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SUMMARY 
 
 
 
 Maize (Zea mays) is one of the most widely cultivated crops worldwide; however, 

it is also considered as a chilling sensitive plant. Plants subjected to suboptimal 

temperatures suffer changes in numerous chemicals, metabolic and physiological 

responses. Thus, chilling results in decreased field productivity and quality and causes 

significant crop losses. Low temperatures are an important limiting factor that affects 

every plant developmental stage, especially germination. Germination is one of the 

most important plant phases, which has a huge impact on its future performance. 

Chilling temperatures cause modifications in the seed membrane structure and fluidity 

originating in the solid-gel phase.  The lipids, which constitute this solid-gel phase, are 

more tightly packed, creating a more rigid and less fluid membrane, which obstructs 

water uptake and germination. The aim of this project is to study the role of desaturase 

enzymes during seed germination in two different maize cultivars (American cultivar, 

W2080 and European cultivar, Oxxgoode). Fatty Acid Desaturases (FAD) are enzymes 

responsible for regulating seed membrane fluidity by inserting double bonds in the fatty 

acid chain of the membrane bilayer.  A total of 30 fatty acid desaturase genes have been 

identified in maize, which are distributed on the maize chromosomes. Based on the 

phylogenetic analysis, desaturase genes are classified in five different subgroups, 

regarding their mode of action and gene structures. Expression analysis reveals that 

FAB2.3, FAB2.8, DES, FAD2.1, FAD6, FAB2.11, FAD7, SLD3 and FAD7 genes play an 

important role during seed germination in both cultivars. However, under chilling 

conditions the gene upregulation varies; the American cultivar, W2080, shows a 

significantly higher level of gene expression of FAD2.1, SLD3, FAB2.4 and FAB2.8 genes 

while FAD2.1 and FAD2.2 desaturase genes are upregulated in the European cultivar, 

Oxxgoode. In conclusion, FAD genes play an important role in chilling stress response 

during maize seed germination. 
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1. INTRODUCTION 
 
 

1.1. Maize germination under suboptimal temperatures. 
 

Maize is one of the most widely cultivated temperate cereal crops worldwide 

(Sandhu & Singh, 2007). The Food and Agriculture Organization (FAO) estimated that 

the total world production of maize was 1046 million tonnes in 2018 (USDA - National 

Agricultural Statistics Service - Data Visualization, 2020.). The demand for and 

consumption of maize is increasing annually; however, cold temperatures threaten crop 

productivity and food security. This grass is considered a chilling sensitive crop as its 

optimum temperature for germination is between 20-28°C (Greaves, 1996; Zheng, 

1991). When maize is exposed to low temperatures (suboptimal), direct damage and 

physiological defects occur, reducing the maize crop quality, production and utilization 

potential. 

Temperature is an environmental factor that can alter plant development. Cold 

temperatures induce two different stresses: chilling stress and freezing stress. Plants 

suffer chilling stress when exposed to temperatures below 15 ºC and above the freezing 

point of the plant tissue. Freezing stress causes damage when plants are subjected to 

temperatures below the freezing point (Jackman et al., 1988; Jan & Andrabi,2019). 

Chilling tolerant plants can with stand temperatures below 10ºC without injury or 

damage (Yadav, 2010).  In particular, chilling temperatures cause a decline in seed 

germination (Wilson, 1985). Seeds germinated under chilling stress produce plants that 

show symptoms throughout their  lifetime (Yadav, 2010). Low temperature leads to 

changes in numerous chemical, metabolic and physiological responses, which reduce 

the rate and length of the germination process.  

Seed germination is one of the most important and complex stages of the plant life 

cycle governed by both internal and environmental factors (Bentsink & Koornneef, 

2008). This process starts with the absorption of water by the dormant dry seed and 

terminates with the radicle protrusion through the seed surface (Figure 1).  Germination 

is a triphasic process (Nonogaki et al., 2010). 

 

 



 7 

 

- Phase I: Firstly, seeds undergo a rapid imbibition phase, perturbing the 

membrane structure and allowing rapid leakage of solutes. Also, there are 

phospholipid (PL) composition changes within the membrane, maintaining and 

enhancing its integrity. Pre-existing mitochondria initiate the basic metabolism 

activity which provides adequate amounts of ATP to support initial germination 

steps. After imbibition, the repair in the DNA damaged during maturation drying 

and rehydration occur. They resume the transcriptional activity and newly 

synthesize proteins as germination proceeds. However, the synthesis of proteins 

occurs firstly using extant mRNAs in the ribosomes of the mature embryo. 

- Phase II: The initial water uptake stops, and the water status remains constant. 

New polysomes are synthesized and protein synthesis from newly transcribed 

mRNA will occur until the germination concludes. These proteins are involved in 

cellular metabolism, cell elongation and enzymes are responsible for the 

mobilization of the storage reserves. DNA synthesis related with post-

germinative cell division, occurs in the nuclei and new synthesized mitochondria. 

Radicle protrusion concludes the germination process “sensu stricto”, and 

results from the turgor pressure growth of the radicle in the cell walls of the 

surrounding tissues as well as the weakening of the cell walls by hydrolysing 

enzymes. 

- Phase III: A final increase in water uptake starts once the germination “sensu 

stricto” has concluded. This leads to an increase in the porosity of cell walls and 

intracellular spaces, which support cell division and embryo growth, mobilization 

of stored reserves. This occurs until seedlings become photosynthetically active 

(Bewley, 1997; Huang et al., 2015). 
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Figure 1: Time course of physical and metabolic events occurring during germination of the 

seed. The time for each phase can vary between species and influenced by environmental 

conditions. The curve shows the time course of the water uptake. Diagram adapted from 

Nonogaki et al. (2010) and Bewley et al. (1997)  

 

The success and speed of the germination varies among species and even among 

cultivars (Saboya & Borghetti, 2012; Vallejo-Marín et al., 2006). In maize, the coleorhiza 

is the first part to grow out, breaking the seed membrane (Wolny et al., 2018). The 

remodelling function of the lipid membrane is an important event, which occurs upon 

seed germination (Yi xin Lin et al., 2019). Before germination starts, dry seeds show low 

water content and poor membrane integrity (Simon, 1974). Imbibition can repair 

membrane lipid and dysfunction by changing the membrane lipid structure.  The solid 

phase of the dry seed membranes turn to liquid phase which enhance the germination 

process (Yu, X., 2015).  

 
However, abiotic stress such as chilling temperatures can impair cell membrane 

remodelling during seed germination, leading to delay or disruption of the process  (Lin 

et al., 2019). Low temperatures stimulate the opposite reaction, with membrane 

structure which is found in a flexible liquid-crystal  phase changing into solid-gel phase, 

modifying the membrane fluidity (Figure 2) (Basra & Basra, 1997). Modification in the 
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seed membrane is one of the most adverse chilling effects ( Basra & Basra, 1997). 

Membrane fluidity is determined by the number of FA that are unsaturated (double 

bond between two carbon atoms) and the FA chain length. A larger number of 

unsaturated fatty acids that have a longer FA chain provide plant resistance to chilling 

stress. On the one hand, longer FA arms  have more extensive contact areas so extreme 

temperatures are required for destabilIzing the liquid-crystal phase. On the other hand, 

the kinks originated by the double bonds reduce packed membrane conformation and 

disrupt the order, giving elasticity. Thus, both factors give permeability to the 

membranes and improve the seed water uptake necessary for the germination process 

(Barrero-Sicilia et al., 2017).  

 

Figure 2:  Lipid membrane modification by chilling temperatures. On the left side, the membrane 

is in the liquid-crystal phase. This phase is formed by unsaturated and/or long chain FA, which 

gives permeability to the membrane. Suboptimal temperatures cause a modification in the 

membrane structure, originating the solid-gel phase. The lipids that constitute the solid-gel 

phase, on the right side, are more tightly packed, creating a more rigid and less fluid membrane. 

Adapted from Los & Murata, 2004. 

 
1.2. Plant membrane composition. 

 

The plant membrane is mainly composed of phospholipids (PLs), which can 

constitute approximately 30% of the lipid membrane. PLs are molecules constituted of 

two hydrophobic fatty acids (FAs) linked by hydrophilic glycerol and a phosphate group. 

The synthesis of FAs in plants occurs exclusively in plastids. Plant membrane PLs include 

six different classes of phospholipids: phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), 
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phosphatidic acid (PA), and phosphatidylglycerol (PG), and two classes of galactolipids: 

monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which are 

plastidic lipids (Yu et al., 2015). Specifically, in seed membranes, high levels of PA are 

found due to the seed desiccation process inducing its formation. In contrast, low 

concentrations of MGDG and DGDG are found in seeds due to the lack of plastids (Yu et 

al., 2015). 

Among the PLs bilayer can be found the sphingolipids (SL) and their 

phosphorylated derivates (Cacas et al., 2016). They are composed of  a carbon amino-

alcohol backbone, sphingosine, to which a fatty acid may be attached through an amide 

bond and a head group at the primary hydroxyl (Merrill, 2008). They constitute a 

significant part of the lipids present in higher plants (up to 10% plant lipids) (Dunn et al., 

2004). SL are considered a diverse group with a wide range of physical properties. Thus, 

they are involved as metabolites mediating cellular processes in response to plant stress 

(Coursol et al., 2003), membrane trafficking (Moreau et al., 1998) and modifying of the 

membrane structural integrity (Borner et al., 2005; Michaelson et al., 2016). The 

essential role of sphingolipids in the membrane organization and fluidity underline their 

importance in plant chilling responses (Ali et al., 2018). 

 
1.3. Fatty acid synthesis. 

 

Fatty acid synthesis is regulated in consonance with the supply and demand of 

acyl chains. This process mostly takes place in the plastid, where pyruvate is synthesized 

from the carbon flux of the photosynthesis. Then, fatty acyl chains are channelled for 

the production of more complex lipid molecules in the plastid or transported to the 

cytosol and endoplasmic reticulum (ER) (Ohlrogge & Jaworski, 1997). Firstly, the plastid 

enzyme, acetyl-CoA carboxylase, catalyses the formation of malonyl-CoA from acetyl-

CoA by an ATP-dependent reaction. Malonyl-CoA is made in the cytosolic pool by the 

homomeric ACCase and used for elongation of fatty acids into long- and very-long- chain 

fatty acids (VLCFA) required by phospholipids, surface waxes, or sphingolipids (Roesler 

et al., 1994). Fatty Acid Synthase (FAS) transfers the malonyl group from the malonyl-

CoA to the -SH group from Acyl Carrier Protein (ACP). Condensation, reduction and 

elongation reactions generate the end product, which is usually a 16:0 to 18:0-ACP 
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utilized by a variety of enzymes in the plastid, ER or cytosol (Fatland et al., 2005; 

Guschina & Harwood, 2007; Li-Beisson et al., 2013; Ohlrogge & Jaworski, 1997; Wada et 

al., 1997). 

 

 
 

Figure 3: Abbreviated scheme for lipid synthesis in leaves of Arabidopsis. Reactions happening 

within the chloroplast represent the prokaryotic pathway while the eukaryotic pathway is 

constituted by reactions in the ER and successive transfer to the chloroplast. The red breaks in 

the pathway indicate the gene mutations obtained in Arabidopsis. The width of the arrows 

represents the relative flow between the route stages. ACP, acyl carrier protein; LPA, 

lysophosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; DGD, 

digalactosyldiacylglycerol; G3P, glycerol 3- phosphate; PC, phosphatidylcholine; PE, 

phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; MGD, 

monogalactosyldiacylglycerol; SQD, sulfoquinovosyldiacylglycerol. Figure 3 from Buchanan & 

Gruissem, (2015). 
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Modifications in the ER involve elongation of the chain-length by the Fatty Acid 

Elongase (FAE) and membrane bound desaturation (Shanklin & Cahoon, 1998) (Figure 

3). Fatty acid desaturation is regulated by the desaturase enzymes.  The C16 to C18 acyl 

chains produced are subsequently desaturated by chloroplast and ER membrane-bound 

desaturases, which regulate the membrane fluidity. Extra-chloroplast lipid desaturation 

is catalysed by FAD2 and FAD3, whereas FAD4, FAD5, FAD6, FAD7, and FAD8 

desaturations take place in the chloroplast (Somerville & Browse, 1991; Upchurch, 2008; 

Wallis & Browse, 2002). Finally, fatty acyl chains can also be remodelled to produce 

complex lipids such as glycolipids, galactolipids, phospholipids, sphingolipids 

monogalactosyldiacylglycerol (MDGD) and digalactosyldiacylglycerol (DGDG) (Benning, 

2008). 

  

 
1.4. Fatty acid desaturase family 

 

Fatty acid desaturases are enzymes responsible for the removal of two hydrogen 

atoms from a fatty acid, creating a double bond. The double bond can be cis or trans 

depending on the side of the carbon chain; cis-double bonds are found on the same side 

of the carbon chain while trans are on opposing sides. Desaturase enzymes regulate the 

membrane fluidity, synthesize molecules involved in the signalling pathways, and 

determine the nutritional value of vegetable fats (Los & Murata, 2004; Shanklin et al., 

2009). These enzymes act in different cell locations, use different electron donors and 

catalyse different substrates (Shanklin et al., 2009). 

 

Classification based in the cell location and electron donors:  

 

• Membrane-bound FABs: Most plant desaturases are membrane-bound proteins 

located in the ER and chloroplast membrane. Desaturases located in the 

endoplasmic reticulum act on phosphatidylcholine, and possibly on other 

phospholipids using cytochrome b5 as an electron donor (Gargallo, 2010). 

• Soluble FADs: they are situated freely in chloroplasts and are specific for 

saturated acyl-ACP fatty acids esterified to galactolipids, sphingolipid, 
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sulpholipids and phosphatidylglycerol (Shanklin & Cahoon, 1998). These 

enzymes catalyse the introduction of double bond saturated FA. The active site 

of the enzyme is constituted by a diiron centre (Fe-O-Fe) and use ferredoxin as 

an electron donor (Gargallo, 2010). 

 

Classification based in the desaturation insertion (Tocher et al., 1998b):  

 

• Acyl-desaturase (FAB2) are enzymes responsible for the desaturation of 18:0-

ACP at the Δ9 position. 

• Fatty acid ω-6 desaturase (FAD2 and FAD6) both carry out double bond insertion 

in the ω-6/Δ-12 position. Differing from each other in the cell location, FAD6 acts 

in the plastid while as FAD2 acts in the endoplasmic reticulum. 

• Fatty acid ω-3 desaturase (FAD3, FAD7 and FAD8) converts linoleate (18:2) 

substrates esterified to plasma cell and plastid lipids to linolenate (18:3). 

• Fatty acid Δ3 desaturase (FAD4), introduction of trans double bond 

phosphatidylglycerol Δ16 position. 

• Sphingolipid Δ4 desaturase (DES), insert of trans double bond between the 

Sphingolipid Δ4 and the Δ5 position. 

• Sphingolipid Δ8 desaturase (SLD), catalyses the desaturation of sphingolipid at 

the Δ8 position. 

Desaturases carry out the enzymatic reaction in which a double bond is inserted 

into the acyl chain and a molecule of dioxygen is reduced to water (Shanklin & Cahoon, 

1998a). In addition, two electrons from the desaturase electron transport system are 

also necessary to create the double bond. Depending on the cellular location, 

desaturases have different electron transport systems. On the one hand, desaturases 

located in the chloroplast use the ferredoxin system, where ferredoxin is reduced, and 

supply desaturase electron needs for catalysis. On the other hand, desaturases located 

in the endoplasmic reticulum utilize the cytochrome b5 electron transport system. The 

catalytic mechanism of these enzymes has not been characterized. The hypothesis for 

the fatty acid desaturation mechanism by the ferredoxin system is illustrated in Figure 

4.  
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Figure 4: Scheme for the proposed catalytic mechanism for fatty acid desaturation. At the top, 

the desaturase diiron centre is oxidized (diferric, or FeIV–FeIV) with a μ-oxo bridge. Then, an 

iron ion is suffering a reduction reaction which results in the reduced (FeIII–FeIV) form. Secondly, 

the scheme represents the hydrogen abstraction from the methylene group of the inactivated 

fatty acid to yield a radical intermediate. Then, loss of the second hydrogen happens. The last 

reaction is the formation of the double bond along with the loss of H2O and regeneration of the 

oxidized active site and the μ-oxo bridge ( Buchanan & Gruissem, 2015).  

 
Previous studies in a range of PLs report their key role in response to chilling 

stress (Dong et al., 2016; Zhang et al., 2018; Zhao et al., 2019). Their actions desaturating 

FA  provide more fluidity to the membranes and better chilling resistance (Barrero-Sicilia 

et al., 2017).  Silenced-FAD8 rice mutants show a higher degree of sensitivity to chilling 

conditions (Tovuu et al., 2016). In Arabidopsis, mutation of the SLD1 and SLD2 genes 

that lack Δ8 unsaturation reveal the significance of the sphingolipid structural diversity 

in the membrane for improving the plant adaptation to suboptimal temperatures (Chen 

et al., 2012).  Also, a SLD-silenced mutant of tomato plants had reduced chilling 

resistance (Zhou et al., 2016).  
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1.5. Regulation of the genes involved in chilling response. 
 

Gene expression induced by chilling stress can be classified as transient or long-term 

and is regulated in a complex regulatory gene network mediated by transcription factors 

(TFs) (Yamaguchi-Shinozaki & Shinozaki, 2006). TFs are responsible for activating the 

transcriptional cascade and regulate chilling responses by gene expression. Cis-

regulatory elements associated with some TFs can be predicted in the promoter regions 

of the genes and provide primary information about the regulatory process in response 

to chilling stress (Yamaguchi-Shinozaki & Shinozaki, 2005). Recent transcriptomic 

analyses have revealed that a 1000 TFs show differential expression when maize plants 

experience low temperatures (Zhao et al., 2019). The main TF families responsible  for 

modulating the activity of the promoters are AP2/ERF, WRKY, C2H2, bHLH, bZIP, MYB 

and MYC and Zinc-finger proteins (Lenka & Bansal, 2019; Zhao et al., 2019). Hormone 

signalling is an important pathway which modulates the chilling-stress regulation 

network. Specifically, ABA hormone plays an important role and its ABA-inducible 

promoters have identified cis-acting elements that confer the ABA response, ABREs 

ABA-independent regulon (ABRE) (Mishra et al., 2014). A dehydration responsive 

element (DRE) is another cis-regulatory element which induces the ABA-independent 

regulation pathway to dehydration and chilling response. Both, ABRE and DRE are major 

cis-regulatory elements in abiotic stress-inducible gene expression (Yamaguchi-

Shinozaki & Shinozaki, 2005).  

 
The aim of this project is to evaluate the impact of chilling temperatures on two 

different maize cultivars. Maize cultivars have been chosen based on the climate 

conditions of the locations where the cultivars are usually planted (Figure 5). Oxxgoode 

maize cultivar is from North Europe where the oceanic climate provides a narrow range 

of temperatures (between 0ºC and 22ºC) and there is no dry season. This cultivar is 

planted from February to May and harvested from June to September. The second 

maize cultivar, W2080, is from California (USA). W2080 cultivar are sown in month of 

April and May and harvested during August and September. This cultivar is grown under 

Mediterranean climate conditions which are characterised by dry summers and mild, 

wet winters (Lionello et al., 2006). Moreover, we have identified the desaturase 

enzymes, responsible for the double bond FA insertion and membrane fluidity, in maize. 
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In order to explore the gene expression of the desaturase genes when maize seeds are 

germinated under chilling temperatures. 

 

 
 

Figure 5: Map of the maize cultivars’ origin. Red spot represents the original location of the 

W2080 cultivar, while as Oxxgoode cultivar origin is represented with a blue spot.   
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2. OBJECTIVES 
 

• To study the germination kinetics of two different maize cultivars germinated 

under control and chilling temperatures. 

• To identify and characterise the fatty acid desaturase genes present in maize and 

analyse their phylogenetic relationships.  

• To analyse gene expression of desaturase genes expressed in seed during maize 

germination under chilling conditions. 

• To predict cis-regulatory elements in the promoter of desaturase genes showing 

differential expression under chilling conditions. 
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3. MATERIALS AND METHODS 
 
 

3.1. Plant material  
 
Two different maize (Zea mays) cultivars, Oxxgoode (European cultivar) from RAGT 

company and hybrids W2080 (American cultivar) from Wyffels seed company were 

used for this study. 

 
3.2. Germination kinetics assay  

 
For germination assays, two different maize (Zea mays) cultivars, Oxxgoode 

(European cultivar) from RAGT company and hybrid W2080 (American cultivar) from 

Wyffels seed company, were bought and used for this study. Three replicate sets of 25 

non-stratified seeds were surface sterilized with 1% NaOCl for 10 min and washed 

several times with sterile water. Then, seeds were placed on Petri dishes containing two 

filter paper discs each, moistened with 10 ml of sterile water. Germination was carried 

out at 5ºC, 10ºC, 15ºC and 20ºC in Controlled Environment Cabinets (Sanyo MLR-352-

PE) in darkness. Seeds were scored as germinated when the coleorhiza had emerged 

beyond the husk. Germination rate was measured every 12 hours for each temperature 

treatment for 12 days. The results were presented as means of the germination 

percentages obtained from three replicates. The germination curve and T50 value is 

represented in Figure 6A-B. Besides, the germination curve fits to a logistic equation. 

 

𝑦 =
𝑎

1 + & 𝑡
𝑇50+

!" 

 

 In the equation,” y” is the percentage of seed that germinated,” t” is the days since 

the start of the experiment, “a” is the asymptote parameter that is the maximum 

percentage of seed germination, “b” is the curvature parameter related to the speed at 

which percentage of seed germination reached the asymptote, and “T50” is the 

parameter, which is the time at which the percentage of seed germination reaches half 

of the asymptote. Figure 6C shows the logistic equation parameters for each treatment. 
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For the statistical analysis, Sigmaplot Software was used to obtain the different graphs 

and parameters. 

 
3.3. Characterization, chromosome mapping and phylogenetic study of the 

maize desaturase genes 
 

All desaturase genes were compiled from the Gene database of the National 

Biotechnology Information Center (NCBI), specifying Zea mays as organism and 

'desaturases' as the title. The desaturase gene family of Zea mays have been identified 

previously (Zhao 2019). To verify the putative desaturase genes of maize, the gene 

sequences of Arabidopsis were used as a template. A Basic Local Alignment Search for 

gene sequences (BLAST) was run against the maize genome in the Reference Gene 

database. The thresholds established to select candidate genes were: Query cover ≥ 

25%, E-value ≥ e-25, Identity ≥ 25%. Finally, an R software function was run to avoid the 

accession repetition enclosing the candidate desaturase genes of maize.  

Phylogenetic analyses were done using Mega X  (Kumar, 2020). A multiple 

alignment of nucleotide sequences (including UTR sections) of the desaturase genes was 

done using the MUSCLE program with the default parameters (Robert, 2004). 

Phylogenetic trees were created using a Neighbor-Joining method with the nucleotide 

sequences (Saitou & Nei, 1987).  To identify the different protein domains in maize 

desaturase, we analysed the protein sequences using a free-online bioinformatic tool, 

SMART (Simple Modular Architecture Research Tool) (http://smart.embl.de). 

All desaturase genes were mapped in maize chromosomes based on the location 

and chromosome number information obtained from the NCBI website. The image was 

done using phenogram web page (http://visualization.ritchielab.org/phenograms/plot) 

(Wolfe et al., 2013).  

 

3.4. RNA extraction and quantitative PCR analysis  
 

 
Embryos of two different maize (Zea mays) cultivars, Oxxgoode (European cultivar) 

and hybrid W2080 (American cultivar) were used for this study. Maize seeds were placed 
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on filter paper in Petri dishes with 10 mL of sterile water and germinated in darkness at 

10ºC, in Controlled Environment Cabinets (Sanyo MLR-352-PE), and at 20ºC in darkness 

at the glasshouse. When the germination of the seed concluded (the coleorhiza 

emerged), maize germinated embryos were isolated under the microscope. Three 

replicates with three embryos were collected for gene expression analysis.  

Embryo collected samples were ground using a mixer mill (Retsch MM400) at 300/s 

frequency for 1 min. RNA was isolated following the Oñate-Sánchez and Vicente-

Carbajosa (2008) seeds and siliques protocol. Extraction buffer (0.4 M LiCl, 0.2 M Tris 

pH:8, 25 mM EDTA, 1% SDS) and chloroform was added to the ground samples. The 

supernatant was washed with phenol and subsequently with chloroform, and RNA was 

precipitated with 8M LiCl at 4ºC for 16h. Samples were treated with DNase at 37ºC for 

30 min. RNA was quantified with a Nanodrop ND-1000 Spectrophotometer (Labtech 

International, UK) and RNA integrity was tested by running an electrophoresis 1% 

agarose gel.  

To evaluate the gene expression of the eleven desaturase genes involved in 

germination under optimal (20ºC) and chilling temperatures (10ºC), quantitative PCR 

(qPCR) analysis was done. cDNA was then synthesized using SuperScript IV First-Strand 

Synthesis System from Invitrogen and SYBR Select Master Mix RT-PCR system was used 

to do the qPCR reaction. The qPCR programme was set up as follows: pre-incubation 

95ºC for 10 min, 35 cycles of two step amplification at 95ºC for 15 sec, 65ºC for 1 min 

and a final melting step at 95ºC for 1 min, 60ºC for 30 sec and 95ºC for 30 sec. A total of 

13 primers were designed using Primer3Plus software (Untergasser et al., 2007) and 

used to amplify the coding regions of interest spanning an exon-exon junction (Table 1).  

ZmActin was used as an internal reference gene (Lin et al., 2014; Zhao et al., 2019) and 

the efficiency of primers was calculated using cDNA 10-1 dilution series. The qPCR results 

were analysed using the MxPro qPCR Software. The expression levels were normalised 

respecting the reference gene using the 2-∆∆Ct method (Livak & Schmittgen, 2001). 

Three biological replicates were each used in two technical replicates per plate.  
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Table 1: Primers for desaturase genes (FAB2s and FADs) table. The table illustrate the locus 
name; the primer’s forward sequence (R seq) and reverse sequence (L seq); the amplicon size 
(bp); and the primer’s efficiency, slope and temperature of dissociation (ºC) for each desaturase 
gene studied.  
 

  

 
 

3.5. Gene regulation analysis of the maize desaturase genes upregulated 
under chilling stress. 

 

The cis regulatory motifs potentially involved in the chilling stress response were 

screened from PLANTCARE database (Lescot et al., 2002). The upstream sequences of 

the genes of the interest were obtained from the phytozome database. The upstream 

sequences comprise 1000 kb, preceding the 5’ UTR section, which were represented 

with their corresponding cis regulatory motifs involved in the chilling stress and the 

TATA box. The image was performed using Adobe Illustrator.  

 

3.6. Statistical analysis 
 

Physiological experiment data obtained were summarized by means of at least 

three replicates and the measures of variability by standard error. To compare means 

between the different treatments and factors, one-way and two-way ANOVA were used 

with R software. Microsoft Excel and Sigmaplot software was used to create the 

germination curves and graphics. 
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4. RESULTS 
 

4.1. Germination kinetics under chilling conditions 
 

To evaluate the effect of low temperature on the germination kinetics, seed of 

two different maize cultivars, W2080 and Oxgoode, were analysed.  We observed   that 

seeds germinated at different temperatures, 5ºC, 10ºC, 15ºC and 20ºC, with 20ºC 

considered as the optimal germination temperature. The germination process was 

considered as completed when the coleorhiza had emerged. Figure 6 illustrates the 

kinetics of germination in both maize cultivars; graph A for W2080 seeds and graph B 

for Oxxgoode seeds. Germination curves are considered logistic curves, whose shapes 

depend on germination speed. Both graphs reveal the percentage of germinated seeds 

and the time taken to complete the process.  

These maize cultivars show a different chilling tolerance, they were strongly 

inhibited at 5ºC, no germination occurred. 5ºC is considered as the critical chilling 

temperature, which interrupts the germination process.   

Seeds of W2080 and Oxxgoode variety have a similar percentage germination 

(98%) at 20ºC within 60 h and 84 h, respectively (Figure 6A and Figure 6B). The maximum 

percentage of germination reduced to 97% for W2080 seeds and 96% for Oxxgoode 

seeds at 15ºC. On one hand, Oxxgoode germination percentage remained the same, 

98% at 10ºC. On another hand, W2080 germination increased to 100%. However, no 

significant difference was observed between cultivars or between temperatures in the 

maximum germination percentage.  

Furthermore, in graph A, the W2080 germination curve is divided in two phases: 

a rapid increase, followed by a gentle increase until seeds reached the final range. 

However, the Oxxgoode germination curve (in graph B) also displayed a steady increase 

phase at the beginning of the germination process. Oxxgoode cultivar required 5.9 days 

to fully germinate, when seeds of W2080 germinated after 2.8 days at 20ºC. To confirm 

our observation, T50 values (Temperature at which 50% germination was achieved) were 

calculated with T50 values for the four experimental temperatures (Figure 6C). The T50 

value was a larger for Oxxgoode when compared to W2080 seeds at chilling 

temperatures (7.74 days and 5.14 days at 10ºC and 5.75 days and 3.12 days at 15ºC, 

respectively) and optimal temperature (2.92 and 1.41 days at 20ºC, respectively). 
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Figure 6. Germination curve and T50 for both maize cultivars. The relationship between the 

percentage of seed germination and the days since the start of the experiment at three 

temperatures for American cultivar, W2080 (A) and European cultivar, Oxxgoode (B). Table (C) 

displayed the logistic equation values: a (maximum percentage of seed germination), b (seed 

germination speed) and T50 (time to reach 50% of final/maximum germination); and the variance 

accounted for (R2) for each tª treatment and cultivar. 

Variety Temperature a b To R2(%) 

USA 
20°C 98.13 8.39 1.41 99.4 
15°C 97.48 8.88 3.12 98.5 
10°C 100.75 8.55 5.14 99.0 

EU 
20°C 98.71 10.28 2.92 99.9 
15°C 95.63 8.86 5.75 99.1 
10°C 98.96 7.28 7.74 98.5 

 

C 
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Ultimately, we compared seed germination speeds of the germinating seeds (b). 

Where W2080 shows no difference among the temperature treatments, Oxgoode 

cultivar decreased germination speed parallel with decreasing temperature. Different 

germination kinetics patterns are seen between cultivars at any temperature.  

 

To study the linear effect of chilling temperature on the germination stage, a broken 

linear model was constituted. Figure 7 represents the germination rate (1/T50) at a range 

of temperatures (from 5ºC to 20ºC) for both maize cultivars. The trendline was used to 

calculate the critical temperature (CT) at which both maize cultivars were not able to 

germinate. Their trendline equations and the coefficient of determination were y = 

0.0011x – 0.0055 and R² = 0.97 for Oxxgoode and y = 0.0021x – 0.0123 and R² = 0,98 for 

W2080. From these data, we obtained the CT value for Oxxgoode (5ºC) which was one 

degree more chilling tolerant than W2080 (6ºC). However, the increase in the 

germination rate with temperature was less rapid for Oxxgoode than for W2080. 

 

 
Figure7.  Relationship between temperature and germination speed of two maize cultivars. 

Temperature (20ºC, 15ºC, 10ºC and 5ºC) against 1/T50 germination is represented for Oxxgoode 

(blue) and W2080 (red) by average values. 
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4.2. Characterization, chromosome mapping and phylogenetic study of the 
maize desaturase genes. 

 

Resilience to chilling temperature during maize germination can be a 

consequence of the plasticity of seed membranes. Desaturases are enzymes responsible 

for lipid desaturation, which enhance membrane fluidity, hence chilling tolerance. We 

have characterized the maize desaturase genes to study their role during maize 

germination under chilling temperatures. A total of 30 genes were characterised, 

encoding different desaturase genes in maize (Zhao et al., 2019). Among them, 17 genes 

codify membrane-bound fatty acid desaturases (FADs) and 13 genes of soluble stearoyl-

ACP (Acyl-carrier protein) desaturases (FABs). Table 2 shows the fatty acid desaturase 

classes present in maize. 

To confirm Zhao et al. (2019) results, a blast against the maize genome was done 

using NCBI tools and database to obtain the full gene sequences of FAD and FAB2 

desaturase genes. Then, its phylogenetic tree was also estimated with desaturase 

sequence alignment to study the evolutionary history and relationships of this gene 

family in maize (Figure 8).   

The phylogenetic tree contains two predominant branches which separate 

membrane-bound FADs and soluble FAB2s. Fewer FAD6 and DES genes were found in 

an independent section; the rest of the desaturase genes were clustered in different 

groups.  

Soluble FAD desaturases are divided into three subgroups; subgroup I contains 

the Sphingolipid Δ8 desaturase (ZmSLD1, ZmSLD2, ZmSLD3) and fatty acid Δ3 desaturase 

genes (ZmFAD4.1 and ZmFAD4.2). Then, subgroup II comprises the fatty acid ω-6 

desaturase genes (ZmFAD2.1, ZmFAD2.2, ZmFAD2.3, ZmFAD2.4 ZmFAD2.5 and 

ZmFAD2.6s). Finally, subgroup III contains the fatty acid ω-3 desaturase genes 

(ZmFAD8.1 ZmFAD8.2, ZmFAD7 and ZmFAD3).  

Membrane FABs are divided into; one group formed from ZmFAB2.1, ZmFAB2.2, 

ZmFAB2.5, ZmFAB2.6, ZmFAB2.7, ZmFAB2.9, ZmFAB2.10, ZmFAB2.12 and ZmFAB2.13; 

and the second group of acyl desaturases including the ZmFAB2.3, ZmFAB2.4, ZmFAB2.8 

and ZmFAB2.11 genes 
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Table 2: Classification of the desaturase genes in Zea mays (reviewed by Tocher et al., 1998). 

Fatty acid desaturases Genes Function 

FADs 

Sphingolipid Δ4 

desaturase 
ZmDES 

 
Insertion of trans double 

bond between the 
Sphingolipid Δ4 and the Δ5 

position 
 

Sphingolipid Δ8 

desaturase 
ZmSLD1, ZmSLD2, ZmSLD3 

 
Desaturation of sphingolipid 

at the Δ8 position 
 

Fatty acid ω-6 

desaturase 

ZmFAD2.1, ZmFAD2.2, 

ZmFAD2.3, ZmFAD2.4 

ZmFAD2.5 and ZmFAD2.6s, 

and ZmFAD6 

 

Double bond insertion in the 

ω-6/Δ-12 position. 

FAD6 is localized in the 

plastid while as FAD2 in the 

endoplasmic reticulum 

 

Fatty acid ω-3 

desaturase 

ZmFAD8.1 ZmFAD8.2, 

ZmFAD7 and ZmFAD3 

Conversion of linoleate (18:2) 

substrates esterified to PC or 

plastid lipids to linolenate 

(18:3) 

Fatty acid Δ3 desaturase ZmFAD4.1 and ZmFAD4.2 

Introduction of trans double 

bond in phosphatidylglycerol 

Δ16 position. 

FABs Acyl-desaturase 

ZmFAB2.1, ZmFAB2.2, 

ZmFAB2.3, ZmFAB2.4, 

ZmFAB2.5, ZmFAB2.6, 

ZmFAB2.7, ZmFAB2.8, 

ZmFAB2.9, ZmFAB2.10, 

ZmFAB2.11, ZmFAB2.12 and 

ZmFAB2.13 

 

Desaturation of 18:0-ACP at 

the Δ9 position 
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Figure 8: Phylogenetic relationships between fatty acid desaturase (FADs) genes in maize. 

Black lines indicate the different desaturases subgroups: Soluble FADs and Membrane-bound 

FAB2s. Protein domains of desaturase genes are represented by coloured squares. The 

phylogenetic tree was done in MEGA X. 

 
The conserved and functional protein domains were analysed, to study their 

similarity and protein structures. Most desaturase proteins contain a unique domain 

“FA_desaturase_2” in a major part of their sequence, except for FAB2.9 that is 

characterised by no domains. In addition, FAD4.1-2 presents a single 

“TMEM189_B_dmain” instead. Besides a “FA_desaturase_2” domain, a second domain 

is present in the rest of the FAD proteins. At the N-terminal part of the SLDs protein is 

found the “cyt-b5” domain. Also, ZmDES presents a “LIPID DES” domain in the N-
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terminus. Finally, Most of FAD protein sequences (FAD2.1-6, FAD7 and FAD8.2) harbour 

a “DUF3474” domain.  

 
 

Chromosomal ideograms help to obtain additional data on the evolution and 

relationships among the desaturase gene family. Desaturase gene sequences and maize 

chromosome information were obtained from the NCBI database and used to construt 

the chromosomal map (Figure 9). FAD and FAB genes are distributed among the maize 

chromosomes except chromosome 6, which does not contain any desaturase genes. In 

addition, several gene clusters were found on chromosome 3 (SLD2 and FAD3), 

chromosome 5 (FAD2.2 and FAD2.3), chromosome 8 (FAB2.8 and FAB2.9) and three 

clusters on chromosome 10 (FAD2.5 and FAD2.6; FAD4.2, FAD4.1 and FAB2.11; and 

FAB2.11 and FAB2.13). The remaining desaturase genes are distributed unevenly in the 

rest of chromosomes. Chromosome 4 and chromosome 9 contain just one desaturase 

gene (FAD2.1 and FAD7, respectively); two FABs genes (FAB2.8 and FAB2.9) in 

chromosome 9; three chromosomes (3, 5 and 7) with three genes; two chromosomes (1 

and 2) with four genes and chromosome 10 carrying seven desaturases genes.  

 

 
 
Figure 9: Chromosome localization of the maize desaturase genes. The chromosome numbers 

are indicated below each vertical bar, and the scale of the chromosomes is in megabases (Mb). 
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Most of desaturases are randomly dispersed in the maize chromosomes. 

Nevertheless, we have found that chromosomes 3, 4 and 9 specifically embody FAD 

genes and chromosome 8 displays only FAB duplicated gene pairs (FAB2.8 and FAB2.9). 

Duplication events also occur in chromosomes 3 (SLD2 and FAD3), 5 (FAD2.2 and 

FAD2.3) and 10 with 3 duplicated gene association (FAD2.5 and FAD2.6; FAD4.1 and 

FAD4.2; and FAB2.11, FAB2.12 and FAB2.13).   

 
 

4.3. Expression patterns of maize desaturase genes germinated at optimal and 
suboptimal temperatures in two different maize cultivars. 

 

Previous studies reveal that desaturase genes play an important role in response to 

chilling stress (Cossins et al., 2002). To evaluate the role of the desaturase genes during 

germination in our two different maize cultivars, a gene expression analysis was done. 

We targeted 12 desaturase genes identified by Zhao et al. (2019) as germination-related 

genes in maize (FAD2.1, FAD2.2, FAD2.3, FAD6, FAD7, FAD8.1, DES, SLD3, FAB2.3, 

FAB2.4, FAB2.8 and FAB2.11). A total of 13 primers were designed and used to amplify 

the coding regions of interest of the selected genes, including ZmActin, the internal 

reference gene. The heatmap (Figure 10) represents the relative gene expression values 

of 12 desaturase genes of interest (relative to ZmActin) Embryos from seeds germinated 

at 20ºC (optimal germination temperature) and 10ºC (chilling temperature) in both 

cultivars, W2080 and Oxxgoode were used. 

 The results show that most of the FAB2s genes studied (FAB2.3, FAB2.8 and 

FAB2.11) were highly expressed, along with FAD2.1, FAD6, FAD7, DES and SLD3, in both 

cultivars and treatments during germination. Specifically, FAB2.3 is the most expressed 

gene in both treatments, though at a chilling temperature (10ºC) it shows a higher level 

of expression. Together with FAB2.8 and FAD2.1, which also show relative higher 

expression levels at 10ºC. Besides, FAD2.3 and SLD3 display higher expression levels at 

the optimal temperature, 20ºC. The rest of the desaturase genes have no significant 

differences in the gene expression between cultivars. In addition, significant differences 

between cultivars were seen in FAD2.2 gene which shows twice the relative expression 

in the W2080 cultivar at the optimal temperatures, 20ºC. In chilling conditions, FAD2.3, 
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FAD7 and FAB2.4 expression levels were significantly higher in the American cultivar 

W2080.  

 

 
Figure 10: Expression profiles of 12 desaturase genes involved in germination. Relative 

expression levels of desaturase genes in American (W2080) and European (Oxxgoode) maize 

cultivars under optimal temperature, 20ºC (A) and chilling temperature, 10ºC (B). The bright 

red-off white colour scale represents high and low relative values of the desaturase genes 

(respectively). The asterisk indicates a significant difference between treatments statistically 

analysed by the Student’s T test.  

To explore the response of our 12 selected-desaturase genes to chilling stress during 

maize germination, we studied their expression in embryos from seed germinated at 10 

ºC and compared it with those germinated at 20 ºC (Figure 11). The ratio of the relative 

expression of the desaturase genes during germination at optimal (20 ºC) and 

suboptimal (10 ºC) temperatures is represented in Figure 11. Among the genes studied 

which codify desaturases, W2080 cultivar shows significant differences between 

treatments in SLD3, FAB2.4 and FAB2.8 relative gene expression. Under chilling stress, 

FAB2.4 and FAB2.8 present a 2-fold increase in gene expression while SLD3 peaked with 

more than 6 times gene upregulation.  Furthermore, FAD2.3 is doubly expressed in the 

Oxxgoode cultivar, together with FAD2.2 which manifests a significant gene induction in 

both cultivars. We conclude that FAD2.2, FAD2.3, SLD3, FAB2.4 and FAB2.8 genes show 

significant difference when plants were germinated under suboptimal temperatures.  



 31 

 

 
Figure 11: Expression profile of maize desaturase genes during germination under chilling 

stress. The bars represent the ratio of desaturase gene expression during germination at optimal 

and suboptimal temperatures.  

 
4.4. Gene regulation analysis of the maize desaturase genes upregulated 

under chilling stress. 
 

To explore the regulation of the five significantly expressed desaturase genes during 

unfavourable germination conditions, we have mapped the cis regulatory motifs of 

each gene of interest. The upstream sequences of each desaturase gene were 

obtained from the phytozome database and the cis-regulatory elements of the 

sequences were identified by PLANTCARE. Figure 12 shows where the different cis 

regulatory motifs are localized, involved in the chilling response, in the 1000 pb 

upstream sequence of the FAD2.2, FAD2.3, SLD3, FAB2.4 and FAB2.8 genes. A total 

of 6 cis-regulatory motifs were shown to be involved in the regulation of desaturase 

genes when germinating under chilling conditions: ABRE, CGTCA-motif, LRT motif, P-

box, DRE and CCAAT-box.  
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Table 3: Cis- regulatory elements table. Abbreviation and name of the cis regulatory elements 

presented in the desaturase genes upregulated under chilling stress.  

ABRE  Abscisic-acid response element 

LTR  Low temperature regulon  

P-box  The prolamin box 

DRE  Drought regulatory elements 

 

Among them, ABRE and CGTCA-motif are present in all the genes studied. DRE is 

also found in most of the genes, except FAB2.4 which displays the LTR motif instead. 

In addition, P-box and CCAAT-box motifs are the fourth cis regulatory motifs class 

present in SLD3 and FAD2.2, respectively. The desaturase gene with the largest 

number of cis regulatory elements (11) in its upstream sequence is FAB2.4 followed 

by SLD3 (9), FAD2.2 and FAB2.8 (8 cis-regulatory motifs) and lastly, the FAD2.3 gene 

presents the smallest number of cis-regulatory motifs (5).  

 

 
Figure 12: Analysis of cis regulatory elements involved in the gene regulation under chilling 

stress. The figure represents the upstream regions (1000 bp) of the five desaturase genes 

upregulated during germination under suboptimal conditions. Genes are represented by a blue 

box and their length is indicated. Six different cis-regulatory motifs are represented by colours: 

ABRE (yellow), CGTCA-motif (blue), LRT motif (orange), P-box (green), DRE (purple) and CCAAT-

box (pink); and the TATA box as red line. 
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5. DISCUSSION 
 

The challenge of increasing food production in the face of a growing population and 

changing climate needs multiple approaches (Hannah et al., 2020). Maize is one of most 

important crops to ensure global food security but is also a chilling sensitive cereal 

(Marocco & Lorenzoni, 2005). Low temperatures can negatively influence the 

germination process, a crucial stage that influences plant development (Thakur et al., 

2010). This work reveals the impact of chilling temperatures during germination and 

how desaturase enzymes could mitigate the chilling damages in the seed membrane and 

encourage its germination.  

 

5.1. Differences in maize germination patterns under chilling stress. 
 
In the first assay, the kinetics of germination of two different maize cultivar seeds 

under chilling conditions were studied. This cultivar choice was based in the original 

location of the cultivars where the weather conditions differed from each other in 

temperature and humidity (Figure 5).  On one hand, both cultivars suffered deceleration 

in the germination process when the temperature decreased. This problem can be 

caused by different possible reasons: 

i) Disruption in the water intake at the imbibition stage due to changes in 

membranes conformation; low temperatures solidify the membrane 

structure blocking the water flux into the seed (El-Maarouf-Bouteau & Bailly, 

2008).  

ii) In addition, seed metabolism is altered by denaturalization of proteins and 

enzymes (Woodstock & Grabe, 1967).  

iii) Ultimately, chilling stress also originates lipid from peroxidation which leads 

to increase in free radicals in the cells (Dreyer & Dietz, 2018).  

Moreover, lack of seedling emergence has been showed in both maize cultivars 

germinated at 5ºC. This results in an irreversible metabolic imbalance that stops the 

germination process (Lukatkin et al, 2012).  

On the other hand, germination timing differs between both maize cultivars. The 

European cultivar (Oxxgoode) takes longer to germinate than the American one 

(W2080). Germination success and speed can vary between cultivars of the same 
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species, influenced by different endogenous and exogenous factors (Eskandari & 

Kazemi, 2011).  The seed morphology can influence the germination process as well as 

aging,  which can cause reduction of vigour and loss of viability in some maize species 

(Revilla et al., 2006; Saboya & Borghetti, 2012). Also, this difference in germination 

kinetics between cultivars can be caused by seed priming treatments. Pre-sowing 

treatment which partially hydrates seeds with a certain solution which could address 

this problem. Seed priming activates metabolic activities, preparing the radicle for 

protrusion without initiating the germination process (Tian et al., 2014).   

Lastly, the germination kinetic experiment also reveals the difference in behaviour 

and patterns of germination under chilling conditions between cultivars. Among the 

possible physiological and biochemical responses to chilling stress that can be involved 

in chilling tolerance, we have studied the role of desaturase genes during seed 

germination in maize.  

  

5.2. Phylogenetic and evolutionary study of maize desaturase family. 
 

The maize genome possesses 30 fatty acid desaturase genes which are classified in 

different subgroups (sphingolipid Δ4 desaturase, sphingolipid Δ8 desaturase, fatty acid 

ω-6 desaturase, fatty acid ω-3 desaturase, fatty acid Δ3 desaturase and acyl-desaturase) 

depending on the catalysed substrate and desaturation location in the lipid (Table 3) 

(Berestovoy et al., 2020) . The number of desaturase genes in maize (30) is larger than 

that in Arabidopsis thaliana (16), Oryza sativa (19), Cucumis sativus (23) , Sorghum 

bicolour (20) or Medicago truncatula (20) (Dong et al., 2016; Z. Zhang et al., 2018; Zhao 

et al., 2019). The expansion of the desaturase family is different in each species, which 

is a result of the number of duplication events. In addition, maize has a larger genome 

compared to other species due to its domestication (Shi & Lai, 2015). Studying the 

phylogenetic relationship in the desaturase family gives us an insight into the gene 

evolution.  

The desaturase family is divided in two major groups: soluble desaturases, (FABs) 

where FAB2s are found, and membrane-bound desaturases (FADs). Cell location, 

enzymatic reaction and metabolic pathways differ between both groups, which is 

reflected in our phylogenetic tree. FAB2s and FADs enzymes have different functions; 
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hence different gene and protein structures (Hajiahmadi et al., 2020; López-Alonso et 

al., 2003).  

The first major cluster is constituted by FAD genes that are assembled in subgroups 

according to function (Li et al., 2016). This differentiation corroborates that desaturase 

gene structure varies according to the enzyme function and cell location. DES is found 

in an independent branch within the FAD cluster. Although DES catalyses a sphingolipid 

desaturation as in the SLD subgroup, it is the only gene in maize that inserts a 

trans- double bond in the Δ4 position (Ternes et al., 2002). DES protein contains a “LIPID 

DES” protein domain while SLDs have a “Cyt-b5” domain. Additionally, the SLD clade is 

formed by three sphingolipid Δ8-desaturase genes with a recent duplication between 

SLD1 and SLD3. Also, FAD4.1 and FAD4.2 genes were duplicated recently, and their 

protein sequence lacks the most common domain, “Fa_desaturase_2”. The 100% 

identity coefficient of FAD2 subgroup means that it is highly similar and conserved, even 

though it is constituted of two sister pairs (FAD2.4 and FAD2.3, and FAD2.4 and FAD2.6). 

The last clade is constituted by FAD3, FAD7, FAD8.1 and FAD8.2 with an identity 

coefficient of 100%. Although these genes codify the enzyme responsible for the 

linoleate conversion into linolenate, FAD3 acts in the ER while as FAD7 and FAD8s act in 

the plastid (Torres-Franklin et al., 2009). This grouping may be the product of an ancient 

endosymbiosis (Sperling et al., 2003).  

In the second major classification, FAD6 gene is enclosed with FAB2s genes. This may 

be because both FAB2s and FAD6 catalyse in the same cell location, plastids. However, 

they are also characterised by presenting a unique protein domain in their sequences, 

the “Fa_desaturase_2” domain. Among FAB2s, we found four sister-pairs which 

indicates recent duplications. Also, a larger number of FAB2 genes (13) were found 

belonging to other desaturase subgroups; sphingolipid Δ4 desaturase (1), sphingolipid 

Δ8 desaturase (3), fatty acid ω-6 desaturase (7), fatty acid ω-3 desaturase (4) and fatty 

acid Δ3 desaturase (2). FAB2 is an important enzyme responsible for introducing the first 

double bond in 18:0 ACP to catalyse 18:1 ACP, the primary substrate necessary for 

following FADs desaturations (Berestovoy et al., 2020). 

 

 To support the information obtained from the phylogenetic tree and study the 

desaturase gene family evolution, all genes were mapped to maize chromosomes.  
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Desaturase genes were distributed across all chromosomes except chromosome 6. Two 

sister pairs cladded in the phylogenetic tree (FAD4.1/FAD4.2 and FAD2.2/FAD2.3) were 

also found in the chromosome map. This duplication can be caused by tandem 

replication events. The rest of the duplicated pairs may have originated by segmental 

duplication events. However, in the chromosome map were found more segmental 

(chromosome 10’ FADs and FABs genes) and tandem events (FAB2.8 and FAB2.9; SLD2 

and FAD3; and FAD2.2 and FAD2.3) responsible for the expansion of the desaturase 

family. Also, these genes can be considered linked genes that are likely to be inherited 

together due to their proximity on the chromosome. The rest of the genes may be 

inherited independently as they are located far from each other (Cooper, 2000; Santoni 

et al., 2013). 

 
5.3. Differences in the expression patterns of maize desaturase genes at 

optimal and suboptimal temperatures. 
 

Since kinetic of germination changed in response to chilling imbibition, we would 

expect significant changes in expression of desaturase genes. First, we have identified 

the expression level of desaturase genes during maize germination. We have studied 

the 13 desaturase genes identified by Zhao et al. (2019) (FAD2.1, FAD2.2, FAD2.3, FAD6, 

FAD7, FAD8.1, DES, SLD3, FAB2.3, FAB2.4, FAB2.8 and FAB2.11) during germination in  

two maize cultivars. FAB2.3, FAB2.8, FAB2.11, FAD2.1, DES and SLD3 transcripts were 

the most abundantly expressed genes during germination among the desaturase genes 

in both cultivars. These highly expressed genes may be responsible for the lipid synthesis 

in imbibed seeds. FAB2 genes participate in seed development and germination which 

generates precursors for embryo tissues, hence promoting embryo growth (Kazaz et al., 

2020). Arabidopsis FAB2 mutants accumulate stearate lipid in their membranes, which 

interacts with the lipid synthesis during germination (Lightner et al., 1994).  Also FAD2 

and sphingolipid desaturases (DES and SLD3) are  responsible for polyunsaturated lipid 

and sphingolipid synthesis in germinating seed, respectively (Ali et al., 2018; J. Zhang et 

al., 2012). A previous study in sunflower seeds revealed that higher content of linolenic 

acid was found in the germinating embryonic axes. High linolenic acid levels enhance 

rate of germination (Munshi et al., 2007). Thus, the FAD2 enzyme is a key enzyme during 

germination as it is responsible for desaturating oleic acid into linoleic acid (Dar et al., 
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2017). Between cultivars, only FAD2.2 showed higher levels of gene expression in the 

W2080 cultivar, which could be related with its differences in germination speed.    

In this study, to explore the response of desaturase genes to chilling stress during 

germination, we carried out gene expression analysis. The results showed that the 

expression of FAD2.2/2.3, SLD3 and FAB2.4/2.8 was significantly upregulated in at least 

one of the two cultivars studied. Consequently, these genes may play an important role 

in chilling tolerance during maize germination by membrane modification (Dong et al., 

2016; Huby et al., 2020; Los & Murata, 1998). High concentrations of unsaturated fatty 

acids reduce permeability of the cell membrane. Through membrane modifications, 

seeds prevent water uptake, leakage of solutes and metabolism imbalance which brings 

better tolerance to suboptimal temperatures. Previous studies with Arabidopsis FAD2 

deficient mutants showed reduction in polyunsaturated FA and high chilling sensitivity 

whereas wild-type Arabidopsis plants present higher polyunsaturated FA level and 

chilling tolerance (Miquel et al., 1993).  A positive relationship was observed between 

FAD2 enzyme action and chilling stress (Zhang et al., 2012).  Zhou et al. (2016) 

experiments also demonstrated the importance of SLD enzymes in chilling tolerance. 

SLD-silenced tomato plants showed higher MDA content, indicating that SLD-silenced 

mutants were chilling sensitive plants.  Gene expression analysis also concluded that SLD 

is essential for chilling stress tolerance (Zhou et al., 2016). Our analysis shows a 

significant maximum in SLD3 expression in the American cultivar (W2080) which 

suggests a role in W2080 chilling tolerance. Regarding FAB2 gene up-regulation, studies 

in cyanobacteria cell membranes reveal its significant role under low temperatures 

(Murata & Wadat, 1995). In addition, the FAD2.2 gene also plays an important role in 

chilling tolerance. It is the only gene which shows significant upregulation in both 

cultivar when germinated at low temperatures.  

We also need to highlight the difference in desaturase gene upregulation between 

maize cultivars (W2080 upregulates FAD2.2 SLD3 and FAB2.4/2.8 genes and Oxxgoode 

upregulates FAD2.2/2.3 genes). W2080 showed a larger number of upregulated genes 

than Oxxgoode, which suggests a better response to chilling temperatures. However, it 

has a greater variety of types of desaturase genes which act in different cell locations 

and desaturate different FA positions. Thus, it confers a larger number of substrates 

available for desaturation of the enzymes and chilling tolerance. 
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5.4. Gene regulation of maize desaturase genes expressed under chilling 
conditions. 
 

In our last experiment, we have identified the cis-regulatory element to elucidate 

the molecular mechanisms of gene expression in response to chilling stress. Cis-

regulatory elements identification is a great tool to identify the mechanism and control 

the gene expression of the genes of the study. Five desaturase genes (FAD2.2-

2.3, SLD3 and FAB2.4/2.8), were significantly expressed during germination under 

suboptimal conditions. We localized six different cis-regulatory motifs, ABRE, CGTCA-

motif, LRT motif, P-box, DRE and CCAAT-box, in their 1000kb upstream sequences. 

Abscisic acid responsive element (ABRE) and methyl jasmonate (MeJa) responsive 

element (CGTCA-motif) are hormone-related regulatory elements present in all the 

genes studied. ABA and MeJa are hormones that regulate gene expression of many 

genes under chilling conditions (Battal et al., 2008; Nakashima et al., 2014).  Previous 

experiments in maize, oilseed rape, rye, rice, tomato, wheat and Arabidopsis 

overexpressing or knocking out DRE regulon confirm its role in the regulation of chilling 

stress response (Mizoi et al., 2012; Nakashima et al., 2014). Furthermore, P-box is a 

hormone-related cis-element regulated by gibberellin (GA). Recently, it has been 

demonstrated that imbibed seeds enhance GA biosynthesis to promote germination 

under chilling condition (Lee et al., 2005; Yamauchi et al., 2004).  Finally, CCAAT-box was 

identified in Arabidopsis thaliana and related with osmotic stress and LTR motif as 

specific low temperature regulon involved in chilling stress response (Edwards et al., 

1998).   
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To conclude, the differences in the germination kinetic curves between cultivars 

could be caused by previous adaptation to low temperatures. The European cultivar, 

Oxxgoode, requires a wider length of time for completing its germination which confers 

the ability of arresting the process. Consequently, Oxxgoode seeds can carry out 

germinate without suffering chilling damage when subjected to unfavourable 

conditions. This previous adaptation to chilling stress from the European cultivar 

(Oxxgoode) is also seen in the desaturase gene expression and chilling response which 

is less than that of the American cultivar (W2080). This suggests that Oxxgoode seeds 

could limit the desaturase action by concentrating a larger number of desaturated lipids 

in the membrane. Further investigation the phospholipidome profile in both cultivars 

under optimal and suboptimal temperatures is required to understand the membrane 

capacity to tolerate chilling in maize.  Likewise, further analysis of desaturase gene 

expression throughout germination will enable identification of candidate targets for 

improving chilling tolerance in maize.  
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6. CONCLUSIONS 
 

• The kinetics of germination experiment verified that the European cultivar 

(Oxxgoode) germinates slower than the American cultivar (W2080). Thus, 

different germination patterns have been seen between cultivars under optimal 

and suboptimal conditions. 

• A total of 30 desaturase genes were identified in Zea mays. Among them, 13 

desaturase genes were identified as membrane-bound fatty acid desaturases 

(FABs) and the rest of the desaturase genes (17) as soluble sterol-ACP (Acyl-

carrier protein) desaturases (FADs). Maize contains a larger number of 

desaturase genes than other species such as Arabidopsis thaliana (16), rice 

(Oryza sativa) (19) and cucumber (Cucumis sativus) (23). 

• On one hand, several upregulated desaturase genes during maize germination 

under optimal temperatures were identified: FAB2.3 (which is highly expressed), 

FAB2.8, DES, FAD2.1, FAD6, FAB2.11, FAD7, SLD3 and FAD7, named in 

descending order of relative expression, in both cultivars. In addition, desaturase 

gene expression does not show significant difference during germination 

between cultivars, except from FAD2.2.  On the other hand, when seeds are 

subjected to chilling stress, W2080 cultivar shows significant upregulation in 

FAD2.1, SLD3, FAB2.4 and FAB2.8 gene expression level compared to optimal 

conditions. While as FAD2.1 and FAD2.2 desaturase genes are upregulated in 

Oxxgoode cultivar.  

• 6 different cis-regulatory elements (ABRE, CGTCA-motif, LRT motif, P-box, DRE 

and CCAAT-box) could be involved in the gene regulation of maize desaturases 

when maize seeds germinate under chilling conditions.   
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7. FUTURE DIRECTIONS 

 
This MSc thesis reveals new findings about the desaturase family and its mode of 

action when maize seeds are exposed to chilling temperatures during their germination. 

Consequently, the following approaches will help us to gain further insights: 

 

• A comparative phylogenetic study with other grass or cereal species (as rice, 

wheat, Brachypodium…). It would open up the opportunity to examine the 

evolution of this gene family and the germination process. 

• Functional assays using gene-silenced mutants with our five candidates’ 

desaturase genes (FAD2.1, FAD2.2, SLD3, FAB2.4 and FAB2.8) to validate its 

role under chilling stress.  

• Deep transcriptomics and lipidomic screening at different stages of the 

germination process to evaluate the changes of the lipidomic profile and the 

action of desaturases along the germination process, at optimal and chilling 

temperatures.  
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