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Abstract:

Introduction: Previous analysis from the large European multicentre ESCAPE study showed an 

association of ambient particulate matter <2.5µm (PM2.5) air pollution exposure at residence with the 

incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and 

also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with 

PM mass. We evaluated the association between long-term exposure to elemental components of 

PM2.5 and PM10 and gastric and UADT cancer incidence in European adults.

Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use 

regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; 

sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and 

industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression 

models with adjustment for potential confounders were used for cohort-specific analyses. Combined 

estimates were determined with random effects meta-analyses. 

Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-

up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. 

The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM2.5_S was 1.92 (95%-confidence 

interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts 

(I2=0%), and 1.63 (95%-CI 0.88;3.01) for PM2.5_Zn (I2=70%). For the other elements in PM2.5 and all 

elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs 

were seen. No association was found between any of the elements and UADT cancer. The HR for 

PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and 

restriction to study participants with stable addresses over follow-up resulted in slightly higher effect 

estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 

decreased whereas that for PM2.5_S was robust.

Conclusion: This large multicentre cohort study shows a robust association between gastric cancer 

and long-term exposure to PM2.5_S  but not PM10_S, suggesting that S in PM2.5 or correlated air 

pollutants may contribute to the risk of gastric cancer.
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86
87 Abstract:

88 Introduction: Previous analysis from the large European multicentre ESCAPE study showed an 

89 association of ambient particulate matter <2.5µm (PM2.5) air pollution exposure at residence with the 

90 incidence of gastric cancer. It is unclear which components of PM are most relevant for gastric and 

91 also upper aerodigestive tract (UADT) cancer and some of them may not be strongly correlated with 

92 PM mass. We evaluated the association between long-term exposure to elemental components of 

93 PM2.5 and PM10 and gastric and UADT cancer incidence in European adults.

94 Methods: Baseline addresses of individuals were geocoded and exposure was assessed by land-use 

95 regression models for copper (Cu), iron (Fe) and zinc (Zn) representing non-tailpipe traffic emissions; 

96 sulphur (S) indicating long-range transport; nickel (Ni) and vanadium (V) for mixed oil-burning and 

97 industry; silicon (Si) for crustal material and potassium (K) for biomass burning. Cox regression 

98 models with adjustment for potential confounders were used for cohort-specific analyses. Combined 

99 estimates were determined with random effects meta-analyses. 

100 Results: Ten cohorts in six countries contributed data on 227,044 individuals with an average follow-

101 up of 14.9 years with 633 incident cases of gastric cancer and 763 of UADT cancer. 

102 The combined hazard ratio (HR) for an increase of 200 ng/m3 of PM2.5_S was 1.92 (95%-confidence 

103 interval (95%-CI) 1.13;3.27) for gastric cancer, with no indication of heterogeneity between cohorts 

104 (I2=0%), and 1.63 (95%-CI 0.88;3.01) for PM2.5_Zn (I2=70%). For the other elements in PM2.5 and all 

105 elements in PM10 including PM10_S, non-significant HRs between 0.78 and 1.21 with mostly wide CIs 

106 were seen. No association was found between any of the elements and UADT cancer. The HR for 

107 PM2.5_S and gastric cancer was robust to adjustment for additional factors, including diet, and 

108 restriction to study participants with stable addresses over follow-up resulted in slightly higher effect 

109 estimates with a decrease in precision. In a two-pollutant model, the effect estimate for total PM2.5 

110 decreased whereas that for PM2.5_S was robust.

111 Conclusion: This large multicentre cohort study shows a robust association between gastric cancer 

112 and long-term exposure to PM2.5_S  but not PM10_S, suggesting that S in PM2.5 or correlated air 

113 pollutants may contribute to the risk of gastric cancer.
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114 Key words: gastric cancer; upper aerodigestive tract cancer; air pollution; particulate matter 

115 components; chemical elements; sulfur; ESCAPE 

116

117

118 Introduction

119 Long-term exposure to ambient air pollution with particles contributes to increased cancer risk 

120 (International Agency for Research on Cancer Monograph Working Group, 2015), with most evidence 

121 for lung cancer (Raaschou-Nielsen et al., 2013). 

122 A previous analysis of the large European multicentre ESCAPE study showed an association of 

123 particulate matter <2.5µm (PM2.5) exposure at residence with the incidence of gastric cancer (Nagel et 

124 al, 2018). For the incidence of upper aerodigestive tract (UADT) cancer, which summarises 

125 anatomically closely related sites, no association with PM2.5 or PM10 was found (Nagel et al, 2018). 

126 PM constitutes a complex mixture depending on contributing sources and atmospheric processes, and 

127 it is still not clear which PM components are the most relevant for health, which may vary by 

128 endpoints. Although we did not find any association of PM mass with UADT cancer in our earlier 

129 work, it cannot be excluded that some components which may not be strongly correlated with PM 

130 mass may still have a role in carcinogenesis of UADT cancers.

131 The identification of elemental components of PM air pollution increasing cancer risk may increase 

132 our understanding of pathomechanisms and contribute to the identification of specific sources of 

133 relevance (Kelly and Fussell, 2012). Components of outdoor air pollutions for which adverse health 

134 effects have been reported to include metals, inorganic components, secondary aerosols (sulphate, 

135 nitrate) and organic components (de Hoogh et al., 2013). The fact that these components do not occur 

136 in isolation, but in a temporally and spatially variable air pollution mix, renders epidemiological 

137 studies of individual components complex. While the focus has mostly been on traffic exhaust related 

138 components so far, recent reviews have pointed out the possible role of non-exhaust related particle 

139 components (Kelly and Fussell, 2015). For example, transition metals such as copper (Cu) and iron 

140 (Fe) resulting from brake and tyre wear are likely to promote inflammation and oxidative stress 

141 (Hampel et al., 2015). While elements may have health effects per se, some of them also originate 
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142 predominantly from certain sources (Viana et al., 2008) and may as indicators for the related pollution 

143 mix inform on effective preventions measures. To date, research on the influence of long-term 

144 exposure to different air-borne elements is scarce.  

145 The objective of this study was therefore to investigate the association of chronic exposure to 

146 elemental components of PM air pollution with the incidence of gastric and UADT cancer. The study 

147 was performed in the framework of ESCAPE and the European study of Transport-related Air 

148 Pollution and Health Impacts—Integrated Methodologies for Assessing Particulate Matter 

149 (TRANSPHORM; www.transphorm.eu/). 

150

151

152 Material and Methods

153 Study population, outcome, confounder data and statistical analysis were identical to the previous 

154 analysis of air pollution and gastric/UADT cancer (Nagel et al, 2018). 

155

156 Study population

157 For the present study, prospective cohort data from seven study areas (Figure 1) that had participated 

158 in ESCAPE (Raaschou-Nielsen et al., 2013) and had data on PM elemental composition and the 

159 resources to perform these additional analyses were analysed: Sweden ( [CEANS] comprising the 

160 Swedish National Study on Aging and Care in Kungsholmen [SNAC-K], Stockholm Screening Across 

161 the Lifespan Twin study and TwinGene [SALT], Stockholm 60 years old and IMPROVE study [Sixty] 

162 and the Stockholm Diabetes Prevention Program [SDPP]), Norway (Oslo Health Study [HUBRO]), 

163 Copenhagen, Denmark (Diet, Cancer and Health study [DCH]), the Netherlands (European 

164 Prospective Investigation into Cancer and Nutrition [EPIC] comprising the Monitoring Project on Risk 

165 Factors and Chronic Diseases in the Netherlands [EPIC-MORGEN], and EPIC-PROSPECT), Austria 

166 (Vorarlberg Health Monitoring and Prevention Programme [VHM&PP]), Italy (EPIC-Turin, Italian 

167 Studies of Respiratory Disorders in Childhood and Environment [SIDRIA]-Rome). The data of the 

168 four cohorts in the Stockholm area and the two cohorts in the Netherlands, respectively, were pooled. 
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169 Therefore, 7 study estimates contributed to the meta-analysis (Table 1, for cohort-specific details see 

170 (Nagel et al, 2018). 

171 Recruitment of the cohorts occurred largely in the 1990s. The cohort studies and the use of their data 

172 in ESCAPE were approved by the local ethical and data protection authorities. 

173

174

175
176 Figure 1: Location of participating cohorts: Oslo: HUBRO; Stockholm: CEANS (comprising SNAC-

177 K, SALT, Sixty and SDPP); Copenhagen: DCH; Netherlands: EPIC Netherlands; Vorarlberg: 

178 VHM&PP; Turin: EPIC Turin; Rome: SIDRIA; For acronyms of cohorts see Methods section.
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180 Outcome definition

181 Follow-up was based on linkage to national or local cancer registries, with exception of SIDRIA Rome 

182 for which hospital discharge and mortality register data were used. The main outcomes were all 

183 cancers of the stomach and of the UADT, respectively. Secondary analyses addressed cancer of the 

184 cardia, and adenocarcinomas and squamous-cell carcinomas of the UADT. Carcinomas were identified 

185 using the International Statistical Classification of Diseases and Related Health Problems, 9th and 10th 

186 revision [ICD9 and ICD10]: for gastric cancer C16 [ICD10] and 151 [ICD9], and for UADT cancers: 

187 C01-06 and 141-145 (oral cavity), C09, C10 (oropharynx), C12, C13 (hypo-pharynx) and 146 

188 (pharynx), C14, C32 and 161 (larynx), C15 and 150 (esophagus). Lymphomas/myelomas/leukemias 

189 were excluded according to the International Classification of Diseases for Oncology (ICDO-3) 

190 morphology codes: 9590-9989. We only included primary cancers and only malignant tumors with the 

191 fifth digit of the ICDO morphology code being “3”.

192

193 Exposure assessment

194 Exposures at the residential baseline address of the participants were determined according to a 

195 standardized procedure by assigning air pollution exposure estimates derived from land use regression 

196 (LUR) models specifically developed for the respective areas (de Hoogh, 2013). If a subject moved the 

197 new address was not taken into account except for exclusion of these subjects in a sensitivity analyses 

198 (see below). A detailed description of the 3-step procedure is found elsewhere. First, dedicated 

199 measurement campaigns (three two-week periods over one year) were carried out at 20 locations in 

200 each study area for a one-year period between October 2008 and May 2011. Results from the three 

201 measurements per site were averaged to a mean annual concentration, adjusting for temporal trends 

202 using data from a background monitoring site with continuous data 

203 Second, we collected information about potential predictor variables relating to nearby traffic 

204 intensity, population/household density and land use from Geographic Information Systems (GIS), and 

205 evaluated these to explain spatial variation of measured annual average concentrations using 

206 regression modelling (Beelen et al., 2013; Eeftens et al., 2012). These LUR models were used to 

207 estimate the exposure at the baseline address of each cohort member.
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208 To determine the chemical elements contained in the respective PM fractions, PM filters were sent to 

209 Cooper Environmental Services (Portland, OR, USA) to analyse elemental composition using X-

210 Ray Fluorescence (XRF). As indicators mainly of non-tailpipe traffic emissions such as brake and 

211 tyre wear, Cu, Fe and zinc (Zn) were selected; sulphur (S) mainly for long-range transport; nickel 

212 (Ni) and vanadium (V) for mixed oil-burning and industry; silicon (Si) for crustal material and 

213 potassium (K) for biomass burning (de Hoogh et al., 2013; Viana et al., 2008). However, each 

214 element can have multiple sources. The LUR model results for all study areas have been shown 

215 previously (de Hoogh et al., 2013). Land use regression models for Cu, Fe, and Zn in both 

216 fractions (PM
10 

and PM
2.5

) had average cross-validation explained variance (r2) between 52% and 

217 84% with a large variability between areas (Raaschou-Nielsen et al., 2016). Models for the other 

218 elements performed moderately with average cross-validation r2 generally between ~50% and 

219 ~60%. For PM
2.5 

S the average cross-validation r2 was 32% with a range from 2 to 67%, consistent 

220 with the relatively low spatial variation of PM_S concentrations within the cohort areas. LUR-

221 models could not be developed for K in PM10 (HUBRO), Ni in PM10 (HUBRO), Ni in PM2.5 

222 (CEANS), V in PM2.5 (HUBRO, VHM&PP) and Si in PM2.5 (HUBRO).

223

224 Statistical analyses

225 Cohort-specific analyses were carried out using a common protocol and a centrally developed Stata 

226 analysis script (Nagel et al, 2018). In the cases where data of multiple cohorts were pooled (the 

227 Swedish and the Dutch cohorts, respectively) the analyses were performed stratifying the Cox Model 

228 for a cohort indicator variable.

229

230 Cox proportional hazard-regression with age as the underlying time-axis was carried out. The hazard 

231 ratio was modeled as an exponential function of continuous exposure. Censoring was applied at the 

232 time of death, a diagnosis of any other cancer (except non-melanoma skin cancer) or end of follow-up, 

233 whichever came first. Model checks included a test for deviation from proportional hazard assumption 

234 and testing the linearity assumption in the relation between each exposure and the log hazard of the 
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235 outcome by replacing the linear term with a natural cubic spline with two inner knots placed at the 33rd 

236 and 66th percentiles. The model fits of the linear and the spline models were compared using a 

237 likelihood-ratio test (Chi-square test with 2df).

238

239 Confounder sets were determined a priori with increasing levels of adjustment, following the 

240 procedures of previous ESCAPE studies (Nagel et al, 2018). Model 1 was adjusted for age (time 

241 scale), calendar year of enrolment and sex. Model 2 was additionally adjusted for baseline information 

242 on smoking status, smoking intensity, smoking duration, occupational exposure, employment status 

243 and educational level. Model 3 (the main model) was in addition adjusted for area-level (residential 

244 neighbourhood or similar) socio-economic status (SES). The availability of these variables varied 

245 slightly between cohorts (Nagel et al, 2018). Only complete case analyses were performed. In the few 

246 cases where one variable was missing entirely, the cohort was nevertheless analysed using the 

247 available confounders. In sensitivity analyses we included additional potential confounders (alcohol 

248 consumption, environmental tobacco smoke (ETS), intake of fruit, intake of meat and marital status), 

249 restricted the analysis to participants with stable residence during follow-up or for at least 10 years, 

250 and included an indicator for urban/rural environment to the main model.

251 All cohort-specific analyses were done in Stata versions 10 to 14 (StataCorp, College Station, TX). 

252

253 The results obtained from the cohort-specific analyses were combined with random effects meta-

254 analysis (DerSimonian and Laird, 1986). Heterogeneity between cohorts was tested by the χ2 test from 

255 Cochran’s Q statistic and quantified with the I2 (Higgins and Thompson, 2002). Stata version 14 

256 (StataCorp) was used for meta-analyses. 

257

258 Results:

259 The cohorts contributed together data on 227,044 individuals with an average follow-up time of 14.9 

260 years. 633 incident cases of gastric cancer and 763 of UADT cancer occurred. DCH and VHM&PP 

261 contributed with most of the cases (Table1). Mean age at baseline in the cohorts ranged from 43 years 
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262 (VHM&PP) to 57 years (DCH). The details of each cohort including participants characteristics and 

263 availability of variables have been reported previously (Nagel et al, 2018). 

264
265 There was a wide range of annual mean concentrations of PM elements concentrations within and 

266 between study cohorts. Generally, the Nordic countries showed the lowest and the Southern countries 

267 the highest levels of PM (Table 1) and similarly for most of the elements, less consistent for Ni, V and 

268 Zn. Si had relatively high values in Sweden, S in the Netherlands, and Austria showed high levels of K 

269 in PM2.5 (Fig. 2 and Figure in the online Supplementary Material). For PM2.5 differences in individual 

270 exposures were highest in SIDRIA (Rome) for Cu, Fe, K, in EPIC Turin and Netherlands for Ni and S, 

271 in EPIC-Netherlands for V and Zn and in CEANS (Stockholm) for Si. The pattern for PM10 was very 

272 similar. Correlations of PM elements with total PM2.5 and PM10 varied between location with median 

273 correlation coefficients largely between 0.4 and 0.6 (Raaschou-Nielsen et al., 2016). 

274 In the tests of loglinearity of the dose-response, the p-value of only 4  were ≤0.05 and only 8 ≤0.1. P-

275 values of less than 0.05 were observed for DCH for PM2.5_S, for EPIC-Turin for PM10_K and for 

276 VHM&PP and SIDRIA for PM10_Si Therefore we took over the results for the linear models for all 

277 cohorts and pollutants and consider that this is a valid approximation.

278
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279 Table 1: Participants, gastric and UADT cancer cases and mean PM2.5 concentrations in each cohort 
Incident cases Exposure Persons with stable residence (at least 

10 years at baseline address)
Total 
participants

Baseline 
period

Mean 
follow-up 
time

Age at 
baseline
(years)

Gastric 
Cancer

UADT
cancer

PM2.5 
(µg/m3)

Proportion Proportion among 
cases

HUBRO, Oslo, 
Norway 17 958 2000-2001 8.5 47.9

(15.0)
21

(0.12%)
23

(0.13%)
8.9

(1.3)
0.39 0.67

CEANS, Stockholm, Sweden 18 842 1992-2004 10.4 56.2
(11.5)

30
(0.16%)

57
(0.30%)

7.1
(1.3)

0.63 0.77

DCH, Copenhagen, Denmark 37 676 1993-1997 14.8 56.8
(4.3)

120
(0.32%)

283
(0.75%)

11.3
(0.9)

0.86 0.87

EPIC-Netherlands 30 134 1993-1997 11.8 50.4
(11.3)

41
(0.14%)

69
(0.23%)

16.8
(0.6)

n.d. n.d.

VHM&PP, Vorarlberg, Austria 104 713 1985-2005 18.1 42.9
(14.9)

375
(0.36%)

311
(0.30%)

13.6
(1.2)

0.58 0.74

EPIC-Turin, Italy 7946 1993-1998 14.1 50.4
(7.5)

26
(0.33%) NA 30.1

(1.7)
n.d. n.d.

SIDRIA-Rome, Italy 9775 1999 11.2 44.2
(6.0)

20
(0.20%)

20
(0.20%)

19.4
(1.8)

0.72 0.70

Total 227 044 14.9 633 763
280 Data are n, mean (SD), and n (%). PM2.5=particulate matter with diameter <2.5µm.  NA=not available. HUBRO=Oslo Health Study. CEANS=Swedish National Study on Aging and Care in 
281 Kungsholmen (SNAC-K) + Stockholm Screening Across the Lifespan Twin study and TwinGene (SALT) + Stockholm 60 years old and IMPROVE study (Sixty) + Stockholm Diabetes Prevention 
282 Program (SDPP). DCH= Diet, Cancer and Health study. EPIC=European Prospective Investigation into Cancer and Nutrition. VHM&PP= Vorarlberg Health Monitoring and Prevention Programme. 
283 SIDRIA=Italian Studies of Respiratory Disorders in Childhood and Environment. n.d.=no data available
284
285
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286

287
288
289 Figure 2: Estimated annual mean concentration (ng/m3) of PM2.5 elemental components at participants’ addresses in each cohort. The solid circles and bars show the median and 
290 25% and 75% percentile concentrations; the x shows the 5% and 95% percentile values.
291
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292 The meta-analysis results from the main model for PM2.5 components showed effect estimates above 

293 and below unity. Only the positive association of PM2.5_S with gastric cancer incidence was 

294 statistically significant with a hazard ratio (HR) of 1.93 (95%-confidence interval (95%-CI) 1.13;3.27) 

295 for an increase of 200 ng/m3 (Table 2, Figure 3) with no heterogeneity in cohort results. 

296

297
298 Figure 3: Risk for gastric cancer associated with PM2.5_S in each cohort study 
299 Hazard ratios according to PM2.5_S in each of the cohort studies, based on confounder model 3. 
300 Weights are from random effects analysis. Data points show HR; lines show 95% CI, boxes show the 
301 weight with which each cohort contributed to the overall HR; vertical bold line shows overall HR. 
302 HR=hazard ratio. PM2.5=particulate matter with diameter <2.5µm. 
303
304
305 The second highest HR was seen for PM2.5_Zn with 1.63 (95%-CI 0.88;3.01) for an increase of 

306 10ng/m3 with heterogeneity between cohorts (I2=70%) No clear association was found with UADT 

307 cancers for any of the PM2.5 elements. Effect estimates from the age-sex adjusted and fully adjusted 

308 confounder model did not differ substantially. Also no clear association could be seen between any of 

309 the PM10-components and gastric or UADT cancer incidence (Table in the online Supplementary 
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310 Material). The association for PM10_S with gastric cancer was 0.97 (95%-CI 0.67;1.41) for an increase 

311 of 200ng/m3, also with no heterogeneity between cohorts. Excluding VHM&PP which had a weight of 

312 66% and 71%, in the meta-analysis of PM2.5_S and PM10_S, respectively, yielded a combined HR of 

313 2.75 (95%-CI 1.10;6.86) and 1,43 (95%-CI 0,72;2.85), respectively. Excluding the three cohorts 

314 (HUBRO, CEANS, EPIC-Netherlands) with a leave-one-out cross-validation (LOOCV) R2 below 0.3 

315 for the LUR-models yielded a HRR of 1,74 (95%-CI 0,90;3.33).

316 The results for the association of PM2.5_S with gastric cancer were robust to further adjustment for 

317 dietary variables and ETS showing no change in the HR obtained for the respective cohorts in this 

318 analysis of 1.83 (95%-CI 1.05;3.20), (Figure 4, additional confounder data available for 6 cohorts). 

319 Similarly, adjustment for the rural indicator yielded very similar effect estimates (information 

320 available in 5 cohorts). Restriction to the population with a stable residence, which is less subject to 

321 misclassification of long-term exposure at the residence, resulted in slightly increased effect estimates, 

322 however with wider CIs. 

323 In two-pollutant models, the effect estimated for total PM2.5 changed from 1.36 (95%-CI 0.97;1.90) to 

324 1.07 (95%-CI 0.70;1.64) when adjusted for PM2.5_S and to 1.42 (95%-CI 0.68;2.95) when adjusted for 

325 PM2.5_Zn. The effect estimated for PM2.5_S changed from 1.93 (95%-CI 1.13;3.27) to 1.79 (95%-CI 

326 0.96;3.37) when adjusted for total PM2.5 and the estimate for PM2.5_Zn was not affected. 

327
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328 Table 2: Results of the random effects meta-analyses of associations between PM2.5 elemental components and the risk for gastric and UADT cancer
329

Fixed Increase 
(ng/m2)

Number of 
cohorts

Number 
of cases

HR (95% CI) Measures of heterogeneity 
between cohorts (model 3)§

Model 1* Model 2† Model 3‡ 𝐼2 p-value
Gastric cancer

PM2.5 Cu 5 7 633 1.00 (0.73-1.38) 1.01 (0.70-1.45) 1.05 (0.72-1.53) 37.0% 0.15

PM2.5 Fe 100 7 633 1.04 (0.80-1.35) 1.03 (0.75-1.42) 1.03 (0.75-1.42) 22.5% 0.26
PM2.5 K 50 7 633 1.10 (0.88-1.37) 1.08 (0.87-1.34) 1.21 (0.88-1.66) 28.1% 0.21
PM2.5 Ni 1 6 6031 0.81 (0.40-1.63) 0.77 (0.36-1.63) 0.81 (0.36-1.83) 60.3% 0.03
PM2.5 S 200 7 633 2.07 (1.23-3.47) 2.01 (1.20-3.38) 1.93 (1.13-3.27) 0.0% 0.59
PM2.5 Si 100 6 6122 0.97 (0.54-1.75) 0.91 (0.43-1.91) 0.90 (0.41-1.98) 45.2% 0.10
PM2.5 V 2 5 2373 0.95 (0.47-1.89) 0.90 (0.45-1.80) 0.90 (0.45-1.81) 0.0% 0.87
PM2.5 Zn 10 7 633 1.54 (0.80-2.97) 1.54 (0.82-2.90) 1.63 (0.88-3.01) 70.2% <0.01

UADT cancer

PM2.5 Cu 5 6 763 1.08 (0.83-1.40) 1.03 (0.79-1.34) 1.02 (0.78-1.33) 0.0% 0.64

PM2.5 Fe 100 6 763 0.97 (0.79-1.18) 0.89 (0.73-1.09) 0.90 (0.73-1.10) 0.0% 0.73
PM2.5 K 50 6 763 1.13 (0.78-1.65) 1.12 (0.83-1.51) 1.12 (0.83-1.51) 22.9% 0.26
PM2.5 Ni 1 5 7061 0.97 (0.56-1.67) 0.85 (0.53-1.35) 0.84 (0.51-1.37) 11.6% 0.34
PM2.5 S 200 6 763 0.90 (0.46-1.75) 0.74 (0.28-1.98) 0.75 (0.25-2.21) 54.9% 0.05
PM2.5 Si 100 5 7402 0.75 (0.54-1.04) 0.75 (0.54-1.04) 0.76 (0.54-1.05) 0.0% 0.99
PM2.5 V 2 4 4293 0.78 (0.48-1.28) 0.69 (0.42-1.14) 0.68 (0.41-1.12) 0.0% 0.63
PM2.5 Zn 10 6 763 1.09 (0.87-1.37) 1.09 (0.86-1.38) 1.11 (0.82-1.51) 25.6% 0.24

330 PM25=particulate matter with diameter <2·5 μm. We included only participants without missing data in any of the variables included in model 3, so the datasets were identical for analyses with 
331 all three models. HR=hazard ratio. CI=confidence interval. UADT= upper aerodigestive tract. § relating to model 3 *Model 1: age (timescale in Cox model), sex, calendar time. †Model 2: model 
332 1 + smoking status, smoking intensity, smoking duration, occupational exposure, employment status and educational level. ‡Model 3: model 2 + area-level (residential neighborhood or similar) 
333 socio-economic status. 1: without CEANS. 2: without HUBRO. 3: without HUBRO, VHM&PP.
334
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335 HR 95%-CI

0 1 2 3 4 5 6

adjusted for additional confounders

Main model with subjects with data on 
additional confounders

adjusted for urban/rural

Main model with subjects with urban/rural data

Main model with individuals that did not 
move during follow-up

Main model with individuals which lived at least 
10yrs at baseline address

Main model on cohorts with data 
residential history

Main model

N cohorts / N cases

7 / 633

5 / 566

5 / 273

5 / 282

5 / 586

5 / 586

6 / 601

6 / 601

336
337 Figure 4: Results of sensitivity analyses for the association of gastric cancer with PM2.5_S. Hazard 
338 ratios (HR) with 95% confidence intervals are shown. N= number. The additional confounders were 
339 alcohol consumption, environmental tobacco smoke (ETS), intake of fruit, intake of meat and marital 
340 status where available.
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341 Discussion

342 This study including cohorts from 6 European countries shows a statistically significant robust 

343 association of PM2.5_S with gastric cancer incidence. The effect estimate for PM2.5 decreased 

344 markedly when adjusted for PM2.5_S whereas the estimate for the latter changed little. No further 

345 statistically significant association of the elementary compounds with gastric or UADT cancer was 

346 observed, including PM10_S. 

347

348 The identification of PM2.5_S as the element most strongly associated with gastric cancer is in 

349 agreement with previous analyses within the ESCAPE study on all-cause mortality (Beelen et al., 

350 2015) and lung cancer incidence (Raaschou-Nielsen et al., 2016). In our analysis of gastric cancer, the 

351 HR for PM2.5_S was larger than for all-cause mortality (HR 1.14) and lung cancer (HR 1.34). In 

352 contrast to lung cancer, our estimate for gastric cancer was robust when additionally adjusted for 

353 smoking status, smoking intensity, smoking duration, occupational exposure, employment status, 

354 educational level, and for area-level (residential neighbourhood or similar) socio-economic status (area 

355 SES). However, it is of concern that there was no corresponding association seen for PM10_S in 

356 contrast to PM2.5_S. In general, PM2.5 component mass makes up large amount of PM10 component 

357 mass and sulphates are mainly present in the PM2.5 fraction (Tsai et al., 2015). Indeed, the actual 

358 concentrations measured at the monitoring sites used to develop the LUR models were highly 

359 correlated (median within area r = 0.8) (Tsai et al., 2015). At the cohort address, we found a moderate 

360 correlation (median=0.57) between predicted PM2.5_S and PM10_S exposures from the LUR. In the 

361 large VHM&PP cohort, the correlation was identical for measured and modelled concentrations. The 

362 lower correlation is likely due to relatively moderate performance of the LUR models for S (de Hoogh 

363 et al., 2013) and possibly the overrepresentation of traffic locations at the monitoring sites compared 

364 to  the cohort addresses. Overall, the explained variance of PM10_S models was slightly higher than 

365 for PM2.5_S LUR models (de Hoogh et al., 2013). The low variability of S within study areas likely 

366 has contributed to moderate performance (de Hoogh et al., 2013). In both the mortality and lung 

367 cancer studies (Beelen et al., 2015; Raaschou-Nielsen et al., 2016), HRs for  PM10_S, were above 

368 unity, but smaller and less consistent than for PM2.5_S. 
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369 For gastric cancer, the null finding for PM10_S parallels the null-finding for total PM10 that we have 

370 found in our previous ESCAPE analysis (Nagel et al, 2018).

371

372 Overall, our results for PM2.5_S were robust as sensitivity analyses did not notably change the effect 

373 estimate. Restricting the analyses to persons who lived at least 10 years at their baseline address 

374 resulted in slightly increased HRs, which would be expected if the association is true and causal 

375 because the degree of non-differential misclassification of exposure is expected to be lower in this sub-

376 population. Excluding the most influential cohort, VHM&PP with a weight of 66%, increased the HR. 

377 Although two-pollutant models should be interpreted with caution (Mostofsky et al., 2012), our 

378 finding that the HR in association with PM2.5_S is robust when adjusting for PM2.5, which in turn is 

379 reduced to virtually no effect, is strengthening our result. Even more so, because in contrast to earlier 

380 studies where S and PM were strongly correlated, the moderate correlation in our study (mean of 0.55) 

381 allows us to be more confident to disentangle effects. 

382 Nevertheless, PM2.5_S may also be seen as a marker of a certain pollutant mix. Sources of S are coal, 

383 residual oil and motor vehicle fuels. In the NPACT project, the coal combustion source category 

384 showed the strongest associations of all investigated sources with long-term effects (mortality in 

385 humans and aortic plaque progression in mice) (Lippmann et al., 2013). 

386

387 Ashely et al. reported a correlation between SO2 exposure and gastric cancer mortality in the UK 

388 (Ashley, 1969). This study showed that regions with coal and textile industry had higher gastric cancer 

389 mortality. Another study showed that workers exposed to SO2 in the pulp and paper industry had no 

390 increased risk of gastric cancer, but mortality from gastric cancer showed a positive dose-response 

391 with increasing exposure, however, with very imprecise estimates (Lee et al., 2002).  

392 While an earlier review on toxicological results postulated that there is little evidence that sulphate in 

393 ambient concentration is toxicologically relevant (Schlesinger and Cassee, 2003), recent reviews 

394 acknowledge that it is unclear which effects are related to sulphates contained in the PM-mixture: the 

395 cationic elements (H+, and therefore acidity, and notably (transition) metals) or adsorbed compounds 

396 like polyaromatic hydrocarbons (PAH)) may explain the observed epidemiological associations 
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397 (Cassee et al., 2013; Reiss et al., 2007). A study in Hong Kong (Wong et al., 2012) that investigated 

398 the effects of limiting the sulphur content in fuel found that natural mortality was reduced, however 

399 the reduction in SO2 was highly correlated with reductions in V and Ni and was not statistically 

400 significant after adjustment. In our study these metals (V and Ni from residual oil combustion e.g. 

401 from industry) were not associated with gastric cancer incidence, although one might argue that the 

402 corresponding LUR-models suffered from a lack of sufficiently specific predictors (Beelen et al., 

403 2015). 

404

405 The possible pathomechanisms of carcinogenicity of sulphate in ambient air for gastric cancer are not 

406 clear. Results from experimental research with human bronchial epithelial cells, support the hypothesis 

407 that SO2 derivatives could by activation of pro-oncogenes and the inactivation of tumour suppressor 

408 genes play a role in the pathogenesis of cancer (Qin and Meng, 2009). It can also be speculated 

409 whether the formation of sulphuric acid, which is formed from oxidation from SO2, increases the risk 

410 of gastric cancer (Bernatsky et al., 2017). As pointed out above, sulphate may indirectly affect health 

411 by e.g. co-occurring transition metals. The bioavailability of these metals may increase (Cassee et al., 

412 2013) and they can lead to the formation of reactive oxygen species (ROS) which in turn may result in 

413 oxidative DNA-damage (Møller et al., 2008; Risom et al., 2005).

414

415 Strengths and limitations:

416 Our study comprises data from several cohorts from 7 geographical areas, and constitutes the largest 

417 data set to date for the analysis of PM-elements in relation to gastric cancer. A strength is the common 

418 standardized exposure assessment protocol that estimates local concentrations with a small scale 

419 resolution. Our analysis was able to take into account important individual confounders, especially 

420 smoking. We could also adjust for nutritional variables in 4 of the 7 study-specific effect estimates, but 

421 cannot rule out residual confounding. While we cannot exclude the possibility of some 

422 misclassification due to the measurement campaigns taking place after recruitment of cohort 

423 participants, we were, however, able to take into account information on residential stability, which 

424 would tend to decrease the degree of exposure misclassification. 
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425 We were not able to take into account the mobility of the individuals, but had to rely on exposure 

426 estimates for the residential address at enrolment into the cohorts. Also, the LUR-model approach does 

427 involve some degree of misclassification, and especially the performance of the models for PM_S 

428 were among the lowest when evaluated by leave-one-out crossvalidation, presumably because of the 

429 small measured within-study area contrasts. The average leave-one-out cross-validation (LOOCV) R2 

430 in the present study with data from 7 geographical areas ranged between 7 and 61% for PM2.5_S, with 

431 the highest values in DCH (61%) and VHM&PP (53%) and the lowest in HUBRO. The sensitivity 

432 analyses excluding studies with a (LOOCV) R2 yielded an only mildly attenuated  effect estimate with 

433 a widened confidence interval, resulting from the exclusion of three of the seven cohorts. . It is not 

434 clear whether the mild change is related to the LOOCV or other characteristics of the cohorts. We 

435 further note that the I2 statistic of the overall analysis is 0%, suggesting that the variability in estimates 

436 across cohorts is mostly due to random error.

437 Overall, we would expect the misclassification related to low LOOCV R2 to be non-differential and 

438 therefore to induce a bias towards the null-effect. Also the relatively poor model fit would not 

439 contribute to an erroneously increased effect estimate in the two-pollutant model: indeed, if two 

440 pollutants are of similar influence, the pollutant for which the concentrations are more precisely 

441 estimated would yield the higher effect estimate. This is unlikely to be the case here, because the 

442 model fit for PM2.5 mass was better than for PM2.5_S with validation R2 ranging from 42% to 78%. 

443 In this analysis we tested 32 outcome-exposure combinations, so a chance finding due to multiple 

444 testing cannot be fully excluded. Nevertheless, the robustness of the results and the fact that 6 of the 7 

445 cohort estimates were greater than one indicates that the result for S in PM2.5 is probably not due to 

446 chance. However, clearly additional specific studies are needed.  

447

448 Taken together, our results indicate that S in the PM2.5 fraction, or correlated air pollutants, may 

449 contribute to increased risk of cancer of the stomach. 

450
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Supplementary Figure: Estimated annual mean concentration (ng/m3) of PM10 elemental components at participants’ addresses in each cohort. The solid circles and bars show 
the median and 25% and 75% percentile concentrations; the x shows the 5% and 95% percentile values. 

  



Supplementary Table: Results of the random effects meta-analyses of associations between PM10 elemental components and the risk for gastric and UADT cancer 
 Fixed Increase 

(µg/m2) 
Number 
of cohorts 

Number 
of cases 

HR (95% CI)  Measures of heterogeneity 
between cohorts (model 3) 

    Model 1* Model 2† Model 3‡ 𝐼𝐼2 p-value 
Gastric cancer         

         

PM10 Cu 20 7 633 1.05 (0.87-1.27) 1.06 (0.88-1.29) 1.08 (0.89-1.31) 0.0% 0.45 

PM10 Fe 500 7 633 1.05 (0.82-1.34) 1.02 (0.76-1.37) 1.03 (0.76-1.40) 24.2% 0.24 
PM10 K 100 61 612 1.17 (0.80-1.72) 1.17 (0.82-1.67) 1.17 (0.86-1.59) 41.9% 0.13 
PM10 Ni 2 52 582 1.07 (0.72-1.60) 1.07 (0.72-1.59) 1.10 (0.73-1.66) 0.0% 0.87 
PM10 S 200 7 633 0.99 (0.69-1.42) 0.97 (0.67-1.39) 0.97 (0.67-1.41) 0.0% 0.54 
PM10 Si 500 7 633 0.85 (0.62-1.18) 0.87 (0.66-1.14) 0.89 (0.67-1.18) 0.0% 0.47 
PM10 V 3 7 633 0.75 (0.23-2.39) 0.74 (0.22-2.43) 0.78 (0.24-2.55) 67.4% 0.0053 
PM10 Zn 20 7 633 1.05 (0.84-1.31) 1.06 (0.85-1.34) 1.08 (0.85-1.37) 5.0% 0.39 
      

UADT cancer         
         
PM10 Cu 20 6 763 0.97 (0.81-1.17) 0.93 (0.77-1.13) 0.93 (0.77-1.13) 0.0% 0.81 

PM10 Fe 500 6 763 1.01 (0.81-1.26) 0.96 (0.77-1.20) 0.96 (0.77-1.20) 0.0% 0.70 
PM10 K 100 51 740 1.03 (0.82-1.28) 1.00 (0.85-1.17) 1.00 (0.85-1.17) 0.0% 0.47 
PM10 Ni 2 42 683 0.86 (0.50-1.49) 0.76 (0.45-1.29) 0.75 (0.41-1.35) 31.1% 0.22 
PM10 S 200 6 763 1.08 (0.73-1.59) 0.98 (0.66-1.46) 0.98 (0.66-1.46) 0.0% 0.58 
PM10 Si 500 6 763 1.06 (0.72-1.58) 1.01 (0.68-1.48) 1.00 (0.65-1.54) 49.8% 0.076 
PM10 V 3 6 763 0.98 (0.56-1.72) 0.93 (0.49-1.77) 0.96 (0.48-1.91) 38.4% 0.15 

PM10 Zn 20 6 763 1.11 (0.91-1.37) 1.10 (0.89-1.35) 1.11 (0.90-1.37) 0.0% 0.93 

PM10=particulate matter with diameter <10 μm. We included only participants without missing data in any of the variables included in model 3, so the datasets were identical for analyses with all 
three models. HR=hazard ratio. UADT= upper aerodigestive tract.  § relating to model 3 *Model 1: age (timescale in Cox model), sex, calendar time. †Model 2: model 1 +  smoking status, smoking 
intensity, smoking duration, occupational exposure, employment status and educational level. ‡Model 3: model 2 + area-level (residential neighborhood or similar) socio-economic status. 1: 
without CEANS. 2: without HUBRO. 3: without HUBRO, VHM&PP. 




