to

incorporate the effect of the changing policy (Van Dijk, 2013).

The relevant information as described here is a global average. One could imagine dropping an

agent into the world randomly, the relevant information would be the average state information

required to take action. The formalism of an MDP does not require the unification of actions

between states. It is perfectly permissible in the extreme case, to have a completely different set of

actions in each state. It is clear from Equation 17 that the relevant information is lower bounded

by the entropy of the action variable. In a world where no actions are shared between states,

H(A) will in general be much larger than where the same set of actions is available in every state.

The effect of this on the relevant information is profound, with much more information required

on average to take action. At the other end of the scale, if the same set of actions is reused at

every state, the agent can reuse actions. For this to be possible the agent must be “placed” in

the world – it must be “embodied”. If the agent has four actions, North, East, South and West

A ∈ {N,E, S,W} then it must have a sense of direction relative to the environment – it must know

its allocentric orientation. Similarly if the agent has actions Forwards, Backwards, Left and Right,

then it must know its egocentric orientation. The embodiment of the agent gives it the possibility

to label actions to minimise the cognitive burden of operating in the environment (Polani, 2011).

To elaborate an example pertinent to this thesis, one can imagine a nightmarish version of London

with randomised action labels, where the outcome of going “North”, “South”, “East” or “West” is

different at each junction. When advising a tourist asking directions, instead of saying “keep going

East down Oxford street until you reach Tottenham Court Road” one would have to provide a list

of actions as long as there are junctions en-route. The total information required about the route

is much higher in this “twisted world” scenario.
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The model described in Section 3, used for all experiments described in this thesis, defines that

the same set of actions are available to the agent in all states.

2.5 Graph Centrality

A graph G = (V,E) consists of a set of vertices V = {v1, v2, ..., vn}, n = |V | and set of edges that

connect pairs of vertices E = {e1, e2, ..., em}, e = (u, v), u ∈ V, v ∈ V,m = |E|. The graphs used in

this thesis are directed, meaning that each edge is an ordered pair of vertices, connecting the two

vertices in one direction only. In a digraph each pair of vertices may have an edge in one or both

directions. Furthermore all graphs used herein are connected, meaning that there is at least one

path of edges connecting all pairs of vertices.

2.5.1 Degree Centrality

The degree of a vertex is defined as the number of other vertices to which it is connected (by

outgoing edges as the graphs used here are directed graphs). Degree Centrality is sometimes defined

as normalised degree, but following the convention in Javadi et al. (2017), the degree centrality of

a vertex is defined here as simply the degree.

CD(v) = deg(v) (23)

2.5.2 Closeness Centrality

Closeness centrality of a vertex is the reciprocal of the total shortest path distances to all other

vertices (Brandes and Erlebach, 1998). l(u, v) between two vertices u and v is defined as the length

of the shortest path (graph geodesic) from u to v.

CC(v) =
1∑

u∈V l(u, v)
(24)

2.5.3 Betweenness Centrality

Betweenness centrality of a vertex is the fraction of all the geodesics (shortest paths) between all

pairs of vertices that pass through the vertex.

CB(v) =
∑

s 6=v∈V

∑
t6=v∈V

σst(v)

σst
(25)

where σst is the number of geodesics between vertices s and t, and σst(v) is the number of geodesics

between s and t that pass through v (Brandes and Erlebach, 1998).

2.6 Software tools

All algorithms and computations were developed in Python using NumPy2, SciPy3, and the high

precision library GMPY4. For probability and information-theoretic computations I used DIT5

2https://pypi.org/project/numpy/
3https://pypi.org/project/scipy/
4https://pypi.org/project/gmpy2/
5https://pypi.org/project/dit/
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(James et al., 2018), and NetworkX6 (Hagberg et al., 2008) to represent the graphs and compute

primal graph centrality measures.

6https://pypi.org/project/networkx/
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3 Experimental Model

3.1 Information processing agents

Animals operate in the world by acquiring information through the senses. Sensory information is

processed to enable advantageous behaviour. A simple example is a nematode worm sensing and

moving along a chemical gradient signifying the direction of a food source.

To study navigational behaviour I employ a discrete probabilistic model that is commonly used

in the study of artificial intelligence. The world consists of a set of discrete states representing

locations which can be mapped onto a planar graph (see Figures 6, 7 and 9). An autonomous

agent can take action by moving from one state to another. The agent tries to a reach a goal by

taking in sensory information about the world and acting accordingly. For simplicity, the agent is

assumed to have perfect sensors - the world is fully observable and it is not necessary to describe

the agent’s belief about state as distinct from the actual state. The agent acting in the world takes

place as a series of time steps, each associated with random variables describing the agent’s state

St ∈ S and actions At ∈ A. A time-independent random variable models the location of the goal

G ∈ G. As described in Section 2.4 the cycle of processing sensory information at each time step and

acting accordingly is known as the perception-action loop. The perception-action loop of the agent

is modelled by a Causal Bayesian Network (CBN) (Pearl, 1988). The agent receives information

about the environment (state) and acts on that information (action) in a series of discrete time

steps. The CBN can be considered to show both the dynamics of the “flow of information” from

the environment to the agent via its sensors, and the ability of the agent to detect changes it has

made to the environment via its actuators (Klyubin et al., 2004). In this model agent sensors are

perfect – the environment is fully-observable, so the CBN consists of a network of states, actions

and the goal as depicted in Figure 5. Because the state at any given time is only dependent on the

previous state, the CBN unrolled in time forms a Markov Chain, and the behaviour of the agent

may be analysed through the lens of reinforcement learning (see Section 3.3).

St-1 St St+1

At-1 At

G

Figure 5: Perception-action loop unrolled into a Causal Bayesian Network. S, A and G

are random variables modelling states, actions and goals respectively. St is the state of

the world at time t, At is the action taken by the agent at time t that leads to the new

world state in the subsequent time step St+1. The arrows show the direction of causality.

The current state is dependent on the previous state and the previous action taken at

that state. The current action is dependent on the current state and the goal.

3.2 Graph representation

The study of human navigational behaviour in cities over four decades employs a range of graph-

theoretic measures (Hillier and Hanson, 1984), to predict macroscopic pedestrian and traffic flow.
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A graph can conveniently represent the junctions (vertices) and streets (edges) of a street network,

allowing the graph-theoretic centrality of street networks to be measured. The same graph can be

used to represent the states (vertices) and actions (edges) of the simple discrete probabilistic model

of an autonomous agent as described above.

Simple grid worlds are commonly used in the study of artificial intelligence, and specifically in

the prior work on empowerment (Klyubin et al., 2004, 2005a; Salge et al., 2014b; Clements and

Polani, 2017) and relevant goal information (Van Dijk et al., 2010; Van Dijk and Polani, 2011,

2012) that form the foundation for this thesis. Although in the literature grid worlds are naturally

diagrammed as grids, I will show them as graph diagrams for continuity with the graph diagrams

of the street networks, which naturally resemble cartographic maps.

Figure 6: Example of a small grid world. The agent has five possible actions in

any state A = {N,E, S,W,wait}. All rewards are -1.

There are two types of world employed in the experiments, grid worlds and street networks.

Each world is represented by a connected directed planar multigraph G = (V,E) with vertices

V = {s1, s2, ..., sn}, n = |V | representing all possible agent states, and edges representing all possible

state-action transitions E = {e1, e2, ..., em}, e = (s, s′),m = |E|. Each edge is associated with one

of the actions from the set of actions available to the agent, a ∈ A. Figure 6 shows an example

small grid with edges labeled with actions. Figure 7 shows a graph of a small section of the Soho

street network with edges labeled with actions.

The graph partially represents a MDP (see Section 3.3), with the set of vertices being the

alphabet of states S = V , and the set of edges defining the state-action transition function. If

an edge connects two vertices, when the agent takes the action represented by the edge, it will

transition between the states. If no edge exists between the states corresponding to the action then

taking the action results in no change of state. Formally, where a is the action connecting si to sj
and si 6= sj :
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Pr
(
S′ = sj |, S = si, A = a)

)
=

{
1, if (si, sj) ∈ E
0, otherwise

and

Pr
(
S′ = si|, S = si, A = a)

)
=

{
0, if (si, sj) ∈ E
1, otherwise

The choice of a directed graph representation permits a general transition model where the proba-

bility or cost of transitioning between two states may be different in either direction (e.g. one-way

street, or restricted flow in one direction). For simplicity, and since pedestrian traffic typically flows

both ways in all streets, all the graphs used in the experiments below have both “in” and “out”

edges between each pair of vertices, and the cost of transitioning in either direction is the same.

Graph representations of MDPs can also provide performance enhancements for estimating policies

e.g. (Cheng and Chen, 2013). Exploiting such enhancements presents an opportunity for further

work.

3.2.1 Street Networks

For street networks, the planar graph representation has the advantage of resembling a cartographic

map. Street network graphs shown in figures in this text are shown with variable length edges

representing the length of the street segment in the map. These lengths are for diagrammatic

purposes only, the reward function just gives -1 for each transition, the same as for grid worlds.

The vertices represent junctions and the edges represent the action of walking along a street between

two junctions. All streets were assumed to be navigable in either direction by pedestrians, so all

vertices are connected to neighbours by a pair of edges, one for each direction. The cardinality of

the set of actions is determined by the maximum degree of the vertices of the graph |A| = ∆G + 1.

The choice of action for an edge is decided by bearing. Analysis of the distribution of bearings

in Soho street network with a polar histogram (Figure 8) shows a strong clustering of bearings in

four directions approximately aligned with the intermediate directions (NE, SE, SW, NW). The

set of all bearings were analysed with the k-means algorithm, to find bearings that represented

|A| cluster centroids. Actions were allocated to edges in turn, with the edges ordered by angular

distance from cluster centroid bearings. The junctions in the street maps used in the experiments

had a maximum of 6 connected streets (at radius 500m from centre), represented by a graph with

a maximum degree of 6, with 7 actions in the set of actions available to the agent in each state,

once the “wait” action is included. Section 3.2.2 describes the process of generating graphs from

cartographic data.

3.2.2 Generating graphs from maps

The street network graphs were generated from the Space Syntax map file used for Javadi et al.

(2017), kindly supplied by Joao da Silva Pinelo. The map includes data for 36,319 street segments

covering all of central London. Computing relevant goal information (see Section 4.2) would be

intractable on such a large state space, so the set of street segments included in the graphs was

limited by distance from the centre point of the street network used in the study. Graphs were

generated from the set of street segments, where both ends of the segment are within the chosen

radius for radii r ∈ {300, 400, 500, 600, 700} metres. The graph at 300m radius was the smallest
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Figure 7: Section of the Soho street network graph showing action labels, 100m radius from centre.

The agent has five possible actions, A = {a1, a2, a3, a3, wait}, because no junction connects more

than four streets. Actions have been allocated according to which cluster of bearings they fall into.

Vertices are junctions, edges are streets.

radius where no junctions of interest were excluded from the graph, the graph at 500m radius was

found to have the best correlation with the space syntax centrality measures (see Section 5).
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Figure 8: Polar histogram, generated from the Space Syntax map data, showing distribution of

bearings in the Soho street network amongst streets with both junctions within 500m from centre.

Figure 9: Blue and red points show the graph of radius 500m generated from Space Syntax map

data overlaid on a Google map of the area around Soho, London. Red points are junctions in the

network used in Javadi et al. (2017).
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3.3 A family of Markov Decision Processes

The Causal Bayesian Network in Figure 5 can be viewed as a series of decisions in a fully observable

stochastic environment, where the next action is only dependent current state, not any previous

states or actions, via the stochastic agent policy and the deterministic transition function. Unrolled

in time the CBN represents a family of Markov Decision Processes (see Section 2.2), each one

describing how the agent seeking a goal g ∈ G in state st ∈ S at time t takes action at ∈ A, thus

transitioning to state st+1 ∈ S. The MDPs are defined by the tuple
(
S,A, P

st+1
stat , R

st+1
stg

)
, where S is

a random variable modelling state, A is a random variable modelling actions, P
st+1
stat = p(st+1|st, at)

is the state-action transition function – in this model a deterministic mapping of states and actions

defined by the graph. R
st+1
stg 7→ R is the reward the agent receives for transitioning from state st

to state st+1 while seeking goal g. The reward models the agent’s motivation to reach the goal as

easily and quickly as possible. Rewards are negative and represent the cost of acting in the world.

Some actions result in a change of state, which incurs a physical cost of movement, some actions

do not result in a change of state, but nonetheless incur a cost. Although it might seem simpler

to restrict the set of available actions in each state, At models the agent’s choice of action from

the normal set available to it. The agent “could” walk into a wall, but informed by the negative

reward, it follows a policy where this action is unlikely.

At each time step the agent chooses actions based on the policy – a time-invariant probability

distribution of actions given state π = p(a|s). The deterministic transition function in this model

simplifies computation without loss of expressivity of the features of interest, however the stochastic

policy is crucial to the model. Acting optimally in all situations comes with a cost, a stochastic

policy allows the agent to save informational bandwidth and/or storage by accepting some loss of

optimality in certain situations. Considering the navigation scenario, at some junctions it doesn’t

matter much, in terms of distance travelled to most goals, whether we go left or right. With a

stochastic policy the agent can assign a similar probability to these actions. As we shall see in

Section 4.2 this is where the power of information theory can be brought to bear. The agent

has previously acquired the policy through knowledge of the environment and the goal, and the

policy is not updated in the course of an experiment. The agent taking decisions according to the

policy, combined with the outcome of the state-action transition function, forms a Markov chain

of states defined by the state-transition matrix P with elements set as pij = Pr(St+1=j|St=i) =∑
at
π(at|st)P st+1

stat

3.4 Utility and policy evaluation

The model utilises standard reinforcement learning formalism to evaluate agent policies (see Section

2.3). The expected reward for executing the policy in a given state at time t is the value function

V π
g (st), defined as the expected sum of rewards at state s, for a time unlimited sequence of actions

chosen according to the policy π(at|st, g) specified by the goal g . There is no need to limit the

horizon of the agent with a discount factor because in this model MDPs are always finite – the goal

is absorbing and the agent never has a policy that actively avoids the goal, so it will always arrive

at the goal eventually.

V π
g (st) = E

[
rt + rt+1 + rt+2 + ...

]
(26)

The value function can be expressed as a recursive Bellman (1953) type equation:
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V π
g (st) =

∑
at∈A

π(at|st, g)
∑

st+1∈S
p(st+1|st, at)

[
Rst+1
stg + V π

g (st+1)
]

(27)

To evaluate the utility of actions at a particular state under a policy the action-utility function

Qπg (st, at) gives the time-unlimited expected sum of rewards after choosing an action at at state st.

Qπg (st, at) =
∑

st+1∈S
p(st+1|st, at)

[
Rst+1
stg + V π

g (st+1)
]

(28)

V π
g (st) can be estimated to arbitrary precision using the well-known value iteration algorithm

(Russell and Norvig, 2009), and this is the approach taken by Polani et al. (2006) and Van Dijk

et al. (2010).

3.4.1 Policy evaluation via the fundamental matrix

The Markov chain formed by the transition matrix for a goal directed agent, where the goal is an

absorbing state, is an absorbing Markov chain. The mean time to absorption can be found via the

fundamental matrix (Grinstead and Snell, 2006). For an MDP where the reward is the same for

each transition (in this model r=− 1), the mean time to absorption gives the expected value of the

policy V π
g (st).

First I arrange the transition matrix P such that the goal (absorbing state) is in the last row

and column of the matrix, with the transient (non-absorbing) states occupying the rest of the row

and column.

P =

(
A b

0 1

)
b is a column vector representing the probability of transitioning into the goal at each non-goal

state b = Pr(St+1=g|St), 0 is a zero row vector representing the probability of transitioning out

of the goal into any other state 0 = Pr(St+1|St=g). The matrix A represents the probability of

transitioning between any pair of transient states 0 = Pr(St+1|St 6=g). The matrix N = (I−A)−1

is known as the fundamental matrix for P. The entries nij of N give the expected number of times

the process is in sj if started in si. The expected time to absorption (expected time to reach the

goal) is given by tg = Nc, where c is a column vector with all entries equal to 1, and tg is a vector

of mean time to absorption for each state except the goal (Grinstead and Snell, 2006). Section

4.2.2 discusses some performance implications of using this approach as opposed to value iteration.
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4 Information-theoretic measures

Underlying the hypothesis is the proposal that an information-theoretical analysis of an agent-based

model of human navigation can explain the ability of a graph-theoretic analysis of the street network

to predict human navigational behaviour. This section outlines the formalism and computation

of the information-theoretic measures empowerment, relevant goal information and relevant goal

information uptake, as applied to the discrete probabilistic model described in Section 3.

4.1 Empowerment

The cycle of intake of sensory information and taking action based on that information is known as

the perception-action loop, which can be considered to be a communication channel (see Section

2.4. Empowerment (E) is defined as the channel capacity (C) (Shannon, 1948) of the actuation

channel of the agent, and is formalised as the maximal possible information flow between the actions

of the agent and the effect of those actions some time later. Empowerment can be interpreted as

the potential the agent has to influence the environment. Empowerment can be computed for a

given number of cycles into the future, which is referred to in the literature as n-step empowerment

(Klyubin et al., 2005b). Since I use the binary logarithm, empowerment will be measured in bits.

E(st) := C(st) = max
p(ant |st)

∑
An,S

p(st+n|ant , st) p(ant |st) log
p(st+n|ant , st)∑

An p(st+n|ant , st) p(ant |st)
(29)

In this deterministic transition, fully-observable model the computation simplifies to the log of

the number of reachable states within n steps.

E = log |Sn| (30)

Empowerment has been shown to be useful in a range of settings as a task-less utility function

for a maximum empowerment policy, where, in the absence of information about the goal, an agent

can choose the action that maximises the future opportunities that are available within the time

window (Klyubin et al., 2008). The variable range of n-step empowerment means it can utilise

from local to global topology, depending on the ratio of the number of steps to the size of the

environment.

Figure 10 shows empowerment calculated for the states in a very small graph world. An agent

navigating this world has 5 actions available in every state A = {N,E, S,W,wait}. The “wait”

action, and any action without a corresponding edge in the graph, result in no change of state

st+1 = st. In dynamic environments unchanging state can lead to higher empowerment but in

a static environment such as this model, with no change in state there is no empowerment. In

1 step, the agent can reach each connected state. E1−step(s) = log deg vs where s is a state and

vs is the graph vertex representing s, hence the maximum empowerment is set by the maximum

degree of the vertices of the graph (∆G ) maxE1−step(s) = log ∆G . Figure 10a shows the 1-step

empowerment for a small graph. The empowerment for a “dead end” state with only one neighbour

is zero. At 2 steps for the small world in Figure 10b, empowerment uncovers some aspects of the

topology. There are two states with a degree of 3 but one has a higher empowerment because

one more state is reachable with 2 steps. Similarly at 3 steps in Figure 10c, the two states to the

right of the figure are differentiated. With 4 steps of look-ahead in Figure 10d, all the states are

reachable, so the agent has maximum empowerment in every state.
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Figure 10: Empowerment Ensteps∈[1,4] in bits for a small grid world. 1 step empowerment is the

log of vertex degree. 4 step empowerment is the same for all states (log2 7) because any state can

be reached in 4 steps from any other state. 2 and 3 step empowerment encode certain aspects of

the topology of the world; at 2 steps the left central node has the highest empowerment. An agent

could maximise opportunities in the absence of a clear goal by being at that location.

Three important factors have been identified to take into account for the choice of a suitable

number of steps for fruitful analysis of graph worlds are:

1. At one step empowerment is proportional to vertex degree.

2. With a small number of steps relative to the diameter of the graph, empowerment encodes

aspects of topology.

3. As the number of steps approaches the diameter of the graph, the spread of empowerment

values amongst the states becomes less varied

The frequency distribution of empowerment values from 1 to 9 steps in Figure 13 illustrates

this effect for the street network graph.
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4.1.1 Empowerment for the six room grid world

Figure 11 shows empowerment at 1, 3, 5 and 9 steps for a six room grid world, familiar from the

literature (Van Dijk et al., 2010). As the number of steps increases, extending the horizon of the

agent, empowerment uncovers the importance of the doorways between the rooms, in providing an

opportunity for more possible future states. For a comparison between empowerment and centrality

for the six room grid world, please see Section 5.
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(d) 9 step empowerment Ensteps=9

Figure 11: Empowerment Ensteps∈{1,3,5,9} for the six room grid world. Colour ranges are specific to

each graph. At 1 step the measurement of empowerment is discrete and coarse, because empower-

ment is proportional to degree, with more steps empowerment elucidates network topology. At 3

and 5 steps the central regions of the rooms, the corridors and states close to the corridors allow

access to other rooms so the empowerment is high. At 10 steps the relative size of the rooms has

a strong influence on the value of empowerment.
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4.1.2 Empowerment for the street network graph

To illustrate the effect of increasing the number of steps in a street network, Figure 12 shows the

changing distribution of empowerment values with increasing number of steps in a graph of the

Soho street network including streets within a 500m radius of the centre. At 9 steps the ability of

empowerment to distinguish between states is reduced as most states have a similarly high value.

The edge effect means that states on the periphery of the graph will have a lower empowerment

than the same states in a graph constructed with a larger radius. More states will be affected by

this peripheral effect with a higher number of steps. Consequently the accurate computation of

n-step empowerment requires that the junctions of interest are more than n steps from the edge of

the map. Any closer and the values of empowerment would be artificially constrained by the choice

of map radius, because the edge of the map could be reached within the n-steps. Up to 4 steps, the

values of empowerment for the vertices (junctions) of interest do not change for radii of 500m and

higher. At 5 or more steps, the value of empowerment is reduced, for junctions of interest closer

to the edge of the map.

Figure 13 shows the frequency distribution of empowerment values in the 500m radius graph,

from 1 to 9 steps. At 6 steps the maximum empowerment value is shared by 25 states, limiting the

effectiveness of the measure to distinguish between states in the network.

35



1

2

1.6

1.6

0

2

2

2

1.6

1.6

1.6
1.6

1.6

1.6

1.6

1.6

1.6

2

1.6

1.6

1.6

1.6

1.6

2

1.6

2

2

1.6

1

2.3

1.6

2

2

0

2

2

1.6

2

1.6

2

2

1.6

2

2

2

2

2

1.6

2

1.6

1.6

1

1.6

1.6

2

1.6

1.6

1.6

1.6

1

1.6

1.6

1.6

1.6

1.6

1.6

1

1.6

1.6

2.6
2.6

1.6

02

0

1.6

2.6

1

1

1

2

1

1.6
1.6

1.6

1

2.3

2.3

1.6

1.6

1.6

2

1.6

2

1

2.61.6

2

0

1.6

2

2.3

1.6

1

2

2

1.6

1.6

1.6 2 1.6 0

21

2

1.6

2

1.6
1.6

1.6

1.6

1.6

0

1

2

2

1.6

2

1.6

1.6

1
2

2

1.6
1

2

2.3

2

1.6

1.6

21.6

2
1.6

2

1

2

1

1.6

1.6

1.6

2

1.6

1.6
1.6

1.6

1.6

2

1.6

0

1.6
1.6

1.6

1.6

2
1.6

1
1

1

2

2

1.6

0

1
1.6

2

1

1.6

2

1.6

1.6

1.6

1.6

2

1.6

2.3

1

1.6

2.3

2

2

2

0

2
1.6

1.6

1.6

1

2

1.6

1.6

1.6

2
1.6

2

1.6

1.6

1.6

2

1.6

1.6

1.6

1.6

1.6

0

0

1.6

2

2.3

0

1.6

1.6
2

0

1.6

1.6

1.6

1.6

1.6

1.6

21.6

1.6

1.6

2

2

1

1.6

2

1.6

1.6

0

2.3

2

2

1.6

1.6

0

0

1.6

1.6

1.6

1.6

1.6

2

1.6

2

1.6

1.6

1.6

1

1.6
1.6

1.6

1

1.6
1.6

2

2

0

1.6

0

1.6

1.6

1.6

1.6

1.6

1

1.6

1.6

0

1.6

2

2
2

0

1.6

1

0

1.6
1.6

0

1.6
1.6

0

1

1.6

1.6

2.6

0

1.6

1.6

0

2

1.6

1.6

2

2

1.6

1.6

1.6

1.6

1.6

1.6
1.6

1.6

0

1.6

0

1

1.6

1.6

1

1

1.6

2 0

1

2.3

2

2
1.6

1
1.6 1.6

2

2

0
1

1 2

2

1.6

1.6

1.6

1.6

1.6

2

2

1.6

1 1.6
2.6

0

0

0

1

1.6

0

0

1.6

1.6

1.6

0

1.6

1

0

1.6

0

0

0

1

0

1

1

1

1

0

0

1.6

1.6

0

1.6

2

0

1

0

2

0

1.6

0
1.6

0

1.6

1

1

1

0

0

1

2

0

0

0

0

0

2

0

1.6

1

0

1.6

1.6

0

0

0

00

0.0

0.5

1.0

1.5

2.0

2.5

(a) Empowerment nsteps = 1

3.7

3.9

4.2

4.3

3.6

4.5

4.7

4.9

4.5

4.5

4.2
4.2

4.1

4.3

4.6

4.2

4.2

4.6

4.5

4.2

4.5

4.3

4.2

4.9

4.7

4.6

4.2

4.2

4

4.1

4.2

4.1

4.2

3.7

4.5

4.7

4.3

4.4

4.2

4.3

4

4

4.3

4.6

4.9

4.9

4.6

4.5

5

4.6

4.5

3

3.7

4.3

4.7

4.5

4.1

4

4.1

4.1

4.2

4.4

4.5

4.5

4.4

4.2

3.9

4.5

4.6

4.8
4.6

4.2

3.54.2

3.3

4.5

4.6

3.8

3.9

4.2

4.4

4.2

4.4
4.2

3.7

3.3

5.2

4.9

4.6

4.5

4.7

4.7

4.3

4.6

4.4

4.84.1

3.7

3

4.7

4.9

4.7

4.4

3.2

4.6

4.6

4.6

4.1

4.1 3.7 3.5 2.8

4.24

4.5

4.3

4.7

4.2
3.9

4.3

4.2

4.5

3.6

3.6

4.6

4.6

4.5

4.7

4.2

4.2

4.1
4.5

4.3

4.2
4.3

4.7

4.6

4.8

4.5

4.4

4.64.4

4.5
4.5

4.7

3.9

4.5

3.9

4.5

4.3

4.3

4.4

4.5

4.3
4.5

4.2

4.3

4.6

4.2

3.2

4.1
4.5

4.5

4.1

4.4
4.2

4.2
4.2

4

4.5

4.4

3.9

3

4
4.2

4.5

4.2

4.6

4.5

4.3

4.5

4.2

4.3

4.5

4.2

4.4

4.3

4.8

5.3

5

4.5

3.7

3

4.6
4.5

4.4

4.7

3.6

4.3

4.5

4.2

4.2

4.6
4.2

4.9

4.5

4.2

3.8

5

4.2

4.2

4.4

4.4

4.3

3.3

2.3

4.5

4.3

4.2

3.3

4.4

3.9
4.1

3.5

4.5

4.3

4.4

4.6

4.8

4.9

4.64.2

4.1

4.5

4.6

4.6

4.1

4.6

4

4.5

4.7

3.2

3.5

4

4.8

4.6

4.1

3.2

3.2

3.5

3.9

4.2

4.3

4.5

4.2

4.4

4.9

4.8

4.2

3.9

3.9

4.2
4

4

3.9

4
4.1

4.2

4.5

2.8

3.6

2.8

4.1

3.6

3.7

4.1

3.7

3.6

3.8

3.2

2.6

4.6

4.5

4.1
3.6

3

3.5

3.8

3.2

4.3
3.7

3

4.1
3.9

3.2

3.2

4.3

4.3

4.6

3.8

4.2

3.8

3.2

4.8

4.6

4.5

4.4

4.2

4.2

4.5

4.1

4.1

4

4.2
4.4

4

3

3

2.6

3.7

3.5

3.9

3.3

3.9

4.2

3.6 3

4

4.4

4.4

4.7
4.5

3.6
3.6 3.9

4.4

4.3

3.2
3.5

4.24.9

4.5

3.9

4.1

3.9

4.1

4

4.5

4.8

3.5

4.5 4.5
4.6

3

3

3

4

4.2

3.3

3.6

4.2

4.2

4.7

2.8

3.9

3.5

2.6

4.2

3.8

3.6

3.6

3.7

2.3

3.6

3.5

3.6

3.7

3.3

2.6

4.2

4.2

3

4.1

4.4

3

3.8

3.6

4.1

3.5

4.2

3.3
4.1

3.6

3.9

3.6

3.6

3

2.3

3.6

4.1

4.4

3

3.2

2.6

2.8

3.2

3.8

3

3.9

3.5

3

3.6

3.5

3.2

2.8

3

3.23.2

2.5

3.0

3.5

4.0

4.5

5.0

(b) Empowerment nsteps = 3

5

5.1

5.3

5.5

5.2

5.8

6

6.1

5.8

5.8

5.7
5.6

5.6

5.6

6.2

6

5.8

5.8

5.8

5.8

6

5.8

5.8

6.1

6.1

6.2

5.7

5.7

5.2

5

5

5

5.5

5.1

5.3

5.6

5.5

5.6

5.5

5.7

5.1

5.2

5.6

6

6.2

6.2

6

6.1

6.3

6.1

6.1

4.3

4.9

5.5

6.1

5.9

5.7

5.6

5.6

5.5

5.6

5.7

6

5.8

5.9

5.4

5.4

5.9

5.8

5.7
5.4

5.2

4.85.3

4.8

5.5

5.5

5.2

5.3

5.8

6

5.6

5.8
5.4

5

4.9

6.5

6.3

6.1

6

5.9

5.6

5.2

6

5.6

65.4

5

4.3

6.2

6.2

6.2

5.8

5.1

6.2

6

5.8

5.3

5.2 5 4.6 4

5.65.4

5.7

5.7

5.9

5.6
5.5

5.9

5.8

5.7

4.6

5

5.8

6

6.2

6.3

6

5.8

5.6
5.7

5.5

5.2
5.6

5.9

5.9

5.9

5.9

5.9

65.8

5.7
5.8

6.1

5.4

5.7

5.2

6

5.9

5.8

5.6

5.6

5.6
5.6

5.7

5.8

6

5.8

4.5

5.2
5.4

5.8

5.4

5.3
5.2

5.8
5.7

5.8

5.7

5.4

5.1

4.6

5.5
5.6

5.9

5.6

5.8

5.7

5.8

6

5.8

5.7

5.8

5.5

6

6

6.2

6.5

6.2

5.8

5.3

4.5

5.9
5.9

6.1

6.2

5.2

5.9

5.9

5.8

5.8

5.9
5.6

6.2

5.9

5.8

5.1

6.2

5.6

5.6

5.8

6

5.6

5.1

3.7

5.5

5.1

5

4.7

5.3

5
4.9

4.5

5.7

5.6

5.7

6.2

6.3

6.2

65.6

5.6

5.7

5.8

5.9

5.3

6.2

5.4

5.8

6

4

4.5

5.2

6.3

6.2

5.6

4.9

4

4.5

5.4

5.5

5.6

5.8

5.4

5.8

5.9

5.8

5.7

5.6

5.2

5.5
5.4

5.5

5.4

5.8
5.9

5.3

5.8

4

4.6

4

5.4

4.8

4.9

5.4

5

4.5

5

4.5

3.8

5.5

5.2

5
4.8

4.2

4.9

5

4

5.2
4.9

4.3

5.2
5.2

4.7

4.5

5.7

5.4

5.6

5.1

5.3

5.1

4

6

5.9

5.7

5.6

5.7

5.6

5.6

5.3

5.4

5.4

5.4
5.1

5

4.2

4.3

3.7

5.2

4.9

5

4.7

5.2

5.1

4.6 4.2

5.5

5.4

5.2

6
5.6

4.8
4.9 5.3

5.7

5.3

5.1
5.2

5.66

5.7

5.7

5.5

5.6

5.3

5.3

5.7

6.2

4.6

5.6 5.9
6

4.8

4.3

4.9

5.5

5.1

4.7

4.5

5.2

5.5

6

5

5.7

4.9

4.2

5.7

4.9

4.9

4.9

5.4

4.2

5.2

5.4

5.7

5.4

5

3.7

5.2

6

4.8

5.2

5.3

4.5

5

4.9

5.5

5.2

5.2

4.7
5.4

5.2

5.1

5.2

5.2

4.3

3.7

4.9

5.4

5.7

4.2

4.6

4.3

4.3

4.5

5.3

4.4

5

4.6

4.1

4.5

4.9

4.5

4.2

4.1

4.95.1

4.0

4.5

5.0

5.5

6.0

6.5

(c) Empowerment nsteps = 5

6.3

6.4

6.6

6.9

7.2

7.4

7.7

7.8

7.6

7.4

7.4
7.3

7.3

7.4

7.6

7.6

7.5

7.6

7.5

7.5

7.6

7.5

7.6

7.8

7.7

7.7

7.5

7.4

6.6

6.7

6.8

6.8

7

6.2

6.5

6.9

6.8

7.1

7.2

7.4

6.5

6.8

7.1

7.4

7.8

7.8

7.7

7.6

7.8

7.7

7.7

6.7

7.2

7.4

7.6

7.7

7.5

7.5

7.4

7.4

7

7.2

7.4

7.1

7.3

7

7.1

7.4

7.2

7.1
6.8

6.6

6.36.7

6.4

6.8

7

6.7

6.8

7.5

7.5

7.3

7.2
6.9

6.6

6.4

7.7

7.7

7.7

7.6

7.5

7.3

6.5

7.4

7.2

7.47.2

6.9

6.5

7.8

7.8

7.6

7.2

7.1

7.7

7.6

7.3

6.6

6.6 6.5 6.5 6.2

7.57.2

7.3

7.1

7.1

6.8
6.7

7.4

7.2

7

6.2

6.7

7.6

7.7

7.7

7.7

7.5

7.3

7.2
7.1

6.9

6.7
7.2

7.3

7.3

7.4

7.4

7.5

7.77.6

7.5
7.5

7.7

7.4

7.3

7

7.1

7.1

7

7

7.2

7.2
7.3

7.4

7.5

7.7

7.6

6.2

6.5
6.7

7.2

7.3

6.6
6.7

7.5
7.3

7.5

7.1

6.9

6.9

6.6

7.3
7.5

7.6

7.4

7.3

7.4

7.6

7.7

7.7

7.5

7.6

7.3

7.6

7.5

7.5

7.7

7.5

7.3

7

6.7

7.3
7.3

7.5

7.6

6.9

7.2

7.2

7.6

7.5

7.7
7.5

7.8

7.6

7.4

7

7.5

7.2

7.2

7.4

7.4

7.2

7.1

6.1

6.7

6.4

6.4

6.1

6.7

6.3
6.2

5.9

7.6

7.5

7.6

7.7

7.6

7.5

7.37.1

7.1

7.3

7.3

7.4

7.1

7.5

6.7

7.4

7.7

6.3

6.6

6.9

7.4

7.4

7.4

7

6.3

6.6

6.9

7

7.1

7.3

7

7.2

7.2

7.2

7

7.3

7.1

7.2
7.3

7.4

7.4

7.4
7.4

6.9

7.5

5.9

6.2

5.9

7.1

6.8

6.7

7

6.4

6

6.6

6.3

6

6.9

6.7

6.5
6.2

6

6.3

6.4

6.3

6.6
6.2

5.8

6.7
6.7

6.4

6.2

7.1

6.9

6.9

6.7

6.9

6.5

6.3

7.2

7.1

7

7

7

7.1

6.9

6.8

6.8

6.8

6.6
6.5

6.4

6

5.8

5.5

6.8

6.5

6.6

6.3

6.6

6.5

6 5.6

7

6.8

6.6

7.4
7.1

6.7
6.8 7

7.2

7

7.1
7.4

77.2

7.2

7.4

7.3

7.3

7

7

7.2

7.3

6.2

7.3 7.3
7.3

6.7

6.2

7

7.1

6.6

6.1

6.3

6.9

7

7.1

6.8

7

6.7

6.4

7.4

6.3

6.5

6.5

7.2

6.6

7.2

7.2

7.3

7.3

7.3

5.5

6.7

7.6

6.6

6.4

6.5

6.7

6.9

6.6

6.9

7.1

7.3

7
7.3

7.3

7.2

7.1

7.2

6.7

6.1

6.2

6.8

7.2

5.6

6.6

6.7

6.4

6.4

6.8

6.4

6.7

6.5

5.9

6.3

6.7

6.4

6.3

5.9

77.2

5.5

6.0

6.5

7.0

7.5

(d) Empowerment nsteps = 9

Figure 12: Empowerment nsteps ∈ {1, 3, 5, 9} for all vertices in the Soho street network at 500m

radius. By 9 steps many vertices have a relatively high value, and some of the vertices of interest

will be less than 9 steps from the periphery, affecting their empowerment relative to more central

states. Colour ranges are specific to each graph.
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Figure 13: Frequency distribution of empowerment values from 1 to 9 steps for the Soho street

network with a radius of 500m. At 6 steps and above there are a large number of states (25+)

with maximum empowerment which limits the ability of the agent to differentiate between states.

The frequency distribution of empowerment could be seen as an empowerment based signature of

a street network, characterising the network for comparison with others.
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4.2 Relevant Goal Information

Relevant goal information (RGI) is the minimum average amount of information about the goal

required by the agent to select an action under a utility constraint (e.g optimal) and is defined as

the conditional mutual information between the variables modelling the goal and action I(G;At|st),
given the state (Van Dijk et al., 2010). RGI can also be thought of as the reduction of the uncertainty

about the choice of action provided by knowledge of the goal.

From the definition of mutual information(Shannon, 1948):

I(G;At|St) = H(At|St)−H(At|G,St) (31)

To model the trade-off between physical and cognitive effort when navigating, the agent can

choose a policy that minimises the average information required about the goal to achieve a certain

utility, or a policy that maximises the utility for a certain amount of information about the goal.

Choosing the former Van Dijk et al. (2010) define the following minimisation problem, the solution

of which is the minimum information required, on average, about the goal, to choose an action that

achieves a certain expected utility. This quantity is known as Relevant Goal Information (RGI).

RGI := min
π(at|st,g)

I(G;At|St) subj. to E
[
QπG(St, At)

]
≥ Umin (32)

RGI as defined in Equation 32 is a global quantity averaged across all states and goals. The

measure used to compare with graph centrality is RGI(st), defined in Section 4.2.3, which is the

relevant goal information for a particular state, averaged across all goals. Umin is a lower bound

for the expected value of the utility function averaged across all goals subject to the policy π. To

solve the minimisation problem in Equation 32, a similar reformulation to relevant information

employing a Langrangian is used (see Section 2.4.1). The relevant goal information formulation

and dual-minimisation outlined here are all due to (Van Dijk, 2013, Chapter 6), reproduced here

for clarity. Once again β is a Lagrange multiplier constraining the utility.

min
π(at|st,g)

[
I(G;At|St)− βE[QπG(St, At)]

]
(33)

The solution of this fixed point equation is the relevant goal information. The algorithm also

outputs a policy per goal represented by the conditional distribution π(at|st, g) which minimises

the RGI, within the expected utility constrained by β.

The Langrangian is given as:

Λ
(
π(at|st, g), β

)
= I(G;At|St)− βE

[
QπG(St, At)

]
(34)

Taking the partial derivative with respect to p(at|st, g)

∂

∂p(at|st, g)
Λ
(
π(at|st, g), β

)
= p(st, g) log

p(at|st, g)

p(at|st)
− p(st, g)βQπg (st, at) (35)

Equating this derivative to zero and rearranging gives the self-consistent solution familiar from

relevant information and so also rate-distortion:

p(at|st, g) =
1

Z
π(at|st) exp

[
βQπg (st, at)

]
(36)

where Z is a normalising factor Z =
∑

at
p(at|st) exp [βQπg (st, at)]. With a weighted sum over all

goals the policy is obtained from the conditional distributions:

p(at|st) =
∑
g

p(g) p(at|st, g) (37)
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4.2.1 Finding a minimum RGI policy to compute RGI

This section describes how to compute an agent policy that achieves an expected utility, while

minimising the relevant goal information. With that policy in hand, the average RGI required per

state can be computed for a given environment, such as the Soho street network, thus providing a

state by state measure to compare with graph centrality.

With Equations 36 and 37 in the toolbox, the RGI minimisation problem in Equation 33 can

be solved using the same method as relevant information as described in Section 2.4.1 by iterating

between the two with a Blahut-Arimoto style dual-minimisation. The utility is constrained by the

value of the Lagrange multiplier β. The policy must be evaluated at each iteration, because the

expected utility depends on the policy. Two approaches to policy evaluation were investigated,

approximation by value iteration and exact computation by linear algebra – both are outlined in

Section 4.2.2

The algorithm is initialised with a uniform policy π0(at|st) where ∀a; a∈A, π0(at|st)= 1
|A| . The

uniform policy represents a random-walk by the agent which is clearly sub-optimal in terms of

utility, but requires no goal information at all. This policy is a solution of Equation 33 when

β = 0. In the first step Equation 36, the policy is evaluated to give the expected utility Qπg ,

then the conditional distributions for the policy per goal, p(at|st, g) are computed. In the second

step Equation 37 the goal is marginalised out from p(at|st, g), resulting in a policy p′(at|st) that

minimises RGI. p′(at|st) is inserted back into Equation 36 in the next iteration. Convergence of

the dual-minimisation for RGI has not been proved, but in practice convergence is good for much

of the range of possible values of β. The policy convergence error ε is defined as the maximum

difference between the policies obtained in the current and previous iterations (Equation 38). The

convergence test is that ε is below the maximum acceptable error. Suitable maximum values of ε

were determined experimentally, see Section 4.2.2 for details.

ε = ‖πij − πij‖∞ = max
∑
j

∣∣πij − π′ij
∣∣ (38)

where π is the full policy matrix having elements πij = p(at=j|st=i) and π′ij = p′(at=j|st=i).
When the algorithm terminates because the convergence test has been satisfied, the policy per goal

that minimises RGI for the required expected utility has been found.

Comparing Equation 37 with Equation 22 from relevant information (RI), the minimum in-

formation policy for RI minimises the action entropy H(At) by marginalising out St, whereas for

RGI, the minimum information policy minimises the action entropy given the state H(At|St) by

marginalising out G. Thus a minimum RGI policy does not incorporate the action compression

across states that is a feature of relevant information (Polani, 2011) as discussed in Section 2.4.1.

There is no benefit in terms of RGI of following the same action across states. Developing a goal

oriented measure that does incorporate action optimisation across states (and therefore over time)

is beyond the scope of this study and left to a future investigation. However, following the example

in Polani (2011) if the actions are randomised at each state, although the RGI does not change,

then if H(At) is computed, it is significantly higher than for a world with actions that are coher-

ent across states. Even if RGI does not demand action coherence, it would perhaps be beneficial

in terms of storage (and/or recall) of the policy. For these reasons, and because humans favour

coherent actions, the model presented here uses the same action set in each state.

In contrast to relevant information, the minimum RGI policy optimises the policy across goals,

rather than states. The dual-minimisation between Equations 36 and 37 ensures that the policy
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per state for each goal is as similar as possible to the policy average across all goals. In general

the agent prefers to take the same route for as many goals as possible, minimising the information

bandwidth.

4.2.2 RGI policy convergence

The convergence of the dual-minimisation algorithm used to find the minimum relevant goal in-

formation policy has not been proved. However Polani et al. (2006) and Van Dijk (2013) report

good convergence in practice using value iteration to evaluate the policy at each step in the dual

minimisation. Finding policies for the Soho street network, and six room grid worlds were com-

putationally heavy tasks. The number of iterations required for convergence, for a given world,

increased with decreasing β. The time for each iteration, and the number of iterations, increased

with the size of the state space.

Using value iteration, the first iteration of the algorithm, where value iteration must evaluate

a policy that is uniform across actions at each state, took up to 10 times longer than subsequent

iterations. The duration was 50 minutes on a standard PC for a typical graph (r = 500m, |S| = 418)

to converge on a policy with error ε < 0.01 at β = 3. Figure 14 shows the progress of policy

computation for the Soho street network radius = 500m,β = 3.

However when using the linear algebra approach to policy evaluation (see Section 3.4.1), the

same number of iterations were required, but convergence was faster in terms of duration (Figure 14)

at 23 minutes. A thorough investigation into the reasons for this performance difference is beyond

the scope of this work. Python was chosen for convenience, rather than performance, using the

high precision library GMPY 7 with NumPy 8 for matrix operations and a custom implementation

of the value iteration algorithm. Under this regime, for the six room grid world and street map

graphs used in these experiments, inverting the matrix is faster than value iteration by nearly a

factor of 2, while delivering equivalent policies (i.e. within acceptable error).

When computing for the six room grid world (|S| = 627) with β ∈ {4, 3, 2}, and for the

Soho street network with larger radii, the algorithm failed to converge on a policy with ε < 0.01,

instead stabilising around a slightly higher error. This phenomenon was observed independently

using either value iteration approximation or linear algebra to evaluate the policy at each iteration.

Investigating the root cause of the this limit on the ability of the algorithm to converge further is

beyond the scope of this work. To account for this and to ensure the policy with the lowest possible

error, a second convergence test was included which terminated the algorithm once the coefficient

of variation of ε (cv=
σ
µ) had stayed below 0.05 over a window of 50 iterations, resulting in policies

for the six room grid world where ε ≈ 0.02.

4.2.3 RGI per state

To compare RGI with graph centrality measures, and ultimately with hippocampal brain activation

at a given time during a navigation experiment, knowing the average RGI given by Equation 39

for all states is not suitable, RGI per state is required.

RGI(st) := I(G;At|st) = H(At|st)−H(At|G, st) (39)

7https://pypi.org/project/gmpy2/
8https://pypi.org/project/numpy/
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Figure 14: Policy error ε during policy computation, with policy evaluation by fundamental matrix,

for the Soho street network radius = 500m,β = 3. Vertical lines mark the start of each iteration.

The algorithm converged on a policy where ε < 0.01 in 48 iterations with duration ≈ 1400 seconds

on a standard PC.

Expanding the conditional entropy terms gives:

I(G;At|st) = −
∑
at∈As

p(at|st) log p(at|st)−
[
−
∑
g∈G

p(g)
∑
at∈As

p(at|st, g) log p(at|st, g)

]
(40)

The average relevant goal information (across all goals) for each state RGI(st ∈ St) is computed

by plugging the conditional distributions p(at|st) and p(at|st, g) found by the dual-minimisation

algorithm into Equation 40.

Figure 15 shows the changing values of RGI as β decreases (β ∈ {10, 1, 0.25, 0.05}) for a small

grid world graph. The mean RGI decreases with decreasing β, (see Figure 16 for the mean

RGI/mean utility tradeoff at different values of β) but the pattern of RGI across the states re-

mains similar. In this small world the agent can trade off a lot of information for a small loss in

utility as shown by the tradeoff curve in Figure 16.
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4.2.4 RGI for the small graph world

(a) β = 10 (b) β = 1 (c) β = 0.25 (d) β = 0.05

Figure 15: RGI in bits for the small graph world with β ∈ {10, 1, 0.25, 0.05}. The vertex colours

are specific to each graph showing how the distribution of RGI across the states (reflecting the

topology) remains similar despite a large change in mean RGI.

Figure 15(a) shows RGI for a maximum utility policy. Recalling that RGI is the minimum

amount of information needed on average to make a decision, the state at the bottom of the graph

has a low value because for almost all goals (the only counter example being where the agent is

already in the goal) the choice of action is the same – to move North. At the central vertex, with

RGI=1.8 bits, the possible goals are fairly evenly distributed amongst the actions. To act optimally,

the agent needs close to the maximum 2 bits of information to choose an action. In contrast, at

the state with RGI=1.6 bits, despite having the same set of actions to choose from, the agent can

reduce the overall information required by having a policy that favours North over East and East

over South, because there are more possible goals in those directions. RGI values in this small

world are heavily affected by the high probability that the agent is in the goal, because there are

only 7 states. As the state space increases in size this effect reduces such that “dead-end” states

with only one neighbour have a low RGI, tending to zero as the number of states increases.

It is possible to manipulate the transition function during the computation of RGI to ignore

the effect of the goal, resulting in a RGI of zero for dead-end states, and indeed this may be more

“realistic” given that the choice of action is obvious regardless of the goal. However, by so doing

the tradeoff curves shown in the next section are also affected, and since the effect of the goal on

the RGI reduces with larger state spaces, leaving the goal in place for the computation of RGI (and

RGIU in Section 4.3), results in a somewhat simpler formalism.

4.2.5 Information utility tradeoff

The effect of β in Equation 36 is to constrain the utility during the policy computation, permitting

computation of a utility-optimal policy if required, by setting β to a high value, or computation of

a policy that requires less relevant goal information, on average, by using a lower value of β. The

value of β to achieve a certain ratio of utility loss to information reduction depends on the size

and structure of the environment model. β is not an informational efficiency coefficient comparable
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across agents and environments. However animals have evolved to optimise various biological and

physical tradeoffs, and these tradeoffs do lead to sub-optimal behaviour in some circumstances, and

this is modelled here by β, whose appropriate values must be discovered experimentally for each

scenario.

Figure 16 shows the mean utility and mean RGI for policies computed for the small graph exam-

ple used in the previous section. This curve is the characteristic tradeoff of utility for information

as described by Van Dijk et al. (2010), showing the minimum information case where β = 0 and

the policy is a random walk and the optimal policy where β ≥ 10 above which increasing β makes

no difference.
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Figure 16: Mean RGI against mean utility for when computing policies for the small graph example.

At β ≥ 10 the policy is optimal in terms of utility. At β = 0 the policy is unaffected by the utility

so the RGI is minimised regardless of cost, being a random walk. The optimal value of β depends

on the relative cost of the loss in utility (extra distance walked) versus the extra cost of information

processing. The information-parsimony theory indicates that organisms are likely to accept some

loss of utility to reduce information processing demands, operating somewhere in the top-left region

of this curve. Each combination of environment, organism and task would yield a different curve,

and a different β so we cannot consider β as a universal coefficient, however an organism taking into

account the diminishing returns provided by striving for optimality could operate a general strategy

of achieving near optimal utility for potentially a large average saving of information processing

energy cost across the full range of tasks and environments in which it operates.
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4.2.6 RGI for the six room grid world

Van Dijk and Polani (2011) demonstrated that RGI uncovers important features in the environment

where informational transitions occur, such as the crossing points opposite pairs of doorways. See

Figure 17 which shows RGI at β = 100 for the six room grid world, reproducing Sander Van Dijk’s

result. These transitions are less stark in the street network, but nonetheless, as we shall see in

Section 5, states (junctions) with a high RGI also tend to have high graph centrality, and the

change in graph centrality has been shown to be correlated with brain activity during navigation

(Javadi et al., 2017)
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Figure 17: RGI (unweighted) for the six room grid world with β = 100 reproducing a

result from (Van Dijk and Polani, 2011, p.5).

β Mean RGI Ī Mean Utility ū Utility Loss ū−max ū
max ū RGI Reduction max Ī−Ī

max Ī

100 0.519 -20.8 0 0

10 0.518 -20.8 8.95× 10−7 1.39× 10−3

4 0.498 -20.9 5.72× 10−3 0.0400

3 0.481 -21.3 0.0263 0.0724

2 0.445 -26.1 0.256 0.143

Table 1: Tradeoff of mean utility for a reduction in mean RGI for varying β for the six room world.

Figure 18 and Table 1 show the tradeoff of mean utility for mean RGI for policies computed

for the six room grid world for β ∈ 100, 10, 4, 3, 2. At β = 3 a 7% reduction in RGI is traded for a

3% loss of utility, however with β = 2 a 14% reduction in RGI requires a 26% loss of utility.
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Figure 18: Mean RGI against mean utility for the six room grid world. At β = 3 a 7% reduction

in RGI is traded for a 3% loss of utility, however with β = 2 a 14% reduction in RGI requires a

26% loss of utility.

4.2.7 RGI for the Soho street network

For the Soho street network at 500m radius, β ≥ 10 results in an optimal policy. However, smaller

values of β result in a policy that trades some utility for a reduction in the amount of information

required about the goal to take decisions. Figure 19 depicts the tradeoff curve of mean utility

and mean relevant goal information across all states in the 500m radius Soho street network. The

computation of policies at a range of values of β for graphs of the street network at other radii

show similar tradeoff curves.

Participants in the Javadi et al. (2017) study were asked questions about the optimal route,

so the obvious choice would be high β when computing a policy, and subsequently RGI. However

the information parsimony theory suggests that humans have evolved to minimise information

processing cost where possible. For the 500m radius street network, setting β = 3 results in

a policy where a 4% loss in utility is traded for a 20% reduction in RGI, which, depending on

the relative energy costs of cognition and movement in the environment, may represent a useful

reduction in overall energy use on average when navigating the network.

4.3 Relevant Goal Information Uptake

Relevant Goal Information RGI(st) is the average information required about the goal at state st
in order to take action to achieve some desired utility. An agent that forgets everything at each step

would, on average, need to load this much information into working memory to make a decision.

However, if information can persist in working memory, the agent would only need to load the

portion of this information that was not already loaded from the previous time step. Van Dijk

(2013) defines the new goal information InewG (st) = I(G;At|Et−1, st), where E is a random variable

describing the full history of the agent states and actions Et−1 = (S0, A0, S1, A1, ..., St−1, At−1) .
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Figure 19: Mean RGI against mean utility for β ∈ {2, 3, 4, 6, 10, 100} when computing

policies for the Soho street network at 500m radius. The mean utility is optimal for

β ≥ 10,+/ − 0.001. At β = 3 a 4% loss in utility is traded for a 20% reduction in RGI,

however at β = 2 the policy results in a 41% loss of utility for 34% reduction in RGI.

In the present model the transition function is deterministic, so we can disregard actions from the

history and just consider states. Nonetheless the curse of dimensionality strikes – computing the

full distribution for all possible previous state trajectories quickly becomes intractable. On average,

the further we peer into the past, the less goal information required at that state is relevant now,

so Inew can be estimated by limiting the history to a finite number of steps9. I define the random

variables Snt−1 = (St−n, ..., St−1) to represent the state history distribution over n steps, and name

the time-limited estimate of Inew Relevant Goal Information Uptake (RGIU).

RGIUn(st) := I(G;At|Snt−1, st) = H(At|Snt−1, st)−H(At|G,Snt−1, st) (41)

RGIU can also be thought of as the reduction in the action uncertainty provided by knowledge

the goal given that n previous states are known. RGIU is the new information needed about

the goal in a given state, given the trajectory (n steps), hence it is dubbed “uptake”. Results

from Javadi et al. (2017) suggest that humans do indeed update a navigational plan at street

entries rather than planning from scratch while navigating: “Because we found that hippocampal

activity reflected the change in degree centrality, not the raw degree centrality, a model in which

the hippocampus only processes future paths the moment a street is entered is not consistent

with our data. Rather, our data agree with a model in which the hippocampus simulates possible

paths throughout the journey, with the hippocampal activity we observed reflecting the increase or

decrease in the number of potential future paths to be re-activated as each new street is entered”

(Javadi et al., 2017).

The formalism for RGIU presented here only includes a random variable for actions in the

current state At. This is made possible by the deterministic transition function, otherwise the

9Please see Appendix A Figure 37 which shows RGIU with 3 steps of history weighted by the probability that an

agent is in each state over all time p(s) which shows a similar characteristic pattern to Inew in Van Dijk (2013)
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previous action variables At−1, .., At−n would need to be added to Equation 41. As discussed in

Section 4.2 with regards to RGI, one upshot of not including the historic sequence of actions in the

formalism is that coherent actions are also not required for a minimum RGIU policy. Once again

incorporating the action variables and assessing the influence of action coherence is deferred to a

future study.

4.3.1 Computing RGIU

To compute RGIU from the conditional entropies in Equation 41, we need to know the distributions

of the agent state over n previous time steps modelled by Snt−1 = St−n, ..., St−1,. The Markov Chain

of states for an agent seeking a goal, is defined by the state transition matrix P = p(st+1|st). To

compute these distributions, if we know the state distribution vector at the earliest step s0 =

St−n−1, as we have seen in Section 2.2.1, the next n state distributions can be found by repeatedly

applying the transition matrix.

sk+1 = skP (42)

How do we determine the initial state distribution vector s0? In other words: what is the state

probability distribution S if we don’t know the time t? We know from Section 2.2.1, that we can

find the (time-independent) stationary distribution for a regular Markov chain, however the goal

is an absorbing state – once it is in the goal it will stay there. For an agent executing any policy

where it is not actively avoiding the goal, the probability of being in the goal tends to 1 over time

i.e. limt→∞ Pr(St=g) = 1, thus the Markov chains induced are not regular. We need a distribution

that represents the agents’ state just during the period of interest, as it moves towards the goal.

The solution to this problem is to adapt the chains so only the period of activity before reaching

the goal is considered – to ensure regularity without compromising the model – so that a useful

stationary distribution can be computed to use as the initial state distribution s0.

The same trick was employed as by Van Dijk (2013) to modify the transition function such

that, in the step after arriving at the goal, the agent is “teleported” to a (uniformly distributed)

random location ∀st+1 ∈ S,Pr(St+1=st+1|st=g) = 1
|S| . With this modification in place, the induced

Markov chains are regular, and the stationary distribution vector w (the average distribution of

agent states before arriving at the goal) can be readily computed.

The joint distribution of previous states and current state p(Snt−1, st) = p(St−n, ..., St−1, st), is

obtained by setting s0 = w, and iterating Equation 42, setting k = 0 and iterating until k = n.

With the state history available it is straightforward (although computationally expensive for

a large state space) to obtain the full joint distribution of state histories and actions at the current

state over all goals, from the the policy per goal p(at, |st, g), and assuming a uniform distribution

of goals p(g) = 1
|G| .

p(At, S
n
t−1, G|st) =

∏
g,at

p(Snt−1|st, g) p(at, |st, g) p(g) (43)

With the full joint in hand the conditional entropies in Equation 41 can be computed to obtain

RGIUn(st).
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4.3.2 RGIU for the small graph world

Figure 20 shows RGI (a) for the small graph compared to RGIU with 1, 2 and 3 steps of history,

all at β = 10.

(a) RGI

(b)

RGIUnsteps=1

(c)

RGIUnsteps=2

(d)

RGIUnsteps=3

Figure 20: RGI and RGIU in bits for the small graph world with β = 10. RGIU for nsteps ∈ {1, 2, 3}
Vertex colours are consistent across all four graphs, showing the reduction in RGIU as the number

of steps increases.

In general, knowing the history reduces uncertainty about the goal, and for all states in this small

example world where β is unchanged, ∀s ∈ S, RGI(s) > RGIUnsteps=1(s) > RGIUnsteps=2(s) >

RGIUnsteps=3(s). Unless the agent has a random policy, St and St−1 are not independent – knowing

St−1 reduces uncertainty about St hence for most interesting worlds (more than 5 states, reasonably

connected):

I(G;At|St) ≥ I(G;At|St−1, St) (44)

and

I(G;At|St−1, St) ≥ I(G;At|St−2, St−1, St) (45)

With more steps of history the mutual information reduces further. For some states in the limit

of t the RGIU is zero, but for others some information is needed to make a decision. A long memory

could confer advantages for an agent, but must also come with a cost, suggesting a new tradeoff of

memory and processing cost. Further investigation, and rigorous definition, of this phenomenon is

beyond the scope of this study and is left to a future work.

For “dead-end” states which have only one neighbouring state (top and bottom states in the

small graph), the choice of action is obvious. If the agent has a history at all, it must have been in

this same state in the previous time step, in which case this is the goal – or in the previous time

step it was in the neighbouring state, in which case this is the goal. No extra information besides

the knowledge of a single step of history is needed to make a decision. This is the goal and the

agent will wait here, consequently the RGIU for dead-ends is precisely zero.
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For states with two neighbours, The choice of action is usually obvious from the history - an

agent following an optimal policy will not backtrack, so will prefer the action that takes it away

from the previous state. However, once again, the small size of this example graph means that there

is a relatively high probability that the current state is the goal. For this reason “corridor” states

(with two neighbours) do require the agent to take in some new information to decide whether to

wait (because this is the goal) or to move on. As we shall see from the street network graph, as

the size of the state space increases, the RGIU for states with two actions tends to zero, because

the state in question, at any particular time, is decreasingly likely to be the goal.

4.3.3 RGIU for the six room grid world

Figure 21 shows RGIU with β = 100 for 1 and 2 steps of history. With this high value for β the

policy is optimal in terms of utility. The mean RGIU at 2 steps is lower, but as we can see from

the visualisation, the distribution of RGIU across the state space has similar characteristics.

For states towards the edges of the rooms, the average (for all possible goals) new information

required to choose an optimal route is low – for most goals the same action can be taken. In the

states that represent corridors between the rooms, the RGIU is always zero because the history

perfectly predicts the action, if the agent has entered the corridor, the goal must be there or beyond,

an agent with an optimal utility policy would never turn back.

There are six states with clearly higher RGIU, which lie on the crossing-points of lines from the

doorways. At these states, because most goals are in a different room, the agent must usually head

for the correct doorways. Knowing the history does not predict the goal so well in these states so

on average the RGI uptake is relatively high.

Recalling that Van Dijk defined InewG as the new relevant goal information with full knowledge

of the history, RGIUnsteps=∞ = InewG . With the full history, and weighting InewG by p(st), the states

inline with and close to the doorways show the information transfer taking place at the doorways

(Van Dijk and Polani, 2013, p.13). For comparison, Figure 37 in Appendix A shows RGIUnsteps=3

at β = 100 (optimal policy in terms of utility). Although RGIU does rise in states close to the

doorways, the effect is not as pronounced as demonstrated by Van Dijk, and the crossing points

in the rooms opposite doorways are much more pronounced. The reasons for this are beyond the

scope of this work to analyse, but could be due to the limited number of steps.

Please see Section 5 for the correlation of RGIU in the six room world with the graph centrality

measures.

4.3.4 RGIU for the Soho street network

Figure 22 shows RGIU for the Soho street network for varying β and number of steps. RGIU is the

new relevant goal information required on average for all goals. In general the RGIU reduces with

increasing number of steps, but the reduction is not the same for all states. For junctions where the

topology of the network is such that in general the additional history of the agent better predicts

the location of the goal, the RGIU will drop relative to states where adding more steps of history

does not reduce the uncertainty about the goal so much. Junctions with high RGIU at 3 steps of

history will require more information to be loaded into working memory which may be detectable

in brain activation of a different region to states where the RGI or empowerment is high. For a

comparison of RGIU, RGI and centrality please see Figure 32.

Figure 23 shows a small central section of the 500m radius Soho street network with RGI and

1-step RGIU computed at beta = 10. The comparison demonstrates how RGIU reflects different
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aspects of the topology of the network. Corridor states with two neighbours have a very low RGIU,

compared with RGI for the same state (e.g. state U319). Certain states with high RGI (e.g N134,

N143) have relatively low RGIU. At these states, although the average total goal information re-

quired at that state is high, the average amount of new goal information is not so high compared

with neighbouring states. If the cost of loading and unloading goal information into working mem-

ory is indeed significant, it is possible that, when measured navigating these junctions, activation

in some region of the brain will scale with RGIU.

The radius of the map affects the values of Relevant Goal Information for vertices (states/junctions)

of interest, however the effect is not monotonic. For some junctions, the RGI drops with increasing

radius considered, for others RGI increases with increasing radius, reflecting the shifting topology

of the graph as more nodes are added to the periphery. RGIU exhibits a similar changing pattern

of values as the radius of the map changed.
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(a) RGIU β = 100, nsteps = 1

0 0.011 0.029 0.03 0.016 0.014 0.012 0 0 0.013 0.017 0.017 0.017 0.029 0.019 0.016 0 0 0.013 0.015 0.016 0.017 0.03 0.074 0.047 0.033 0.02 0.01 0

0.011 0.25 0.25 0.14 0.12 0.1 0.081 0.023 0 0.086 0.1 0.099 0.093 0.23 0.16 0.17 0 0 0.086 0.097 0.1 0.11 0.14 0.35 0.25 0.24 0.24 0.25 0.011

0.019 0.26 0.24 0.16 0.16 0.15 0.14 0.088 0.027 0.091 0.12 0.13 0.13 0.29 0.19 0.17 0.026 0.037 0.12 0.15 0.17 0.18 0.21 0.33 0.24 0.24 0.25 0.26 0.022

0.029 0.28 0.24 0.18 0.2 0.21 0.21 0.22 0.084 0.13 0.16 0.18 0.18 0.3 0.18 0.15 0.041 0.096 0.17 0.19 0.21 0.22 0.24 0.29 0.23 0.24 0.26 0.27 0.034

0.063 0.38 0.91 0.47 0.41 0.37 0.35 0.33 0 0.26 0.27 0.3 0.34 0.4 0.68 0.51 0.45 0.41 0.27 0.26 0.27 0.28 0.28 0.27 0.27 0.24 0.26 0.28 0.27 0.038

0.022 0.13 0.41 0.17 0.18 0.21 0.26 0.32 0.43 0.31 0.24 0.21 0.2 0.9 0.25 0.26 0.25 0 0.27 0.28 0.28 0.29 0.29 0.3 0.91 0.3 0.34 0.4 0.41 0.066

0.015 0.12 0.35 0.16 0.2 0.26 0.29 0.29 0.18 0.25 0.31 0.34 0.39 0.26 0.36 0.35 0.45 0.46 0.39 0.36 0.33 0.26 0.19 0.35 0.19 0.13 0.1 0.075 0.015

0.014 0.11 0.32 0.19 0.26 0.31 0.29 0.14 0.06 0.15 0.22 0.27 0.35 0.27 0.34 0.26 0.14 0.16 0.23 0.27 0.32 0.32 0.24 0.35 0.16 0.11 0.089 0.074 0.011

0.011 0.1 0.3 0.23 0.31 0.3 0.23 0.048 0.049 0.14 0.2 0.25 0.34 0.27 0.33 0.18 0.056 0 0.026 0.057 0.14 0.33 0.33 0.34 0.15 0.054 0.026 0 0

0 0.079 0.29 0.28 0.32 0.16 0.062 0 0.043 0.13 0.17 0.23 0.33 0.27 0.33 0.16 0.045 0

0 0.016 0.1 0.13 0.19 0.33 0.26 0.34 0.13 0.017 0 0.017 0.05 0.074 0.19 0.45 0.36 0.21 0.068 0.034 0 0

0 0.068 0.28 0.34 0.29 0.1 0.035 0 0 0.012 0.047 0.11 0.36 0.26 0.4 0.067 0 0.017 0.12 0.15 0.2 0.3 0.39 0.37 0.23 0.14 0.12 0.1 0.013

0.011 0.1 0.28 0.27 0.34 0.27 0.17 0.024 0 0.042 0.15 0.2 0.27 0.35 0.37 0.38 0.25 0.18 0.15 0.12 0.017

0.016 0.12 0.29 0.22 0.3 0.31 0.22 0.06 0 0.013 0.049 0.11 0.38 0.24 0.37 0.049 0 0.048 0.17 0.26 0.33 0.36 0.35 0.39 0.26 0.19 0.16 0.11 0.017

0.016 0.13 0.31 0.18 0.25 0.29 0.28 0.14 0.015 0.087 0.13 0.18 0.34 0.25 0.31 0.11 0.016 0.065 0.22 0.31 0.36 0.34 0.31 0.4 0.27 0.2 0.17 0.11 0.017

0.016 0.13 0.33 0.16 0.2 0.26 0.29 0.28 0.079 0.14 0.19 0.24 0.35 0.25 0.32 0.15 0.054 0.12 0.29 0.34 0.34 0.31 0.28 0.41 0.27 0.2 0.17 0.11 0.017

0.021 0.14 0.37 0.18 0.19 0.23 0.28 0.34 0.37 0.3 0.31 0.33 0.38 0.24 0.37 0.25 0.16 0.29 0.34 0.34 0.3 0.27 0.25 0.43 0.27 0.21 0.17 0.11 0.017

0.094 0.46 0.93 0.49 0.42 0.38 0.36 0.35 0 0.2 0.21 0.21 0.21 0.21 0.89 0.25 0.35 0.49 0.4 0.33 0.3 0.27 0.25 0.25 0.47 0.28 0.23 0.19 0.13 0.025

0.051 0.3 0.22 0.18 0.22 0.23 0.24 0.26 0.51 0.49 0.48 0.51 0.56 0.6 0.26 0.25 0.25 0 0.33 0.34 0.35 0.37 0.39 0.43 0.88 0.34 0.35 0.39 0.41 0.076

0.041 0.27 0.22 0.18 0.2 0.2 0.19 0.14 0.051 0.18 0.22 0.25 0.26 0.35 0.19 0.16 0.13 0.28 0.27 0.28 0.28 0.28 0.28 0.3 0.24 0.25 0.26 0.27 0.054

0.029 0.25 0.22 0.19 0.2 0.19 0.16 0.066 0.036 0.2 0.24 0.26 0.26 0.35 0.14 0.11 0.046 0.099 0.17 0.2 0.21 0.22 0.24 0.32 0.25 0.24 0.25 0.26 0.041

0.018 0.24 0.23 0.19 0.17 0.15 0.11 0.033 0.026 0.22 0.25 0.24 0.23 0.31 0.12 0.095 0.025 0.038 0.12 0.15 0.17 0.19 0.21 0.36 0.28 0.26 0.25 0.25 0.025

0.01 0.24 0.24 0.16 0.12 0.087 0.065 0.011 0 0.23 0.23 0.2 0.16 0.22 0.096 0.088 0 0.01 0.083 0.096 0.1 0.12 0.14 0.33 0.27 0.26 0.25 0.25 0.011

0 0.011 0.029 0.029 0.016 0.013 0.01 0 0 0.017 0.021 0.02 0.02 0.03 0.017 0.013 0 0 0.013 0.015 0.016 0.017 0.025 0.051 0.05 0.043 0.026 0.011 0

0.0

0.2

0.4

0.6

0.8

(b) RGIU β = 100, nsteps = 2

Figure 21: RGIU β = 100, nsteps ∈ {1, 2} for the six room grid world. Colour ranges are specific

to each graph. The distribution of RGIU with 2 steps of history is similar to the distribution with

a single step, although values are lower, as expected given the extra information about the goal

provided by the extra knowledge of the prior trajectory. The states with high RGIU indicate where

an agent must load more information into working memory, on average across all goals, because the

previous state does not predict the goal very well. For architects and interior designers these points

may indicate where signage could be deployed to alleviate the cognitive burden of wayfinding in

buildings.
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(c) RGIU β = 100, nsteps = 3

0.5

0.61

0.41

0.52

0.81
0.69

0.52

0.5

0.59

0.62

0.17

0.7

0.8

0.95

0.83

0.8

1.1

0.23

0.39

0.59

0.59

0.54

0.27

0.43

0.23

0.028

0.92

0.8

0.9

0.33

0.98

0.57

0.8

0.021
0.42

0.81

0.34

0.85

0.77

0.48

0.92

0.67

0.68

0.64

0.71

0.37

0.26

0.33

0.22

0.39

0.027

0
0.022

0.03

0.0

0.2

0.4

0.6

0.8

1.0

(d) RGIU β = 3, nsteps = 1

0.38

0.49

0.29

0.38

0.57
0.37

0.37

0.29

0.45

0.5

0.14

0.57

0.59

0.81

0.7

0.64

0.99

0.19

0.31

0.38

0.47

0.49

0.19

0.23

0.11

0.019

0.66

0.52

0.78

0.24

0.8

0.46

0.42

0.01
0.28

0.63

0.25

0.75

0.44

0.34

0.71

0.47

0.37

0.31

0.58

0.23

0.21

0.24

0.12

0.27

0.018

0
0

0.012

0.0

0.2

0.4

0.6

0.8
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(f) RGIU β = 3, nsteps = 3

Figure 22: RGIU β ∈ {100, 3}nsteps ∈ {1, 2, 3} for the Soho street network at 500m radius showing

only vertices of interest (n = 31). The pattern of high and low RGIU is similar for varying β

and nsteps but the relative level of some junctions does change. The two junctions top-left stay

relatively high with increasing steps, while other junctions, such as the central crossroads, reduce

in relative RGIU. Colour ranges are specific to each graph. Vertices not included in the Spiers lab

study are not shown, so vertices that are shown maybe more connected than they appear here.
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(a) Section of Soho street network at radius 500m showing RGI β = 10

(b) Section of Soho street network at radius 500m showing RGIU β = 10, nsteps = 1

Figure 23: Comparison of RGI and RGIU for the Soho street network showing how RGIU illumi-

nates different features of the topology of the network. Corridor states (states connected to two

other states) have a low RGIU - knowledge of the previous state very accurately predicts the goal.

This makes intuitive sense - someone having chosen a goal a few streets away does not need to

think about which way to go when turning a corner.
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4.4 Additional steps of history reduce uncertainty less for informationally par-
simonious policies
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Figure 24: Mean RGIU at β ∈ 100, 10, 4, 3, 2 and nsteps ∈ {0, 1, 2, 3}
for the six room grid world. Note that RGIUnsteps=0 = RGI.

Figure 24 shows the mean RGI (RGIUnsteps=0) and mean RGIU for 1, 2 and 3 steps of history

computed for the six room grid world. For a specific policy, increasing the number of steps of

history, reduces uncertainty about the goal. As β decreases the mean RGI also decreases (this is

the tradeoff described above), but the reduction in RGI provided by each step of history is less.

Although the mean RGI is lower for β = 2 than for β = 100, the policy per goal p(at|st, g) has

a higher average entropy – there is more uncertainty in the actions, and this means that knowing

the history provides a lower reduction in uncertainty about the goal. Exploring the implications of

this is beyond the scope of this study and is reserved for future work.
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5 Results

5.1 Summary of results

The aim of this study is to compare the information-theoretic measures with the graph-theoretic

measures in graph representations of interior space and the Soho street network. The results are

consistent with the hypothesis in Section 1.7 showing a strong correlation between the information-

theoretic measures and the graph-theoretic quantities measured on graph representations of interior

space and the street network of Soho.

For the six room grid world, empowerment is very strongly correlated with degree centrality,

closeness centrality and betweenness centrality, relevant goal information is strongly correlated with

closeness centrality and betweenness centrality, and relevant goal information uptake is strongly

correlated with degree centrality. These results suggest that the information theoretic measures

could be used for agent-based models of navigation through indoor spaces.

For the Soho street network, measuring centrality with the primal graph, empowerment is

strongly correlated with degree centrality, closeness centrality and betweenness centrality. When

the centrality measures are computed using Space Syntax and the dual graph, empowerment is also

very strongly correlated with degree centrality and strongly correlated with closeness centrality, but

not correlated with betweenness centrality. Relevant goal information and relevant goal information

uptake are strongly correlated with degree centrality, somewhat correlated with closeness centrality

and not correlated with betweenness centrality. The centrality measures are commonly used by city

planners to predict macroscopic movement patterns, so these results suggest that the information-

theoretic measures would also be useful in this context. Furthermore the correlation with the Space

Syntax measures, especially the correlation of change in empowerment with the change in degree

centrality, indicates that these measures may predict brain activation and this hypothesis will be

tested with a direct comparison with the fMRI data from the Soho navigation study in further

work that is in progress at the time of writing.

5.2 Parameters of measures computed and tested for correlation

All measures were computed for each radius r ∈ {300, 400, 500, 600, 700}. Empowerment was

computed for 1 to 9 steps nsteps ∈ [1, 9]. Relevant goal information (RGI) was computed for the

following range of utility/information trade-off coefficients β ∈ {100, 10, 8, 6, 4, 3, 2} Relevant Goal

Information Uptake (RGIU) was computed for all combinations of the RGI parameters r, β and for

1, 2 or 3 steps of history nsteps ∈ {1, 2, 3}. All correlation coefficients reported in this section are

Pearson coefficients.

5.3 Correlation of Empowerment with primal graph centrality

5.3.1 Six Room Grid World

Figure 25 shows the correlation between empowerment at 1 to 9 steps and the three centrality

measures for the six room grid world. Unsurprisingly empowerment is tightly correlated with de-

gree centrality (Ensteps=1 = log2CD), with the amount of correlation decreasing as the number of

steps in the look-ahead horizon of empowerment increases. Correlation with closeness centrality

increases with more steps, because empowerment at a small number of steps is a local quantity

but as the horizon expands towards the size of the graph, empowerment becomes a global quan-

tity. Empowerment is increasingly correlated with betweenness centrality as the number of steps
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1 2 3 4 5 6 7 8 9
Empowerment nsteps

Degree Centrality CD

Closeness Centrality CC

Betweenness Centrality CB
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Figure 25: Correlation of Empowerment Ensteps∈[1,9] with primal graph measures: degree centrality

CD, closeness centrality CC and betweenness centrality CB for a six room grid world.

increases, however the rate of improvement of the correlation slows. This effect is related to the

size of the rooms in the six-room world. Betweenness centrality is highest for states that the agent

is most likely to traverse for all possible journeys, so the “doorway” between the rooms are clearly

identified. As the number of steps increases, there are more states where the empowerment horizon

makes the of states beyond the doorway accessible to the computation.

Figure 26 shows empowerment at 1 step, 5 steps and 9 steps for a six room grid world, along-

side degree centrality, closeness centrality and betweenness centrality for the same world. Degree

centrality and 1-step empowerment are essentially the same, with the colour range difference in

Figures 26a and 30b due to 1-step empowerment being the log of degree.
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3 4 4 4 4 4 4 3 3 4 4 4 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4 4 3
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(b) degree centrality CD
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4.7 5 5.2 5.3 5.3 5.2 5 4.8 4.8 5 5.2 5.4 5.4 5.4 5.2 5 4.8 4.8 5 5.2 5.4 5.5 5.5 5.5 5.5 5.4 5.2 5 4.7

4.9 5.2 5.4 5.6 5.6 5.5 5.3 5.1 5.1 5.3 5.5 5.6 5.6 5.6 5.4 5.2 5 5 5.2 5.4 5.6 5.7 5.7 5.7 5.7 5.6 5.4 5.2 4.9
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5.1 5.5 5.7 5.8 5.8 5.8 5.8 5.7 5.7 5.7 5.8 5.8 5.9 5.9 5.8 5.7 5.6 5.5 5.5 5.6 5.7 5.8 5.9 5.9 5.9 5.9 5.8 5.6 5.4 5.1

5.1 5.5 5.7 5.8 5.8 5.7 5.6 5.5 5.5 5.6 5.8 5.9 5.9 5.9 5.8 5.8 5.7 5.6 5.6 5.7 5.7 5.8 5.8 5.9 5.9 5.8 5.7 5.6 5.4 5

5 5.4 5.6 5.7 5.7 5.6 5.4 5.2 5.4 5.6 5.7 5.8 5.9 5.9 5.8 5.6 5.5 5.3 5.4 5.5 5.6 5.7 5.8 5.8 5.7 5.6 5.4 5.2 4.9

5 5.3 5.6 5.6 5.6 5.4 5.2 5 5.2 5.5 5.7 5.8 5.9 5.8 5.7 5.5 5.3 5 5.1 5.2 5.4 5.5 5.6 5.8 5.6 5.4 5.2 5 4.7

4.8 5.2 5.6 5.5 5.4 5.2 5 4.8 5.1 5.4 5.6 5.7 5.8 5.8 5.6 5.4 5.1 4.5 4.8 5 5.1 5.3 5.5 5.7 5.5 5.2 5 4.8 4.4

4.7 5.2 5.5 5.4 5.2 5 4.8 4.4 4.9 5.2 5.4 5.6 5.7 5.7 5.5 5.2 5 5.7

5.5 4.7 5 5.2 5.4 5.6 5.7 5.4 5.1 4.8 4.4 4.7 5 5.1 5.3 5.5 5.7 5.5 5.2 5 4.8 4.4

4.7 5.2 5.5 5.4 5.2 5 4.8 4.4 4.4 4.8 5 5.2 5.5 5.6 5.3 5 4.5 4.7 5 5.2 5.4 5.5 5.6 5.8 5.6 5.4 5.2 5 4.7

4.8 5.2 5.6 5.5 5.4 5.2 5 4.7 5.6 4.9 5.2 5.4 5.6 5.7 5.8 5.8 5.7 5.6 5.4 5.2 4.9
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5.1 5.5 5.7 5.8 5.8 5.7 5.5 5.3 5.1 5.3 5.5 5.6 5.7 5.7 5.5 5.3 5 5.2 5.5 5.7 5.8 5.9 5.9 5.9 5.9 5.8 5.7 5.5 5.2

5.2 5.5 5.7 5.8 5.8 5.8 5.6 5.5 5.4 5.5 5.6 5.8 5.8 5.8 5.6 5.4 5.2 5.4 5.6 5.7 5.8 5.9 5.9 5.9 5.9 5.8 5.7 5.5 5.2

5.2 5.5 5.7 5.8 5.9 5.8 5.8 5.7 5.7 5.7 5.8 5.8 5.9 5.9 5.9 5.7 5.6 5.5 5.5 5.6 5.8 5.9 5.9 5.9 5.9 5.9 5.8 5.7 5.5 5.2

5.2 5.5 5.7 5.8 5.8 5.8 5.6 5.5 5.5 5.6 5.8 5.9 5.9 5.9 5.8 5.8 5.7 5.7 5.7 5.8 5.8 5.9 5.9 5.9 5.9 5.9 5.8 5.7 5.5 5.2
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(c) 5 step empowerment Ensteps=5
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(d) closeness centrality CC
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6.4 6.6 6.8 6.7 6.6 6.5 6.3 6.2 6.9 6.3 6.4 6.6 6.8 6.9 7.1 7.2 7 6.9 6.7 6.5 6.2

6.4 6.6 6.8 6.7 6.6 6.5 6.5 6.4 6.3 6.5 6.6 6.7 6.8 6.9 6.8 6.6 6.5 6.5 6.6 6.7 6.9 7 7.1 7.2 7.1 6.9 6.7 6.5 6.3

6.4 6.6 6.8 6.7 6.7 6.7 6.7 6.7 6.6 6.6 6.7 6.8 6.9 7 6.8 6.7 6.6 6.7 6.8 6.9 7 7.1 7.1 7.2 7.1 7 6.8 6.6 6.4
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(e) 9 step empowerment Ensteps=9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0.01 0 0 0 0 0
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0.1 0 0 0.016 0.031 0.051 0.14 0.051 0.022 0 0 0 0 0.01 0.019 0.04 0.17 0.031 0.015 0 0 0

0 0 0.1 0.033 0.015 0 0 0 0 0 0 0.02 0.046 0.22 0.037 0.01 0 0 0 0 0.016 0.026 0.042 0.1 0.034 0.02 0.012 0 0

0 0.01 0.064 0.038 0.024 0.014 0 0 0.22 0 0 0.014 0.022 0.031 0.04 0.07 0.033 0.023 0.014 0 0

0 0.011 0.044 0.035 0.031 0.023 0.015 0 0 0 0.014 0.03 0.06 0.22 0.037 0.012 0 0 0.014 0.021 0.028 0.034 0.037 0.052 0.032 0.024 0.016 0 0

0 0.011 0.032 0.03 0.033 0.032 0.026 0.017 0 0.016 0.031 0.047 0.062 0.13 0.051 0.025 0 0.014 0.021 0.028 0.033 0.035 0.034 0.042 0.029 0.024 0.016 0 0

0 0.01 0.024 0.025 0.033 0.039 0.039 0.032 0.016 0.032 0.045 0.05 0.05 0.079 0.054 0.039 0.017 0.023 0.031 0.036 0.037 0.035 0.032 0.035 0.027 0.022 0.016 0 0

0 0 0.02 0.022 0.03 0.041 0.054 0.061 0.039 0.049 0.048 0.043 0.037 0.052 0.05 0.05 0.033 0.039 0.045 0.044 0.04 0.034 0.03 0.031 0.024 0.021 0.015 0 0

0 0 0.019 0.025 0.038 0.062 0.11 0.23 0.23 0.23 0.16 0.13 0.1 0.086 0.083 0.076 0.079 0.071 0.071 0.063 0.052 0.041 0.034 0.028 0.027 0.022 0.018 0.014 0 0

0 0 0.016 0.021 0.028 0.036 0.045 0.053 0.032 0.045 0.057 0.07 0.084 0.1 0.12 0.17 0.26 0.25 0.25 0.14 0.091 0.064 0.047 0.036 0.029 0.023 0.018 0.014 0 0

0 0 0.015 0.02 0.025 0.029 0.031 0.029 0.012 0.017 0.02 0.022 0.023 0.026 0.025 0.026 0.024 0.043 0.045 0.042 0.038 0.033 0.028 0.024 0.02 0.016 0.012 0 0

0 0 0.013 0.017 0.02 0.021 0.02 0.016 0 0.012 0.016 0.018 0.019 0.021 0.019 0.017 0.012 0.019 0.025 0.028 0.028 0.026 0.024 0.021 0.018 0.015 0.011 0 0

0 0 0.01 0.013 0.014 0.014 0.012 0 0 0 0.011 0.013 0.014 0.014 0.013 0.011 0 0 0.014 0.016 0.018 0.018 0.017 0.016 0.014 0.012 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(f) betweenness centrality CB

Figure 26: Comparison of empowerment Ensteps∈{1,5,9} with primal graph measures: degree central-

ity CD, closeness centrality CC and betweenness centrality CB for a six room grid world. Colour

ranges are specific to each graph. 9-step empowerment and betweenness centrality are correlated

(r = 0.59) but the visualisation reveals that the distribution of values looks markedly different,

which may prove important when predicting the behaviour of people in interior spaces.
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5.3.2 Soho Street Network

Figure 27 shows that empowerment for the vertices of interest (n = 31) in the Soho street network

at 500m radius shows strong correlation with degree centrality, with the amount of correlation

decreasing as the number of steps decreases (Pearson r=0.97 at 1 step to r=0.72 at 9 steps). Em-

powerment is also strongly correlated with closeness centrality, with two minima (Pearson r=0.79

at 1 step and 7 steps) and two maxima (Pearson r=0.85 at 4 steps and r=0.83 at 9 steps). Cor-

relation with betweenness centrality has a maximum of r = 0.82 at 5 and 6 steps, which drops to

0.7 at 9 steps and 0.54 at 1 step. Figure 28 shows the visualisations of empowerment at 1, 3 and 5

steps and the three centrality measures for the vertices of interest in the graph of the Soho street

network at 500m radius.

1 2 3 4 5 6 7 8 9
Empowerment nsteps

Degree Centrality CD

Closeness Centrality CC

Betweenness Centrality CB

0.97 0.93 0.87 0.79 0.75 0.73 0.74 0.75 0.72

0.79 0.83 0.84 0.85 0.82 0.8 0.79 0.8 0.83

0.54 0.66 0.73 0.8 0.82 0.82 0.8 0.75 0.7

0.0

0.2

0.4

0.6

0.8
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Figure 27: Correlation of Empowerment Ensteps∈[1,9] with primal graph measures: degree centrality

CD, closeness centrality CC and betweenness centrality CB for the vertices of interest (n = 31) in

the Soho street network at 500m radius.
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Figure 28: Empowerment nsteps ∈ {1, 3, 5} for the Soho street network at 500m radius, compared

with Degree Centrality, Closeness Centrality and Betweenness Centrality. Only junctions used in

Javadi et al. (2017) are shown. Colour ranges are specific to each graph. Visually the distribution

of empowerment at 5 steps resembles the distribution of closeness centrality, however it is equally

tightly correlated with betweenness centrality.
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5.4 Correlation of RGI and RGIU with primal graph centrality

5.4.1 Six Room Grid World
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Figure 29: Correlation at β ∈ {100, 10, 4, 3, 2}, of RGI and RGIU nsteps ∈ [1, 3] with primal graph

measures: degree centrality CD, closeness centrality CC and betweenness centrality CB for the six

room grid world.

The correlation between RGI and RGIU and graph centrality, for the six room world, is less

than for empowerment. RGIU with 1 step of history is somewhat correlated with Degree Centrality

(r = 0.72 when β = 100), and RGI is somewhat correlated with Closeness Centrality (r = 0.65

when β = 100) and Betweenness Centrality (r = 0.61 when β = 100).

Figure 30 provides a visual comparison of RGI, RGIU and the three centrality measures. The

relatively low correlation compared to empowerment is unsurprising given the lack of visual similar-

ity between RGI, RGIU and centrality. However RGI weighted by the state probability distribution

p(st) shown in Figure 37 in Appendix A visually more closely resembles the pattern of between-

ness centrality, which is unsurprising because the shortest path betweenness centrality of a state is

proportional to the probability of an agent being in that state if it walks the shortest path between

all pairs of vertices in the graph. The implications of using weighted RGI are beyond the scope of

this study and are deferred to future work.
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(f) betweenness centrality CB

Figure 30: Comparison of RGI β = 100 and RGIU β ∈ {100, 3}nsteps = 1 (both unweighted) with

primal graph measures: degree centrality CD, closeness centrality CC and betweenness centrality

CB for the six room grid world. Colour ranges are specific to each graph. The comparison shows

that even though RGI is correlated with betweenness centrality, and closeness centrality it has a

markedly different distribution to either. The rectangular nature of the pattern of higher RGI

values is an artefact of the model only allowing four movement actions.
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5.4.2 Soho street network 500m radius
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Figure 31: Correlation with β ∈ {10, 6, 3, 2} of RGI, and RGIU nsteps ∈ [1, 3] with primal graph

measures: degree centrality CD, closeness centrality CC and betweenness centrality CB for the

vertices of interest (n = 31) in the Soho street network at 500m radius. Correlation is substantially

stronger across measures for the street network than for the six room grid world shown in Figure

29

Correlation for RGI and RGIU is stronger for the 31 vertices of interest in the Soho street

network than for the six room grid world. RGI at high beta correlates with Degree Centrality

at Pearson r = 0.72 and Closness Centrality at r = 0.81 for the Soho street network. RGIU at

high beta with 3 steps of history correlates with Degree Centrality ar r = 0.8, Closeness Centrality

at r = 0.74 and Betweenness Centrality at r = 0.7. Changing β and/or the number of steps of

history does not affect the correlation a great deal, an insight that is reinforced when comparing

the patterns of these measures for the vertices of interest in the 500m Soho graph in Figure 32.

Although RGI and RGIU do not seem closely related to the graph centrality measures for

the grid world, the much closer correlation for the vertices of interest in the Soho street network

provides confidence that they may correlate with brain activity as reported in Javadi et al. (2017).
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(c) RGIU β = 10, nsteps = 2
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Figure 32: RGI β = 10 and RGIU β = 100, nsteps ∈ {1, 2} for the Soho street network at 500m

radius, compared with Degree Centrality, Closeness Centrality and Betweenness Centrality. Only

junctions (vertices) used in Javadi et al. (2017) are shown, other junctions and connecting streets

(edges) are hidden. Colour ranges are specific to each graph. The correlation between RGIU and

betweenness centrality gets stronger with additional steps of history. This is because with many

steps of the past known, in most states the direction of the goal becomes clearer. However at states

which join less connected zones, such as the doorways in the six room scenario, knowledge of the

history provides much less information about the location of the goal. These are also the states

with highest betweenness centrality.
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5.5 Correlation of information-theoretic measures with Space Syntax Measures
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Figure 33: Correlation with β ∈ {10, 6, 3, 2} of RGI, and RGIU nsteps ∈ [1, 3] with Space Syntax

segment averaged measures: degree centrality CD, closeness centrality CC and betweenness cen-

trality CB for the vertices of interest (n = 31) in the Soho street network at 500m radius. RGI and

RGIU at all values of β correlate with degree centrality.
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Empowerment nsteps

Degree Centrality CD
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Figure 34: Correlation of Empowerment Ensteps∈[1,9] with Space Syntax segment averaged measures:

degree centrality CD, closeness centrality CC and betweenness centrality CB for the vertices of

interest (n = 31) in the Soho street network at 500m radius. Empowerment is strongly correlated

with degree centrality, and correlated with closeness centrality.

The Space Syntax measures reported in Javadi et al. (2017) were Degree Centrality CD (“Con-

nectivity” in Space Syntax terminology), Closeness Centrality CC (“Integration”) and Betweenness

Centrality CB (“Choice”). These are “segment” (edge) measures, but the data includes “Junction

averages” which are averages of the segments connected to each junction.

Figure 33 and Figure 34 show the correlation of empowerment, RGI and RGIU with the Space

Syntax junction average centrality measures for the 31 vertices of interest. Surprisingly betweenness

centrality is slightly negatively correlated with any of the information-theoretic measures. The

reasons for this are unclear as the details of the method of computation of the Space Syntax

measures are not available, however it may be because betweenness centrality was computed for

the whole of London, rather than for just a radius around Soho. Closeness centrality is fairly

well correlated with empowerment with a maximum of Pearson r = 0.64 at 3 and 4 steps, falling

to r = 0.4 at 1 step and r = 0.28 at 9 steps. Degree centrality is very strongly correlated with

empowerment, with a maximum of r = 0.94 at 2 steps falling to r = 0.88 at 1 step and r = 0.69
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at 9 steps. RGI is fairly well correlated with degree centrality r = 0.64 at β = 10 and RGIU is

strongly correlated with a maximum of r = 0.81 at β = 10 and nsteps = 3.
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Change in Empowerment nsteps
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Figure 35: Correlation of Change in Empowerment ∆Ensteps∈[1,9] with Space Syntax measures:

change in degree centrality ∆CD, change in closeness centrality ∆CC and change in betweenness

centrality ∆CB for the vertices of interest (n = 31) in the Soho street network at 500m radius. The

change in empowerment is correlated with the change in degree centrality.

The main results of Javadi et al. (2017) were correlations of brain activity with the change in

street segment (edge) centrality (∆C) on street entry after crossing a junction. The change in

Empowerment (∆E) computed as the difference between the empowerment of the current junction

and the previous junction. Where vt is the current junction (vertex), vt−1 is the previous junction

(vertex), et is the street segment (edge) being entered, et−1 is the previous street segment (edge),

∆Ct = C(et)−C(et−1),∆Et = E(vt)− E(vt−1). RGI and RGIU do not show any significant corre-

lation with the change of Degree Centrality, the change in Closeness Centrality, or the change in

Betweenness Centrality. However, unsurprisingly, the change in Empowerment is correlated with

the change in Degree Centrality as shown in Figure 35. The change in these measures depend on

the route taken by the agent through the network, and were computed from the routes taken by

participants during the Soho experiment. An agent with empowerment-maximising policy would

need to track empowerment in the brain, or possibly to track changes in empowerment. Both em-

powerment and the change in empowerment will be good candidates for correlation when comparing

with fMRI data in future work.
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6 Discussion and Future Work

6.1 Why does the hippocampus appear to track centrality?

(Javadi et al., 2017) showed that activation in the right posterior hippocampus tracks the change

in the degree centrality of the streets when the participants exited a junction in the virtual route

through Soho. But why is tracking degree centrality useful to humans navigating the city? To an-

swer this question I suggest that what may actually be being tracked is not the change in centrality

per se, but the change in empowerment caused by a transition from one state (street) to another.

Empowerment in a simple discrete model such as the one I employ here, is closely mathematically

related to degree centrality, but empowerment is a deeper concept, rooted in the treatment of the

perception-action loop as a communication channel, that can be applied in continuous and stochas-

tic domains more like the natural environment where the ability to navigate evolved. Perhaps we

have learnt to stay empowered, all else being equal, and this manifests itself in the discretised

navigational context of the city as tracking the change in degree centrality.

6.2 The potential for empowerment and relevant information models for plan-
ning the built environment

Empowerment has enjoyed considerable success as a pseudo-utility for agents that induces intelligent

like behaviour in a range of modelled scenarios (Klyubin et al., 2005b,a, 2008; Capdepuy et al.,

2007; Polani, 2009; Capdepuy et al., 2012; Salge et al., 2014b; Mohamed and Rezende, 2015; Karl

et al., 2015, 2017; Clements and Polani, 2017), and also in robots (Catenacci Volpi et al., 2016).

The theory that humans in certain situations are intrinsically motivated by empowerment has not

been tested empirically. The correlation of empowerment to the graph-theoretic measures in the

familiar six room grid world and the Soho street network provides a first step towards determining

if empowerment does indeed predict human behaviour in navigation, the earliest of decision-making

domains. Informational modelling of decision making under cognitive constraints, termed “bounded

rationality” after the work by Simon (1957) has recently gained momentum as a research topic (e.g.

Gottwald and Braun (2019)). Relevant goal information, and relevant goal information uptake offer

a perspective on the structure of the environment that encodes information processing cost and

memory constraints. The optimisation of the built environment for productivity, and to minimising

energy consumption, is a hot topic worldwide encapsulated in the mot-du-jour “Smart Cities”.

With more accurate predictions of the flow and occupancy of buildings, architects can optimise

designs, building managers can optimise usage, and automated systems controlling heating and

air-conditioning can avoid wasting energy heating or cooling a space that is unlikely to be used.

Improved models of vehicular, bicycle and pedestrian traffic offer opportunities for city planners

to reduce pollution, reduce journey times and promote healthy transportation modes. Agent-

based models utilising Empowerment, RGI and RGIU offer researchers hoping to predict human

behaviour new tools that complement the existing methods provided by Space Syntax, OSMNX

(Boeing, 2017) and others. Distilling the software tools developed here into an open source library

that could be integrated with OSMNX or DepthMapX(depthmapX development team, 2017) would

encourage other researchers to explore the insights offered by the measures.

66



S1

S3

S2

S5S4
S4

S3
S1

S2

S5

Primal Dual

Figure 36: Primal and dual graphs of a small street network. Street segments are labelled

S1, S2, S3, S4, S5. The dual graph, known as the “information space” can be simplified by

the removal of vertices from considering street segments to be part of the same road. If S4

and S5 are both wider streets they could be considered to be a single road. Alternatively

S1,S2 and S3 could be a single road because the angle between them is very small.

6.3 The “information space” of the dual graph

The primal graph of the street network is a planar graph embedded in Euclidean space, where

junctions are vertices and street segments are edges. A dual graph generated from a street net-

work map, described as the “information space” (Masucci et al., 2014), has a vertex for each street

segment, and an edge connecting vertices which are street segments that are connected by a junc-

tion. In graph theory this special kind of dual graph is known as a line graph, and it has been

proved that for all but one exception, connected graphs can be generated completely from their

complementary line graph (Whitney, 1932). Figure 36 shows the primal and dual graph of a small

street network. The dual graph can be simplified in various ways: by angle of the streets, by size

or capacity or based on the naming of streets (e.g. Regent street in London has multiple segments

but it is still one street) (Jiang et al., 2008; Masucci et al., 2014). This compression of the state

space in the dual graph has informational benefits – it is much easier to say “Follow Regent Street

until you reach Piccadilly”, than a series of directions for each junction along the way. The naming

of streets could also be thought of as a result of this compression rather than a source. Why are

the individual segments of Regent street grouped together and given a single name? Whether we

look at the width of the road, the amount of traffic, the type of shops, or the angle of the segments,

the naming of the road is an indication of the human drive to simplify the representation of space,

because it confers informational advantages that once again can be attributed to the need for in-

formation parsimony in a complex world. The derivation of the dual representation of the primal

graph for the street network is a deep and rich topic that has been explored empirically (Jiang

et al., 2008; Masucci et al., 2009, 2014) but not from an information-theoretic perspective based

on the biological necessity of information parsimony.

Empowerment and relevant information also provide ways of automatically compressing the

state space by identifying states where the flow of information between senses and actions is likely

to be high, or where the amount of information that needs to be loaded or unloaded is high

(Polani, 2009; Van Dijk and Polani, 2011; Anthony et al., 2011). The clustering of states into action

sequences or “options” (Sutton and Singh, 2015) has been shown to confer informational benefits

(McNamee et al., 2016), and indeed modelling the hierarchical representation of actions and states
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achieved by the human brain is the “holy grail of artificial intelligence research” (Catenacci Volpi,

2019). The concept of spatial hierarchies has large body of previous work (e.g. Kuipers (2008)),

but the informational measures presented here may be able to shed some new light on how these

semantic hierarchies are constructed from the perspective of cognitive constraints. With this in

mind, an informational treatment of the dual graph for street networks seems like a rich seam of

research opportunity.

The results in Section 5 for empowerment and relevant goal information are computed on the

primal graph. Given the practical success of the application of both the primal and dual graph in

spatial analysis, an approach which encapsulates the advantages of both is enticing, and some work

has been done in this direction with a Markov chain analysis by Batty (2017). The adaptation of

relevant information and empowerment to a dual graph representation, (or a mixed model) will be

an exciting avenue for future work.

6.4 Possible extensions to relevant goal information uptake

6.4.1 Reuse of actions

As discussed in Section 4.3 relevant goal information does not convey the same benefit of compress-

ing the state space as relevant information – a minimum RGIU policy does not favour the reuse of

actions across states. RGIU at first glance would not seem to be a good candidate for expressing

the informational saving of being able to say when giving directions in the city “Keep going straight

on until you reach the T-junction”. There may be a way of deriving this benefit from another look

at how the policy is learnt by the agent, or by considering the dual graph.

6.4.2 Iold

RGIU is an estimation of the new amount of information needed about the goal, in a particular

state, given the full history of the agent dubbed Inew (Van Dijk and Polani, 2013). The same paper

also introduces Iold as the information no longer required about the goal in a particular state, which

can be dropped from working memory. It is not clear whether brain activation can be expected to

show information entering or leaving working memory, or both.

6.5 Connecting empowerment and relevant information with current research
into active inference in the context of studies of the neuroscience of mam-
malian navigation

The role of the hippocampus in navigation, but also in generalised decision making underlines not

only the spectacular ability of the mammalian brain to reuse neural architecture across multiple

modalities but also the role of navigation as the earliest of decision making domains. During the

Soho navigation experiment subjects were periodically “surprised” at junctions where the optimal

route was closed to them. Rigoli et al. (2019) report that the hippocampus has a role in mod-

ulating response to prediction errors during inference. An animal operating in the real world is

constantly faced by the challenge of navigating a changing environment. With this in mind it is

perhaps unsurprising that given the role of the hippocampus in tracking aspects of the topology

(Javadi et al., 2017), and the animals place in the world (Howard et al., 2014), that it also has

a role in minimising surprise. Too much surprise in the animals model of the environment could

lead to falling off a cliff or being consumed by a predator. The minimisation of surprise, in other
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words the minimisation of error between the agent’s predictive model and the environment, as

a driver for behaviour is a central theme of active inference. Empowerment and relevant infor-

mation are not restricted to fully-observable, deterministic transition models, the formalism can

be naturally extended to partially observable or changing environments. Under this regime max-

imising empowerment is an effective way to minimise surprise in terms of the agent’s ability to

influence the world state in the future, by acting upon itself (e.g. movement) or by changing the

environment (e.g. digging). The mathematical relationship between empowerment and free energy

(underpinning active inference) is explored in Biehl et al. (2015, 2018), showing deep similarities in

the formalisms. Future work which brings together the growing evidence base for active inference,

with empowerment, relevant information and associated work, in the context of empirical studies

of animal navigational behaviour is an exciting prospect.

6.6 Comparison with empirical neuroscience

This work has been inspired by a collaboration, originally conceived by my supervisor Daniel

Polani and Hugo Spiers, to investigate the possibility that information-theoretic measures of the

topology of the environment can predict navigational behaviour in humans and other mammals,

via a comparison with neural activity. I have argued that empowerment, relevant goal information,

and relevant goal information uptake uncover new aspects of the topology of street networks, when

compared to existing metrics based on graph centrality. These information-theoretic quantities are

founded on an established evolutionary biological principle of information parsimony and the model

of the perception-action loop as a communication channel. The correlation of the information-

theoretic measures with existing graph-theoretic measures suggest that a direct comparison with

human brain activation and behaviour may be a fruitful avenue of scientific exploration.

A minimum RGI policy demonstrates an agent that is parsimonious in terms of information

needed to operate, and RGIU shows how working memory constraints can be modelled. The

interplay between these two constraints has not been investigated in this work, and the tradeoff

that increasing the empowerment horizon must entail is similarly not yet explored. The increasing

temporal and spatial resolution of brain activation, alongside the rapid progress in computational

neuroscience offers an exciting opportunity to test more complex theoretical models of cognitive

constraints with empirical data.
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A Appendix: Supporting work

A.1 Relevant Goal Information Uptake weighted by p(st)

Figure 37: Relevant goal information uptake weighted by p(s) (stationary distribution) for a 6 room

grid world scenario. Although RGIU does rise in states close to the doorways, the effect is not as

pronounced as demonstrated by Van Dijk, and the crossing points in the rooms opposite doorways

are much more pronounced. The reasons for this are beyond the scope of this work to analyse, but

could be due to the limited number of steps.
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