

1

Abstract— Complex electronic systems are used in safety-critical

applications (e.g., aerospace, nuclear stations), for which the

certification standards demand the use of assured design methods

and tools. Meta-scheduling is a way to manage the complexity of

adaptive systems via predictable behavioural patterns established

by static scheduling algorithms. This paper proposes a meta-

scheduling algorithm for adaptive time-triggered systems based on

Networks-on-a-Chip (NoCs). The meta-scheduling algorithm

computes an individual schedule for each dynamic event of slack

occurrence. Each dynamic slack occurrence triggers the shift to a

more energy-efficient schedule. Dynamic frequency scaling of

cores and routers is used to improve the energy efficiency, while

preserving the temporal correctness of time-triggered

computation and communication activities (e.g., collision

avoidance, timeliness). Mixed-Integer Quadratic Programming

(MIQP) is used to optimise the schedules Experimental results for

an example scenario demonstrate that the presented meta-

scheduling algorithm provides on average a power reduction of

34%. Our approach was able to deploy 93 dynamic slack schedules

compared to the single slack schedule of using static slack

scheduling.

Index Terms— MPSoC, NoC, MIQP, scenario-based,

meta-scheduling, mixed-criticality, time-triggered.

I. INTRODUCTION

mbedded systems are used in a wide range of industrial

systems, for example, aerospace, medical and automotive

systems. Many premium carmakers plan to invest heavily in e-

cars, which significantly depend on embedded systems [1].

However, with the new IoT era, minimizing power

consumption becomes a primary concern of system designers.

Scheduling optimisation is used to help engineers and system

designers to increase the energy-efficiency and improve the

behaviour of a system [2]. Scenario-based scheduling is a

scheduling technique [3] to predict, calculate and model the

circumstance events in safe-critical systems. Multi-Processor

System-on-Chip (MPSoC) systems typically represent one of

 “The European H2020 project SAFEPOWER has supported this work
under the Grant Agreement No. 687902.”

The authors are with the Department of Electrical Engineering and

Computer Science, University of Siegen, Germany

the most power consuming components of embedded systems,

and most researchers focused on reducing power and energy

consumptions of computational cores. Today, MPSoCs

typically support the scaling of frequency and voltage (e.g.,

DVS, DVFS) as well as multiple sleep states for cores.

However, frequency tuning for both cores and routers on multi-

core architectures (e.g., NoC) so far has been an open research

challenge.

In this research, we extend scenario-based scheduling on

MPSoC with time-triggered communication to provide

optimisation of energy efficiency not only for cores but also for

NoC routers. The energy efficiency optimisation uses dynamic

frequency scaling, where we are able to scale the frequency of

each core and router individually. This algorithm is suitable for

mixed-criticality [4] and safety-criticality [5] by supporting

fault-tolerant applications and adaptive systems. Compared to

purely static scheduling, our approach provides more energy

efficiency and enhanced flexibility.

Compared to our own previous research [3, 6, 7] and [8], this

work does not focus on introducing a new architecture for

scheduling or meta-scheduling technique. Instead, we provide

an improved, extended, more flexible and reliable meta-

scheduling architecture [9, 10] for MPSoCs and NoCs.

The novelty of this paper is to extend energy efficiency

optimisation of scenario-based meta-scheduling for MPSoCs

with time-triggered communication by not only providing

frequency scaling of cores, but also of NoC routers.

Compared to our previous work [3, 6, 7] and [8, 11], which

was only able to assign a single task per core, the algorithm

presented in this article is now also able to assign multiple tasks

per core on a multi-core platform. As part of our solution, we

had to develop a scenario-based graph traversal algorithm and

tool that called MeS [3] and a backtracking algorithm based on

this tool for identifying and managing events. We build a meta-

scheduling tree, with the top node being assuming no

occurrence of dynamic slack. Each occurrence of dynamic slack

switches to another schedule down the tree with better energy-

efficiency.

(babak.sorkhpour@uni-siegen.de, roman.obermaisser@uni-

siegen.de) and the Department of Computer Science, University of

Hertfordshire, UK (r.kirner@herts.ac.uk)

Scenario-Based Meta-Scheduling for Power

Performance Optimization Supporting Core and

Router Frequency Scaling in Time-Triggered Multi-

Core Architectures

Babak Sorkhpour, Student Member, IEEE; Roman Obermaisser, Raimund Kirner, Senior Member,

IEEE

E

mailto:Babak.Sorkhpour@uni-siegen.de
mailto:roman.obermaisser@uni-siegen.de
mailto:roman.obermaisser@uni-siegen.de
https://orcid.org/0000-0002-2539-7337
https://orcid.org/0000-0003-3921-6813

2

The method and algorithm presented in this article is of direct

benefit for Green IT [12–15]. With the goal of Green IT to save

the environmental economy of resources, the power

consumption is one of the most important parameters.

This article is organized as follows: The basic concepts and

related work are described in Section II. Section III describes

the meta-scheduling system model. Scheduling techniques and

scheduling for energy-efficiency are explained in Section IV.

The implementation of algorithms for meta-scheduling and its

features are explained in Section V. Experimental results based

on a case study are presented in Section VI. Section VII

concludes the article.

II. BASIC CONCEPTS AND RELATED WORK

Multi-Processor System-on-Chip (MPSoC) in heterogeneous

systems include many elements, e.g., CPU, GPU, and Network-

on-Chip (NoC). With latency-sensitive applications running on

such MPSoC platforms, the cores and routers must be designed

and operated accordingly to satisfy the performance

requirements. Dynamic Voltage and Frequency Scaling

(DVFS), adaptive routing and frequency scaling in routers and

links can potentially improve energy efficiency and

performance of NoC. We further notice that the execution time

variations of tasks sometimes lead to dynamic slack time [16],

which can be exploited by different levels of execution times

that can be changed without causing a performance penalty. In

this work, we take advantage of the slack time in cores to reduce

energy consumption. Routers can work at a lower frequency

without causing a performance penalty at the system level.

In this section, we review the state of the art of related works

and briefly introduce our own previous work [6, 8, 17–20] . In

addition, we present our meta-scheduler tool MeS and a new

strategy and model to improve the energy-efficiency using both

cores and routers in the schedules.

Many algorithms, methods, and techniques were proposed

for scheduling distributed embedded real-time systems.

Schedulability analysis is a primary part of real-time

scheduling. In particular, time-triggered systems depend on

static schedules that define the use of computational and

communication resources based on a global time base. In [18,

21], Kopetz explains how the correctness of a time-triggered

system depends also on the timing of the computational results.

Time-triggered communication of messages ensures

predictability and resource adequacy. Time-triggered control is

a valuable solution in safety-critical systems to manage the

complexity and provide analytical dependability and timing

models.

A group of tasks and messages are said to be schedulable with

a certain scheduling method, if enough resources (e.g., cores,

routers) and slot time is available to execute all these tasks and

transmit all messages before their deadlines. Each real-time task

and message is assigned a priority and a deadline which are

defined in an Application Model (AM). In the time-triggered

paradigm [18] of real-time scheduling, processes are controlled

and organized by the progression of time only, and a schedule

is designed for the total duration of a system’s execution. One

of the typical techniques used for time-triggered systems is

using schedule tables. They are easy to verify and thus

favourable in safe-critical systems that must be certified [22].

However, adapting to significant events within the computer

system or in the environment is a challenge in time-triggered

systems. In [19], Fohler presents a method for supporting

schedule changes based on operational modes by switching and

traversing among static-schedules in a schedules status tree.

Thereby, a pre-run-time and the scenario-based scheduled

system can adapt to changes of the environment. Isakovic et al.

explained that physical component designs and interfaces with

a specific computer system should provide a clean design

methodology approach, but systems get more complex

primarily when working with heterogeneous systems and

protocols [23]. However, it is challenging to ensure that the

functional properties match the system specifications and

regulatory guidelines. The authors also offer a mixed-criticality

integration solution based on a time-triggered architecture on a

hybrid system-on-a-chip [24] platform. However, their method

does not provide a scheduling technique for energy-efficiency

in heterogeneous systems.

Power-efficiency for NoCs: Sheikh et al., worked on the

combined optimization of performance, energy, and

temperature [25]. They proposed an optimization framework

called PET. The authors find efficient solutions using a multi-

objective evolutionary algorithm and a Strength Pareto

Evolutionary Algorithm for task scheduling and voltage

selection. They worked with multiple cores to do frequency

switching. Jingcao Hu et al. used static schedules for both

communication and computation of tasks on heterogeneous

NoC architectures for multimedia. Their algorithm achieved

about 44% energy on average, compared to the standard

earliest-deadline-first scheduler [26].

Task slack and procrastination: Jejurikar et al. take the slack

time [16] of tasks into account to improve the deadline

satisfaction and to reduce the energy consumption [17]. They

propose an algorithm for fault-tolerant resource allocation in

real-time dynamic scenarios. On an average, they reduce the

energy consumption by 29.1% and 6.7%, compared to previous

work.

Frequency tuning on NoC: In the literature [27], DVFS is one

of the most famous energy-efficiency techniques for improving

the power-efficiency of chips at run-time [28]. We also use

DVFS to establish optimized frequencies for cores and routers.

Chai et al. worked on the combination of execution time, DVFS,

slack time, and power consumption to find energy-efficient

schedules with minimised processor frequencies [29]. Li et al.,

used a genetic algorithm (GA) to achieve near-optimal voltage

and frequency assignments for considering the problem of

energy-efficient contention-aware application mapping and

scheduling on NoCs [30]. Their reported results show that

jointly utilizing dynamic voltage scaling on processors and

frequency tuning on NoC links provides excellent potential for

overall energy reduction in MPSoCs and the overall system

energy consumption is significantly reduced. Lee et al. worked

on energy-efficient scheduling for DVFS-enabled multi-core

architectures, which saved energy by executing the tasks in

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jingcao%20Hu.QT.&newsearch=true

3

parallel and by down-scaling of the frequency [31]. When a task

is executing on a single core, their approach reduces the energy

consumption significantly: up to 67% by considering the non-

linear scaling and the finitely discrete energy consumption rates

of available frequencies. But their model does not support

scenario-based scheduling and frequency scaling of

communication routers.

Power consumed by NoCs: Chai et al. presented that on average

28%∼36% of the total power consumption depends on NoCs

[29]. Han et al. presented a low power methodology and routing

algorithm regarding temperature to achieve an ultra-low-power

NoCs [32]. Experimental results demonstrate an average power

reduction of 36.0% over 21 applications. Hangsheng et al. show

by experimental results that the communication interconnect

can consume up to 36% percent of the power in an MPSoC [33].

Tariq et al. have investigated the problem of scheduling and

energy-aware mapping via Integer Linear Programming (ILP)

for a set of tasks with individual deadlines and conditional

precedence constraints on a heterogeneous NoC-based MPSoC

to achieve minimizing the total expected energy consumption

of all the tasks [34]. The authors have used a polynomial-time

heuristics to achieve improvements of 31% and 21% regarding

energy reduction. Today’s NoCs have become an essential

building block of multi-core architectures. NoCs are composed

of three main building blocks: links, network interfaces (NI)

and routers. More cores typically means a higher power

consumption. Including more cores thus presents a design

hurdle, architectural complexity and higher energy

consumption. For example, the KALRAY MPPA2-256 is made

of up to 288 cores: 256 computing cores, 16 management cores,

and four quad cores (see Figure 1). Kalray’s MPPA [35]

technology addresses these challenges by combining high-

performance cores with low-power processors [36].

Figure 1. Kalray’s MPPA network-on-chip (The MPPA2®-256 Bostan2

processor [36]

Mixed-Integer Quadratic Programming (MIQP): In [37]

mentions the use of the MIQP for solving scheduling problems.

With MIQP the objective function is quadratic with respect to

the integer and continuous variables, while the constraints are

linear with respect to the variables of both types.

Static-scheduling formulation: Our meta-scheduler presented

in this article is a static-scheduling algorithm. Murshed et al.

[8] have provided a static message-based scheduling approach

that guarantees the absence of collisions in message routing for

a single task per core. Static-scheduling is a reliable solution for

robust and timely systems, especially in time-triggered systems.

Their scheduling problem was established by formulating a

Mixed-Integer Linear Programming (MILP) problem. In our

previous work we have extended it to MIQP by calculating and

reformulating the objective function, constants, decision

variables, constraints [3, 7]. In [3, 8] the IBM ILOG CPLEX

optimizer [38] has been used to solve the MILP respective

MIQP problems. Since CPLEX itself can only solve linear

problems, we defined the objective function using a

linearization technique [39–41] to find the linear

approximation. LP/IP/QP can provide optimal answers in

minimization or maximization scheduling problems, and they

can use in scheduling problems when constraints, variables, and

objective functions are linear or quadratic. Like in our previous

work, in this research we are using MIQP as our goal is to

achieve optimum solutions for time-triggered and embedded

systems. Optimum solutions can provide better solutions than

feasible answers or other methods, like Genetic Algorithms

(GA) etc. Majd et al. used GAs as they have believed it can

better locate a near optimal than a list-schedule [42]. They

reported that many existing approaches do not consider

communication cost when applying GA to MPSoC scheduling

problem. In contrast, we consider also the communication costs.

To handle the communication delays between processors, Majd

et al. used a combination of GA and the Imperialist Competitive

Algorithm, while we are using MIQP together with the above

mentioned linearization method.

Meta-scheduling: Meta-scheduling can be described as a

technique to optimize the computational workload by

combining and organizing multiple distributed resources in an

integrated view. In other words, it is an extended data-flow

model and quasi-static scheduling for dynamic behaviour

changes. Most of the research on meta-scheduling has been

done for enterprise grids, clouds, and data centers, for example,

GridWay, community scheduler frameworks, Moab cluster

suite, Maui cluster scheduler, DIOGENES, synfiniWay's meta-

scheduler [43]. On the other hand, Jung et al. worked on meta-

scheduling for green computing to reduce the energy

consumption and thus reduce the CO2 emission [44] into the

atmosphere. They call their approach GreenMACC [45]. Jung

et al. [46] used for their model the Synchronous Data Flow [47],

which is commonly used in signal processing or streaming

applications. Their model can be used in the dynamic behaviour

changes and classified as multi-mode dataflow models. The

proposed technique is used to minimize the number of required

processors for multiprocessor scheduling by considering task

migration between modes. The focus on minimisation of

required resources, but not on parameterisation of resources,

like frequency scaling.

Quad
Core

SMS GPIOs
DDR

3
Quad
Core

Quad
Core

SMS GPIOs DDR
3

Quad
Core

P
C

Ie

G
e
n

3

E
th

e
rn

e
t

P
C

Ie

G
e
n

3

E
th

e
rn

e
t

C C

C

C

C C

C

C

C C

C

C

C C

C

C

4

To summarise, the existing work on meta-scheduling and

quasi-static scheduling, low-power and energy-efficient

scheduling focus on different models, methods, and

architectures than ours. For example, with/without DVS, DVFS

or dynamic power management capabilities and tries to

dynamic or static manipulate the task execution slacks to

exploit them. Since we aim to use scenario-based meta-

scheduling for a wide range of applications, like energy-

efficient and fault recovery, within an integrated tool, the

existing approaches cannot be directly applied to our scenario-

based meta-scheduling where they target architectures or

modelling are entirely different.

For example, while our work is related to [26], we not only

cover static slack time, but also support dynamic slack time and

scenario-based scheduling. We are using slack time of tasks to

calculate the best slowdown factor for the communication and

computation to maximise energy efficiency. However, in [26]

they use the slack time for different paths, and allocate the slack

time to different tasks.

III. META-SCHEDULING SYSTEM MODEL

In the following we briefly describe our meta-scheduling tool

MeS [3]. MeS allows to optimise the placement of tasks and

messages to optimise execution times and injection times. MeS

has been improved by adding the new optimisation model as

described in Section IV.

Dependability requirements which are covered by MeS contain

detect, isolate or mitigate errors, transient physical problems

(e.g., core fault), that occur in system or schedules.

Timing requirements which are covered by MeS contain time

constraints, execution time determinism, predictability,

composability, flexible worst-case response for a slack time by

static analysis.

Independent of network topology: MeS scheduling and routing

method is independent of the hardware platform and can cover

the topology of different networks (e.g., mesh, direct network,

indirect network, balanced tree).

Input models for MeS

Scheduling Model (SM): The SM, as shown in Figure 2),

contains specific data structures which are the physical model

(PM), the application model (AM) and context model (CM).

Figure 2. Data structure of MeS schema model

Application Model (AM): The AM describes application

dependencies at the software layer. It presents task and

messages priorities, dependencies, and hierarchy, which the

system designer is using to shape the AM section of the input

file.

Figure 3. General AM schema

The AM has two main elements: tasks, and messages. Figure 3

presents that each element contains specific attributes with

built-in derived type. e.g., task contains ID, WCET, start time,

allocation, min and max energy, deadline, and slowdown factor;

message contains message ID, sender and receiver ID,

slowdown factor, hops which all data type in this work are an

integer.

Platform Model (PM): The PM describes the physical

dependencies at the hardware layer. Figure 4 shows a platform

example, describes nodes and links priorities, dependencies and

hierarchy, which the system designer uses to shape the PM

Application

Model

Task

Hop Path

Message

@ Attributes

@ Attributes

Type xs:int

@ TSDF

Type xs:int

@ Deadline

Type xs:int

@ min_energy

Type xs:int

@ max_energy

Type xs:int

@ alloc

Type Timing

@ Start_time

Type xs:int

@ WCE

Type xs:int

@ ID

Type xs:int

Type xs:int

@ Deadline

Type xs:int

@ injection_time

Type xs:int

@ min_energy

Type xs:int

@ node_ID

Type xs:int

@ MSDF

@ min_energy

@ Attributes

Scheduling

Model

Constraints

@ Attributes

Platform Model

Context Model

Application Model

5

section of the input file.

Hop1 Hop2

ES0 ES1

ES2

ES3

ES4

L0

L1

L2

L3

L4L5

Figure 4. Conceptual PM

The PM has two main elements: nodes, and links. Figure 5

presents that each element contains specific attributes with

built-in derived type; e.g., the node contains ID, type (router or

core), frequency and link contains ID, from node and to node.

Figure 5. General PM Schema

Context Model (CM): The CM is describes which scenarios in

the system management layer are possible and can cover when

single or multi faults and events happened. In details, the CM

describes every faults and event for each element in the PM and

the AM, including priorities, dependencies, timing, and

hierarchy. The CM has three main elements: slack, energy, and

fault. Figure 6 presents that each element contains specific

attributes with built-in derived type. e.g., slack event contains

the new execution time and related task ID, energy event

contains energy level, and fault including node, link, and core

fault which they are representing related object ID (e.g., link

ID) which all data type in this work are an integer.

Figure 6. General CM schema

IV. SCHEDULING FOR ENERGY-EFFICIENCY

The provision of fault tolerance and energy-efficiency are

essential for MPSoCs, like NoCs and grids, where a permanent

failure, e.g., of a core or router, might occur during the

execution of scheduled tasks and messages. The schedules can

be generated statically before their execution with the help of a

schedules-event graph, which represents the schedules and

dependencies between them and events. In [48, 49]

Eitschberger et al. presents a scheduling model to balance

between faults and energy to maximize the performance in

static schedules. However, it is critical to minimize the length

of a schedule (the so-called Makespan [50]), i.e. the duration till

all jobs have finished processing, while integrating fault

PlatformModel

@ Attributes

Node

Node

Type

Link

@ Attributes

Type xs:int

@ TSDF

Type xs:int

@ Deadline

Type xs:int

@ max_energy

Type xs:int

@ max_energy

Type xs:int

@ injection_time

Type xs:int

@ node_ID

@ Attributes

SlackEven

t

Fault

Event

EnergyEvent

Type xs:int

@ Task

@ NewExecutionTime

 @ Attributes

Link

Fault

Node

Fault

Core

Fault

Context

Model

Type EnergyLevelType

@ Energy_Level

Type Fault Type

@ Type

@ Attributes

Type xs:int

Type xs:int

Type xs:int

@ Attributes

@ Attributes

@ Attributes

@ Node ID

@ LinkID

@ CoreID

6

tolerance techniques. Fault tolerance techniques typically result

in performance overhead, which furthermore leads to an

increase of the Makespan [51].

One of the recently emerging topics is solving the problem of

minimizing the energy consumption on NoCs [48, 49]. For

example, ignoring the possibility of slack recovery is regarded

as energy wasting. The energy consumption is also affected by

the frequency scaling of the cores and routers. By increasing the

execution time via decreasing the clock frequencies in cores,

the length of the Makespan also increases. However, decreasing

the clock frequency also decreases the energy consumption.

That mechanism leads to a two-variable trade-off decision to be

made between Performance and Energy Consumption, on both,

cores and routers.

Distributed DVFS Algorithm at Router and Core Level: our

model is based on per-core and router DVFS with multiple

voltage supply networks. We use DVFS on both cores and

routers and propose the use of Non-Minimal Path Adaptive

Routing [2] to balance network traffic. Specifically, the

scheduler regularly tunes the operation frequency of the routers

and the cores, based on the scheduling-scenario and NoC

workload. Also, the scheduler takes into consideration the

router and cores utilization in conjunction with tasks slack

allowance. By integrating these two techniques, the scheduler

generates schedules, that can balance the traffic across the

entire NoC and in turn, minimize the total energy consumption.

In this work slack and energy are used as input scenarios in the

CM, which is covered by the MeS.

Static meta-scheduling and mapping policy: Our static-

scheduling policies are designed to reduce the energy

consumption at two parallel levels: the first level is the mapping

of resources (e.g., cores to tasks, routers, and paths to messages)

and then at the second scheduling level using slowdown factors

for frequency tuning in both, cores and routers. In addition,

meta-scheduling with managing and injecting dynamic slack

for each task to the static scheduling system can create the full

range of optimized schedules with respect to energy

consumption.

Definitions: the following definitions are used to describe our

optimisation model:

𝐶𝑅𝑆 … the set of cores, i.e., execution nodes of the platform

𝑅𝑇𝑅 ... the set of routers, i.e., message forwarders of the

platform

𝑇𝑆𝐾 … the set of tasks to be executed

𝑀𝑆𝐺 … of all tasks the set of messages to be sent

𝑀𝑆𝐺𝐼𝑁(𝑡) … the set of input messages of a task 𝑡

𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) … the set of output messages of a task 𝑡

𝑒𝑡(𝑡) … the execution time of a task 𝑡

𝑚𝑑(𝑚) … the message transmission duration of message m

from one node to another one. 𝑚𝑑(𝑚) is proportional

to the size of the message 𝑚. Assuming that there are

ℎ𝑜𝑝𝑠(𝑚) intermediate nodes between the source and

destination of 𝑚, then the total message duration

becomes:

𝑚𝑑𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑(𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1)

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚) ... the time at which the sending of a message m

started.

𝑓 … clock frequency, with fmax being the maximum clock

frequency and fsel being the selected clock frequency:

𝑓𝑠𝑒𝑙 ≤ 𝑓𝑚𝑎𝑥

Energy Consumption: The energy 𝐸 is measured in Joule (𝐽) or

Watt-seconds (𝑊𝑠). The energy consumption 𝐸(𝑑) for a time

duration 𝑑 = [𝑡1; 𝑡2] and the power consumption 𝑃(𝑡) at time t

is as follows [49]:

𝐸(𝑑) = ∫ 𝑃(𝑡) 𝑑𝑡 | 𝑑 = [𝑡1; 𝑡2]
𝑡2

𝑡1

 (1)

The power consumption 𝑃 is equal to the dynamic power 𝑃𝑑𝑦𝑛

plus the static power 𝑃𝑠𝑡𝑐 [52]:

𝑃 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑡𝑐 (2)

There have been used analytical and empirical techniques to

model 𝑃𝑑𝑦𝑛 [53]. We also use an analytic method to model

𝑃𝑑𝑦𝑛. 𝑃𝑑𝑦𝑛 tends to dominate contribution to power

consumption compared to 𝑃𝑠𝑡𝑐 [53]. Thus, in this work we only

consider dynamic power and dynamic energy consumption.

𝑃𝑑𝑦𝑛 can be modelled as:

𝑃𝑑𝑦𝑛 = 𝐴 ∙ 𝑆 ∙ 𝑈2 ∙ 𝑓 (3)

where 𝐴 is the activity factor that refers to fraction between 0

and 1, and can express the total capacity of circuits during each

cycle charged or discharged, 𝑆 is the switched capacitance that

refers to aggregate load of system that depended on wire lengths

on chip, U is the voltage and 𝑓 is the frequency [53].

Extracted from above equation, the effective switch capacitance

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is given as:

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐴 × 𝑆 (4)

To keep our analytical model within the limits of the solver

CPLEX, we consider 𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 to be constant one.

With this simplification the power consumption 𝑃𝑑𝑦𝑛 becomes

proportional to the clock frequency 𝑓 and the square of voltage

𝑈:

𝑃𝑑𝑦𝑛 ∝ 𝑓 ∙ 𝑈2 (5)

Let 𝐸𝑇,𝑑𝑦𝑛(𝑡) denote the dynamic energy consumption of a task

𝑡 and 𝐸𝑀,𝑑𝑦𝑛(𝑚) denote the dynamic energy consumption of

transferring a message 𝑚. With 𝑃𝑑𝑦𝑛 being the average power

consumption, we can model the dynamic energy consumption

as follows:

𝐸𝑇,𝑑𝑦𝑛(𝑡) = 𝑃𝑑𝑦𝑛 ∙ 𝑒𝑡(𝑡) (6)

𝐸𝑀,𝑑𝑦𝑛(𝑚) = 𝑃𝑑𝑦𝑛 ∙ 𝑚𝑑(𝑚) (7)

where 𝑒𝑡(𝑡) and 𝑚𝑑(𝑚) are inversely proportional to the clock

frequency:

𝑒𝑡(𝑡) ∝
1

𝑓
 ∧ 𝑚𝑑(𝑚) ∝

1

𝑓
 (8)

Effective Speed: 𝑒𝑡(𝑡) of a task 𝑡 and 𝑚𝑑(𝑚) of a message m

are given at the maximum clock frequency 𝑓𝑚𝑎𝑥. However, the

effective execution time, denoted as 𝑒𝑡̅(𝑡), and the effective

message duration, denoted as 𝑚𝑑̅̅ ̅̅ (𝑚), depend on the selected

clock frequency 𝑓𝑠𝑒𝑙 and a contextual parameter C:

7

𝑒𝑡̅(𝑡) = 𝑒𝑡(𝑡) ∙
𝑓𝑚𝑎𝑥

𝑓𝑠𝑒𝑙(𝑡)
+ 𝐶 (9)

𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚) + 𝐶 (10)

This parameter 𝐶 is a contextual setting delay, which is either

zero in case that the clock frequency for the current task or

message is the same as before, or otherwise a constant 𝐶𝑘, in

case that the clock frequency has been changed at the beginning

of the current task or message. The parameter 𝐶 models the fact

that changing the clock frequency in a processor takes some

time. In our calculations we assume that 𝐶𝑘 = 1𝑚𝑠.

In DVFS the voltage 𝑈 varies approximately proportionally

with the clock frequency 𝑓, i.e., 𝑈 ∝ 𝑓, the power 𝑃𝑑𝑦𝑛 is thus

proportional to the cube of the clock frequency:

𝑃𝑑𝑦𝑛 ∝ 𝑓3 (11)

Based on above equation we can derive that the energy

𝐸𝑇,𝑑𝑦𝑛(𝑡) of a task 𝑡 and the energy 𝐸𝑚,𝑑𝑦𝑛(𝑚) of a message 𝑚

are proportional to the cube of the clock frequency multiplied

by the execution/communication time:

𝐸𝑇,𝑑𝑦𝑛(𝑡) ∝ 𝑓3 ∙ 𝑒𝑡(𝑡) (12)

𝐸𝑚,𝑑𝑦𝑛(𝑚) ∝ 𝑓3 ∙ 𝑚𝑑(𝑚) (13)

Frequency Co-Efficient: regarding equation 12, 13 normal

energy metrics cannot be completely cover and consider for our

metric needs. In the following, we denote the above

proportionality factor of the energy consumption as the

frequency co-efficient FEt of a task and FEm of a message

respectively. However, the effective frequency co-efficient,

tasks denoted as 𝐹𝐸𝑇
̅̅ ̅̅ ̅, and the effective message frequency co-

efficient, denoted as 𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ . These frequency co-efficients serve

for quantifying the energy reductions in the experimental

evaluation and the abstraction from technology-specific

parameters such as the switched capacitance.

𝐹𝐸𝑇 = 𝑒𝑡(𝑡) ∙ 𝑓3 (14)

𝐹𝐸𝑇
̅̅ ̅̅ ̅ = (𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑡))3 (15)

𝐹𝐸𝑚 = 𝑚𝑑(𝑚) ∙ 𝑓3(16)

𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ = (𝑚) ∙ (𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚))3 (17)

Modelling of the Optimisation Problem: To generate a static-

schedule with CPLEX, the system designer needs to describe

the problem with decision variables, constants, constraints and

an objective function. In this article we provide an extended

model of that used in [3, 8]. In the following we present the new

respectively modified parameters.

It is essential to model the relationships between physical,

logical and application constraints and without topology

dependencies and the resulting impact on performance. The

system optimization is the process of utilizing these models for

searching for optimum or feasible solutions that best match the

physical, logical, and application constraints of the

implementation. For a given implementation method, the

physical constraints characterize architectural aspects, but in

our model, these features are free of network topology. e.g., one

of the physical constraints facing the implementation of

interconnection networks is the available links between two

nodes.

Connectivity constraints: These are used for defining physical

connectivity (e.g., cores, routers, and links).

Task Allocation and Assignment Constraints: In our previous

work each core can have assigned only one task. In this work

each, each core can have assigned multiple tasks. We use the

array 𝐴𝐿𝐿𝑂𝐶 of allocation variables 𝑎𝑙𝑙𝑜𝑐𝑖 to model the

allocation of each task 𝑡𝑖 ∈ 𝑇𝑆𝐾 to one of the cores in 𝐶𝑅𝑆:

𝐴𝐿𝐿𝑂𝐶 = [

 𝑎𝑙𝑙𝑜𝑐1

⋮
⋮

𝑎𝑙𝑙𝑜𝑐𝑘

] ∈ {1, … , |𝐶𝑅𝑆|}𝑘

𝑘 = |𝑇𝑆𝐾| (18)

Hop count: ℎ𝑜𝑝𝑠(𝑚) denotes the number of intermediate visits

of a message 𝑚 along its transmission path from the sender to

the receiver task:

𝐻𝑂𝑃𝑆 = [

hops1

⋮
⋮

ℎ𝑜𝑝𝑠𝑛

] ∈ {1, … , 𝑀𝑎𝑥𝐻𝑜𝑝}𝑛

𝑛 = |𝑀𝑆𝐺| (19)

with 𝑀𝑎𝑥𝐻𝑜𝑝 being maximum permissable number of

intermediate hops.

Message Duration: 𝑀𝐷 is a vector with all the message

durations 𝑚𝑑(𝑚) from one hop to the next hop of all the

messages 𝑚 ∈ 𝑀𝑆𝐺:

𝑀𝐷 = [

𝑚𝑑1

⋮
⋮

mdn

] ∈ {1, … , 𝑀𝑎𝑥}𝑛 | 𝑛 = |𝑀𝑆𝐺| (20)

Slow Down Factors: One of the essential decision variables in

our DVFS optimisation model are the slow-down factors of

tasks and messages. 𝑡𝑠𝑑𝑓(𝑡) denotes the slow-down factor of a

core for computing task t and 𝑚𝑠𝑑𝑓(𝑚) denotes the slow-down

factor for transmitting message m. When assuming that the

contextual parameter C is zero, then 𝑡𝑠𝑑𝑓(𝑡) is proportional to

the effective execution time 𝑒𝑡̅(𝑡): 𝑡𝑠𝑑𝑓(𝑡) ∝ 𝑒𝑡̅(𝑡), and

𝑚𝑠𝑑𝑓(𝑚) is proportional to the effective message duration

𝑚𝑑̅̅ ̅̅ (𝑚): 𝑚𝑠𝑑𝑓(𝑡) ∝ 𝑚𝑑̅̅ ̅̅ (𝑚). 𝑇𝑆𝐷𝐹 is the vector with the

slow-down factors of all tasks in 𝑇𝑆𝐾:

𝑇𝑆𝐷𝐹 = [

𝑡𝑠𝑑𝑓1

⋮
⋮

𝑡𝑠𝑑𝑓𝑘

] ∈ {𝑡𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑡𝑠𝑑𝑓𝑚𝑎𝑥}𝑘

𝑘 = |𝑇𝑆𝐾|, 𝑡𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1 (21)

Analogously, MSDF is the vector with the slow-down factors

of all messages in MSG:

8

𝑀𝑆𝐷𝐹 = [

𝑚𝑠𝑑𝑓1

⋮
⋮

𝑚𝑠𝑑𝑓𝑛

] ∈ {𝑚𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑚𝑠𝑑𝑓𝑚𝑎𝑥}𝑛

𝑛 = |𝑀𝑆𝐺|, 𝑚𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1 (22)

Based on these slow-down factors, the effective execution time

𝑒𝑡̅(𝑡) of a task 𝑡 and the effective message duration 𝑚𝑑̅̅ ̅̅ (𝑚) of

a message 𝑚 can be written as:

𝑒𝑡̅(𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡) + 𝐶
𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚) + 𝐶 (23)

The total effective message duration 𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) of a message

𝑚 from sender to receiver becomes:

𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (24)

Task Dependency Constraints: A task dependency between two

tasks 𝑡𝑘 and 𝑡𝑙 is given when the input message of task 𝑡𝑙

depends on the output message of task 𝑡𝑘. For example, in the

Figure 7 the task 𝑇4 depends on the tasks 𝑇0, 𝑇1, 𝑇2, and 𝑇3.

T1

T2

T4

T3

T0

M0

M1

M2

M3

M4

M5

Figure 7. Conceptual AM

The following relation of injection times between input

messages 𝑀𝑆𝐺𝐼𝑁(𝑡) and output messages 𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) of any

task 𝑡∈𝑇𝑆𝐾 holds:

∀𝑡∈𝑇𝑆𝐾. ∀𝑚𝑖 ∈ 𝑀𝑆𝐺𝐼𝑁(𝑡). ∀𝑚𝑜∈𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) (25)
𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑖) + 𝑚𝑑̅̅ ̅̅

𝑡𝑜𝑡𝑎𝑙(𝑚𝑖) + 𝑒𝑡̅(𝑡) ≤ 𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑜) (26)

Message and task Deadlines: To support real-time computing,

we need to have real-time constraints for tasks and messages.

For example, we denote with 𝐷(𝑚) the relative deadline of a

message 𝑚. The injection of a message 𝑚 has to early enough,

so that the communication can happen before its deadline

𝐷(𝑚). To ensure this, we have to use the following timing

constraint for each message 𝑚 ∈ 𝑀𝑆𝐺:

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚) + 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (𝑀𝑎𝑥𝐻𝑜𝑝 + 1) ≤ 𝐷(𝑚) (27)

We also have to make sure that the message 𝑚 is only read at

the destination after its deadline:

𝐷(𝑚) ≤ 𝑡𝑟𝑒𝑎𝑑_𝑑𝑒𝑠𝑡(𝑚) (28)

Ensuring Quadratic Expressions: We use MIQP (mixed-integer

quadric programming) to solve the constraint system of our

optimisation model. Hence, any term with three or more

variables cannot be used in our optimisation model. However,

in our constraints described so far, there are also non-quadratic

expressions, for example, 𝑚𝑠𝑑𝑓(𝑚)2 ∙ 𝑑𝑚(𝑚) ∙ ℎ𝑜𝑝𝑠(𝑚) with

𝑚𝑠𝑑𝑓(𝑚) and ℎ𝑜𝑝𝑠(𝑚) being optimisation variables. To make

our expressions quadratic [54, 55], we use some strategy for

"not linear" optimisation [56]. While this strategy is typically

used for linearisation, we use it for "Quadratisation" [57, 58].

The key principle is to split the optimisation processes into two

phases, where in each phase a different variable is treated as

constant. The price for this simplification is that it might not

always lead to a globally optimal solution.

Figure 8 shows how we use this "Quadratisation" of the

constraint system of our model. In the first step we optimise

with the model with the slow-down factors set to constant one,

i.e. with maximum frequency. From the obtained result we

extract the number of hops (ℎ𝑜𝑝𝑠(𝑚)) and now use these values

as constants in a second optimisation run where we instead the

flow-down factors use as decision variable. This way we can

use CPLEX with an MIQP algorithm.

Using
FixedHOPS as

an input

Run MeS and solve problem for static-slack
schedule

Run MeS and solve problem for static-
dynamic schedules

Discover HOPS from
first SM (static-slack)

FixedHOPS=HOPS

Fix (Disable) MSDF=1

Change
Objective

function by
using

FixedHOPS

Figure 8. "Quadratisation" technique via HOPS

The Objective Function: The objective of our static-scheduling

function is to maximize the energy-efficiency for both cores and

routers by lowering the clock frequency (c.f in [8] the objective

function was to minimise the Makespan). In this work, we used

a predefined Makespan as a constraint variable for controlling

schedules timing. The power consumption is minimised by

increasing the timing, e.g., task execution times and message

9

Because CPLEX cannot solve a grade-three objective function,

then we used another modelling, which is 𝑚𝑑(𝑚) and 𝑒𝑡(𝑡) in

scheduling one time is calculated (multiplied) with its slow

down factor then on the objective function it used with power

two. It models the energy consumption of each task and

message (e.g., in whole transmission path), expressed as the

task execution time 𝑒𝑡(𝑡) multiplied to the power of two of the

slow down factor 𝑡𝑠𝑑𝑓(𝑡) plus the message duration 𝑚𝑑(𝑚)

multiplied to the power of two of the slow-down factor

𝑚𝑠𝑑𝑓(𝑚) multiplied by the number of hops (ℎ𝑜𝑝𝑠(𝑚) + 1).

As described in the section about assuring quadratic

expressions, the optimisation process is partitioned into two

phases.

For the first phase (left bubble of Fig.8) we assume all slow-

down factors to be constant:

∀𝑚 ∈ 𝑀𝑆𝐺 . 𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚) = 1 (29)

Based on that we get a quadratic constraint system with the goal

function to be maximised by CPLEX:

∀t ∈ TSK . ∀m ∈ 𝑀𝑆𝐺 .

𝐶𝑃1(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2
 + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚)2 ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (30)

𝑅𝐸𝑆1 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒(∑ ∑ (𝐶𝑃1(𝑚𝑗, 𝑡𝑖)
|𝑀𝑆𝐺|
j=1

|𝑇𝑆𝐾|
i=1) (31)

Based on the optimisation result 𝑅𝐸𝑆1, the second optimisation

phase is done (right bubble of Fig.8). First, the determined hop

counts are extracted from the intermediate result 𝑅𝐸𝑆1:

∀m ∈ 𝑀𝑆𝐺 . ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) 𝑖𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑅𝐸𝑆1

Then, the final optimisation result including the slow-down

factors is calculated by using the constant values of the hop

counts from the first solution:

∀t ∈ TSK . ∀m ∈ 𝑀𝑆𝐺 .

𝐶𝑃2(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2
 + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚)2 ∙ (ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) + 1) (32)

𝑅𝐸𝑆2 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ ∑ (𝐶𝑃2(𝑚𝑗 , 𝑡𝑖)

|𝑀𝑆𝐺|

j=1

|𝑇𝑆𝐾|

i=1

) (33)

V. IMPLEMENTATION OF MeS

We extended the MeS for scenario-based scheduling and

supporting multi-task on multi-cores, also a concrete power

model with discrete frequencies on cores and routers. In this

work compare to previous works [3, 6, 7] we are improving

new several strategies in different algorithm and methods. In

our first strategy, we use a deadline, list of tasks and messages

to create schedules concerning the dependencies from the

corresponding task and messages. In our second strategy, the

CPLEX can select the best slowdown-factor from the set a

frequency level with which the original tasks and messages

should run. Thus, we use the mapping WCET of all original

tasks and message duration as it is and change only the

runtime of them by using the selected slowdown factor level.

In the third strategy, we worked to used dynamic-slack for

efficient Makespan in MeS level; then it uses generated new

application-model as an input data in the scheduler tool. In the

fifth strategy, we let CPLEX deciding and optimizing where

is the best location (core) for tasks regarding deadlines,

dependencies, slow-down factor and in/out messages. Thus,

multi-tasks can run on a core but not all tasks in one core.

Finally, the execution times of tasks and injection times of

messages are corrected according to the dependencies given

by the application model.

Schedule model tree: MeS stores all generated scenario-based

schedules in a binary-tree structure, which we visualize with

our visualizer tool MeSViz [6].

Schema Modelling: MeS is a novel flexible architecture for

scenario-based scheduling on adaptive time-triggered systems.

To achieving this plans in embedded systems era, MeS is

modelled conceptually in several structures. Figure 9 presents

how the system designer is using the schema method. This

method has valuable benefits to save time and cost which it can

very fast and easy evaluate every input files via a schema-editor

by general schema model as a reference model.

Schem Model

Schema Editor

Raw input Data

Requested structures

validation

XMLTemplate

XML is Valid

MeS

Yes

No

XML Input
models

Figure 9. Schema technique for standard data structure modelling

Table 1 presented raw data model which is using a regular input

data.
Table 1. Sample raw input data before forming in XML format

Application Data

Task ID=0 ET=50energy=[1,100]
Task ID=1 ET=60energy=[1,100]
Task ID=2 ET=42energy=[1,100]
Task ID=3 ET=80energy=[1,100]
Task ID=4 ET=90energy=[1,100]

Msg. ID=0 from job#2 to job#1
Msg. ID=1 from job#0 to job#4
Msg. ID=2 from job#1 to job#3
Msg. ID=3 from job#2 to job#3
Msg. ID=4 from job#0 to job#3
Msg. ID=5 from job#3 to job#4

Physical Data

Router ID5 energy=[0,100]
Router ID6 energy=[0,100]
Endsystem ID0 energy=[0,100]
Endsystem ID1 energy=[25,100]

Link ID=0 from node#0 to node#5
Link ID=1 from node#1 to node#5
Link ID=2 from node#2 to node#5
Link ID=3 from node#3 to node#6

10

Endsystem ID2 energy=[50,100]
Endsystem ID3 energy=[0,100]
Endsystem ID4 energy=[0,100]

Link ID=4 from node#4 to node#6
Link ID=5 from node#5 to node#6

All input information (e.g., Table 1) is modelled in the schema

format via the Oxygen XML editor to describe the structure of

XML documents. This rule helps us to prepare the standard and

flexible standard building blocks of an XML document in all

MeS generations. Figure 10 is a sample of standardized input

XML for using in MeS, which is validated via the schema-

editor.
<ApplicationModel>

<job ID="0" WCET="2" min_energy="1" max_energy="100" deadline="1100"/>

<job ID="1" WCET="4" min_energy="1" max_energy="100" deadline="1600"/>

<job ID="2" WCET="6" min_energy="1" max_energy="100" deadline="1305"/>

<message ID="0" from="0" to="1" size="10" min_energy="1" max_energy="100"

deadline="1185"/>

<message ID="1" from="1" to="2" size="10" min_energy="1" max_energy="100"

deadline="1185"/>

<message ID="6" from="0" to="5" size="10" min_energy="1" max_energy="100"

deadline="1185"/>

</ApplicationModel>

<PlatformModel>

<node ID="0" Type="switch" min_energy="0" max_energy="100"/>

<node ID="1" Type="switch" min_energy="0" max_energy="100"/>

<node ID="2" Type="switch" min_energy="0" max_energy="100"/>

<node ID="3" Type="endsystem" min_energy="0" max_energy="100"/>

<node ID="4" Type="endsystem" min_energy="25" max_energy="100"/>

<link ID="0" from="0" to="1"/>

<link ID="1" from="1" to="2"/>

<link ID="2" from="3" to="0"/>

<link ID="3" from="4" to="1"/>

</PlatformModel>

<ContextModel>

<SlackEvent job="0" NewExecutionTime="50"/>

<SlackEvent job="1" NewExecutionTime="50"/>

<FaultEvent type="crash">

<NodeFault NodeId="0"/>

</FaultEvent>

<FaultEvent type="crash">

<NodeFault NodeId="1"/>

</FaultEvent>

</ContextModel>

Figure 10. Standardized input XML sample

When the processing of the input models in XML format is

done, they are stored internally in MeS as data structure.

Regarding defined scenarios in CM, every generated schedule

and depended SM, which are stored in an SM class, will be

added as a node into the SM tree.

Figure 11 represents a conceptual model of a total process for a

scenario-based meta-scheduling technique. It is including input,

output data (e.g., XML, gantt map, Graphviz data) and their

(e.g., XML parser, MeSViz) processes, data structures (e.g.,

AM, PM and CM classes, SM’s tree), manager and controllers

(e.g., event, undo, calendar, Tabu, scheduler) and scheduling

processes (e., SM tree creator, scheduler).

Slack recovery technique: We use slack time of tasks to increase

energy-efficiency in NoCs by optimising the system's timing.

When tasks are running in a system, two types of slacks will

occurs 𝑆𝑡𝑎𝑡𝑖𝑐 − 𝑆𝑙𝑎𝑐𝑘 (𝑆𝑆) and 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 − 𝑆𝑙𝑎𝑐𝑘 (𝐷𝑆) as

shown in Figure 12. Static-slack is the time gap of dependent

tasks in different cores, between the end of the first and the start

of the second tasks, e.g., static slack 𝑆𝑆0 between 𝑇1 and 𝑇2,

and 𝑆𝑆1 between 𝑇3 and 𝑇0, and 𝑆𝑆3 between T6 and T5 SS3.

Other 𝑆𝑆 examples include two independent tasks on the same

core, e.g., 𝑆𝑆2 occurs between 𝑇6 and 𝑇4 on core 4. Dynamic-

slack occurs when a task finishes earlier than its WCET, e.g.,

dynamic slack 𝐷𝑆0 in 𝑇1, 𝐷𝑆1 in 𝑇3, 𝐷𝑆2 in 𝑇6, and 𝐷𝑆3 in

𝑇4.

XML Parser

Output
generator

GraphViz
shaped

data

MeSViz

Gantt
mapp

Multi-
Gantt
mapp

Main AM, PM, CM
 class

GraphViz
total data

Scheduler
Controller

SM tree creator
Tabu

controler

E
v

e
n

t
 M

a
n

a
g

e
r

Calender
creator

Undo
manager

M
e

S
 b

u
ild

in
g

 b
lo

ck

Hardware platform

XML input model
AM, PM, CM

Multi SM s tree

GVEdit

S
ch

e
d

u
le

r
b

u
ild

in
g

 b
lo

ck

Input provider
(e.g., fixing value)

Formulate problem

Solve problem

Answer is feasible

Output provider

Yes

Solve problem (e.g., check the input
model or formula)

Exit

No

Figure 11. Conceptual Model of the MeS Tool

To solve the meta-scheduling problem, e.g., energy

optimisation based on slack time, we use the MeS tool, as

shown in Figure 11. MeS initially starts with generating a

static-schedule with scheduling 𝑆𝑀0. To take the DS into

account, the Event-Manager reduces for each task of the AM its

WCET by its slack time, resulting in a new shorter WCET.

This consideration of the DS is marked as an event and injected

by Calendar Creator into the calendar table. The Event Manager

sends the event type, e.g., slack, and timing to the Scheduler

Controller. Depending on the timing of the calendar event, the

Scheduler Controller will freeze or unfreeze the corresponding

task in the Tabu Controller. What the Tabu Controller basically

does, is to freeze the partial schedule up to the event, and leave

the rest to be completed by the scheduler. Afterwards, the AM

and PM will be sent to the scheduler to create new schedules by

completing the frozen incomplete schedule. The SM Tree

Creator generates the scheduling tree (multi SM tree), and

depending whether events are taken or not, they are either

stored on the right or left side of this tree.

Finally, when every event was taken, and the calendar becomes

empty, then MeS calls the Output Generator to generate two

output files in Graphviz format: the shaped data and the total

data. The total data file includes all the controller parameters

11

stored in the nodes of the scheduling graph. The shaped data

file is a cleaned up version of the SM tree including only the

real scheduling nodes, but without the controller parameters.

MeSViz [6] is used to visualise single schedules as a Gantt map

and events depending on schedules as a multi-Gantt map in

different graphical format.

MeS works with multiple scheduling models organised in tree

form, to switch between schedules based on dynamic events.

Thus, we introduce 𝑆𝑆𝑀 as the set of all scheduling models.

However, among all the scheduling models 𝑠𝑚 ∈ SSM, the one

which uses static slack is denoted as 𝑆𝑀0. All the other

scheduling models SSM/{𝑆𝑀0} use dynamic slack.

MeSViz is used to calculate 𝐹𝐸(𝑠𝑚) of each scheduling model.

The energy 𝐹𝐸𝐶(𝑐, 𝑠𝑚) consumed at any core 𝑐 ∈ CRS for all

of its tasks can be calculated as follows:

∀𝑠𝑚∈SSM. ∀𝑐 ∈ CRS. 𝐹𝐸𝐶(𝑐, 𝑠𝑚)

= ∑ 𝑒𝑡(𝑡) ∙ (
𝑓𝑚𝑎𝑥

𝑡𝑠𝑑𝑓(𝑡)
)3

𝑡∈TSK(c,sm)

(34)

where 𝑇𝑆𝐾(𝑐, 𝑠𝑚) is defined as the set of tasks mapped to a

core 𝑐 in scheduling model 𝑠𝑚:

𝑇𝑆𝐾(𝑐, 𝑠𝑚) = {𝑡 ∈ 𝑇𝑆𝐾 | 𝑎𝑙𝑙𝑜𝑐𝑡(𝑠𝑚) = 𝑐}

The total energy consumption of all the cores 𝐹𝐸𝐶(𝑠𝑚) can then

be calculated as:

𝐹𝐸𝐶(𝑠𝑚) = ∑ 𝐹𝐸𝐶(𝑐, 𝑠𝑚)𝑐∈𝐶𝑅𝑆 (35)

The energy 𝐹𝐸𝑅(𝑟, 𝑠𝑚) consumed at any router 𝑟 ∈ RTR for all

its messages can be calculated as follows:

∀𝑠𝑚∈SSM. ∀𝑟 ∈ 𝑅𝑇𝑅.

𝐹𝐸𝑅(𝑟, 𝑠𝑚) = ∑ 𝑚𝑑(𝑚) ∙ (
𝑓𝑚𝑎𝑥

𝑚𝑠𝑑𝑓(𝑚)
)3

𝑚∈𝑀𝑆𝐺(𝑟,𝑠𝑚) (36)

where 𝑀𝑆𝐺(𝑟, 𝑠𝑚) is defined as the set of all the messages

going through router 𝑟 in scheduling model 𝑠𝑚. The total

energy consumption of all the routers 𝐹𝐸𝑅(𝑠𝑚) can then be

calculated as:

𝐹𝐸𝑅(𝑠𝑚) = ∑ 𝐹𝐸𝑅(𝑟, 𝑠𝑚)𝑟∈𝑅𝑇𝑅 (37)

In every calculations we assumed 𝑓𝑚𝑎𝑥 = 1.
The whole energy consumption of a system for a concrete

scheduling model 𝑠𝑚, 𝐹𝐸(𝑠𝑚), is calculated from the energy

consumption of all the routers and cores as follows:

𝐹𝐸(𝑠𝑚) = 𝐹𝐸𝐶(𝑠𝑚) + 𝐹𝐸𝑅(𝑠𝑚) (38)

The average 𝐹𝐸 energy consumption 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 of all cores

for all scheduling models with dynamic slack can be calculated

as follows:

𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 =
1

(|𝑆𝑆𝑀|−1)
∙

∑ ∑ 𝐹𝐸𝐶(c,sm)
|𝐶𝑅𝑆−1|
𝑐=0𝑠𝑚∈(SSM/{𝑆𝑀0}) (39)

The average energy consumption 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 of all routers for

all scheduling models with dynamic slack can be calculated as

follows:

𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 =
1

(|𝑆𝑆𝑀|−1)
∙

∑ ∑ 𝐹𝐸𝑅(r,sm)
|𝑅𝑇𝑅−1|
𝑟=0𝑠𝑚∈(SSM/{𝑆𝑀0}) (40)

The average 𝐹𝐸 energy consumption for all scheduling

models with dynamic slack can be calculated as follows:

𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛 = 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 + 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 (41)

MeSViz compares the 𝐹𝐸 reduction of cores (𝑅𝑒𝐹𝐶𝐶), routers

(𝑅𝑒𝐹𝐸𝑅), and combined between 𝑆𝑀0, which uses static slack,

and the average 𝐹𝐸 all the other scheduling models with

dynamic slack 𝑆𝑀𝑥. The relative 𝐹𝐸 reduction of the average

𝐹𝐸 of all the scheduling models with dynamic slack

𝑠𝑚∈(SSM/{𝑆𝑀0} compared to the 𝐹𝐸 of the scheduling model

with static slack 𝑆𝑀0 are computed separately for 𝑆𝑀 cores

𝑅𝑒𝐹𝐸𝐶(𝑆𝑀), average cores (𝑅𝑒𝐹𝐸𝐶), 𝑆𝑀 routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀), as

follows (𝑅𝑒𝐹𝐸𝑅), each SM (𝑅𝑒𝐹𝐸𝑠𝑚) and combined (𝑅𝑒𝐹𝐸):

𝑅𝑒𝐹𝐸𝐶 =
𝐹𝐸𝐶(𝑆𝑀0) − 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝐶(𝑆𝑀0)
∙ 100%

 (42)

𝑅𝑒𝐹𝐸𝑅 =
𝐹𝐸𝑅(𝑆𝑀0) − 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝑅(𝑆𝑀0)
∙ 100% (43)

𝑅𝑒𝐸𝑠𝑚 =
𝐹𝐸(𝑆𝑀0) − F𝐸(𝑆𝑀)

𝐹𝐸(𝑆𝑀0)
∙ 100%

(44)

𝑅𝑒𝐹𝐸 =
𝐹𝐸(𝑆𝑀0)−𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸(𝑆𝑀0)
∙ 100%

 (45)

Makespan and slack: The Makespan 𝑚𝑘𝑠(𝑠𝑚) of a scheduling

model 𝑠𝑚 is the duration from the start of the first task in sm

till the completion of the last task in 𝑠𝑚. A useful scheduling

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T1

T2

T5

T4

T0

T6

T3

SS1

SS0

time

Makespan

b. Dynamic scheduling model
Figure 12. a. Stack-Slack (SS) and b. Dynamic-Slack (DS) sample

SS3

SS2

DS0

DS1

DS2 DS3

T1

T2

T5

T4

T0

T6

T3

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

SS3

SS2

SS1

SS0

Makespan

time

a. Static scheduling model (𝑆𝑀0)

12

optimisation is to reduce the Makespan, for example, to make

it fit into the time slot of a time-triggered system. MeS uses the

occurrence of dynamic-slack to reduce the Makespan by

shifting tasks.

With this method the occurrence of dynamic slack shifts the

system into a schedule with shorter Makespan by going down

along an edge of the SM tree. 𝑆𝑀0 sits at the top of the SM tree,

thus all other schedules, which have dynamic slack, will have a

lower Makespan:

∀𝑠𝑚∈SSM/{𝑆𝑀0}. 𝑚𝑘𝑠(𝑆𝑀0) > 𝑚𝑘𝑠(𝑠𝑚) (46)

Given a scheduling model 𝑠𝑚, by optimising the Makespan we

obtain an optimised scheduling model 𝑠𝑚𝑜𝑝𝑡. The achieved

saving of Makespan time (𝑆𝑎𝑣𝑇) is given as:

𝑆𝑎𝑣𝑇 = 𝑚𝑘𝑠(𝑠𝑚) − 𝑚𝑘𝑠(𝑠𝑚𝑜𝑝𝑡) (47)

Given the scheduling model shown in Figure 12.b, the

scheduling model 𝑠𝑚𝑜𝑝𝑡 resulting from the Makespan

optimisation based on dynamic-slack deployment is shown in

Figure 13.

With this optimisation method we aim to minimise energy

consumption by reducing Makespan so that the system can go

sooner into idle mode.

Power consumption and slack: With this method we aim to

minimise energy consumption to deploying dynamic slack to

slow down the components, while still preserving its Makespan.

That means we preserve the finish time of the schedule, but use

the extra time to the remaining jobs with a lower frequency,

thus saving energy since a lower frequency means a lower

power consumption. In this method when dynamic slack occurs

the next tasks will not shift, but it will run with an increased

execution time due to the lower frequency. Thereupon, energy-

efficiency will be increased.

Given the scheduling models shown in Figure 14, the

scheduling model Figure 14.b resulting from the power

consumption optimisation based on dynamic-slack deployment

is shown in Figure 14.a. In this example, tasks 𝑇5 and 𝑇6

depend on 𝑇4; when 𝐷𝑆0 occurred for 𝑇4, then this free slot

and static slacks are used to achieve the maximum slowdown

factor by expanding and increasing the execution time of via the

frequency of the allocated core(s). The maximum time

extending for 𝑇5 is equal to:

𝑀𝑎𝑥(et
𝑡5

) = et(𝑡5) + 𝐷𝑆0 + 𝑆𝑆2 (48)

Also the optimal slow-down factor of 𝑇5 is proportional to

𝑀𝑎𝑥(et
𝑡5

):

et(𝑡5) ∙ 𝑇𝑆𝐷𝐹(𝑡5) ≤ 𝑀𝑎𝑥(et
𝑡5

) (49)

VI. EXAMPLE SCENARIOS AND RESULTS

This section presents the visualized results of usage

dynamic-slack method in MeS for energy-efficient with

linearized MIQP model. Hence, in this section, we examine the

importance of methods and techniques which are discussed

in IV and V. These experiment and related results can answer

the question why we require meta-scheduling and dynamic-

slack technique and special energy reduction schemes for both

cores and routers. Tools were run on a virtual cluster machine

with 12 cores of an 𝐼𝑛𝑡𝑒𝑙 𝑋𝑒𝑜𝑛 𝐸5 −
2450 2.2 𝐺𝐻𝑧 𝑎𝑛𝑑 60𝐺𝐵 RAM on 𝑈𝑏𝑢𝑛𝑡𝑢 14.04.5 (𝐺𝑁𝑈 /
𝐿𝑖𝑛𝑢𝑥 3.13.0 − 100 − 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑥86_64).

Input models: The input data for designed use case are shown

in Table 2 and Figure 15 shows the AM and Figure 16 shows

the PM of the case study. In the AM, 𝑇2 and 𝑇0 are starting

tasks and T4 is the last task. In PM, 𝐸𝑆2 with links 𝐿4 and 𝐿6 is

Figure 14. Usage of Slowdown factor regarding Dynamic-Slack

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T0

T1

T5

T3

T4

T2
SS1

SS0

T6
time

Makespan

SS2

SS3

DS0

a. Dynamic slack for T4

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T0

T1

T5

T3

T4

T2
SS1

SS0

T6
time

DS0+SS3

DS0+SS2

b. Adding Dynamic slack and static slack to next tasks

Core

2 2

Core 0

Core 5

Core 4

Core 3

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑠𝑚)

time

SS3

SS2

SS0

SS1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑠𝑚𝑜𝑝𝑡)

T1

T6

T7

T4

T0

T3

T2 Core 1
SavT

Figure 13. Usage of dynamic slack to educe Makespan

13

connected to two hops 𝐻1 and 𝐻2. The connection of 𝐸𝑆2 via

two different links is done to provide better reliability [18] of

the system. This example shows how MeS can be used to model

reliability for safety-critical systems.

Table 2. MeS input constant

Input Model Input Name ID Data

AM

Task

0 WCET=2

1 WCET=4

2 WCET=6

3 WCET=8

4 WCET=10

Message Quantity=6 ID start=0

TSDF All Task: min =1 & max =100

MSDF All Messages : min =1 & max =100

SlackEvent All Task= 50%

Hop (Router) Quantity=3 ID start=0

PM
Core Quantity=5 ID start=6

Link Quantity=9 ID start=0

T1

T2

T4

T3

T0

M0 M1

M2

M3 M4

M5

Figure 15. The AM of the case study

ES 4

ES 3

ES 0

ES 1

L7

L5

L2

L3

H 0 H 1
L0

H 2

L1L8

ES 2
L4

L6

Figure 16. The PM of the case study

Output results: MeS at 200 seconds generated 93 schedules for

the dynamic-slack scenario SSM/{𝑆𝑀0} and one schedule for

the static-slack 𝑆𝑀0. GVEdit (𝐺𝑟𝑎𝑝ℎ𝑉𝑖𝑧 𝑣𝑒𝑟. 1.02 [59])

creates a graph map from MeSViz output with 94 𝑆𝑀𝑠. Figure

18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from

Figure 17) shows the schedule tree, where each node contains an

SM identifier, each edge represents the schedule status (e.g.,

𝑆𝑡𝑎𝑡𝑢𝑠 = 0...invalid and 𝑆𝑡𝑎𝑡𝑢𝑠 = 1...valid), the energy

reduction value, occurred events (e.g., slack), task identifier,

and new execution time ET. For example, Figure 17 shows

some source code data (created by MeSViz) for creating Figure

18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from

Figure 17).
14−> 15 [𝑙𝑎𝑏𝑒𝑙 = "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 = 33.1004%,

𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡 (𝐽𝑜𝑏 #3, 𝑛𝑒𝑤 𝐸𝑇 = 4)"𝑐𝑜𝑙𝑜𝑟
= 𝑔𝑟𝑒𝑒𝑛] ;

15−> 16 [𝑙𝑎𝑏𝑒𝑙 = "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 = 36.5001%,
𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡 (𝐽𝑜𝑏 #4, 𝑛𝑒𝑤 𝐸𝑇 = 5)"𝑐𝑜𝑙𝑜𝑟
= 𝑔𝑟𝑒𝑒𝑛] ;

15−> 18 [𝑙𝑎𝑏𝑒𝑙 = "𝑆𝑡𝑎𝑡𝑢𝑠 = 1, 𝐸𝑛𝑔 = 33.1004%,
𝐽𝑜𝑏 𝐹𝑖𝑛𝑖𝑠ℎ 𝐸𝑣𝑒𝑛𝑡 (𝐽𝑜𝑏 #4)"𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑢𝑒] ;

Figure 17. Source Code of the three nodes (has been generated via MeSViz)

Figure 18. Schedule tree with 94 schedules (created via MeSViz and GVEdit from Figure 17)

2

20

21

14

15

18 16

Status=1,Eng=30.1004%,Slack Event(job#3,new ET=4)

Eng=36.5001%,Slack Event(job#4,new ET=5)

Eng=33.1004%,Slack Event(job#4)

Status=1,Eng=30.3806%,Slack Event(job#1)

Status=1,Eng=30.3806%

Status=1,Eng=33.7803%

14

Figure 19. (Gantt map of one schedule (name from Figure 11): Dynamic slack SM which generated by MeSViz

Figure 19 shows the Gantt map for one specific schedule with

𝑆𝑀44, which has been generated by MeS and visualized via

MeSViz. Figure 19 includes all the information that is needed

for debugging and implementation. For example, it shows that

from five cores only two are used, how the tasks and messages

are allocated and depend on each other, the values of the

slowdown factor for each task and message, the scheduled

status, the energy reduction rate, the message path from one

hope to another hop, and the timing of messages and jobs.

Discussion: In Table 3 the results of fourteen samples of

collected data from 𝑆𝑀 outputs are shown. The schedule SM0is

used for static slack time, the schedule SM1 to SM93 are used

for dynamic slack time. As given in the results, schedule SM5

has lowest 𝐹𝐸 energy reduction (saving) and schedule SM80 has

highest 𝐹𝐸 energy reduction.

Table 3. General results of 𝐹𝐸 for model example

The 𝐹𝐸 for static SM0 and dynamic slack modes 𝑆𝑆𝑀/𝑆𝑀0

results, 𝐹𝐸 reductions 𝑅𝑒𝐹𝐸(𝑆𝑆𝑀/𝑆𝑀0), average of 𝐹𝐸 (for

cores and routers) and 𝑅𝑒𝐹𝐸𝑡𝑜𝑡𝑎𝑙 , are compared to the SM0 are

shown in Figure 20, Figure 21, Figure 22 and Figure 23.

Figure 20. F𝐸𝐶(𝑠𝑚), 𝐹𝐸𝑅(𝑠𝑚) results for cores and routers and

average component frequency

Figure 21. 𝐹𝐸(𝑠𝑚) results and average

SM ID FE CRS FE RTR ReFE Core ReFE RTR FE ReFE Total

0 1.65 4.2778 0.0000% 0.0000% 5.88278 0.0000%

1 1.34 3.0556 16.5109% 28.5714% 4.3956 25.2802%

2 1.04 2.7778 35.2025% 35.0649% 3.8178 35.1021%

5 0.69 3.7889 57.0093% 11.4286% 4.4789 23.8642%

18 0.88 3.0556 45.1713% 28.5714% 3.9356 33.0997%

38 1 2.5 37.6947% 41.5585% 3.5 40.5043%

44 0.96 2.5 40.1869% 41.5585% 3.46 41.1843%

46 1.16 2.5 27.7259% 41.5585% 3.66 37.7845%

49 1.08 2.7778 32.7103% 35.0644% 3.8578 34.4222%

63 0.72 3.0556 55.1402% 28.5714% 3.7756 35.8195%

70 1.08 3.0556 32.7103% 28.5714% 4.1356 29.6999%

80 1.1 2.0333 31.4642% 52.4676% 3.1333 46.7378%

93 1.38 2.0333 14.0187% 52.4676% 3.4133 41.9781%

Avg 1.03903 2.85036 35.2629% 33.3682% 3.88939 33.8852%

0

1

2

3

4

5

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE CRS 2 1 1 1 1 1 1 1 1 1 1 1 1 1

FE RTR 4 3 3 4 3 3 3 3 3 3 3 2 2 3

𝐹
𝐸

SM ID

𝐹𝐸 in each schedule and avg

0

1

2

3

4

5

6

0 1 2 5 18 38 44 46 49 63 70 80 93 Av
g

FE 5.9 4.4 3.8 4.5 3.9 3.5 3.5 3.7 3.9 3.8 4.1 3.1 3.4 3.9

𝐹
𝐸

SM ID

Total 𝐹𝐸 in each schedule

15

Figure 22. 𝐹𝐸 results for cores 𝑅𝑒𝐹𝐸𝐶 and routers 𝑅𝑒𝐹𝐸𝑅 compare to 𝑆𝑀0

and average

Figure 23. Total 𝑅𝑒𝐹𝐸(𝑠𝑚) in each schedule compare to 𝑆𝑀0 and average

These results confirm our theory that compared to static slack

time, the use of dynamic slack time together with our MeS

algorithm can reduce the power consumption of NoCs by using

frequency scaling for both cores and routers.

VII. CONCLUSION

We have proposed and developed a new scenario-based and

energy-efficient meta-scheduling method for NoC-based

MPSoCs. Our algorithm minimises the frequency of cores and

routers in order to maximise the lifetime of tasks and messages.

To do so, a slowdown factor is used for each task and message

in different scenarios. The power consumption of the NoC is

dynamically managed to reduce energy efficiency. Using meta-

scheduling, each occurrence of dynamic slack switches the

system into a more energy-efficient schedule. The novel

optimisation technique of our MeS tool is independent of

network design, is expandable, and it can be use to reduce and

optimizing the dynamic power consumption in the schedules.

MeS is used for our multi-scenario-based (e.g., fault, safety,

power-saving) scheduling on adaptive time-triggered systems.

The results show that our dynamic slack time consideration and

frequency slowdown in MeS, compared to the static slack time,

produces a maximum of up to 57% energy reduction for cores

and 52.46% for routers. The energy reduction are up to 46.73%

in a single schedule and 33.88% energy reduction of NoCs on

average.

Despite these useful results, future work is needed to provide

additional features like multi-link scheduling, fault-injection

and more support for safety-related scenarios. We are going to

extend and develop these techniques and methods for more

energy-efficient scheduling with reliability and fault-tolerance

in the scenario-based domain.

VIII. REFERENCES

[1] DW BUSINESS, BMW increases R&D spending on e-

cars, autonomous vehicles.

[2] J. Yin, P. Zhou, A. Holey, S. S. Sapatnekar, and A. Zhai,

“Energy-efficient non-minimal path on-chip

interconnection network for heterogeneous systems,” in

ISPLED'12: Proceedings of the international symposium

on low power electronics and design, Redondo Beach,

California, USA, 2012, p. 57.

[3] B. Sorkhpour, A. Murshed, and R. Obermaisser, “Meta-

scheduling techniques for energy-efficient robust and

adaptive time-triggered systems,” in Knowledge-Based

Engineering and Innovation (KBEI), 2017 IEEE 4th

International Conference on, 2017, pp. 143–150.

[4] F. Guan, L. Peng, L. Perneel, H. Fayyad-Kazan, and M.

Timmerman, “A Design That Incorporates Adaptive

Reservation into Mixed-Criticality Systems,” Scientific

Programming, vol. 2017, 2017.

[5] Y. Lin, Y.-l. Zhou, S.-t. Fan, and Y.-m. Jia, “Analysis on

Time Triggered Flexible Scheduling with Safety-Critical

System,” in Chinese Intelligent Systems Conference,

2017, pp. 495–504.

[6] B. Sorkhpour and R. Obermaisser, “MeSViz:

Visualizing Scenario-based Meta-Schedules for

Adaptive Time-Triggered Systems,” in AmE 2018-

Automotive meets Electronics; 9th GMM-Symposium,

2018, pp. 1–6.

[7] B. Sorkhpour, O. Roman, and Y. Bebawy, Eds.,

Optimization of Frequency-Scaling in Time-Triggered

Multi-Core Architectures using Scenario-Based Meta-

Scheduling: VDE, 2019.

[8] A. Murshed, R. Obermaisser, H. Ahmadian, and A.

Khalifeh, “Scheduling and allocation of time-triggered

and event-triggered services for multi-core processors

with networks-on-a-chip,” pp. 1424–1431.

[9] F. Pop, C. Dobre, C. Stratan, A. Costan, and V. Cristea,

“Dynamic Meta-Scheduling Architecture Based on

Monitoring in Distributed Systems,” in International

Conference on Complex, Intelligent and Software

Intensive Systems, 2009, Fukuoka, Japan, 2009, pp. 388–

395.

[10] A. Al-Khateeb, A. Rashid, and R. Abdullah, “An

enhanced meta-scheduling system for grid computing

that considers the job type and priority,” (eng),

Computing : Archives for Scientific Computing, vol. 94,

no. 5, pp. 389–410, http://dx.doi.org/10.1007/s00607-

011-0168-6, 2012.

0%

10%

20%

30%

40%

50%

60%

0 1 2 5 18 38 44 46 49 63 70 80 93Avg

ReFE CRS 0. 16 35 57 45 37 40 27 32 55 32 31 14 35

ReFE RTR 0. 28 35 11 28 41 41 41 35 28 28 52 52 33

FE

SM ID

𝐹𝐸 reduction compared to SM0 and avg

0%

10%

20%

30%

40%

50%

0 1 2 5 18 38 44 46 49 63 70 80 93 Av
g

ReFE Total 0.025.35.23.33.40.41.37.34.35.29.46.41.33.

𝐹
𝐸

SM ID

Total Re𝐹𝐸 in each schedule compared to SM0

and avg

16

[11] B. Sorkhpour, “Scenario-based meta-scheduling for

energy-efficient, robust and adaptive time-triggered

multi-core architectures,” Doctoral thesis, Universität

Siegen, 2019.

[12] Green computing: power optimisation of VFI-based

real-time multiprocessor dataflow applications

(extended version): University of Twente, Centre for

Telematics and Information Technology (CTIT), 2015.

[13] S. A. H. Abdulsalam, Z. Zong, A. Qasem, and M.

Burtscher, Using the greenup, powerup and speedup

metrics to evaluate software energy efficiency. San

Marcos, Texas: Texas State University, 2016.

[14] O. A. Carvalho Junior, S. M. Bruschi, R. H. C. Santana,

and M. J. Santana, “Green Cloud Meta-Scheduling,”

Journal of Grid Computing, vol. 14, no. 1, pp. 109–126,

2016.

[15] H. Castro et al., “Green flexible opportunistic computing

with task consolidation and virtualization,” Cluster

Computing, vol. 16, no. 3, pp. 545–557, 2013.

[16] R. Jejurikar and R. Gupta, “Dynamic slack reclamation

with procrastination scheduling in real-time embedded

systems,” in Proceedings of the 42nd annual Design

Automation Conference, 2005, pp. 111–116.

[17] N. Chatterjee, S. Paul, and S. Chattopadhyay, “Task

mapping and scheduling for network-on-chip based

multi-core platform with transient faults,” Journal of

Systems Architecture, vol. 83, pp. 34–56, 2018.

[18] H. Kopetz, Real-time systems: design principles for

distributed embedded applications: Springer Science &

Business Media, 2011.

[19] G. Fohler, “Changing operational modes in the context

of pre run-time scheduling,” IEICE transactions on

information and systems, vol. 76, no. 11, pp. 1333–1340,

1993.

[20] R. Obermaisser, Ed., Time-triggered communication.

Boca Raton, FL: CRC Press, 2012.

[21] Hermann Kopetz, Fellow, IEEE G¨unther Bauer, “The

Time-Triggered Architecture,”

[22] J. Theis, G. Fohler, and S. Baruah, “Schedule table

generation for time-triggered mixed criticality systems,”

Proc. WMC, RTSS, pp. 79–84, 2013.

[23] H. Isakovic and R. Grosu, “A Mixed-Criticality

Integration in Cyber-Physical Systems: A Heterogeneous

Time-Triggered Architecture on a Hybrid SoC

Platform,” in Computer Systems and Software

Engineering: Concepts, Methodologies, Tools, and

Applications: IGI Global, 2018, pp. 1153–1178.

[24] H. Isakovic and R. Grosu, “A heterogeneous time-

triggered architecture on a hybrid system-on-a-chip

platform,” in Proceedings, 2016 IEEE 25th International

Symposium on Industrial Electronics (ISIE): Santa

Clara Convention Center, Santa Clara, CA, United

States, 08-10 June, 2016, Santa Clara, CA, USA, 2016,

pp. 244–253.

[25] H. F. Sheikh and I. Ahmad, “Simultaneous optimization

of performance, energy and temperature for DAG

scheduling in multi-core processors,” in Green

Computing Conference (IGCC), 2012 International,

2012, pp. 1–6.

[26] J. Hu and R. Marculescu, “Energy-aware communication

and task scheduling for network-on-chip architectures

under real-time constraints,” in Design, Automation and

Test in Europe Conference and Exhibition, 2004.

Proceedings, 2004, pp. 234–239.

[27] D. M. Brooks et al., “Power-aware microarchitecture:

Design and modeling challenges for next-generation

microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–44,

2000.

[28] S. Prabhu, Ocin_tsim - A DVFS Aware Simulator for

NoC Design Space Exploration and Optimization.

[College Station, Tex.]: [Texas A & M University],

2010.

[29] S. Chai, Y. Li, J. Wang, and C. Wu, “An energy-

efficient scheduling algorithm for computation-intensive

tasks on NoC-based MPSoCs,” Journal of

Computational Information Systems, vol. 9, no. 5, pp.

1817–1826, 2013.

[30] D. Li and J. Wu, “Energy-efficient contention-aware

application mapping and scheduling on NoC-based

MPSoCs,” Journal of Parallel and Distributed

Computing, vol. 96, pp. 1–11, 2016.

[31] W. Y. Lee, Y. W. Ko, H. Lee, and H. Kim, “Energy-

efficient scheduling of a real-time task on dvfs-enabled

multi-cores,” in Proceedings of the 2009 International

Conference on Hybrid Information Technology, 2009,

pp. 273–277.

[32] K. Han, J.-J. Lee, J. Lee, W. Lee, and M. Pedram, “TEI-

NoC: Optimizing Ultralow Power NoCs Exploiting the

Temperature Effect Inversion,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 37, no. 2, pp. 458–

471, 2018.

[33] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design

of router microarchitectures in on-chip networks,” in

36th International symposium on microarchitecture, San

Diego, CA, USA, 2003, pp. 105–116.

[34] U. U. Tariq, H. Wu, and S. Abd Ishak, “Energy-Aware

Scheduling of Conditional Task Graphs on NoC-Based

MPSoCs,” in Proceedings of the 51st Hawaii

International Conference on System Sciences, 2018.

[35] B. D. de Dinechin and A. Graillat, “Network-on-chip

service guarantees on the kalray MPPA-256 bostan

processor,” in Proceedings of the 2nd International

Workshop on Advanced Interconnect Solutions and

Technologies for Emerging Computing Systems -

AISTECS '17, Stockholm, Sweden, 2017, pp. 35–40.

[36] KALRAY Corporation, Kalray’s MPPA network-on-

chip. [Online] Available:

http://www.kalrayinc.com/portfolio/processors/.

[37] R. Lazimy, “Mixed-integer quadratic programming,”

Mathematical Programming, vol. 22, no. 1, pp. 332–

349, 1982.

[38] IBM, IBM ILOG CPLEX Optimization Studio CPLEX

User’s Manual: IBM, 1987-2016.

[39] A. Schrijver, Theory of linear and integer programming:

John Wiley & Sons, 1998.

[40] A. Schrijver, Theory of linear and integer programming.

Chichester: John Wiley and Sons, 2000.

[41] P. Benner, P. Ezzatti, E. Quintana-Ortí, and A. Remón,

“On the Impact of Optimization on the Time-Power-

17

Energy Balance of Dense Linear Algebra

Factorizations,” in Algorithms and Architectures for

Parallel Processing.

[42] A. Majd, G. Sahebi, M. Daneshtalab, and E.

Troubitsyna, “Optimizing scheduling for heterogeneous

computing systems using combinatorial meta-heuristic

solution,” in 2017 IEEE SmartWorld: Ubiquitous

Intelligence & Computing, Advanced & Trusted

Computed, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and

Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)

: 2017 conference proceedings : San Francisco Bay

Area, California, USA, August 4-8, 2017, San Francisco,

CA, 2017, pp. 1–8.

[43] A. C. Persya and T. R. G. Nair, “Model based design of

super schedulers managing catastrophic scenario in hard

real time systems,” in 2013 International Conference on

Information Communication and Embedded Systems

(ICICES 2013), Chennai, pp. 1149–1155.

[44] T. Tiendrebeogo, “Prospect of Reduction of the

GreenHouse Gas Emission by ICT in Africa,” in e-

Infrastructure and e-Services.

[45] A. Carvalho Junior, M. Bruschi, C. Santana, and J.

Santana, “Green Cloud Meta-Scheduling : A Flexible

and Automatic Approach,” (eng), Journal of Grid

Computing : From Grids to Cloud Federations, vol. 14,

no. 1, pp. 109–126, http://dx.doi.org/10.1007/s10723-

015-9333-z, 2016.

[46] H. Jung, H. Oh, and S. Ha, “Multiprocessor scheduling

of a multi-mode dataflow graph considering mode

transition delay,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 22,

no. 2, p. 37, 2017.

[47] M. Ma and R. Sakellariou, “Reducing Code Size in

Scheduling Synchronous Dataflow Graphs on Multicore

Systems,” in PARMA-DITAM 2018 proceedings: 9th

Workshop on Parallel Programming and Run-Time

Management Techniques for Many-core Architectures ;

7th Workshop on Design Tools and Architectures for

Multicore Embedded Computing Platforms : January 23,

2018, Manchester, United Kingdom, Manchester, United

Kingdom, 2018, pp. 57–62.

[48] P. Eitschberger, S. Holmbacka, and J. Keller, “Trade-Off

Between Performance, Fault Tolerance and Energy

Consumption in Duplication-Based Taskgraph

Scheduling,” in Architecture of Computing Systems –

ARCS 2018.

[49] P. Eitschberger, “Energy-efficient and Fault-tolerant

Scheduling for Manycores and Grids,” Fakultät für

Mathematik und Informatik, FernUniversität in Hagen,

Hagen, 2017.

[50] K. M. Tarplee, R. Friese, A. A. Maciejewski, and H. J.

Siegel, “Efficient and Scalable Pareto Front Generation

for Energy and Makespan in Heterogeneous Computing

Systems,” in Recent Advances in Computational

Optimization.

[51] R. Lent, “Grid Scheduling with Makespan and Energy-

Based Goals,” Journal of Grid Computing, vol. 13, no.

4, pp. 527–546, 2015.

[52] A. Sarwar, “Cmos power consumption and cpd

calculation,” Proceeding: Design Considerations for

Logic Products, 1997.

[53] S. Kaxiras and M. Martonosi, “Computer Architecture

Techniques for Power-Efficiency,” Synthesis Lectures

on Computer Architecture, vol. 3, no. 1, pp. 1–207,

2008.

[54] P. Bhattacharjee, A. J. Mondal, A. Majumder, and S. K.

Metya, “Amplifier design and optimization using Non

Linear Programming,” in Proceedings of the 26th

International Conference RADIOELEKTRONIKA 2016:

April 19-20, 2016, Košice, Slovakia, Kosice, Slovakia,

2016, pp. 22–27.

[55] D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl,

“Recent Advances in Quadratic Programming

Algorithms for Nonlinear Model Predictive Control,”

Vietnam Journal of Mathematics, vol. 46, no. 4, pp. 863–

882, 2018.

[56] D. Ahlbom, Quadratic Programming Modelsin Strategic

Sourcing Optimization. Available: http://www.diva-

portal.org/smash/get/diva2:1159097/FULLTEXT01.

[57] H. D. Sherali and C. H. Tuncbilek, “A reformulation-

convexification approach for solving nonconvex

quadratic programming problems,” (eng), Journal of

global optimization : an international journal dealing

with theoretical and computational aspects of seeking

global optima and their applications in science,

management and engineering, vol. 7 (1995), pp. 1–31,

http://dx.doi.org/10.1007/BF01100203, 1995.

[58] D. Axehill, “Applications of integer quadratic

programming in control and communication,”

Institutionen för systemteknik.

[59] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G.

Woodhull, “Graphviz—open source graph drawing

tools,” in International Symposium on Graph Drawing,

2001, pp. 483–484.

