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 Evaluations of structural 3D printability of PEEK for a range of biomedical applications.  

 Highlights the best optimum 3D printer for processing PEEK/cHAp composite in different forms 

 Current printing problems, and potential applications of 3D printing of PEEK-cHAP in the medical 

implants. 

 Study proposes an analytical review on the 3D printing of PEEK/cHAP and its composite, 

 Ideas, feasible solutions, and enabling scientific mechanisms to improve the 3D printability of 

PEEK/HAp.  
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Abstract 

Polyetheretherketone (PEEK) is a polymer with better lignin biocompatibility than other polymers and useful 

biomedical engineering applications. This research summarises the outcomes of an evaluation conducted on 

PEEK material composites such as cellular calcium hydroxyapatite (CHAp) for medical applications. PEEK’s 

prospects for the medical implant are highlighted, and critical analysis and review is presented of 3D printing of 

PEEK and CHAp and their biological macromolecular behaviours. An electronic search is carried out of Scupos 

database, Google search and peer-reviewed papers published in the last ten years. Because of the extraordinary 

strength and biological behaviour of PEEK and its composite CHAp, 3D printed PEEK has several biomedical 

applications, and it is biological macromolecular behaviour leads to health sustainability. This work highlights 

its biological macromolecular behaviour as a bone implant material and the optimum 3D printing process for 

PEEK and CHAp for medical applications. The current problems with printing PEEK and CHAp are 

investigated along with their possible uses. Possible solutions to improve the 3D printability of PEEK and 

CHAp are explained based on scientific mechanisms. This detailed report benefits both the scientific community 

and the medical industry to enhance 3D printing concepts for PEEK and CHAp. 

 

Keyword: PEEK; 3D printing; Cellular CHAp; Biomaterial; Bone implant   

 

Abbreviations   

HAp Hydroxyapatite PEEK Polyetheretherketone 

ISO International Organization for Standardisation PLIF Posterior lumbar interbody fusion 

OH Hydroxyl Tg Glass transition temperature 

OHA Partially dehydroxylated Tm Melting temperature 

β-TCP Beta-tricalcium phosphate TTCP Tetracalcium phosphate 

3D Three-dimensional α-TCP Alpha-tricalcium phosphate 

 

1. Introduction 

An implant is any medical device developed by humans to replace or assist the regeneration of the human 

body’s biological macromolecular structure. The use of implants began with autologous implants, made of 

natural materials taken from other parts of the same body. It became possible to create artificial implants by 

evolving material engineering and the development of so-called biomaterials. The use of biomaterials for 

implant manufacture saw significant growth in the 1960s [1-3]. Several implant classes are based on the medical 

speciality to which the implants relate, including orthopaedic, cardiac and dental cochlear implants. Some 

properties are required for all implant classes, such as biocompatibility. As defined in the Williams Dictionary 

of Biomaterials [4,5], biocompatibility is a material’s ability to present an appropriate response in its intended 

application. In addition to the general characteristics common to all implantable biomaterials, each implant class 

has specific requirements [6,7].  

Any biomaterial in contact with the human body generates a series of responses that should not be harmful 

to the implanted person’s health. These responses include cytotoxicity, of the material, is cytotoxic it causes the 

death of cells around it; genotoxicity if the material causes chromosomal alteration of the cells around it; and 
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hemotoxicity if the material causes blood cell death [8,9]. The bio-functionality of a material is its ability to 

perform its function within a specified period. Orthopaedic implants, due to their primary functional property of 

long-term mechanical support, need to have excellent mechanical properties of both short and long durations, in 

addition to the characteristics previously described. Such a need for good mechanical properties initially led to 

too high an elastic modulus, such as stainless steel, to support the mechanical loads associated with the various 

types of orthopaedic implants such as hips, knees and spines. The use of materials with a high elastic modulus 

had harmful consequences, such as the stress-shielding effect [10,11]. The use of highly flexible materials leads 

to a loss of bone density in the regions around the implant due to Wolf’s law, published in the monograph the 

Law of Bone Transformation [12,13]. Wolf observes that bone density in high mechanical stress regions is 

elevated more than areas with less mechanical stress. With implants with a high elastic modulus, mechanical 

loading is transferred from the implant’s bone structure. 

Several authors report that bone remodelling is highly sensitive to dynamic loads [14,15]. Due to stress-

shielding effects, it became necessary to research and develop materials with a lower elastic modulus than 

metallic materials, combined with high short- and long-term mechanical resistance for orthopaedic implants. 

Orthopaedic implants are among the most complicated implant classes because they involve almost all parts of 

the human body [16,17], and nearly all play a role in supporting a mechanical load. The area of spinal implants 

is one of the most recently developed. It can be divided practically into two sub-classes: spine prostheses, which 

are implants intended to preserve the functional properties of the original spine structure, that is, to maintain 

functionality; and implants for spinal arthrodesis, which are used for bone fusion between spine segments to 

correct instabilities, used if the prosthesis is not feasible [18,19]. 

The area of spine prostheses is still in an embryonic stage of development, and the volume of use of this type 

of treatment is minimal. Arthrodesis treatment is the more common approach for spinal instabilities. In these 

procedures, intervertebral height needs to be maintained. The role of carbon nanotubes and cellular CHAp as 

scaffold composites in bone tissue production and regeneration is shown in Fig. 1. Height is maintained by 

implants known as intervertebral cages [20,21]. These devices work as mechanical shims, supporting the 

intervertebral space and transferring the mechanical load from one vertebra to another. The biomaterial used to 

produce the vertebral cage must meet a number of functional requirements. Mechanical resistance is the 

materials ability to undergo mechanical effort, mainly in compression but also bending and shearing. Such loads 

are exercised cyclically in the walking motion of the human skeleton. Therefore, the mechanical resistance of a 

material needs to be evaluated in both static and dynamic fatigue, and it must be able to withstand cyclic 

mechanical effort for at least the period over which the arthrodesis occurs. After this period, the functional 

properties of the product cease [22,23]. 
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Figure 1.  Cell cultures, lattices structure, and seeding for bone tissue engineering and regeneration [20-22] 

 

Osteointegration separates two vertebrae and maintains the intervertebral space until they are joined by bone 

growth. The biomaterial used must allow for bone growth around it and adapt to its new adjacent structure. 

Arthrodesis occurs quickly with PEEK as it is a semicrystalline thermoplastic. Therefore it is widely used for 

mechanical support applications such as spinal, thoracic, lumbar cervical, orthopaedic and trauma implants. It is, 

therefore, vital to assess the mechanical activity of PEEK in these applications in both the short and long term 

[24,25]. The mechanical behaviours of semicrystalline thermoplastics are strongly influenced by the degree of 

polymer crystallinity, the process used, and the final product conditions [26, 27]. This research is standard for 

the manufacture of technical parts made of semicrystalline thermoplastics used for engineering applications, 

including surgical implants, to optimise the various transformation processes, such as injection moulding, blow 

moulding or extrusion. The aim is to increase the degree of crystallinity and minimise internal frozen stresses in 

the final product for superior performance and mechanical durability. Therefore, this research proposes 

combining CHAp for bone tissue engineering with state-of-the-art analysis of the 3D printing of PEEK and its 

composites. The work highlights the optimum 3D printing processes for PEEK and CHAp in various forms, 

such as powder and filament, the current printing problems and potential applications of 3D printing of PEEK 

for medical implants. 

 

2. PEEK as a biomaterial  

Column implants made of PEEK have relatively recently come into use. The biocompatibility and potential for 

biomedical applications of PEEK were first reported by Williams, McNamara and Turner [28, 29]. Fig. 2 shows 

the structure of the PEEK molecule. In the late 1990s, PEEK emerged as a high-performance thermoplastic to 

replace metal implants and has been commercially supplied for this purpose since April 1998, pioneered by the 

British manufacturer Invitro [30, 31]. The first application of PEEK as a material for spinal implants was as an 
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intervertebral cage. The first PEEK intervertebral cage of the type of posterior lumbar interbody fusion (PLIF) 

was developed in the 1990s by AcroMed. Intervertebral cages made of PEEK overcome two problems caused 

by conventional metal intervertebral cages stress-shielding caused by the differential elastic modulus between 

human bone. The implants are radioluminescent, which means they present artefacts under imaging techniques 

such as X-rays or magnetic resonance, making it impossible to visualise the bone growth in the cages inner 

region. The invention of intervertebral cells made of PEEK serves as the foundation for its current use in spinal 

implants [32,33]. Fig. 2 also shows the calcium-based nanomaterials such as CHAp, which are often used to 

build new bone scaffolds on a PEEK biological macromolecule structure with spinal electrostimulation through 

a longitudinal axial channel [34, 35].  

 
Fig. 2. PEEK biological cellular structure with Brantingan cage, electrostimulation of the spinal with a 

longitudinal axial channel and lumbar vertebrae[35-37] 

The first clinical studies on intervertebral cages of PEEK were carried out on a group of 26 patients who 

were monitored over two years. Of these, 21 surgeries were successful in terms of the consolidation of 

arthrodesis, and the five unsuccessful surgeries failed for reasons unrelated to the cages. It was possible to 

follow up the surgeries using X-ray imaging due to PEEK’s radiolucency. This research demonstrates PEEK’s 

biomechanical efficiency as a material suitable for intervertebral cages and post-surgical follow-up ease. The 

osteointegration capacity of PEEK has been compared to titanium, a metal used in traditional metal cages. 

Researchers [35-37] have compared PEEK to titanium substrates using various manufacturing processes, such 

as bar machining and injection moulding. The authors verify, in vitro, that the adhesion of osteoblasts of bone 

cells is almost the same, with titanium having a slight advantage over PEEK. Injection moulding of PEEK 

shows results slightly superior to machining [38,39].  

 

2.1. Biological macromolecules of cellular CHAp and its application  

Unlike synthetic CHAp, biological cells of CHAp have several impurities. These impurities come about 
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because the apatite structure allows for replacing a series of ions present in the human body, such as sodium and 

potassium. A comparative table of the composition of biological macromolecules and synthetic CHAp [40, 41] 

is presented in Table 1. Several biocompatibility studies have been conducted to show the biocompatibility of 

synthetic biological macromolecules of CHAp [42- 44]. CHAp powder used in implants is standardised by the 

International Organization for Standardization (ISO), under ISO 13779-1 of implants for surgery - CHAp - Part 

1: Ceramic CHAp. The standard defines the minimum percentage of powder crystallinity, at least 95%, the Ca/P 

ratio from 1.65 to 1.82 and the maximum trace element percentage, as shown in Table 1 [2-48]. The coating 

method has special rules for the essential powder properties, such as Ca/P ratio and crystallinity. 

 

2.2. Thermomechanical behaviour of CHAp 

Surface engineering modification processes usually involve high temperatures. The plasma deposition process, 

for example, requires 600ºC in the torch [49-51]. At such temperatures, thermal decomposition can occur, 

altering the phase balance of the CHAp particles, changing parameters such as the crystalline structure, 

composition and phase morphology. It is widely accepted [51,52] that heating CHAp has three consequences: 

water evaporation, dehydroxylation and decomposition. CHAp is highly hygroscopic, so water evaporation 

occurs when heating the CHAp powder due to the adsorbed water. Dehydroxylation occurs in a part of the 

apatite structure as CHAp gradually loses the hydroxyl (-OH) group. Decomposition only occurs beyond a 

certain temperature, as CHAp maintains its crystalline structure during dehydroxylation and rehydrates itself on 

cooling [53,54]. However, upon reaching a critical temperature, irreversible decomposition occurs, leading to 

the formation of other calcium phosphates, such as beta-tricalcium phosphate (β-TCP) and calcium 

tetraphosphate (TTCP), both of which turn into calcium oxide. The reactions are given in Eqs. (1-3) [55, 56]. 

The temperature effect was presented by [57,58], according to Table 2. 

Oxyapatite → Calcium triphosphate + Calcium tetraphosphate: Ca10 (PO4)6Ox x → 2Ca3 (PO4)2 (β) + Ca4 

(PO4)2O                                                                                                            (1)                

Calcium triphosphate → Calcium oxide + Phosphorus pentoxide: Ca3 (PO4)2 → 3CaO + P2O5                             

(2) 

Calcium tetraphosphate → Calcium oxide + Phosphorus pentoxide: Ca4 (PO4)2O → 4CaO + P2O5                          

(3)                           

 

2.3. Thermal processing of CHAP 

Thermal spray processes are processes in which particles are accelerated and deposited in a molten or viscous 

state on a previously prepared substrate. Several thermal spray techniques are currently available. The process 

involves a pistol that fires melted particles at high temperatures, up to 600ºC, in a plasma state, at high speed 

towards the substrate [56-58]. The development of this technique began in the 1960s, with further 

improvements, such as robotic systems, introduced in the 1980s. The thermal energy of the process is provided 

by high-energy plasma formed inside a gun which consists of a cathode electrode and an anode nozzle separated 

by a small void. An electric arc is formed between the anode and the cathode, with argon, helium, hydrogen or 

nitrogen gas ionised at high energy levels to create a plasma flame through the application of direct current to 

the cathode. This flame is highly unstable and recombines to form a gas, releasing large amounts of thermal 

energy [59, 60]. The speeds obtained can reach up to 2300m/s.  
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During the thermal process, particles are fed into the gun flame by the ionising gas and accelerated towards 

the substrate. The high temperatures between the gun and the substrate exposed to the particles causes them to 

fuse. The melting point depends on a series of parameters, such as the flame temperature, the particles’ location 

in the flame, the velocity and the particle size. The impact of CHAp particles on polymeric substrates, such as 

PEEK, can negatively impact the material’s fatigue properties. The state of the particles, fused, semi-fused or 

solid, can generate micro-cracks on the PEEK surface. This could be critical due to its high sensitivity to stress-

concentrating effects. High process temperatures and the particle/substrate impact temperature can also be 

harmful to the material’s resistance to mechanical stress in fatigue. Very little scientific information about this 

influence on the long-term mechanical properties is available [61-64]. 

2.4. Other Polymers 

Due to their structure, other synthetic polymers can be biodegraded in vivo, and metabolic pathways can 

reabsorb degradation by-products. This property, together with their processability using various techniques 

such as additive manufacturing and their relatively good mechanical properties, are the main advantages of 

synthetic polymers. The main disadvantage is their low cellular affinity, making it challenging to colonise 

structures, especially in early implantation stages. Polylactic acid (PLA) is a biodegradable synthetic aliphatic 

polyester obtained by the polymerisation of lactic acid. It has high mechanical resistance, biocompatibility and 

adequate processability. There are many studies of its potential for structures with bone regeneration 

applications [60, 61]. A schematic diagram of the cell growth in lattice PEEK and CHAp scaffolds  is presented 

in Fig. 3.  

One key restriction of this material is the accumulation of its degradation by-products, which are acidic and can 

cause inflammation of the surrounding tissue. Polyglycolic acid has worse mechanical properties than the PLA, 

so its use in bone regeneration is limited. However, its copolymer with polylactic acid (PLGA) is a material with 

an accelerated degradation rate compared to pure PLA, useful for specific applications such as cranial implants 

in paediatric cases.  

Jo
ur

na
l P

re
-p

ro
of



 

8 
 

 

Fig. 3. Schematic of tissue autograft process supported in scaffolds of skeletal tissue regeneration via scaffold-

based tissue engineering strategies using a combination of cells, growth factors, and scaffolds. [105-107] 

3. PEEK polymer 

Despite its macromolecular rigidity, PEEK has considerable flexibility and can withstand high plastic 

deformation levels in traction and compression. Its stress-strain behaviour exhibits a clear flow transition, as 

shown in Figs. 4(a) and 4(b), from both tensile and compression tests [65-68]. PEEK exhibits yield stress in 

compression about 30 to 40% higher than in tension. PEEK is an aromatic thermoplastic that has a high glass 

transition temperature (Tg) of 143oC, due to the high rigidity of its macromolecular skeleton. However, its 

planar zig-zag molecular conformation, despite its high macromolecular rigidity, allows the polymer chains to 

be arranged in crystalline and amorphous domains. Consequently, PEEK has a crystalline melting point (Tm) of 

343ºC. This implies that processing temperatures can vary between 370 and 400ºC, depending on the polymer’s 

molar mass and the type and processing conditions used in manufacturing [69-72]. PEEK’s short- and its 

transition temperature and melting point significantly influence long-term mechanical properties. The properties 
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of stiffness, strength and toughness of the polymer at in-service temperature have increased the relevance of 

PEEK in surgical implant applications. Figs. 4(a) and 4(b) show the mechanical behaviour of PEEK under creep 

in slow deformation as a function of test temperature, in the form of short duration isochronous curves of 100s 

and curves of creep modulus. The properties of the elastic modulus of short (Fig. 4a) and long (Fig. 4b) duration 

of PEEK change minimally in the temperature range between 20 and 80ºC [73-75].  

 

As shown in Fig. 4, the use of a higher mould temperature of 200ºC and high injection speed leads to a 

higher degree of crystallinity of 35% and excellent uniformity throughout the PEEK mould’s thickness. These 

same injection conditions with an increased mould temperature contribute to a higher degree of crystallinity. 

This gives excellent crystallinity uniformity in various regions in the mould, as shown in Fig. 4. In summary, 

slower cooling rates, with higher mould temperature of 200ºC, allow PEEK injection moulds to have a higher 

degree of crystallinity of 30-35%, producing excellent uniformity of crystallinity with less variation of 

crystallinity in both the thickness and length. PEEK has a crystallisation interval well above room temperature 

(Tg of 143ºC and Tm of 343ºC), and the higher mould temperature is above the polymer Tg. The longer the 

polymeric melt resides in this interval, the greater the polymer crystallinity degree [76,79].  

As shown in Fig. 4, several authors have investigated the effect of injection speeds between 5.2 and 23.2 

cm2/s on the maximum degree of crystallinity and crystallinity variation across thickness and duration of PEEK. 

Again, as shown in Fig. 4(a), using the highest mould temperature of 200ºC, the maximum degree of 

crystallinity can be achieved, and the uniformity across the thickness is practically identical for high and low 

injection speeds. There is, however, a small advantage to higher injection speeds. Low injection speeds 

combined with low mould temperatures do not allow the mould cavity to be filled at the highest mould 

temperature of 200ºC, as shown in Fig. 4 when the degree of variation of crystallinity along the length of the 

mould is evaluated. Therefore, a combination of a higher mould temperature of 200ºC and a higher injection 

speed of 23.2 cm³/s is the moulding condition that allows the maximum degree of crystallinity. This brings 

excellent uniformity of crystallinity, both through the thickness and length of the PEEK mould. 

The same authors evaluate the parts retention time in the mould cavity. They demonstrate that a mould 

temperature of 150ºC, which is slightly above The PEEK Tg, achieves both full crystallinity and crystallinity 

uniformity. The thickness and length of the mould tend to increase with the retention time, as shown in Figs. 

4(a) and 4(b). Therefore, for a higher mould temperature, above the Tg of semicrystalline thermoplastic, the 

shorter the time needed to reach a certain degree of crystallinity and uniformity throughout the thickness and 

length of the moulded PEEK part [86-88]. 
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(a)                                                                                              (b) 

Fig. 4. Stress-strain curve of PEEK in (a) tension and (b) compression for different strain rates 

 

The long-term mechanical stiffness of PEEK is minimally influenced by temperatures that do not exceed 

400ºC. The use of PEEK in surgical implants does not exceed this limit since human body temperature is 37ºC, 

and the long-term mechanical stiffness behaviour of PEEK remains unchanged in these applications in the 

direction perpendicular to the injection-moulded flow at 90ºC [77-79]. The data in Figs. 4(a) and 4(b) 

correspond to the creep module property under static mechanical loading. Still, long-term mechanical force of 

PEEK is influenced by the type of mechanical loading which its products are subject to under specific service 

conditions. Comparing the two fatigue curves under static and dynamic loads shows that the resistance under 

dynamic fatigue is always lower than the resistance under static fatigue. The fabrication methods for producing 

scaffolds using 3D printing and the hierarchical structure of bone indicate that various elements are 

nanostructured CHAp embedded in collagen fibrils produced from osteoprogenitors and osteoblasts osteoclasts 

and osteocytes. These are the major cellular constituents of bone in the combination of CHAp and PEEK (fig. 

5).   

 

PEEK applications are subject to mechanical loading under a combination of static and cyclic efforts. In 

surgical implants for the human spine, the dynamic fatigue resistance curve should always establish the 

structural design calculations stress limits. The endurance limit recorded for a specific type of PEEK is 

approximately 65MPa, depending on the polymeric material’s non-linear viscoelastic nature and its rigidity 

susceptibility to mechanical hysteresis [81-83]. Other conditions of the fatigue test, such as type and frequency 

of the request wave, request geometry, test temperature and other relevant parameters, contribute to the 

expectation that the fatigue strength may change. Considering the failure of plastic materials under mechanical 

cycling almost always occurs due to crack propagation or fragile failure, it is common to stipulate the design 

stress value, which incorporates a safety factor above the fatigue resistance limit [84, 85]. As demonstrated in 

the collected figures and tables, the assessment of PEEK and CHAp’s mechanical and thermal-mechanical 

efficiency is inferred to be closely connected with its crystallinity and uniformity throughout the thickness and 

length of structural parts. 
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3.1. PEEK influence and processing conditions 

PEEK implants are mainly manufactured in two types of machine-extruded bars or direct injection moulding 

of implants. Implant manufacturers widely use parts machined from extruded bars, because they use the same 

machinery to manufacture traditional metal implants, such as machining and turning centres. However, the high 

cost of implant grade raw materials leads companies to use injection moulding to reduce raw material 

consumption. The injection moulding process results in greater productivity in the manufacture of complex 

shaped implants. As explained, the mechanical and other physical properties of PEEK parts are influenced by 

the level of crystallinity and crystalline morphology.  

3.2. PEEK implants compared to others 

PEEK has better corrosion resistance than stainless steel, but the mechanical features of PEEK are not optimal 

for implants’ production. Steel is cheaper but less resistant to variations in heat, meaning that during daily use, 

the fact that the implant efficiently heats and cools negatively affects the patients’ life. When the patient is 

subjected to X-rays, the steel diffuses the radiation, making treatment more complex in terms of doses and 

targets, such as attacking a cancerous tumour. An implant made of 3D printed PEEK has properties very close to 

those of human bone in mechanical rigidity and elasticity [87, 88]. PEEK implants synchronise better with the 

internal movements of bones. Unlike stainless steel, PEEK has insulating properties and therefore undergoes 

less heat variation. One of the strong points of printed PEEK implants is that they are transparent to X-rays. 

Table 3 shows methods that can benefit PEEK-based biomedical components and shows some examples of 

additives referenced in the literature. 

According to the injection moulding process thermal cooling cycle, PEEK crystallinity can vary between 

almost zero and 40%, depending on the moulded part injection mould temperature and thickness. The 

crystallisation kinetics are slow in crystalline thermoplastic polyethene terephthalate. A crystallisation interval 

between Tm and Tg, well above room temperature, is associated with its macromolecular skeletons high rigidity. 

Therefore, in the injection moulding process, regular cooling cycles, the polymer remains for a short time within 

its crystallisation interval. Table 3 gives the biomedical applications of hydroxyapatite nanocomposites [87-89]. 

Therefore, with low mould temperatures, a rapid cooling cycle can lead to the manufacture of entirely 

amorphous and transparent moulded parts of small thicknesses. As the thickness of the cavity increases, pieces 

are formed with translucent skin and an opaque core of crystalline material under the same rapid cooling 

conditions. In slow cooling, with increasing mould temperatures, with Tg up to 200ºC, PEEK moulds exhibit 

good uniformity in the degree of crystallinity throughout the thickness, with minimal variation crystallinity in 

the skin regions and crumb along the piece length. The thermal process of coating CHAp onto PEEK in 

biological macromolecular cells is illustrated in Fig. 6 for a 3D printing process of PEEK and CHAP, with a 

constant melt processing temperatures of 400ºC, a mould temperature ranging between 20 and 200ºC, and 

injection speeds of 5.2, 13.1 and 23.2 cm3/s as processing variables [98-100]. Fig. 5 illustrates methods for 3D 

scaffolding lattices structure. 
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Fig. 5. Strategies for 3D-scaffold architecture of cell growth development of lattice scaffold with cHAP as a 

composite of PEEK and 3D-printing of scaffolds to create effective bone-implant [2].  

 

4. Concluding remarks 

In conclusion, a combination of PEEK and CHAp can be constructed either through composite material 

coating or extrusion or through multilayer structures. Another alternative to improving the properties of 

structures used to promote bone regeneration is a surface treatment. The thermal shock impact from the thermal 

crystallinity process of CHAp on PEEK and the thermomechanical properties are discussed. The manufacturing 

parameters are compared for injection moulding and coating from the literature. This work reviews the 

mechanical characteristics of static and dynamic tests and their impacts on PEEK filament mechanical 

properties after the CHAp coating process. The coating and particle dispersion quality characteristics, 

morphological analysis of the granulometry, depth of penetration, CHAp layer state after static and dynamic 

mechanical stresses, and their general applications are discussed. The X-ray diffraction characteristics of CHAp 

determine whether the thermal process effectively forms a CHAp layer with properties suitable for 

osteointegration, as revealed by this critical review with parameters preserved in technical and international 

standards. 

In the future, interfacial biological macromolecular cellular studies of CHAp embedded in PEEK and other 

polymers would benefit biomedical application research, as PEEK and CHAp can be used to repair and replace 

bone in hard tissues for better support strength. Cellular CHAp with a soft polymer such as PLA fabric 

maintains skin tissues’ functional properties that need flexibility. In tendon repair and cartilage substitution, 

long-term blood vessels or catheters are required. To meet the current scientific challenges interactions at nano-
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biomaterial interfaces must be explored. An accurate understanding of cellular behaviour during exposure to 

implanted PEEK and CHAp scaffolds is essential to develop safe new techniques for detecting biomolecular 

interactions. In particular, tissue engineering techniques must consider cell adhesion properties, either for 

surface enhancement through absorption or the implantation of specific binding factors. The study of biological 

cellular interfaces of hybrid autonomous cell and bone material has great potential to support biomaterial 

development. 
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Table 1. Constituent chemical elements between biological macromolecules and synthetic, and limited heavy 

metals [42, 48]. 

Constituents 

(fraction by weight) % 

Biological CHAp Synthetic CHAp Element Maximum limit (mg/kg) 

Ca 24.50 39.6 Arsenic 3 

P 11.50 18.5 Cadmium 5 

Na 0.70 Trace Mercury 5 

K 0.03 Trace Lead 30 

Mg 0.55 Trace   

CO3
2 5.80 -   

+ 

 
Table 2. Thermal effects of CHAp plasma [57,58]. 

Effect Temperature (oC) 

Evaporation of absorbed water 25 - 600 

Decarbonisation 600 - 800 

cHAp dehydroxylation, forming 800 - 900 

Partially dehydroxylated or completely 

dehydroxylated  

1050 – 1400 

AH decomposition, forming β-TCP  < 1120 

TTCP 1120 – 1470 

β-TCP is stable 1550 

β-TCP is converted to α-TCP 1630 

CHAp fusion temperature 1730 
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Table 3 Comparison of high-performance PEEK composite-based biomedical devices and . Methods of 

improving PEEK’s quality characteristics 
PEEK composite Processing method Mechanical Properties Application Description and Results 

Nano-TiO2/PEEK 

[78-80] 

Mixing of powder and 

compression at 400°C  

3.8 GPa bending module 

and 93 MPa bending 
power  

Bone 

substitution 

The bioactivity of the end product with a 

nano-TiO2 filling improved significantly.  

Nano-HAp/PEEK 

[80-82] 

380°C compression and 

powder mixing  

4.6 MPa elastic module 

and 160 MPa compression 
power  

Orthopaedic 

implants 

The composites nano-HAp/PEEK have been 

discovered to facilitate cell attachment, 
propagation, proliferation and osteogenic.  

BioHPP 

[82-84] 

Wax moulding at 400°C – Dental 

prosthesis 

The replacement for traditional metallic 

materials should not be considered BioHPP  

HAP embedded 

PEEK [84-86] 

Moulding and chemical 

liquidation of compression  

– Interbody spinal 

fusion 

For the backbone applications, the resulting 

material is promising  

PEEK blanks 
 [86-88] 

Acid etching and silica 
coating are the techniques 

used for milling.  

14.5 ± 2.6 MPa Dental 
prosthesis 

Silica PEEK coated has enhanced 
mechanical properties  

PEEK 
 [83-85] 

Mould and soak with 
400°C phosphates buffered 

saline  

The average maximum 
load is 1790 N  

Orthopaedic Soak does not affect PEEK  

Knitted carbon/PEEK 

[86-88] 

Micro-braiding yarn and 
hot moulding at 380°C 

– Fixations 
Orthopedic  

There was more excellent deformability in 
knitted composition bone plates.  

Chitosan/PEEK 

[87-89] 

Air plasma modification – Regenerative 

medicine 

The antibacterial properties of Chitosan led 

to polymer  

PEEK PSIs 

[90-92] 

– – Facial Maxillo-

Operation  

There were no risks to the materials.  

PEEK films 
[93-95] 

Moulding compression and 
treatment of NAOH at 

180°C  

– Ophthalmology The creation of the PEEK apatite layer has 
been extended  

PEEK 

[95-97] 

CNC machine – Treatment of 

Skull Bone  

The findings supported the use of PEEK  

PEEK/Alumina [20-22] Composite fabrication Mechanical  PEEK/Alumina improved the dynamic 
strength by 78%.  

PEEK/Hap [22-24]  Mechanical Bone implant 

and Dental 
prosthesis 

Due to good interactivity between HAp and 

PEEK, the tensile strength of the composite 
was increased.  

PEEK/Carbon nano-

tubes [24-27] 

 Mechanical and crystalline Tissue 

engineering 

The reinforcement improved the mechanical 

characteristics and decreased PEEK 
crystallisation rate.   

PEEK/β-TCP[27-30]  Biological cell Tissue 

engineering 

The growth rates in β-TCP/PEEK osteoblast 

cells were below PEEK.  

Titanium [30-32] Electron beam deposition Biological Tissue 

engineering and 

Bone implant 

In-vivo studies have shown the enhanced 

contact ratio between bones and PEEK 

implants due to titanium coating.  

PEEK/ 

Polytetrafluoroethylene 

[32-38] 

Blending Tribological Automobile The friction coefficient was reduced with the 

use of polytetrafluoroethylene in PEEK  

 Plasma Immersion ion 

deposition 

Biological Interbody spinal 

fusion 

The tested technique helps improvment  of 

orthopaedic implants in  the next decade  

PEEK, PEKK [39-42] Plasma treatment Chemical Tissue 
engineering 

The PEEK atmospheric pressure plasma 
treatment performed remarkably towards 

improving the stickiness of the polymer  
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