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 9 
Abstract: 10 

Energy smart meters have become very popular in monitoring and smart energy management applications. 11 

However, the acquired measurements except the energy consumption information may also carry information 12 

about the residents’ daily routine, preferences and profile. In this article we investigate the potential of extracting 13 

information from smart meters related to residents’ security and privacy sensitive information. Specifically, using 14 

methodologies for load demand prediction, non-intrusive load monitoring and elastic matching, evaluation of 15 

extraction of information related to house occupancy, multimedia watching detection, socioeconomic and health 16 

profiling of residents was performed. The evaluation results showed that the aggregated energy consumption 17 

signals contain information related to residents’ privacy and security, which can be extracted from the smart meter 18 

measurements. 19 

Keywords: consumer privacy, home security, smart meters, non-intrusive load monitoring. 20 

1. Introduction 21 

In the last decade smart meters have been extensively employed in consumer households, with 60% of the houses 22 

in the United States [1] and 50% of the houses in Europe [2] having smart meters installed. Based on the additional 23 

information, in the form of the aggregated energy consumption as measured by the smart meter, several techniques 24 

within the area of Information and Communication Technology (ICT) have been proposed. For example, smart 25 

meter data have been used for load scheduling, managing or rescheduling the usage of devices in order to reduce 26 

electricity bills [3], e.g. by using some appliances like washing machines at night time during which electricity 27 

costs are usually lower [4]. Conversely, smart meter data are also utilized by energy companies in order to estimate 28 

grid load and to build accurate models for long-term and short-term load forecasting [5, 6]. 29 



In detail, smart meters, also referred to as smart plugs, are devices used to measure electrical power/energy 1 

consumption with resolution in the order of seconds to minutes. Smart meters measure the voltage-drop over the 2 

device/circuit and the current flowing through the device/circuit with an arbitrary sampling frequency 𝑓𝑓𝑠𝑠 which 3 

usually varies from 1⁄60 Hz to 30 kHz [7]. Higher sampling frequencies are usually preferred, since they contain 4 

more detailed information about the energy consumption, however they increase linearly the amount of acquired 5 

data and exponentially the cost of hardware [8]. With the sampling rate in the order of seconds data handling for 6 

several months/years becomes feasible and hardware costs are relatively low. Specifically, two different smart 7 

metering configurations are possible to monitor the energy consumption of a household or building on device 8 

level. First, using only one smart meter to measure the aggregated energy consumption of a household and 9 

applying signal separation methods to determine the consumption per appliance, which is referred to as a Non-10 

Intrusive Load Monitoring (NILM) [9]. Conversely, in Intrusive Load Monitoring (ILM) one smart meter per 11 

device is used, thus measuring the energy consumption directly and separately for each device. Compared to ILM, 12 

NILM has the advantage of requiring less hardware (ILM uses one smart meter per device which is impractical 13 

for most households) as well as meets consumers’ acceptability with respect to privacy conserving [10, 11]. 14 

However, even when just measuring the aggregated signal, the ability to provide real-time information through 15 

smart-metering and determining detailed household energy consumption, rises consumers’ privacy and security 16 

concerns and makes energy data protection prominent [12, 13]. To address these issues, energy monitoring must 17 

be carried out cost effectively and under the consideration of privacy and security concerns. Specifically, in [14] 18 

exploiting occupancy related information as well as location tracking within a household smart meters were 19 

identified as a sever information leak when using high-frequency smart metering. In order to increase the security 20 

of smart metering systems with respect to extraction of events and thus estimation of occupancy, location and 21 

activity in a household, several approaches have been proposed in literature. Specifically, detailed issues of smart 22 

metering within consumer homes and smart grid architectures have been presented in [15, 16]. Accordingly, 23 

software and hardware based solutions have been presented through protocols identifying trusted smart meters 24 

[12], smoothing patterns and minimization of mutual information based on local storages [17]. 25 

Extraction of residents’ individual information from smart meters has been studied in the bibliography. For 26 

example in some approaches the smart meter data is utilized for occupancy estimation and accurate tracking of a 27 

person’s location within their house, e.g. by detecting changes of lighting or other frequently used devices [14]. 28 

Furthermore, estimation of working routines and number of people living in a household has been evaluated [12, 29 

14]. Additionally, smart meters have been used for identification of multi-media content and TV channel 30 



estimation, both from isolated device signals [18] and from the aggregated smart meter signal [19]. Moreover, 1 

concepts for e-health monitoring based on smart-meter data have been proposed recently [20]. 2 

With smart-meters being able to be utilized in extraction of residents’ individual information, as described 3 

above, extraction of security relevant information has been studied as residents are concerned about the protection 4 

of their private information, i.e. occupancy or routines [21]. Specifically, in [22] a machine learning based solution 5 

utilizing Random Forests (RF) as classifier for occupancy detection is presented. Furthermore, the approaches in 6 

[23, 24] present advanced occupancy estimations for limited ground truth data [23] and under consideration of 7 

renewable energy generation within the same household [24]. Moreover, an extensive comparison of machine 8 

learning classifiers with optimal hyperparameters was presented in [25]. Additionally, a general review of 9 

information extraction from smart meters is given in [26], while extraction of employment status based on energy 10 

consumption was presented in [27]. In view of that , to prevent the extraction of information filtering approaches, 11 

mainly based on large energy storages, have been proposed. In specific, the approach presented in [28] proposes 12 

a thermal energy storage, while the work in [29] compares different chemical storages on their capability to filter 13 

the energy consumption signal.   14 

In this article we investigate if and how accurately smart meters can be used to estimate information about 15 

household residents’ profile and their daily indoors activities and habits as well as how much dangerous these 16 

extracted data are if they fall in the wrong hands in terms of invade of privacy and threaten of security. In detail, 17 

four different scenarios have been evaluated, namely occupancy estimation through either load forecasting or non-18 

intrusive load monitoring, multimedia content identification and extraction of socio-economic and health-related 19 

information. The remainder of this paper is organized as follows. In Section 2 a high-level conceptual architecture 20 

for non-intrusive information extraction based on smart meters is described. In Section 3 evaluation of different 21 

types of extraction of residents’ privacy and security sensitive information are presented. Finally, discussion and 22 

conclusion are provided in Section 4. 23 

2. Non-Intrusive Home Information Extraction Architecture using Smart Meters 24 

The extraction of information related to the privacy and the security of individuals, residents of a house, using a 25 

non-intrusive setup is discussed in this Section. The conceptual block diagram for extraction of information based 26 

on the aggregated energy consumption measurements of an NILM setup is illustrated in Fig. 1.  27 



 

Fig. 1: Conceptual block diagram for extraction of information based on the aggregated energy consumption measurements, including a 

power plant, a transmission channel and a consumer household with M appliances. Additionally, the total power consumption of the 

household is measured by a single smart meter and processed by AI algorithms. Based on a set of machine learning models information 

extraction within the household is performed. 

 1 

As shown in Fig. 1 the high-level grid architecture is transferring energy from a power plant to a consumer 2 

household consisting of a set of 𝑀𝑀 appliances. In this architecture a single smart meter is used in order to measure 3 

the aggregated power consumption with sampling period in the order of 30 minutes up-to 1 second. Based on the 4 

aggregated measurements, several machine learning and Artificial Intelligence (AI) based algorithms have been 5 

proposed in literature in order to extract information or detect events and patterns “hidden” in the energy 6 

consumption signal of a household. Specifically, three popular methods to process the extracted information are 7 

load prediction [30], Non-Intrusive Load Monitoring [9] and elastic matching [31]. 8 

As regards load prediction, it is used for ahead prediction of energy values and thus was evaluated for a wide 9 

range of application including, grid stability [4], demand side management [32, 33] and optimal usage of local 10 

storages [34, 35]. In the NILM task the aim is to extract the power consumption per appliance based on the 11 

aggregated measurements [9], thus investigating the usage patterns and activity of certain devices within a 12 

household [36] in order to perform load management and demand shifting. However, as usage patterns are 13 

extracted NILM operation has raised privacy and security questions, thus an architecture trying to minimize 14 

mutual information was proposed in [35]. Regarding elastic matching algorithms, Dynamic Time Warping (DTW) 15 

[37] and Multi Variance Matching (MVM) [31] have been proposed in order to find similarities between the 16 

measured smart meter signal and a set of reference signals, thus also attempting to extract information. In addition, 17 



the extraction of appliance activations for the NILM case has been considered in [31] as well as the identification 1 

of different TV channels in [19].  2 

Despite the above mentioned previous works, there is no smart meter based setup in the literature describing 3 

the capabilities of smart metering technology in extracting residents’ individual privacy-sensitive and security-4 

threating information, as for example the social class of residents and consequently their living conditions and 5 

habits, based on their aggregate energy consumption data. We deem the conceptual block diagram of Fig. 1 to 6 

serve as a testbed architecture for evaluating the privacy and security issues raised by the use of energy smart 7 

meters mainly in households as well as in other types of buildings. 8 

 9 

3. Experimental Evaluation 10 

The experimental evaluation to investigate if and how accurately smart meters can be used to estimate information 11 

about household residents’ profile and their daily indoors activities and habits, according to the conceptual 12 

diagram presented in Section 2, is based on the block diagram shown in Fig. 2. 13 

 

Fig. 2: Block diagram of the proposed experimental evaluation based on the aggregated power consumption of a household. Based on 

the three algorithms NILM, load prediction and elastic matching, information regarding occupancy, economic data, health data and 

digital information are extracted. 

 14 



As illustrated in Fig. 2 the generalized architecture for extraction of residents’ information consists of three 1 

main stages, namely data acquisition including relevant pre-processing, modelling and information extraction. In 2 

this work three AI based techniques, namely NILM, load prediction and elastic matching, are utilized in order to 3 

build models used for extraction of information. Specifically, information regarding four categories, namely 4 

occupancy, economics, health and digital based features is extracted. 5 

In order to evaluate the performance of the different approaches, five different accuracy metrices are used. In 6 

detail, three metrices will be used in order to evaluate regression-based models, namely the Mean Absolute Error 7 

(MAE), the Root Mean Square Error (RMSE) and the Pearson correlation coefficient R, as defined in Eq. 1 to Eq. 8 

3: 9 
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where 𝑥𝑥𝑡𝑡 is the ground-truth value of an arbitrary variable at time step 𝑡𝑡, 𝑥𝑥�𝑡𝑡 is the model prediction and  𝑥̅𝑥 and 𝑥̅𝑥� 10 

are the mean values of 𝑥𝑥 and 𝑥𝑥� , respectively. 11 

While for the case of classification-based approaches two different accuracy metrices are used, namely the 12 

classification Accuracy (ACC) and the 𝐹𝐹1-score (𝐹𝐹1) respectively, as defined in Eq. 4 and Eq. 5: 13 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (4) 

𝐹𝐹1 = 2 ∙
𝑇𝑇𝑇𝑇

2 ∙ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5) 

where TP are the True Positives, TN are the True Negatives, FP are the False Positives and FN are the False 14 

Negatives respectively. 15 

 16 

3.1. Occupancy Estimation through Load Forecasting  17 



As discussed in Section 2 occupancy information for a household is a privacy and security sensitive information 1 

and we investigated if it can be extracted with sufficiently high accuracy from the aggregated signal of a household 2 

or building. The evaluated architecture for occupancy estimation based on load forecasting is illustrated in Fig. 3. 3 

 

Fig. 3: Block diagram of the evaluated architecture for occupancy estimation based on load prediction. 

 4 

As illustrated in Fig. 3 the architecture consists of a smart meter measuring the aggregated power consumption 5 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎, pre-processing (e.g. down-sampling or filtering) transforming the aggregated signal to 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎′ , framing (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 ), 6 

feature extraction transforming the frame to a multi-dimensional feature vector 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 , load prediction giving an 7 

estimate for the power consumption 𝑝̂𝑝𝑎𝑎𝑎𝑎𝑎𝑎, and a rule based algorithm for the occupancy estimation. The ahead 8 

prediction of an energy consumption sample 𝑤𝑤 of a target house 𝑚𝑚 of the community can be defined as: 9 

𝑝̂𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡 + 𝑤𝑤) = 𝑟𝑟𝜃𝜃(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡0: 𝑡𝑡))  (6) 

 10 

where [𝑡𝑡0: 𝑡𝑡] is the previous time interval used to predict the 𝑤𝑤𝑡𝑡ℎ samples ahead (𝑡𝑡 + 𝑤𝑤), 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎m (𝑡𝑡0: 𝑡𝑡) ∈ ℝ(𝑡𝑡−𝑡𝑡0+1) 11 

is the energy consumption of the previous time window, 𝑝̂𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡 + 𝑤𝑤) ∈ ℝ1 its step-ahead prediction of the 𝑤𝑤𝑡𝑡ℎ 12 

sample and 𝑟𝑟(∙) a regression model (e.g. Linear Regression (LR), Support Vector Regression (SVR), Long Short 13 

Term Memory (LSTM), etc.) with a set of free parameters 𝜃𝜃.  14 

We expect that across different households in the community there are common energy consumption trends 15 

and motifs as well as interdependencies due to potential socioeconomic similarities or in between them social 16 

relationships, which potentially have time lags between them or appear simultaneously [38]. This motivates us to 17 

use the energy consumption history of 𝑀𝑀 − 1 other households as an additional input of information to enhance 18 

the prediction of energy load demand of the target house, similarly to the architecture we proposed in [39]. In that 19 

case the formalization of the problem is expressed as: 20 



𝑝̂𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡 + 𝑤𝑤) = 𝑟𝑟𝜃𝜃(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡0: 𝑡𝑡), 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡0: 𝑡𝑡)) 
(7) 

with 1 ≤ 𝑚𝑚 < (𝑀𝑀 − 1) 

 

with 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎m (𝑡𝑡0: 𝑡𝑡) being the energy consumption signal in the time window [𝑡𝑡0: 𝑡𝑡] for the 𝑚𝑚𝑡𝑡ℎ neighboring 1 

household of the community. Given that prediction models are trained from several households’ data, the use of 2 

socioeconomic information of the consumers of the target house would result in load demand forecasting models 3 

adapted to the characteristics of each socioeconomic group of consumers. Socioeconomic information enhanced 4 

models are expected to predict more precisely the energy consumption behaviour of a house [39, 40] and the 5 

prediction can be formalized as: 6 

𝑝̂𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡 + 𝑤𝑤) = 𝑟𝑟𝜃𝜃(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡0: 𝑡𝑡), 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚 (𝑡𝑡0: 𝑡𝑡), 𝑠𝑠𝑚𝑚) 
(8) 

with 1 ≤ 𝑚𝑚 < (𝑀𝑀 − 1) 

 7 

where 𝑠𝑠𝑚𝑚 ∈ ℝ𝐾𝐾 is the K-dimensional socioeconomic information of the target house.  8 

To evaluate the presented architecture the publicly available dataset “Smart Meters in London” (SMinL) [41] 9 

was used, utilizing population, housing finance, transport and environment as socioeconomic features similarly 10 

as in [39]. Specifically, for our evaluation the year 2013 was used, since year 2012 has several gaps in the 11 

measurements, using 50 households per ACRON group, thus a total of 700 households. Furthermore we excluded 12 

ACRON-{B, K, M} as they have missing samples in the selected time interval. Especially, according to the setups 13 

described in Eq. 6-8 three different experimental protocols will be evaluated, referred to as Baseline (BL) as 14 

described in Eq. 6, Inter-Household (IH) as described in Eq. 7 and Socio-Economic (SO) as described in Eq. 8. 15 

The regression function 𝑟𝑟𝜃𝜃(∙) will be modelled through an LSTM consisting of two layers with 16 nodes per layer 16 

and hyperbolic tangents (tanh) as activation functions. The free parameters were determined on a bootstrap 17 

training dataset utilizing grid search [39]. The results for the three different experimental protocols and up to 18 

W=48 samples (i.e. up to 1 day ahead) ahead prediction is evaluated in terms of MAE and are illustrated in Fig.  19 

4.  20 



 

Fig. 4.  Load predictions for different number of steps ahead predictions and different load prediction scenarios: baseline, inter household  

and socio-economic. Step ahead prediction is measured in samples per half hour.  

 1 

As can be seen in Fig. 4 the IH and SO protocols significantly outperform the baseline system. In detail, for 2 

step ahead greater than 40 samples (i.e. 20 hours) the prediction error of the baseline system increases to 5%, 3 

while the IH and SO protocols retain the error below 2%. 4 

Based on an accurate ahead prediction of energy consumption occupancy information extraction can be 5 

performed, especially two different approaches can be thought of. First, based on the ahead prediction patterns or 6 

time intervals can be found where consumption is low, thus a set of rule-based methods or thresholds can be 7 

applied in order to obtain occupancy information. Second, based on the changes in predicted energy consumption 8 

a second Machine Learning (ML) based predictor could be utilized in order to classify time frames of predicted 9 

energy consumption. 10 

 11 

3.2. Occupancy Prediction through Device Operation Identification 12 

Next to the possibility of extracting occupancy information based on ahead prediction of the aggregated load 13 

as discussed in Section 3.1, NILM can be utilized to perform occupancy identification based on device operation. 14 

In the NILM task the energy consumption measurements of one sensor are disaggregated on device level, within 15 



time windows (frames) [42]. Specifically, for a set of 𝑀𝑀 − 1 known devices each consuming power 𝑝𝑝𝑚𝑚 with 1 ≤1 

𝑚𝑚 ≤ 𝑀𝑀, the aggregated power 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 measured by the sensor will be: 2 

 3 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓(𝑝𝑝1 , … , 𝑝𝑝𝑀𝑀−1,𝑔𝑔) = � 𝑝𝑝𝑚𝑚

𝑀𝑀−1

𝑚𝑚=1

+ 𝑔𝑔 = � 𝑝𝑝𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 (9) 

 4 

 5 

where 𝑔𝑔 = 𝑝𝑝𝑀𝑀 is a ‘ghost’ power consumption (noise) usually consumed by one or more unknown devices and 6 

𝑓𝑓(∙) is the aggregation function. In NILM the goal is to find estimations, 𝑝̂𝑝𝑚𝑚 and 𝑔𝑔� = 𝑝̂𝑝𝑀𝑀, of the power 7 

consumption of each device 𝑚𝑚 using a disaggregation function 𝑓𝑓−1(∙) with minimal estimation error, i.e. 8 

 9 

𝑃𝑃� = {𝑝̂𝑝1, 𝑝̂𝑝2, … , 𝑝̂𝑝𝑀𝑀−1,𝑔𝑔�} = 𝑓𝑓−1(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎) 

(10) 
argmin

𝑓𝑓−1
{�𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 −�𝑝̂𝑝𝑚𝑚

𝑀𝑀

1

�

2

} 

 10 

In order to map the appliances estimates 𝑃𝑃� to a set of binary appliance states 𝑆̂𝑆 = {𝑠̂𝑠1, 𝑠̂𝑠2, … , 𝑠̂𝑠𝑀𝑀−1, 𝑠̂𝑠𝑀𝑀}, 11 

thresholding is applied separately for each appliance estimate 𝑝̂𝑝𝑚𝑚 as defined in Eq. 11. 12 

 13 

𝑠̂𝑠𝑚𝑚 = 𝜃𝜃(𝑝̂𝑝𝑚𝑚) = �1   𝑖𝑖𝑖𝑖 𝑝̂𝑝𝑚𝑚 ≥ 𝜃𝜃 
0    𝑖𝑖𝑖𝑖 𝑝̂𝑝𝑚𝑚 < 𝜃𝜃 (11) 

 14 

The block diagram of the proposed NILM architecture for occupancy estimation is illustrated in Fig. 5.  15 

 



Fig. 5: Block diagram of the proposed architecture for occupancy estimation based on NILM. In detail the model consists of pre-

processing, framing, feature extraction, load prediction and occupancy estimation. 

 1 

In detail, the architecture illustrated in Fig. 5 consists of pre-processing, framing, feature extraction, device 2 

detection and occupancy estimation based on the device operation. In detail, for the device estimation stage two 3 

different ML models have been evaluated, namely a LSTM architecture and a CNN architecture [43]. The layer 4 

structure and the free parameters for both architectures can be found in Table I. 5 

TABLE 1: LAYER STRUCTURE FOR NILM ARCHITECUTRE FOR LSTM AND CNN NETWORK STRUCTURES RESPECTIVELY. COVOLUTIONAL 6 

LAYERS ARE OF THE FORM CONV2D (#-FILTERS, KERNEL, PADDING, STRIDES, ACTIVATION) 7 

Layer number LSTM CNN [43] 
1 Input(64, 1, 1) Input(64, 1, 1, 1) 
2 LSTM(128, sequences=True) Conv2d(30,10,’same’,1, relu) 
3 LSTM(256) Conv2d(30,8,’same’,1, relu) 
4 Dense(128, activation='tanh') Conv2d(40,6,’same’,1, relu) 
5 Dense(1, activation=’linear’) Conv2d(50,5,’same’,1, relu) 
6 - Conv2d(50,5,’same’,1, relu) 
7 - Flatten 
8 - Dense(1024, activation='relu') 
9 - Dense(1, activation='linear') 

   8 

As illustrated in Table 1 both the LSTM and the CNN structure take time frames of size 64 as input, while the 9 

core of the architectures consists of LSTM layers and CNN layers respectively. Additionally, each architecture 10 

has a dense layer at the end using a linear function as activation. 11 

In order to evaluate the proposed architecture, house two of the publicly available Reference Energy 12 

Disaggregation Data (REDD) dataset was used for evaluation. In detail, the first half of the dataset was used for 13 

training and the second half for testing, while the threshold of an appliance activation was set to 50 W equally 14 

across all appliances. The results for both architecture as well as for ACC and 𝐹𝐹1 score are tabulated in Table 2. 15 

TABLE 2: NILM RESULTS IN TERMS OF ACC AND F1 SCORE FOR HOUSE 2 OF THE REDD DATABASE. 16 

Device LSTM CNN 
ACC F1 ACC F1 

Kitchen outlets 99.65% 99.48% 99.61% 99.48% 
lighting 91.58% 92.22% 87.49% 89.13% 
stove 99.57% 99.35% 99.57% 99.35% 

microwave 92.87% 90.40% 93.31% 91.20% 
Washer-dryer 100.00% 100.00% 100.00% 100.00% 

Kitchen outlets 99.13% 98.70% 99.37% 99.33% 
refrigerator 95.18% 95.18% 95.30% 95.30% 
dishwasher 98.99% 98.49% 98.99% 98.49% 



disposal 99.99% 99.99% 99.99% 99.99% 
AVG 97.44% 97.09% 97.07% 96.92% 

 1 

As can be seen in Table 2 the LSTM architecture slightly outperforms the CNN architecture reporting an 2 

accuracy of 97.44% (+0.37%) and an 𝐹𝐹1 score of 97.08% (+0.17%) respectively. Specifically, it must be noted 3 

that all appliances accuracies are above 90% for LSTM setup, thus a very accurate estimation of ON/OFF states 4 

of appliances can be determined. 5 

Based on the above the estimation of certain device can give indication of user presence within a household, 6 

especially three device groups must be distinguished. The first group consists of appliances, which are operating 7 

independently of user presence, e.g. fridges or stoves. The second group consists of devices which might operate 8 

on time control or the user might start them and then leave the house while they are operating, e.g. dishwasher or 9 

washing machine. The third group consists of devices, which are only operating with user control, e.g. the 10 

microwave or the disposal. Based on the above, user occupancy can be very well detected when focusing on the 11 

operation of appliances of the third group. 12 

  13 

3.3. Multimedia Identification 14 

Except the extraction of occupancy information, digital and especially multimedia related information is 15 

sensitive to residents’ privacy as discussed in Section 2. The presented architecture in this Section deems to 16 

investigate the potential of identifying multimedia content using the aggregated energy consumption signal 17 

acquired outside the house from a smart meter installed after the main inlet of the household. The conceptual 18 

diagram of the architecture for identification of multimedia content explicitly using smart meter’s energy data is 19 

illustrated in Fig. 6. 20 

 



Fig. 6: Block diagram of the evaluated architecture for identification of multimedia content from a single smart meter using non-intrusive 

load monitoring. 

 1 

The architecture illustrated in Fig. 6 consists of six steps, namely pre-processing, framing, feature extraction, 2 

DC offset removal, elastic matching and video channel detection. As can be seen in Fig. 6 a smart meter is 3 

measuring the aggregated energy consumption 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡). The aggregated signal is the sum of the energy 4 

consumption of all the devices within the house and in the present setup we consider the TV signal displaying a 5 

video as the target device with energy consumption 𝑝𝑝(𝑡𝑡) and all other home appliances having energy 6 

consumption 𝑁𝑁(𝑡𝑡), i.e. 7 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) + 𝑁𝑁(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) + ∑ 𝑛𝑛𝑖𝑖(𝑡𝑡)𝑀𝑀−1
𝑖𝑖=1  (12) 

where 𝑀𝑀 is the number of all appliances within the household, including the multimedia playing device (TV, 8 

monitor etc.) and the other devices, e.g. fridge, washing machine, operating in the considered household. 9 

 10 

Subsequently, the aggregated signal, 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), is frame blocked in frames of constant length equal to 𝑊𝑊 samples 11 

𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏  and transferred to a higher dimensional feature space resulting into 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 ∈ ℝ𝑊𝑊𝑊𝑊𝑊𝑊  where 𝐹𝐹 is the feature 12 

dimensionality. Furthermore, from every frame, the DC offset is removed, resulting to 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏 . The reason for the 13 

DC offset removal is the fact that the majority of the most common home appliances like fridges, refrigerators, 14 

boilers, electric heating bodies, electric ovens etc., consume energy at the order of 200-2000 Watts while the 15 

average energy consumption of monitor is at the order of 25-250 Watts. Therefore, the main part (DC part) of the 16 

energy consumption signal within each frame will come from devices with high energy consumption and by 17 

removing it in the remaining residual signal, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏 ∈ ℝ𝑊𝑊𝑊𝑊𝑊𝑊 , the contour shape characteristics of the energy signal 18 

of devices with lower energy consumption like the TV or a monitor will be shown more clearly. 19 

In order to find estimates for the multimedia in the measured signal 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏  an elastic matching function 𝑔𝑔(∙) is 20 

used to compare the measured signal with a set of reference signals 𝑅𝑅𝑚𝑚 ∈ ℝ𝑊𝑊𝑊𝑊𝑊𝑊  measured at a server base station 21 

as illustrated in Fig. 6 and described in Eq. 13. 22 

𝐶𝐶ℎ𝜏𝜏 = argmin
1≤𝑚𝑚≤𝑀𝑀

{𝑔𝑔(𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏 ,𝑅𝑅𝑚𝑚 )}                     (13) 

where 𝐶𝐶ℎ𝜏𝜏 is the estimated of the multimedia signal for the 𝜏𝜏𝑡𝑡ℎ frame. 23 



In order evaluate the investigated architecture the experimental setup and data of [19] is used and the estimation 1 

for a set of videos is performed using four different elastic matching algorithms, namely Dynamic Time Warping 2 

(DTW) [44], soft Dynamic Time Warping (sDTW) [44], Global Alignment Kernel (GAK) [45] and Multi 3 

Variance Matching (MVM) [46, 47]. In detail, two different monitors have been used separately for the measured 4 

aggregated signals 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟  and the reference signals 𝑅𝑅𝑚𝑚  for each of the M appliances. The results are illustrated in 5 

Fig. 7. 6 

 

Fig. 7: Video Identification results for four different elastic matching algorithms and two different metrices. 

 7 

As illustrated in Fig. 7 MVM outperformed all other elastic matching algorithms for both accuracy values as 8 

well as 𝐹𝐹1 scores respectively, which is in agreement with our previous study [31] where MVM was also found to 9 

perform well on the NILM task. In detail, DTW, sDTW and MVM achieve accuracy and 𝐹𝐹1 scores above 80%, 10 

significantly outperforming GAK with score around 60% respectively. Based on the results illustrated in Fig. 7 11 

an extraction of multimedia information, and especially video signals, based on measurements of the aggregated 12 

energy consumption signal is feasible with high accuracy. For example, this information can be used to collect 13 

information regarding residents’ preferences which is directly related to individuals’ privacy and raises issues 14 

especially if this information about multimedia and/or TV channel watching preferences and their corresponding 15 

content are not monitored with given consent from the resident. 16 

 17 

3.4. Socioeconomic Information 18 



Apart from extraction of occupancy information as well as digital and multimedia related information also the 1 

socio-economic status of the residents of a household is sensitive information as discussed in Section 2. The 2 

presented architecture in this Section investigates the potential of extracting socio-economic and health related 3 

information, e.g. financial situation of a household or smoking habit, based on the aggregated energy consumption 4 

of a household. The evaluated architecture is shown in Fig. 8. 5 

 

Fig. 8: Block diagram of the evaluated architecture for extraction of socio-economic and health-related information of the residents using 

a signal smart meter and non-intrusive load monitoring. 

 6 

As illustrated in Fig. 8 the evaluated architecture consists of four steps, including smart metering, pre-7 

processing, framing and prediction of socio-economic and health information. As can be seen in Fig. 8 a smart 8 

meter is measuring the aggregated energy consumption 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡), which is used as input to the machine learning 9 

model. The relationship between the input energy consumption 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 and the socio-economic or health-related 10 

features can then be learned based on a set of labelled training samples ��𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝜏𝜏 ,𝐹𝐹𝜏𝜏��, with 𝜏𝜏 = 1, … ,𝑇𝑇, where 𝐹𝐹𝜏𝜏 11 

denotes the 𝜏𝜏𝑡𝑡ℎ sample of a socio-economic or health related feature, i.e. the average income of a household or 12 

the average age of the residents. Based on the above a machine learning regression model 𝑟𝑟(∙) can be used to 13 

estimate the targets (socio-economic features) 𝑟𝑟: 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎  → 𝐹𝐹 from the inputs (aggregated energy consumption 14 

signal) using an arbitrary loss function, e.g. MAE. The estimation of a feature can then be written as 15 

𝐹𝐹�𝑛𝑛 = 𝑟𝑟(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎) (14) 

 16 

where 𝐹𝐹�𝑚𝑚 is the estimate for the 𝑛𝑛𝑡𝑡ℎ feature respectively. 17 



For the information extraction stage two different machine learning algorithms have been utilized, namely a 1 

LSTM and a Bidirectional LSTM (BiLSTM) architecture [48]. The network structure of the two architectures is 2 

tabulated in Table 3. 3 

TABLE 3: LAYER STRUCTURE OF LSTM AND BILSTM FOR EXTRACTION OF SOCIO-ECONOMIC AND HEALTH INFORMATION. 4 

Layer number LSTM BiLSTM [48] 
1 Input(336, 1, 1) Input(336, 1, 1) 
2 LSTM(128, sequences=True) Conv1D(16, 4, padding=’same’, strides=1) 
3 LSTM(256, sequences=False) BiLSTM(128, sequences=True) 
4 Dense(128, activation='tanh') BiLSTM(256, sequences=False) 
5 Dense(1, activation='linear') Dense(128, activation='tanh') 
6 - Dense(1, activation='linear') 

 5 

As illustrated in Table 3, both the LSTM and the BiLSTM architecture take input vectors of size 336 (one week 6 

of data with sampling rate of 30 min), while the core of the architectures consist of LSTM layers and BiLSTM 7 

layers respectively, with each architecture having a dense layer at the end using a linear activation function. 8 

In order to evaluate the architecture, the ‘SMinL’ database [49] has been utilized as it is, to the best of the 9 

authors knowledge, the only database including socio-economic and health-related data together with the energy 10 

consumption data. In detail, the ‘SMinL’ database provides tagging for the categories: population, housing, 11 

finance, transport, environment, leisure time, digital, marketing, health, contact, safety, education, shopping, 12 

family and economy. The tagging is provided for 17 groups of households, which are referred to as ACRON 13 

groups. Specifically, for our evaluation the energy consumption data recordings of the complete year 2013 were 14 

used (year 2012 was not used as it has several gaps in the measurements), using 50 households per ACRON group, 15 

thus a total of 700 households. Furthermore we excluded ACRON-{B, K, M} as they have missing samples in the 16 

selected time interval. The list of evaluated ACRON groups including average values of properties of these groups 17 

is tabulated in Table 4. 18 

TABLE 4: LIST OF AVERAGE PROPERTIES OF THE EVALUATED ACRON DATASETS WITH EACH ACRON-X DATASET CONSISTING OF 50 19 

HOUSEHOLDS. 20 

Dataset Energy (kWh) Avg. # Residents Avg. Age Avg. Income (k) Avg. Beds Avg. Value (k) 
ACRON-A 4215 3.4 42.3 195 5.2 1321 
ACRON-C 4772 2.7 46.5 117 3.9 599 
ACRON-D 5200 3.0 32.7 148 3.1 1163 
ACRON-E 4251 3.1 32.6 126 3.2 606 
ACRON-F 3207 2.8 43.8 103 3.8 425 
ACRON-G 3614 3.2 39.2 118 3.8 449 
ACRON-H 3671 3.2 38.7 106 3.7 414 
ACRON-I 3785 2.2 51.4 75 2.8 401 
ACRON-J 3743 2.9 33.9 107 3.2 396 



ACRON-L 3208 3.1 36.2 81 3.1 294 
ACRON-N 3203 2.2 43.3 46 1.8 270 
ACRON-O 2966 2.7 34.0 71 2.4 331 
ACRON-P 2290 3.6 30.5 65 2.8 362 
ACRON-Q 2671 2.6 33.7 46 1.9 312 
 1 

As illustrated in Table 4 the ‘SMinL’ database covers a large variety in terms of energy consumption, average 2 

number of residents and their age as well as their financial situation, thus making it suitable for training generalized 3 

models for extraction ML based models for information extraction. Based on the above two different experimental 4 

setups have been evaluated, one with respect to evaluation of features related to socioeconomics and one with 5 

respect to health-related information. The description of the socio-economic as well as the health-related features 6 

are tabulated in Table 5. 7 

TABLE 5: FEATURE DESCRIPTION FOR TEN SOCIO-ECONOMIC FEATURES AND SEVEN HEALTH-RELATED FEATURES DEPENDING ON THE 8 

ACRON GROUP OF THE “SMINL” DATASET (FOR DETAILED EXPLANATION SEE OF ALL FEATURES SEE [48]).  9 

Socio-Economic Features  
residents age being the average age of the residents 

house size being the average house size in square feet 
house value being the average house value 
# residents being the average number of residents 

resident’s income being the average income of all residents within one household 
resident’s finance being a rating of the financial situation of all residents 

# cars being the average number of cars per household 
 resident’s savings being the average savings of all residents within one household 

# children being the average number of children per household 
social class being a rating of the social class as experienced by the residents themselves 

Health-related Features 
smokers being the average number of people smoking 
exercise being the average number of people that are frequently exercising 

life change being the average number of people who actively want to change their life-style 
life standard Being the average rating of the people’s life standard between 1 and 6 

worries being the average number of people, who are recently worried about their future 
eating (fruits) being the average number of people eating 3 or more fruits per day 

eating (vegetables) being the average number of people eating 3 or more vegetables per day 
 10 

As can be seen in Table 5 the “SMinL” database provides a large variety for both socio-economic as well as 11 

health-related features making it suitable for evaluating the extraction of such features from the aggregated energy 12 

consumption data.  13 

The results for ten different socio-economic characteristics are tabulated in Table 6, while the results for seven 14 

health related characteristics are tabulated in Table 7. Both have been evaluated in terms of normalized MAE and 15 

RSME as well as through the person correlation R. 16 



TABLE 6: ESTIMATION RESULTS FOR LSTM AND BILSTM MODELS FOR TEN DIFFERENT SOCIO-ECONOMIC FEATURE CATEGORIES FOR THREE 1 

DIFFERENT PERFORMANCE MEASURES MAE, RMSE AND PEARSON COEFFICIENT 2 

Category LSTM BiLSTM 
MAE RSME Pearson R MAE RSME Pearson R 

residents age 0.081 0.109 0.133 0.075 0.099 0.278 
house size 0.093 0.115 0.670 0.082 0.115 0.701 

house value 0.138 0.184 0.725 0.101 0.132 0.827 
# residents 0.074 0.090 0.426 0.060 0.092 0.422 

resident’s income 0.141 0.176 0.777 0.109 0.127 0.785 
resident’s finance 0.021 0.023 0.652 0.016 0.020 0.694 

# cars 0.132 0.174 0.426 0.128 0.175 0.485 
 resident’s savings 0.077 0.092 0.766 0.054 0.066 0.863 

# children 0.060 0.089 0.127 0.077 0.091 0.194 
social class 0.067 0.079 0.762 0.062 0.074 0.775 

AVG 0.088 0.113 0.546 0.076 0.099 0.602 
 3 

As illustrated in Table 6 BiLSTM outperforms LSTM on average with a decrease of MAE (-0.012) and RMSE 4 

(-0.014) and conversely an increase of R (+0.056), as well as an improvement on all individual feature setups. 5 

Specifically, three different groups can be quantified according to their Pearson correlation R. First, these features 6 

showing R values significantly below 0.5, thus showing prediction values only slightly better than a naïve 7 

predictor. Second, these features reporting R values around 0.5, thus having a statistical significantly different 8 

prediction outcome than a naïve predictor. Third, these features having R values significantly above 0.5, thus 9 

having very accurate predictions for a specific feature.  10 

In detail, for the results presented in Table 6 the prediction of the number of children and the age of the residents 11 

belongs to the first category. This might be due to the following reasons: The number of children might conflict 12 

with the number of residents, most likely it is not possible to estimate if a resident is a child or not due to similar 13 

patterns and common activities, i.e. children eat with their parents or parents washing their children’s clothes. 14 

Similarly, the residents age is difficult to obtain especially as the average age range is only between 30.5 and 46.5 15 

(see Table 4), thus there are no household with very old residents or very young residents, which could explain 16 

the low accuracy score. Furthermore, number of cars and number of residents belong to the second category with 17 

R values of 0.485 and 0.422 respectively. Especially, the prediction of number of residents is probably confused 18 

by groupings of activities, i.e. couples or families might cook together or share the washing machine, similarly as 19 

with the prediction of number of children. Conversely, the number of cars is probably related to energy activities, 20 

e.g. the possibility of having a car available changes the behaviour of using electric appliances. Moreover, the 21 

third category especially contains features related to the house, e.g. house size or house value, and financial 22 

features, e.g. income, savings or social class. Most likely the good results can be attributed to two fundamental 23 



reasons. Frist, electrical energy consumption increases with house size and house value due to additional electrical 1 

appliances, e.g. more lighting. Second, different social classes and thus residents with different financial 2 

capabilities have different lifestyles, i.e. working habits or the fact how often the residents are going out for eating. 3 

TABLE 7: ESTIMATION RESULTS FOR LSTM AND BILSTM ARCHITECTURES FOR SEVEN DIFFERENT HEALTH FEATURE CATEGORIES FOR THREE 4 

DIFFERENT PERFORMANCE MEASURES MAE, RMSE AND PEARSON COEFFICIENT 5 

Category LSTM BiLSTM 
MAE RSME Pearson R MAE RSME Pearson R 

smokers 0.120 0.157 0.735 0.109 0.153 0.775 
exercise 0.059 0.077 0.714 0.053 0.066 0.806 

life change 0.088 0.111 0.558 0.079 0.102 0.634 
life standard 0.098 0.117 0.736 0.080 0.093 0.731 

worries 0.075 0.094 0.311 0.069 0.085 0.353 
eating (fruits) 0.098 0.126 0.749 0.087 0.116 0.823 

eating (vegetables) 0.128 0.158 0.738 0.093 0.130 0.823 
AVG 0.095 0.120 0.649 0.081 0.106 0.706 

 6 

Similarly, as for the socio-economic features the average results for health-related features are better for the 7 

BiLSTM architecture compared to the LSTM architecture for all three performance measures: MAE (-0.014), 8 

RMSE (-0.014) and Pearson R (+0.057). Moreover, also the results on all feature categories are better for the 9 

BiLSTM architecture as well. In detail, using the same categorizations for performance measure as for the socio-10 

economic features, there is only one health-related feature having a Pearson R score significantly below 0.5, being 11 

‘worries’ and one feature having a Pearson R value around 0.5, which is ‘life change’. This is probably due to the 12 

fact, that these two features are the only ones considers a feeling and not a measurable quantity, i.e. compared to 13 

the number of cigarettes someone is smoking. All other features show good Pearson R values around 0.8 for the 14 

BiLSTM, thus giving an accurate estimate. Specifically, four out of these five features are considering routines, 15 

e.g. smoking, exercising or eating, thus might be captured through daily routines in the energy signal, i.e. someone 16 

leaves always at the same time for the gym. Additionally, the life standard can be well predicted, which is probably 17 

due to correlation between life standard, value of the house and thus the energy consumption levels and trends in 18 

general. 19 

Based on the above, it was shown that for both socio-economic as well as health-related features there are 20 

certain features that can be estimated very well based on the aggregated energy consumption signal, i.e. house 21 

value or residents’ income, while there are some features that show poor performances when attempting to 22 

estimate them from the aggregated energy signal, i.e. residents’ age or the number of children in a household. 23 

However, on average both socio-economic as well as health-related features can be extracted with accuracies well 24 



above those of a naïve predictor indicating that extraction of residents’ information from the aggregated energy 1 

consumption signal is possible. In detail, for both socio-economic and health-related features BiLSTM reported 2 

better results for all accuracy metrices. The average Pearson coefficients for the ten socio-economic features was 3 

found equal to 0.602 and for the seven health-related features was found equal to 0.706, thus well above the naïve 4 

predictor.  5 

  6 

4. Discussion and Conclusion 7 

Based on the experimental setups and the results presented in Section 3, it was shown that the three most common 8 

techniques for processing the aggregated energy signal, namely load prediction, Non-Intrusive Load Monitoring 9 

and elastic matching, can be used to vastly exploit resident’s information. First, based on load prediction and Non-10 

Intrusive Load Monitoring, thus through the accurate ahead-prediction of energy samples and the event detection 11 

of certain devices, detailed occupancy information can be extracted from the aggregated signal when applying 12 

rules indicating resident’s presence or absence. Second, based on elastic matching patterns within the aggregated 13 

signal can be matched with a set of reference signals and thus especially multimedia content, e.g. TV channels or 14 

video watching, can be identified. Therefore, user profiles in terms of genres or TV channel preferences can be 15 

created. Third, machine learning based model can be trained in order to estimate socio-economic and health related 16 

features of residents. 17 

To summarize, it was shown that based on the aggregated energy consumption signal acquired from a smart 18 

meter outside the house privacy and security sensitive information related to the residents of a house can be 19 

extracted, such as occupancy information, multimedia watching and preferences as well as socioeconomic and 20 

health-related information. It can thus be seen that the measurements taken by energy smart meters do not only 21 

carry information about the levels of energy consumption but also about the preferences and behaviour of the 22 

residents of the household, which raises flags about privacy and security issues. Consequently, smart meters’ 23 

information extraction must be protected/secured on hardware and software level, at the side of the meter as well 24 

as at the side of a server in the common case of transmission of measured data to the cloud, with smart meter data 25 

being encrypted when sent via a network. Detection models can also be used to detect if additional metering 26 

equipment is connected at the power inlet of the household in order to notice inference from fraudulent additional 27 

smart meters. The present evaluation has showed that security and privacy should be considered in the design of 28 

smart metering systems. 29 
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