
 

 

1 

Abstract— Complex electronic systems are used in safety-critical 

applications (e.g., aerospace, nuclear stations), for which the 

certification standards demand the use of assured design methods 

and tools. Meta-scheduling is a way to manage the complexity of 

adaptive systems via predictable behavioural patterns established 

by static scheduling algorithms. This paper proposes a meta-

scheduling algorithm for adaptive time-triggered systems based on 

Networks-on-a-Chip (NoCs). The meta-scheduling algorithm 

computes an individual schedule for each dynamic event of slack 

occurrence. Each dynamic slack occurrence triggers the shift to a 

more energy-efficient schedule. Dynamic frequency scaling of 

cores and routers is used to improve the energy efficiency, while 

preserving the temporal correctness of time-triggered 

computation and communication activities (e.g., collision 

avoidance, timeliness). Mixed-Integer Quadratic Programming 

(MIQP) is used to optimise the schedules Experimental results for 

an example scenario demonstrate that the presented meta-

scheduling algorithm provides on average a power reduction of 

34%. Our approach was able to deploy 93 dynamic slack schedules 

compared to the single slack schedule of using static slack 

scheduling. 

 

Index Terms— MPSoC, NoC, MIQP, scenario-based, 

meta-scheduling, mixed-criticality, time-triggered. 

 

I. INTRODUCTION 

mbedded systems are used in a wide range of industrial 

systems, for example, aerospace, medical and automotive 

systems. Many premium carmakers plan to invest heavily in e-

cars, which significantly depend on embedded systems [1]. 

However, with the new IoT era, minimizing power 

consumption becomes a primary concern of system designers. 

Scheduling optimisation is used to help engineers and system 

designers to increase the energy-efficiency and improve the 

behaviour of a system [2]. Scenario-based scheduling is a 

scheduling technique [3] to predict, calculate and model the 

circumstance events in safe-critical systems. Multi-Processor 

System-on-Chip (MPSoC) systems typically represent one of 
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the most power consuming components of embedded systems, 

and most researchers focused on reducing power and energy 

consumptions of computational cores. Today, MPSoCs 

typically support the scaling of frequency and voltage (e.g., 

DVS, DVFS) as well as multiple sleep states for cores. 

However, frequency tuning for both cores and routers on multi-

core architectures (e.g., NoC) so far has been an open research 

challenge. 

In this research, we extend scenario-based scheduling on 

MPSoC with time-triggered communication to provide 

optimisation of energy efficiency not only for cores but also for 

NoC routers. The energy efficiency optimisation uses dynamic 

frequency scaling, where we are able to scale the frequency of 

each core and router individually. This algorithm is suitable for 

mixed-criticality [4] and safety-criticality [5] by supporting 

fault-tolerant applications and adaptive systems. Compared to 

purely static scheduling, our approach provides more energy 

efficiency and enhanced flexibility. 

Compared to our own previous research [3, 6, 7] and [8], this 

work does not focus on introducing a new architecture for 

scheduling or meta-scheduling technique. Instead, we provide 

an improved, extended, more flexible and reliable meta-

scheduling architecture [9, 10] for MPSoCs and NoCs. 

The novelty of this paper is to extend energy efficiency 

optimisation of scenario-based meta-scheduling for MPSoCs 

with time-triggered communication by not only providing 

frequency scaling of cores, but also of NoC routers. 

Compared to our previous work [3, 6, 7] and [8, 11], which 

was only able to assign a single task per core, the algorithm 

presented in this article is now also able to assign multiple tasks 

per core on a multi-core platform. As part of our solution, we 

had to develop a scenario-based graph traversal algorithm and 

tool that called MeS [3] and a backtracking algorithm based on 

this tool for identifying and managing events. We build a meta-

scheduling tree, with the top node being assuming no 

occurrence of dynamic slack. Each occurrence of dynamic slack 

switches to another schedule down the tree with better energy-

efficiency. 
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The method and algorithm presented in this article is of direct 

benefit for Green IT [12–15]. With the goal of Green IT to save 

the environmental economy of resources, the power 

consumption is one of the most important parameters. 

 

This article is organized as follows: The basic concepts and 

related work are described in Section II. Section III describes 

the meta-scheduling system model. Scheduling techniques and 

scheduling for energy-efficiency are explained in Section IV. 

The implementation of algorithms for meta-scheduling and its 

features are explained in Section V. Experimental results based 

on a case study are presented in Section VI. Section VII 

concludes the article. 

II. BASIC CONCEPTS AND RELATED WORK 

Multi-Processor System-on-Chip (MPSoC) in heterogeneous 

systems include many elements, e.g., CPU, GPU, and Network-

on-Chip (NoC). With latency-sensitive applications running on 

such MPSoC platforms, the cores and routers must be designed 

and operated accordingly to satisfy the performance 

requirements. Dynamic Voltage and Frequency Scaling 

(DVFS), adaptive routing and frequency scaling in routers and 

links can potentially improve energy efficiency and 

performance of NoC. We further notice that the execution time 

variations of tasks sometimes lead to dynamic slack time [16], 

which can be exploited by different levels of execution times 

that can be changed without causing a performance penalty. In 

this work, we take advantage of the slack time in cores to reduce 

energy consumption. Routers can work at a lower frequency 

without causing a performance penalty at the system level.  

In this section, we review the state of the art of related works 

and briefly introduce our own previous work [6, 8, 17–20]  . In 

addition, we present our meta-scheduler tool MeS and a new 

strategy and model to improve the energy-efficiency using both 

cores and routers in the schedules. 

Many algorithms, methods, and techniques were proposed 

for scheduling distributed embedded real-time systems. 

Schedulability analysis is a primary part of real-time 

scheduling. In particular, time-triggered systems depend on 

static schedules that define the use of computational and 

communication resources based on a global time base. In [18, 

21], Kopetz explains how the correctness of a time-triggered 

system depends also on the timing of the computational results. 

Time-triggered communication of messages ensures 

predictability and resource adequacy. Time-triggered control is 

a valuable solution in safety-critical systems to manage the 

complexity and provide analytical dependability and timing 

models.  

A group of tasks and messages are said to be schedulable with 

a certain scheduling method, if enough resources (e.g., cores, 

routers) and slot time is available to execute all these tasks and 

transmit all messages before their deadlines. Each real-time task 

and message is assigned a priority and a deadline which are 

defined in an Application Model (AM). In the time-triggered 

paradigm [18] of real-time scheduling, processes are controlled 

and organized by the progression of time only, and a schedule 

is designed for the total duration of a system’s execution. One 

of the typical techniques used for time-triggered systems is 

using schedule tables. They are easy to verify and thus 

favourable in safe-critical systems that must be certified [22].  

However, adapting to significant events within the computer 

system or in the environment is a challenge in time-triggered 

systems. In [19], Fohler presents a method for supporting 

schedule changes based on operational modes by switching and 

traversing among static-schedules in a schedules status tree. 

Thereby, a pre-run-time and the scenario-based scheduled 

system can adapt to changes of the environment. Isakovic et al. 

explained that physical component designs and interfaces with 

a specific computer system should provide a clean design 

methodology approach, but systems get more complex 

primarily when working with heterogeneous systems and 

protocols [23]. However, it is challenging to ensure that the 

functional properties match the system specifications and 

regulatory guidelines. The authors also offer a mixed-criticality 

integration solution based on a time-triggered architecture on a 

hybrid system-on-a-chip [24] platform. However, their method 

does not provide a scheduling technique for energy-efficiency 

in heterogeneous systems. 

Power-efficiency for NoCs:  Sheikh et al., worked on the 

combined optimization of performance, energy, and 

temperature [25]. They proposed an optimization framework 

called PET. The authors find efficient solutions using a multi-

objective evolutionary algorithm and a Strength Pareto 

Evolutionary Algorithm for task scheduling and voltage 

selection. They worked with multiple cores to do frequency 

switching. Jingcao Hu et al. used static schedules for both 

communication and computation of tasks on heterogeneous 

NoC architectures for multimedia. Their algorithm achieved 

about 44% energy on average, compared to the standard 

earliest-deadline-first scheduler [26]. 

Task slack and procrastination: Jejurikar et al. take the slack 

time [16] of tasks into account to improve the deadline 

satisfaction and to reduce the energy consumption [17]. They 

propose an algorithm for fault-tolerant resource allocation in 

real-time dynamic scenarios. On an average, they reduce the 

energy consumption by 29.1% and 6.7%, compared to previous 

work. 

Frequency tuning on NoC: In the literature [27], DVFS is one 

of the most famous energy-efficiency techniques for improving 

the power-efficiency of chips at run-time [28]. We also use 

DVFS to establish optimized frequencies for cores and routers. 

Chai et al. worked on the combination of execution time, DVFS, 

slack time, and power consumption to find energy-efficient 

schedules with minimised processor frequencies [29]. Li et al., 

used a genetic algorithm (GA) to achieve near-optimal voltage 

and frequency assignments for considering the problem of 

energy-efficient contention-aware application mapping and 

scheduling on NoCs [30]. Their reported results show that 

jointly utilizing dynamic voltage scaling on processors and 

frequency tuning on NoC links provides excellent potential for 

overall energy reduction in MPSoCs and the overall system 

energy consumption is significantly reduced. Lee et al. worked 

on energy-efficient scheduling for DVFS-enabled multi-core 

architectures, which saved energy by executing the tasks in 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jingcao%20Hu.QT.&newsearch=true
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parallel and by down-scaling of the frequency [31]. When a task 

is executing on a single core, their approach reduces the energy 

consumption significantly: up to 67% by considering the non-

linear scaling and the finitely discrete energy consumption rates 

of available frequencies. But their model does not support 

scenario-based scheduling and frequency scaling of 

communication routers. 

Power consumed by NoCs: Chai et al. presented that on average 

28%∼36% of the total power consumption depends on NoCs 

[29]. Han et al. presented a low power methodology and routing 

algorithm regarding temperature to achieve an ultra-low-power 

NoCs [32]. Experimental results demonstrate an average power 

reduction of 36.0% over 21 applications. Hangsheng et al. show 

by experimental results that the communication interconnect 

can consume up to 36% percent of the power in an MPSoC [33]. 

Tariq et al. have investigated the problem of scheduling and 

energy-aware mapping via Integer Linear Programming (ILP) 

for a set of tasks with individual deadlines and conditional 

precedence constraints on a heterogeneous NoC-based MPSoC 

to achieve minimizing the total expected energy consumption 

of all the tasks [34]. The authors have used a polynomial-time 

heuristics to achieve improvements of 31% and 21% regarding 

energy reduction. Today’s NoCs have become an essential 

building block of multi-core architectures. NoCs are composed 

of three main building blocks: links, network interfaces (NI) 

and routers. More cores typically means a higher power 

consumption. Including more cores thus presents a design 

hurdle, architectural complexity and higher energy 

consumption. For example, the KALRAY MPPA2-256 is made 

of up to 288 cores: 256 computing cores, 16 management cores, 

and four quad cores (see Figure 1). Kalray’s MPPA [35] 

technology addresses these challenges by combining high-

performance cores with low-power processors [36]. 

  
Figure 1. Kalray’s MPPA network-on-chip (The MPPA2®-256 Bostan2 

processor [36] 

Mixed-Integer Quadratic Programming (MIQP): In [37] 

mentions the use of the MIQP for solving scheduling problems. 

With MIQP the objective function is quadratic with respect to 

the integer and continuous variables, while the constraints are 

linear with respect to the variables of both types. 

Static-scheduling formulation: Our meta-scheduler presented 

in this article is a static-scheduling algorithm. Murshed et al. 

[8] have provided a static message-based scheduling approach 

that guarantees the absence of collisions in message routing for 

a single task per core. Static-scheduling is a reliable solution for 

robust and timely systems, especially in time-triggered systems. 

Their scheduling problem was established by formulating a 

Mixed-Integer Linear Programming (MILP) problem. In our 

previous work we have extended it to MIQP by calculating and 

reformulating the objective function, constants, decision 

variables, constraints [3, 7]. In [3, 8] the IBM ILOG CPLEX 

optimizer [38] has been used to solve the MILP respective 

MIQP problems. Since CPLEX itself can only solve linear 

problems, we defined the objective function using a 

linearization technique [39–41] to find the linear 

approximation. LP/IP/QP can provide optimal answers in 

minimization or maximization scheduling problems, and they 

can use in scheduling problems when constraints, variables, and 

objective functions are linear or quadratic. Like in our previous 

work, in this research we are using MIQP as our goal is to 

achieve optimum solutions for time-triggered and embedded 

systems. Optimum solutions can provide better solutions than 

feasible answers or other methods, like Genetic Algorithms 

(GA) etc. Majd et al. used GAs as they have believed it can 

better locate a near optimal than a list-schedule [42]. They 

reported that many existing approaches do not consider 

communication cost when applying GA to MPSoC scheduling 

problem. In contrast, we consider also the communication costs. 

To handle the communication delays between processors, Majd 

et al. used a combination of GA and the Imperialist Competitive 

Algorithm, while we are using MIQP together with the above 

mentioned linearization method.  

Meta-scheduling: Meta-scheduling can be described as a 

technique to optimize the computational workload by 

combining and organizing multiple distributed resources in an 

integrated view. In other words, it is an extended data-flow 

model and quasi-static scheduling for dynamic behaviour 

changes. Most of the research on meta-scheduling has been 

done for enterprise grids, clouds, and data centers, for example, 

GridWay, community scheduler frameworks, Moab cluster 

suite, Maui cluster scheduler, DIOGENES, synfiniWay's meta-

scheduler [43]. On the other hand, Jung et al. worked on meta-

scheduling for green computing to reduce the energy 

consumption and thus reduce the CO2 emission [44] into the 

atmosphere. They call their approach GreenMACC [45]. Jung 

et al. [46] used for their model the Synchronous Data Flow [47], 

which is commonly used in signal processing or streaming 

applications. Their model can be used in the dynamic behaviour 

changes and classified as multi-mode dataflow models. The 

proposed technique is used to minimize the number of required 

processors for multiprocessor scheduling by considering task 

migration between modes. The focus on minimisation of 

required resources, but not on parameterisation of resources, 

like frequency scaling. 
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To summarise, the existing work on meta-scheduling and 

quasi-static scheduling, low-power and energy-efficient 

scheduling focus on different models, methods, and 

architectures than ours. For example, with/without DVS, DVFS 

or dynamic power management capabilities and tries to 

dynamic or static manipulate the task execution slacks to 

exploit them. Since we aim to use scenario-based meta-

scheduling for a wide range of applications, like energy-

efficient and fault recovery, within an integrated tool, the 

existing approaches cannot be directly applied to our scenario-

based meta-scheduling where they target architectures or 

modelling are entirely different. 

For example, while our work is related to [26], we not only 

cover static slack time, but also support dynamic slack time and 

scenario-based scheduling. We are using slack time of tasks to 

calculate the best slowdown factor for the communication and 

computation to maximise energy efficiency. However, in [26] 

they use the slack time for different paths, and allocate the slack 

time to different tasks.  

III. META-SCHEDULING SYSTEM MODEL 

In the following we briefly describe our meta-scheduling tool 

MeS [3]. MeS allows to optimise the placement of tasks and 

messages to optimise execution times and injection times. MeS 

has been improved by adding the new optimisation model as 

described in Section IV. 

Dependability requirements which are covered by MeS contain 

detect, isolate or mitigate errors, transient physical problems 

(e.g., core fault), that occur in system or schedules. 

Timing requirements which are covered by MeS contain time 

constraints, execution time determinism, predictability, 

composability, flexible worst-case response for a slack time by 

static analysis. 

Independent of network topology: MeS scheduling and routing 

method is independent of the hardware platform and can cover 

the topology of different networks (e.g., mesh, direct network, 

indirect network, balanced tree). 

Input models for MeS 

Scheduling Model (SM): The SM, as shown in Figure 2), 

contains specific data structures which are the physical model 

(PM), the application model (AM) and context model (CM).  

 

Figure 2. Data structure of MeS schema model 

Application Model (AM): The AM describes application 

dependencies at the software layer. It presents task and 

messages priorities, dependencies, and hierarchy, which the 

system designer is using to shape the AM section of the input 

file. 

 
Figure 3. General AM schema 

The AM has two main elements: tasks, and messages. Figure 3 

presents that each element contains specific attributes with 

built-in derived type. e.g., task contains ID, WCET, start time, 

allocation, min and max energy, deadline, and slowdown factor; 

message contains message ID, sender and receiver ID, 

slowdown factor, hops which all data type in this work are an 

integer.  

Platform Model (PM): The PM describes the physical 

dependencies at the hardware layer. Figure 4 shows a platform 

example, describes nodes and links priorities, dependencies and 

hierarchy, which the system designer uses to shape the PM 
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section of the input file. 

Hop1 Hop2

ES0 ES1

ES2

ES3

ES4

L0

L1

L2

L3

L4L5

 
Figure 4. Conceptual PM 

The PM has two main elements: nodes, and links. Figure 5 

presents that each element contains specific attributes with 

built-in derived type; e.g., the node contains ID, type (router or 

core), frequency and link contains ID, from node and to node.  

Figure 5. General PM Schema 

Context Model (CM): The CM is describes which scenarios in 

the system management layer are possible and can cover when 

single or multi faults and events happened. In details, the CM 

describes every faults and event for each element in the PM and 

the AM, including priorities, dependencies, timing, and 

hierarchy. The CM has three main elements: slack, energy, and 

fault. Figure 6 presents that each element contains specific 

attributes with built-in derived type. e.g., slack event contains 

the new execution time and related task ID, energy event 

contains energy level, and fault including node, link, and core 

fault which they are representing related object ID (e.g., link 

ID) which all data type in this work are an integer.  

 
Figure 6. General CM schema 

IV. SCHEDULING FOR ENERGY-EFFICIENCY 

The provision of fault tolerance and energy-efficiency are 

essential for MPSoCs, like NoCs and grids, where a permanent 

failure, e.g., of a core or router, might occur during the 

execution of scheduled tasks and messages. The schedules can 

be generated statically before their execution with the help of a 

schedules-event graph, which represents the schedules and 

dependencies between them and events. In [48, 49] 

Eitschberger et al. presents a scheduling model to balance 

between faults and energy to maximize the performance in 

static schedules. However, it is critical to minimize the length 

of a schedule (the so-called Makespan [50]), i.e. the duration till 

all jobs have finished processing, while integrating fault 
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tolerance techniques. Fault tolerance techniques typically result 

in performance overhead, which furthermore leads to an 

increase of the Makespan [51]. 

One of the recently emerging topics is solving the problem of 

minimizing the energy consumption on NoCs [48, 49]. For 

example, ignoring the possibility of slack recovery is regarded 

as energy wasting. The energy consumption is also affected by 

the frequency scaling of the cores and routers. By increasing the 

execution time via decreasing the clock frequencies in cores, 

the length of the Makespan also increases. However, decreasing 

the clock frequency also decreases the energy consumption. 

That mechanism leads to a two-variable trade-off decision to be 

made between Performance and Energy Consumption, on both, 

cores and routers. 

Distributed DVFS Algorithm at Router and Core Level: our 

model is based on per-core and router DVFS with multiple 

voltage supply networks. We use DVFS on both cores and 

routers and propose the use of Non-Minimal Path Adaptive 

Routing [2] to balance network traffic. Specifically, the 

scheduler regularly tunes the operation frequency of the routers 

and the cores, based on the scheduling-scenario and NoC 

workload. Also, the scheduler takes into consideration the 

router and cores utilization in conjunction with tasks slack 

allowance. By integrating these two techniques, the scheduler 

generates schedules, that can balance the traffic across the 

entire NoC and in turn, minimize the total energy consumption. 

In this work slack and energy are used as input scenarios in the 

CM, which is covered by the MeS. 

Static meta-scheduling and mapping policy: Our static-

scheduling policies are designed to reduce the energy 

consumption at two parallel levels: the first level is the mapping 

of resources (e.g., cores to tasks, routers, and paths to messages) 

and then at the second scheduling level using slowdown factors 

for frequency tuning in both, cores and routers. In addition, 

meta-scheduling with managing and injecting dynamic slack 

for each task to the static scheduling system can create the full 

range of optimized schedules with respect to energy 

consumption. 

Definitions: the following definitions are used to describe our 

optimisation model: 

𝐶𝑅𝑆 …  the set of cores, i.e., execution nodes of the platform 

𝑅𝑇𝑅 ... the set of routers, i.e., message forwarders of the  

platform 

𝑇𝑆𝐾 …  the set of tasks to be executed 

𝑀𝑆𝐺 … of all tasks the set of messages to be sent 

𝑀𝑆𝐺𝐼𝑁(𝑡) … the set of input messages of a task 𝑡 

𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) … the set of output messages of a task 𝑡 

𝑒𝑡(𝑡) … the execution time of a task 𝑡 

𝑚𝑑(𝑚) … the message transmission duration of message m 

from one node to another one. 𝑚𝑑(𝑚) is proportional 

to the size of the message 𝑚. Assuming that there are 

ℎ𝑜𝑝𝑠(𝑚) intermediate nodes between the source and 

destination of 𝑚, then the total message duration 

becomes: 

𝑚𝑑𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑(𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) 

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚) ... the time at which the sending of a message m 

started. 

𝑓 … clock frequency, with fmax being the maximum clock 

frequency and fsel being the selected clock frequency: 

𝑓𝑠𝑒𝑙  ≤  𝑓𝑚𝑎𝑥 

Energy Consumption: The energy 𝐸 is measured in Joule (𝐽) or 

Watt-seconds (𝑊𝑠). The energy consumption 𝐸(𝑑) for a time 

duration 𝑑 = [𝑡1; 𝑡2] and the power consumption 𝑃(𝑡) at time t 

is as follows [49]: 

𝐸(𝑑) =  ∫ 𝑃(𝑡) 𝑑𝑡   |   𝑑 = [𝑡1; 𝑡2]
𝑡2

𝑡1

    (1) 

The power consumption 𝑃 is equal to the dynamic power 𝑃𝑑𝑦𝑛 

plus the static power 𝑃𝑠𝑡𝑐 [52]: 

𝑃 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑡𝑐 (2) 

There have been used analytical and empirical techniques to 

model 𝑃𝑑𝑦𝑛 [53]. We also use an analytic method to model 

𝑃𝑑𝑦𝑛. 𝑃𝑑𝑦𝑛 tends to dominate contribution to power 

consumption compared to 𝑃𝑠𝑡𝑐 [53].  Thus, in this work we only 

consider dynamic power and dynamic energy consumption.  

𝑃𝑑𝑦𝑛 can be modelled as: 

𝑃𝑑𝑦𝑛 = 𝐴 ∙ 𝑆 ∙ 𝑈2 ∙ 𝑓 (3) 

 

where 𝐴 is the activity factor  that refers to fraction between 0 

and 1, and can express the total capacity of circuits during each 

cycle charged or discharged, 𝑆 is the switched capacitance that 

refers to aggregate load of system that depended on wire lengths 

on chip, U is the voltage and 𝑓 is the frequency [53]. 

Extracted from above equation, the effective switch capacitance 

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  is given as: 

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  =  𝐴 ×  𝑆 (4) 

 

To keep our analytical model within the limits of the solver 

CPLEX, we consider 𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒  to be constant one. 

With this simplification the power consumption 𝑃𝑑𝑦𝑛 becomes 

proportional to the clock frequency 𝑓 and the square of voltage 

𝑈: 

𝑃𝑑𝑦𝑛 ∝ 𝑓 ∙ 𝑈2      (5) 

Let 𝐸𝑇,𝑑𝑦𝑛(𝑡) denote the dynamic energy consumption of a task 

𝑡 and 𝐸𝑀,𝑑𝑦𝑛(𝑚) denote the dynamic energy consumption of 

transferring a message 𝑚. With 𝑃𝑑𝑦𝑛 being the average power 

consumption, we can model the dynamic energy consumption 

as follows: 

𝐸𝑇,𝑑𝑦𝑛(𝑡) = 𝑃𝑑𝑦𝑛 ∙ 𝑒𝑡(𝑡)  (6) 

𝐸𝑀,𝑑𝑦𝑛(𝑚) = 𝑃𝑑𝑦𝑛 ∙ 𝑚𝑑(𝑚) (7) 

where 𝑒𝑡(𝑡) and 𝑚𝑑(𝑚) are inversely proportional to the clock 

frequency: 

𝑒𝑡(𝑡) ∝  
1

𝑓
    ∧     𝑚𝑑(𝑚) ∝  

1

𝑓
       (8) 

 

Effective Speed: 𝑒𝑡(𝑡) of a task 𝑡 and 𝑚𝑑(𝑚) of a message m 

are given at the maximum clock frequency 𝑓𝑚𝑎𝑥. However, the 

effective execution time, denoted as 𝑒𝑡̅(𝑡), and the effective 

message duration, denoted as 𝑚𝑑̅̅ ̅̅ (𝑚), depend on the selected 

clock frequency 𝑓𝑠𝑒𝑙  and a contextual parameter C: 
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𝑒𝑡̅(𝑡) = 𝑒𝑡(𝑡) ∙
𝑓𝑚𝑎𝑥

𝑓𝑠𝑒𝑙(𝑡)
+ 𝐶    (9) 

𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚) + 𝐶     (10) 

This parameter 𝐶 is a contextual setting delay, which is either 

zero in case that the clock frequency for the current task or 

message is the same as before, or otherwise a constant 𝐶𝑘, in 

case that the clock frequency has been changed at the beginning 

of the current task or message. The parameter 𝐶 models the fact 

that changing the clock frequency in a processor takes some 

time. In our calculations we assume that 𝐶𝑘  =  1𝑚𝑠. 

 

In DVFS the voltage 𝑈 varies approximately proportionally 

with the clock frequency 𝑓, i.e., 𝑈 ∝ 𝑓, the power 𝑃𝑑𝑦𝑛 is thus 

proportional to the cube of the clock frequency: 

𝑃𝑑𝑦𝑛 ∝ 𝑓3      (11) 

 

Based on above equation we can derive that the energy 

𝐸𝑇,𝑑𝑦𝑛(𝑡) of a task 𝑡 and the energy 𝐸𝑚,𝑑𝑦𝑛(𝑚) of a message 𝑚 

are proportional to the cube of the clock frequency multiplied 

by the execution/communication time: 

𝐸𝑇,𝑑𝑦𝑛(𝑡) ∝ 𝑓3 ∙ 𝑒𝑡(𝑡)  (12) 

𝐸𝑚,𝑑𝑦𝑛(𝑚)  ∝ 𝑓3 ∙ 𝑚𝑑(𝑚)       (13) 

Frequency Co-Efficient: regarding equation 12, 13 normal 

energy metrics cannot be completely cover and consider for our 

metric needs. In the following, we denote the above 

proportionality factor of the energy consumption as the 

frequency co-efficient FEt of a task and  FEm of a message 

respectively. However, the effective frequency co-efficient, 

tasks denoted as 𝐹𝐸𝑇
̅̅ ̅̅ ̅, and the effective message frequency co-

efficient, denoted as 𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ . These frequency co-efficients serve 

for quantifying the energy reductions in the experimental 

evaluation and the abstraction from technology-specific 

parameters such as the switched capacitance.  

𝐹𝐸𝑇 = 𝑒𝑡(𝑡) ∙ 𝑓3 (14) 

𝐹𝐸𝑇
̅̅ ̅̅ ̅ =  ( 𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑡))3 (15) 

𝐹𝐸𝑚 = 𝑚𝑑(𝑚) ∙ 𝑓3(16) 

𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ =  (𝑚) ∙  (𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚))3 (17) 

 

Modelling of the Optimisation Problem: To generate a static-

schedule with CPLEX, the system designer needs to describe 

the problem with decision variables, constants, constraints and 

an objective function. In this article we provide an extended 

model of that used in [3, 8]. In the following we present the new 

respectively modified parameters. 

It is essential to model the relationships between physical, 

logical and application constraints and without topology 

dependencies and the resulting impact on performance. The 

system optimization is the process of utilizing these models for 

searching for optimum or feasible solutions that best match the 

physical, logical, and application constraints of the 

implementation. For a given implementation method, the 

physical constraints characterize architectural aspects, but in 

our model, these features are free of network topology. e.g., one 

of the physical constraints facing the implementation of 

interconnection networks is the available links between two 

nodes. 

Connectivity constraints: These are used for defining physical 

connectivity (e.g., cores, routers, and links).  

Task Allocation and Assignment Constraints: In our previous 

work each core can have assigned only one task. In this work 

each, each core can have assigned multiple tasks. We use the 

array 𝐴𝐿𝐿𝑂𝐶 of allocation variables 𝑎𝑙𝑙𝑜𝑐𝑖  to model the 

allocation of each task 𝑡𝑖 ∈ 𝑇𝑆𝐾 to one of the cores in 𝐶𝑅𝑆: 

𝐴𝐿𝐿𝑂𝐶 = [

 𝑎𝑙𝑙𝑜𝑐1

⋮
⋮

𝑎𝑙𝑙𝑜𝑐𝑘

] ∈ {1, … , |𝐶𝑅𝑆|}𝑘 

𝑘 = |𝑇𝑆𝐾|       (18) 

Hop count: ℎ𝑜𝑝𝑠(𝑚) denotes the number of intermediate visits 

of a message 𝑚 along its transmission path from the sender to 

the receiver task: 

𝐻𝑂𝑃𝑆 = [

hops1

⋮
⋮

ℎ𝑜𝑝𝑠𝑛

] ∈ {1, … , 𝑀𝑎𝑥𝐻𝑜𝑝}𝑛 

𝑛 = |𝑀𝑆𝐺|      (19) 

with 𝑀𝑎𝑥𝐻𝑜𝑝 being maximum permissable number of 

intermediate hops. 

Message Duration: 𝑀𝐷 is a vector with all the message 

durations 𝑚𝑑(𝑚) from one hop to the next hop of all the 

messages 𝑚 ∈ 𝑀𝑆𝐺: 

𝑀𝐷 = [

𝑚𝑑1

⋮
⋮

mdn

] ∈ {1, … , 𝑀𝑎𝑥}𝑛    | 𝑛 = |𝑀𝑆𝐺|     (20) 

 

Slow Down Factors: One of the essential decision variables in 

our DVFS optimisation model are the slow-down factors of 

tasks and messages. 𝑡𝑠𝑑𝑓(𝑡) denotes the slow-down factor of a 

core for computing task t and 𝑚𝑠𝑑𝑓(𝑚) denotes the slow-down 

factor for transmitting message m. When assuming that the 

contextual parameter C is zero, then 𝑡𝑠𝑑𝑓(𝑡) is proportional to 

the effective execution time 𝑒𝑡̅(𝑡): 𝑡𝑠𝑑𝑓(𝑡) ∝ 𝑒𝑡̅(𝑡), and 

𝑚𝑠𝑑𝑓(𝑚) is proportional to the effective message duration 

𝑚𝑑̅̅ ̅̅ (𝑚): 𝑚𝑠𝑑𝑓(𝑡) ∝ 𝑚𝑑̅̅ ̅̅ (𝑚). 𝑇𝑆𝐷𝐹 is the vector with the 

slow-down factors of all tasks in 𝑇𝑆𝐾: 

𝑇𝑆𝐷𝐹 = [

𝑡𝑠𝑑𝑓1

⋮
⋮

𝑡𝑠𝑑𝑓𝑘

] ∈ {𝑡𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑡𝑠𝑑𝑓𝑚𝑎𝑥}𝑘 

𝑘 = |𝑇𝑆𝐾|,         𝑡𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1      (21) 

 

Analogously, MSDF is the vector with the slow-down factors 

of all messages in MSG: 
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𝑀𝑆𝐷𝐹 = [

𝑚𝑠𝑑𝑓1

⋮
⋮

𝑚𝑠𝑑𝑓𝑛

] ∈ {𝑚𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑚𝑠𝑑𝑓𝑚𝑎𝑥}𝑛 

𝑛 = |𝑀𝑆𝐺|,         𝑚𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1      (22) 

Based on these slow-down factors, the effective execution time 

𝑒𝑡̅(𝑡) of a task 𝑡 and the effective message duration 𝑚𝑑̅̅ ̅̅ (𝑚) of 

a message 𝑚 can be written as: 

𝑒𝑡̅(𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡) + 𝐶 
𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚) + 𝐶       (23) 

The total effective message duration 𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) of a message 

𝑚 from sender to receiver becomes: 

𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (24) 

Task Dependency Constraints: A task dependency between two 

tasks 𝑡𝑘 and 𝑡𝑙 is given when the input message of task 𝑡𝑙 

depends on the output message of task 𝑡𝑘. For example, in the 

Figure 7 the task 𝑇4 depends on the tasks  𝑇0, 𝑇1, 𝑇2, and 𝑇3. 

T1

T2

T4

T3

T0

M0

M1

M2

M3

M4

M5

 

Figure 7. Conceptual AM 

The following relation of injection times between input 

messages 𝑀𝑆𝐺𝐼𝑁(𝑡) and output messages 𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) of any 

task 𝑡∈𝑇𝑆𝐾 holds:  

∀𝑡∈𝑇𝑆𝐾.  ∀𝑚𝑖 ∈ 𝑀𝑆𝐺𝐼𝑁(𝑡).  ∀𝑚𝑜∈𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) (25) 
𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑖)  + 𝑚𝑑̅̅ ̅̅

𝑡𝑜𝑡𝑎𝑙(𝑚𝑖) +  𝑒𝑡̅(𝑡) ≤ 𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑜)     (26) 

Message and task Deadlines: To support real-time computing, 

we need to have real-time constraints for tasks and messages. 

For example, we denote with 𝐷(𝑚) the relative deadline of a 

message 𝑚. The injection of a message 𝑚 has to early enough, 

so that the communication can happen before its deadline 

𝐷(𝑚). To ensure this, we have to use the following timing 

constraint for each message 𝑚 ∈ 𝑀𝑆𝐺: 

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚) + 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (𝑀𝑎𝑥𝐻𝑜𝑝 + 1) ≤ 𝐷(𝑚)     (27) 

We also have to make sure that the message 𝑚 is only read at 

the destination after its deadline: 

𝐷(𝑚) ≤ 𝑡𝑟𝑒𝑎𝑑_𝑑𝑒𝑠𝑡(𝑚)      (28) 

Ensuring Quadratic Expressions: We use MIQP (mixed-integer 

quadric programming) to solve the constraint system of our 

optimisation model. Hence, any term with three or more 

variables cannot be used in our optimisation model. However, 

in our constraints described so far, there are also non-quadratic 

expressions, for example, 𝑚𝑠𝑑𝑓(𝑚)2 ∙ 𝑑𝑚(𝑚) ∙ ℎ𝑜𝑝𝑠(𝑚) with 

𝑚𝑠𝑑𝑓(𝑚) and ℎ𝑜𝑝𝑠(𝑚) being optimisation variables. To make 

our expressions quadratic [54, 55], we use some strategy for 

"not linear" optimisation [56]. While this strategy is typically 

used for linearisation, we use it for "Quadratisation" [57, 58]. 

The key principle is to split the optimisation processes into two 

phases, where in each phase a different variable is treated as 

constant. The price for this simplification is that it might not 

always lead to a globally optimal solution. 

Figure 8 shows how we use this "Quadratisation" of the 

constraint system of our model. In the first step we optimise 

with the model with the slow-down factors set to constant one, 

i.e. with maximum frequency. From the obtained result we 

extract the number of hops (ℎ𝑜𝑝𝑠(𝑚)) and now use these values 

as constants in a second optimisation run where we instead the 

flow-down factors use as decision variable. This way we can 

use CPLEX with an MIQP algorithm. 

Using 
FixedHOPS as 

an input

Run MeS and solve problem for static-slack 
schedule

Run MeS and solve problem for static-
dynamic schedules

Discover HOPS from
first SM (static-slack) 

FixedHOPS=HOPS

Fix (Disable) MSDF=1 

Change 
Objective 

function by 
using 

FixedHOPS 

 
Figure 8. "Quadratisation" technique via HOPS 

The Objective Function: The objective of our static-scheduling 

function is to maximize the energy-efficiency for both cores and 

routers by lowering the clock frequency (c.f in [8] the objective 

function was to minimise the Makespan). In this work, we used 

a predefined Makespan as a constraint variable for controlling 

schedules timing. The power consumption is minimised by 

increasing the timing, e.g., task execution times and message  
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Because CPLEX cannot solve a grade-three objective function, 

then we used another modelling, which is 𝑚𝑑(𝑚) and 𝑒𝑡(𝑡) in 

scheduling one time is calculated (multiplied) with its slow 

down factor then on the objective function it used with power 

two. It models the energy consumption of each task and 

message (e.g., in whole transmission path), expressed as the 

task execution time 𝑒𝑡(𝑡) multiplied to the power of two of the 

slow down factor 𝑡𝑠𝑑𝑓(𝑡) plus the message duration 𝑚𝑑(𝑚) 

multiplied to the power of two of the slow-down factor 

𝑚𝑠𝑑𝑓(𝑚) multiplied by the number of hops (ℎ𝑜𝑝𝑠(𝑚) + 1). 

As described in the section about assuring quadratic 

expressions, the optimisation process is partitioned into two 

phases. 

For the first phase (left bubble of Fig.8) we assume all slow-

down factors to be constant: 

∀𝑚 ∈ 𝑀𝑆𝐺 .  𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚) = 1  (29) 

Based on that we get a quadratic constraint system with the goal 

function to be maximised by CPLEX: 

∀t ∈ TSK .  ∀m ∈ 𝑀𝑆𝐺 .   

𝐶𝑃1(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2  
         + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚)2 ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (30) 

𝑅𝐸𝑆1 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(∑ ∑ (𝐶𝑃1(𝑚𝑗, 𝑡𝑖)
|𝑀𝑆𝐺|
j=1

|𝑇𝑆𝐾|
i=1 )       (31)  

Based on the optimisation result 𝑅𝐸𝑆1, the second optimisation 

phase is done (right bubble of Fig.8). First, the determined hop 

counts are extracted from the intermediate result 𝑅𝐸𝑆1: 

∀m ∈ 𝑀𝑆𝐺 .  ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) 𝑖𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑅𝐸𝑆1  

Then, the final optimisation result including the slow-down 

factors is calculated by using the constant values of the hop 

counts from the first solution: 

∀t ∈ TSK .  ∀m ∈ 𝑀𝑆𝐺 .   

𝐶𝑃2(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2 
         + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚)2 ∙ (ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) + 1) (32) 

𝑅𝐸𝑆2 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ( ∑ ∑ (𝐶𝑃2(𝑚𝑗 , 𝑡𝑖)

|𝑀𝑆𝐺|

j=1

|𝑇𝑆𝐾|

i=1

)       (33) 

V. IMPLEMENTATION OF MeS 

We extended the MeS for scenario-based scheduling and 

supporting multi-task on multi-cores, also a concrete power 

model with discrete frequencies on cores and routers. In this 

work compare to previous works [3, 6, 7] we are improving 

new several strategies in different algorithm and methods. In 

our first strategy, we use a deadline, list of tasks and messages 

to create schedules concerning the dependencies from the 

corresponding task and messages. In our second strategy, the 

CPLEX can select the best slowdown-factor from the set a 

frequency level with which the original tasks and messages 

should run. Thus, we use the mapping WCET of all original 

tasks and message duration as it is and change only the 

runtime of them by using the selected slowdown factor level. 

In the third strategy, we worked to used dynamic-slack for 

efficient Makespan in MeS level; then it uses generated new 

application-model as an input data in the scheduler tool. In the 

fifth strategy, we let CPLEX deciding and optimizing where 

is the best location (core) for tasks regarding deadlines, 

dependencies, slow-down factor and in/out messages. Thus, 

multi-tasks can run on a core but not all tasks in one core. 

Finally, the execution times of tasks and injection times of 

messages are corrected according to the dependencies given 

by the application model. 

Schedule model tree:  MeS stores all generated scenario-based 

schedules in a binary-tree structure, which we visualize with 

our visualizer tool MeSViz [6]. 

Schema Modelling: MeS is a novel flexible architecture for 

scenario-based scheduling on adaptive time-triggered systems. 

To achieving this plans in embedded systems era, MeS is 

modelled conceptually in several structures. Figure 9 presents 

how the system designer is using the schema method. This 

method has valuable benefits to save time and cost which it can 

very fast and easy evaluate every input files via a schema-editor 

by general schema model as a reference model.  

Schem Model

Schema Editor

Raw input Data

Requested structures

validation

XMLTemplate 

XML is Valid

MeS

Yes

No

XML Input 
models

 
Figure 9. Schema technique for standard data structure modelling 

 

Table 1 presented raw data model which is using a regular input 

data.  
Table 1. Sample raw input data before forming in XML format 

Application Data 

Task ID=0 ET=50energy=[1,100] 
Task ID=1 ET=60energy=[1,100] 
Task ID=2 ET=42energy=[1,100] 
Task ID=3 ET=80energy=[1,100] 
Task ID=4 ET=90energy=[1,100] 
 

Msg. ID=0 from job#2 to job#1 
Msg. ID=1 from job#0 to job#4 
Msg. ID=2 from job#1 to job#3 
Msg. ID=3 from job#2 to job#3 
Msg. ID=4 from job#0 to job#3 
Msg. ID=5 from job#3 to job#4 

Physical Data 

Router ID5 energy=[0,100] 
Router ID6 energy=[0,100] 
Endsystem ID0 energy=[0,100] 
Endsystem ID1 energy=[25,100] 

Link ID=0 from node#0 to node#5 
Link ID=1 from node#1 to node#5 
Link ID=2 from node#2 to node#5 
Link ID=3 from node#3 to node#6 
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Endsystem ID2 energy=[50,100] 
Endsystem ID3 energy=[0,100] 
Endsystem ID4 energy=[0,100] 

Link ID=4 from node#4 to node#6 
Link ID=5 from node#5 to node#6 
 

 

All input information (e.g., Table 1) is modelled in the schema 

format via the Oxygen XML editor to describe the structure of 

XML documents. This rule helps us to prepare the standard and 

flexible standard building blocks of an XML document in all 

MeS generations. Figure 10 is a sample of standardized input 

XML for using in MeS, which is validated via the schema-

editor. 
<ApplicationModel> 

<job ID="0" WCET="2" min_energy="1" max_energy="100" deadline="1100"/> 

<job ID="1" WCET="4" min_energy="1" max_energy="100" deadline="1600"/> 

<job ID="2" WCET="6" min_energy="1" max_energy="100" deadline="1305"/> 

<message ID="0" from="0" to="1" size="10" min_energy="1" max_energy="100" 

deadline="1185"/> 

<message ID="1" from="1" to="2" size="10" min_energy="1" max_energy="100" 

deadline="1185"/> 

<message ID="6" from="0" to="5" size="10" min_energy="1" max_energy="100" 

deadline="1185"/> 

</ApplicationModel>  

<PlatformModel> 

<node ID="0" Type="switch" min_energy="0" max_energy="100"/> 

<node ID="1" Type="switch" min_energy="0" max_energy="100"/> 

<node ID="2" Type="switch" min_energy="0" max_energy="100"/> 

<node ID="3" Type="endsystem" min_energy="0" max_energy="100"/> 

<node ID="4" Type="endsystem" min_energy="25" max_energy="100"/> 

<link ID="0" from="0" to="1"/> 

<link ID="1" from="1" to="2"/> 

<link ID="2" from="3" to="0"/> 

<link ID="3" from="4" to="1"/> 

</PlatformModel> 

<ContextModel> 

<SlackEvent job="0" NewExecutionTime="50"/> 

<SlackEvent job="1" NewExecutionTime="50"/> 

<FaultEvent type="crash"> 

<NodeFault NodeId="0"/> 

</FaultEvent> 

<FaultEvent type="crash"> 

<NodeFault NodeId="1"/> 

</FaultEvent> 

</ContextModel> 

Figure 10. Standardized input XML sample 

When the processing of the input models in XML format is 

done, they are stored internally in MeS as data structure. 

Regarding defined scenarios in CM, every generated schedule 

and depended SM, which are stored in an SM class, will be 

added as a node into the SM tree. 

Figure 11 represents a conceptual model of a total process for a 

scenario-based meta-scheduling technique. It is including input, 

output data (e.g., XML, gantt map, Graphviz data) and their 

(e.g., XML parser, MeSViz) processes, data structures (e.g., 

AM, PM and CM classes, SM’s tree),  manager and controllers 

(e.g.,  event, undo, calendar, Tabu, scheduler) and  scheduling 

processes (e., SM tree creator, scheduler).  

 

Slack recovery technique: We use slack time of tasks to increase 

energy-efficiency in NoCs by optimising the system's timing. 

When tasks are running in a system, two types of slacks will 

occurs 𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑆𝑙𝑎𝑐𝑘 (𝑆𝑆) and 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 − 𝑆𝑙𝑎𝑐𝑘 (𝐷𝑆) as 

shown in Figure 12. Static-slack is the time gap of dependent 

tasks in different cores, between the end of the first and the start 

of the second tasks, e.g., static slack 𝑆𝑆0 between 𝑇1 and 𝑇2, 

and 𝑆𝑆1 between 𝑇3 and 𝑇0, and 𝑆𝑆3 between T6 and T5 SS3. 

Other 𝑆𝑆 examples include two independent tasks on the same 

core, e.g., 𝑆𝑆2 occurs between 𝑇6 and 𝑇4 on core 4. Dynamic-

slack occurs when a task finishes earlier than its WCET, e.g., 

dynamic slack 𝐷𝑆0 in 𝑇1, 𝐷𝑆1 in 𝑇3, 𝐷𝑆2 in 𝑇6, and 𝐷𝑆3 in 

𝑇4. 
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Figure 11. Conceptual Model of the MeS Tool  

To solve the meta-scheduling problem, e.g., energy 

optimisation based on slack time, we use the MeS tool, as 

shown in Figure 11. MeS initially starts with generating a 

static-schedule with scheduling 𝑆𝑀0. To take the DS into 

account, the Event-Manager reduces for each task of the AM its 

WCET by its slack time, resulting in a new shorter WCET. 

This consideration of the DS is marked as an event and injected 

by Calendar Creator into the calendar table. The Event Manager 

sends the event type, e.g., slack, and timing to the Scheduler 

Controller. Depending on the timing of the calendar event, the 

Scheduler Controller will freeze or unfreeze the corresponding 

task in the Tabu Controller. What the Tabu Controller basically 

does, is to freeze the partial schedule up to the event, and leave 

the rest to be completed by the scheduler. Afterwards, the AM 

and PM will be sent to the scheduler to create new schedules by 

completing the frozen incomplete schedule. The SM Tree 

Creator generates the scheduling tree (multi SM tree), and 

depending whether events are taken or not, they are either 

stored on the right or left side of this tree.  

Finally, when every event was taken, and the calendar becomes 

empty, then MeS calls the Output Generator to generate two 

output files in Graphviz format: the shaped data and the total 

data. The total data file includes all the controller parameters 
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stored in the nodes of the scheduling graph. The shaped data 

file is a cleaned up version of the SM tree including only the 

real scheduling nodes, but without the controller parameters. 

MeSViz [6] is used to visualise single schedules as a Gantt map 

and events depending on schedules as a multi-Gantt map in 

different graphical format. 

MeS works with multiple scheduling models organised in tree 

form, to switch between schedules based on dynamic events. 

Thus, we introduce 𝑆𝑆𝑀 as the set of all scheduling models. 

However, among all the scheduling models 𝑠𝑚 ∈ SSM, the one 

which uses static slack is denoted as 𝑆𝑀0. All the other 

scheduling models SSM/{𝑆𝑀0} use dynamic slack. 

 

MeSViz is used to calculate 𝐹𝐸(𝑠𝑚) of each scheduling model. 

The energy 𝐹𝐸𝐶(𝑐, 𝑠𝑚) consumed at any core 𝑐 ∈ CRS for all 

of its tasks can be calculated as follows: 

∀𝑠𝑚∈SSM.  ∀𝑐 ∈ CRS.   𝐹𝐸𝐶(𝑐, 𝑠𝑚)

= ∑ 𝑒𝑡(𝑡) ∙ (
𝑓𝑚𝑎𝑥

𝑡𝑠𝑑𝑓(𝑡)
)3

𝑡∈TSK(c,sm)

(34) 

where 𝑇𝑆𝐾(𝑐, 𝑠𝑚) is defined as the set of tasks mapped to a 

core 𝑐 in scheduling model 𝑠𝑚: 

𝑇𝑆𝐾(𝑐, 𝑠𝑚)  =  {𝑡 ∈  𝑇𝑆𝐾  |  𝑎𝑙𝑙𝑜𝑐𝑡(𝑠𝑚)  =  𝑐} 

The total energy consumption of all the cores 𝐹𝐸𝐶(𝑠𝑚) can then 

be calculated as: 

𝐹𝐸𝐶(𝑠𝑚) = ∑ 𝐹𝐸𝐶(𝑐, 𝑠𝑚)𝑐∈𝐶𝑅𝑆  (35) 

 

The energy 𝐹𝐸𝑅(𝑟, 𝑠𝑚) consumed at any router 𝑟 ∈ RTR for all 

its messages can be calculated as follows: 

∀𝑠𝑚∈SSM.  ∀𝑟 ∈ 𝑅𝑇𝑅. 

𝐹𝐸𝑅(𝑟, 𝑠𝑚) = ∑ 𝑚𝑑(𝑚) ∙ (
𝑓𝑚𝑎𝑥

𝑚𝑠𝑑𝑓(𝑚)
)3

𝑚∈𝑀𝑆𝐺(𝑟,𝑠𝑚)  (36) 

where 𝑀𝑆𝐺(𝑟, 𝑠𝑚) is defined as the set of all the messages 

going through router 𝑟 in scheduling model 𝑠𝑚. The total 

energy consumption of all the routers 𝐹𝐸𝑅(𝑠𝑚) can then be 

calculated as: 

𝐹𝐸𝑅(𝑠𝑚) = ∑ 𝐹𝐸𝑅(𝑟, 𝑠𝑚)𝑟∈𝑅𝑇𝑅  (37) 

In every calculations we assumed 𝑓𝑚𝑎𝑥 = 1. 
The whole energy consumption of a system for a concrete 

scheduling model 𝑠𝑚, 𝐹𝐸(𝑠𝑚), is calculated from the energy 

consumption of all the routers and cores as follows: 

𝐹𝐸(𝑠𝑚) = 𝐹𝐸𝐶(𝑠𝑚)  +  𝐹𝐸𝑅(𝑠𝑚) (38) 

 

The average 𝐹𝐸 energy consumption 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 of all cores 

for all scheduling models with dynamic slack can be calculated 

as follows: 

𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛  =  
1

(|𝑆𝑆𝑀|−1)
∙

∑ ∑ 𝐹𝐸𝐶(c,sm)
|𝐶𝑅𝑆−1|
𝑐=0𝑠𝑚∈(SSM/{𝑆𝑀0})  (39) 

 

The average energy consumption 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 of all routers for 

all scheduling models with dynamic slack can be calculated as 

follows: 

𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛  =  
1

(|𝑆𝑆𝑀|−1)
∙

∑ ∑ 𝐹𝐸𝑅(r,sm)
|𝑅𝑇𝑅−1|
𝑟=0𝑠𝑚∈(SSM/{𝑆𝑀0})  (40) 

 

The average 𝐹𝐸 energy consumption for all scheduling 

models with dynamic slack can be calculated as follows: 

𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛 = 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 + 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 (41) 

 

MeSViz compares the 𝐹𝐸 reduction of cores (𝑅𝑒𝐹𝐶𝐶), routers 

(𝑅𝑒𝐹𝐸𝑅), and combined between 𝑆𝑀0, which uses static slack, 

and the average 𝐹𝐸 all the other scheduling models with 

dynamic slack 𝑆𝑀𝑥. The relative 𝐹𝐸 reduction  of the average 

𝐹𝐸 of all the scheduling models with dynamic slack 

𝑠𝑚∈(SSM/{𝑆𝑀0} compared to the 𝐹𝐸 of the scheduling model 

with static slack 𝑆𝑀0 are computed separately for 𝑆𝑀 cores 

𝑅𝑒𝐹𝐸𝐶(𝑆𝑀), average cores (𝑅𝑒𝐹𝐸𝐶), 𝑆𝑀 routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀), as 

follows (𝑅𝑒𝐹𝐸𝑅), each SM (𝑅𝑒𝐹𝐸𝑠𝑚) and combined (𝑅𝑒𝐹𝐸): 

𝑅𝑒𝐹𝐸𝐶  =  
𝐹𝐸𝐶(𝑆𝑀0) − 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝐶(𝑆𝑀0)
∙ 100%

 

 (42) 

𝑅𝑒𝐹𝐸𝑅  =  
𝐹𝐸𝑅(𝑆𝑀0) − 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝑅(𝑆𝑀0)
∙ 100% (43) 

𝑅𝑒𝐸𝑠𝑚 =  
𝐹𝐸(𝑆𝑀0) − F𝐸(𝑆𝑀)

𝐹𝐸(𝑆𝑀0)
∙ 100%

 

(44) 

𝑅𝑒𝐹𝐸 =  
𝐹𝐸(𝑆𝑀0)−𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸(𝑆𝑀0)
∙ 100%

 

 (45) 

Makespan and slack: The Makespan 𝑚𝑘𝑠(𝑠𝑚) of a scheduling 

model 𝑠𝑚 is the duration from the start of the first task in sm 

till the completion of the last task in 𝑠𝑚. A useful scheduling 
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optimisation is to reduce the Makespan, for example, to make 

it fit into the time slot of a time-triggered system. MeS uses the 

occurrence of dynamic-slack to reduce the Makespan by 

shifting tasks. 

With this method the occurrence of dynamic slack shifts the 

system into a schedule with shorter Makespan by going down 

along an edge of the SM tree. 𝑆𝑀0 sits at the top of the SM tree, 

thus all other schedules, which have dynamic slack, will have a 

lower Makespan: 

∀𝑠𝑚∈SSM/{𝑆𝑀0}.  𝑚𝑘𝑠(𝑆𝑀0) > 𝑚𝑘𝑠(𝑠𝑚)   (46) 

Given a scheduling model 𝑠𝑚, by optimising the Makespan we 

obtain an optimised scheduling model 𝑠𝑚𝑜𝑝𝑡. The achieved 

saving of Makespan time (𝑆𝑎𝑣𝑇) is given as: 

𝑆𝑎𝑣𝑇 = 𝑚𝑘𝑠(𝑠𝑚) − 𝑚𝑘𝑠(𝑠𝑚𝑜𝑝𝑡)   (47) 

Given the scheduling model shown in Figure 12.b, the 

scheduling model 𝑠𝑚𝑜𝑝𝑡 resulting from the Makespan 

optimisation based on dynamic-slack deployment is shown in 

Figure 13. 

With this optimisation method we aim to minimise energy 

consumption by reducing Makespan so that the system can go 

sooner into idle mode. 

 

Power consumption and slack: With this method we aim to 

minimise energy consumption to deploying dynamic slack to 

slow down the components, while still preserving its Makespan. 

That means we preserve the finish time of the schedule, but use 

the extra time to the remaining jobs with a lower frequency, 

thus saving energy since a lower frequency means a lower 

power consumption. In this method when dynamic slack occurs 

the next tasks will not shift, but it will run with an increased 

execution time due to the lower frequency. Thereupon, energy-

efficiency will be increased. 

 

Given the scheduling models shown in Figure 14, the 

scheduling model Figure 14.b resulting from the power 

consumption optimisation based on dynamic-slack deployment 

is shown in Figure 14.a. In this example, tasks 𝑇5 and 𝑇6 

depend on 𝑇4; when 𝐷𝑆0 occurred for 𝑇4, then this free slot 

and static slacks are used to achieve the maximum slowdown 

factor by expanding and increasing the execution time of via the 

frequency of the allocated core(s). The maximum time 

extending for 𝑇5 is equal to: 

𝑀𝑎𝑥(et
𝑡5

) = et(𝑡5) + 𝐷𝑆0 + 𝑆𝑆2  (48) 

 

Also the optimal slow-down factor of 𝑇5 is proportional to 

𝑀𝑎𝑥(et
𝑡5

): 

et(𝑡5) ∙ 𝑇𝑆𝐷𝐹(𝑡5) ≤  𝑀𝑎𝑥(et
𝑡5

) (49) 

 

VI. EXAMPLE SCENARIOS AND RESULTS 

This section presents the visualized results of usage 

dynamic-slack method in MeS for energy-efficient with 

linearized MIQP model. Hence, in this section, we examine the 

importance of methods and techniques which are discussed 

in IV and V. These experiment and related results can answer 

the question why we require meta-scheduling and dynamic-

slack technique and special energy reduction  schemes for both 

cores and routers. Tools were run on a virtual cluster machine 

with 12 cores of an 𝐼𝑛𝑡𝑒𝑙 𝑋𝑒𝑜𝑛 𝐸5 −
2450 2.2 𝐺𝐻𝑧 𝑎𝑛𝑑 60𝐺𝐵 RAM on 𝑈𝑏𝑢𝑛𝑡𝑢 14.04.5 (𝐺𝑁𝑈 /
𝐿𝑖𝑛𝑢𝑥 3.13.0 − 100 − 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑥86_64).  

Input models: The input data for designed use case are shown 

in Table 2 and Figure 15 shows the AM and Figure 16 shows 

the PM of the case study. In the AM, 𝑇2 and 𝑇0 are starting 

tasks and T4 is the last task. In PM, 𝐸𝑆2 with links 𝐿4 and 𝐿6 is 

Figure 14. Usage of Slowdown factor regarding Dynamic-Slack 
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connected to two hops 𝐻1 and 𝐻2. The connection of 𝐸𝑆2 via 

two different links is done to provide better reliability [18] of 

the system. This example shows how MeS can be used to model 

reliability for safety-critical systems. 

Table 2. MeS input constant 

Input Model Input Name ID Data 

AM 

Task 

0 WCET=2 

1 WCET=4 

2 WCET=6 

3 WCET=8 

4 WCET=10 

Message Quantity=6 ID start=0 

TSDF All Task: min =1 & max =100 

MSDF All Messages : min =1 & max =100 

SlackEvent All Task= 50% 

Hop (Router) Quantity=3 ID start=0 

PM  
Core Quantity=5 ID start=6 

Link Quantity=9 ID start=0 

T1

T2

T4

T3

T0

M0 M1

M2

M3 M4

M5

 

Figure 15.  The AM of the case study 
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Figure 16. The PM of the case study 

Output results: MeS at 200 seconds generated 93 schedules for 

the dynamic-slack scenario SSM/{𝑆𝑀0} and one schedule for 

the static-slack 𝑆𝑀0. GVEdit (𝐺𝑟𝑎𝑝ℎ𝑉𝑖𝑧 𝑣𝑒𝑟. 1.02 [59]) 

creates a graph map from MeSViz output with 94 𝑆𝑀𝑠. Figure 

18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from 

Figure 17) shows the schedule tree, where each node contains an 

SM identifier, each edge represents the schedule status (e.g., 

𝑆𝑡𝑎𝑡𝑢𝑠 = 0...invalid and 𝑆𝑡𝑎𝑡𝑢𝑠 = 1...valid), the energy 

reduction  value, occurred events (e.g., slack), task identifier, 

and new execution time ET. For example, Figure 17 shows 

some source code data (created by MeSViz) for creating Figure 

18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from 

Figure 17). 
14−>  15 [𝑙𝑎𝑏𝑒𝑙 =  "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 =  33.1004%,

𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡  (𝐽𝑜𝑏 #3, 𝑛𝑒𝑤 𝐸𝑇 = 4)"𝑐𝑜𝑙𝑜𝑟
=  𝑔𝑟𝑒𝑒𝑛] ;  

15−>  16 [𝑙𝑎𝑏𝑒𝑙 =  "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 =  36.5001%,
𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡 (𝐽𝑜𝑏 #4, 𝑛𝑒𝑤 𝐸𝑇 = 5)"𝑐𝑜𝑙𝑜𝑟
=  𝑔𝑟𝑒𝑒𝑛] ;  

15−>  18 [𝑙𝑎𝑏𝑒𝑙 =  "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 =  33.1004%,
𝐽𝑜𝑏 𝐹𝑖𝑛𝑖𝑠ℎ 𝐸𝑣𝑒𝑛𝑡 (𝐽𝑜𝑏 #4)"𝑐𝑜𝑙𝑜𝑟 =  𝑏𝑙𝑢𝑒] ; 

 

Figure 17. Source Code of the three nodes (has been generated via MeSViz) 

 
Figure 18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from Figure 17) 
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Figure 19. (Gantt map of one schedule (name from Figure 11): Dynamic slack SM which generated by MeSViz 

Figure 19 shows the Gantt map for one specific schedule with 

𝑆𝑀44, which has been generated by MeS and visualized via 

MeSViz. Figure 19 includes all the information that is needed 

for debugging and implementation. For example, it shows that 

from five cores only two are used, how the tasks and messages 

are allocated and depend on each other, the values of the 

slowdown factor for each task and message, the scheduled 

status, the energy reduction rate, the message path from one 

hope to another hop, and the timing of messages and jobs. 

 

Discussion: In Table 3 the results of fourteen samples of 

collected data from 𝑆𝑀 outputs are shown. The schedule SM0is 

used for static slack time, the schedule SM1  to SM93 are used 

for dynamic slack time. As given in the results, schedule SM5 

has lowest 𝐹𝐸 energy reduction (saving) and schedule SM80 has 

highest 𝐹𝐸 energy reduction. 

 
Table 3. General results of 𝐹𝐸  for model example 

 
 

The 𝐹𝐸  for static SM0 and dynamic slack modes 𝑆𝑆𝑀/𝑆𝑀0 

results, 𝐹𝐸 reductions 𝑅𝑒𝐹𝐸(𝑆𝑆𝑀/𝑆𝑀0 ), average of 𝐹𝐸 (for 

cores and routers) and  𝑅𝑒𝐹𝐸𝑡𝑜𝑡𝑎𝑙 , are compared to the SM0 are 

shown in Figure 20, Figure 21, Figure 22 and Figure 23. 

 

 
Figure 20.  F𝐸𝐶(𝑠𝑚), 𝐹𝐸𝑅(𝑠𝑚)  results for cores and routers and 

average component frequency 

 
Figure 21. 𝐹𝐸(𝑠𝑚) results and average 

SM ID FE CRS FE RTR ReFE Core ReFE RTR FE ReFE Total 

0 1.65 4.2778 0.0000% 0.0000% 5.88278 0.0000%

1 1.34 3.0556 16.5109% 28.5714% 4.3956 25.2802%

2 1.04 2.7778 35.2025% 35.0649% 3.8178 35.1021%

5 0.69 3.7889 57.0093% 11.4286% 4.4789 23.8642%

18 0.88 3.0556 45.1713% 28.5714% 3.9356 33.0997%

38 1 2.5 37.6947% 41.5585% 3.5 40.5043%

44 0.96 2.5 40.1869% 41.5585% 3.46 41.1843%

46 1.16 2.5 27.7259% 41.5585% 3.66 37.7845%

49 1.08 2.7778 32.7103% 35.0644% 3.8578 34.4222%

63 0.72 3.0556 55.1402% 28.5714% 3.7756 35.8195%

70 1.08 3.0556 32.7103% 28.5714% 4.1356 29.6999%

80 1.1 2.0333 31.4642% 52.4676% 3.1333 46.7378%

93 1.38 2.0333 14.0187% 52.4676% 3.4133 41.9781%

Avg 1.03903 2.85036 35.2629% 33.3682% 3.88939 33.8852%
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Figure 22. 𝐹𝐸 results for cores 𝑅𝑒𝐹𝐸𝐶  and routers 𝑅𝑒𝐹𝐸𝑅 compare to 𝑆𝑀0 

and average 

 
Figure 23.  Total 𝑅𝑒𝐹𝐸(𝑠𝑚) in each schedule compare to 𝑆𝑀0 and average 

These results confirm our theory that compared to static slack 

time, the use of dynamic slack time together with our MeS 

algorithm can reduce the power consumption of NoCs by using 

frequency scaling for both cores and routers. 

VII. CONCLUSION 

We have proposed and developed a new scenario-based and 

energy-efficient meta-scheduling method for NoC-based 

MPSoCs. Our algorithm minimises the frequency of cores and 

routers in order to maximise the lifetime of tasks and messages. 

To do so, a slowdown factor is used for each task and message 

in different scenarios. The power consumption of the NoC is 

dynamically managed to reduce energy efficiency. Using meta-

scheduling, each occurrence of dynamic slack switches the 

system into a more energy-efficient schedule. The novel 

optimisation technique of our MeS tool is independent of 

network design, is expandable, and it can be use to reduce and 

optimizing the dynamic power consumption in the schedules. 

MeS is used for our multi-scenario-based (e.g., fault, safety, 

power-saving) scheduling on adaptive time-triggered systems. 

The results show that our dynamic slack time consideration and 

frequency slowdown in MeS, compared to the static slack time, 

produces a maximum of up to 57%  energy reduction for cores 

and 52.46% for routers. The energy reduction are up to 46.73%  

in a single schedule and 33.88% energy reduction of NoCs on 

average.  

Despite these useful results, future work is needed to provide 

additional features like multi-link scheduling, fault-injection 

and more support for safety-related scenarios. We are going to 

extend and develop these techniques and methods for more 

energy-efficient scheduling with reliability and fault-tolerance 

in the scenario-based domain. 
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