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Abstract

This thesis puts forward a computational framework that can be used by em-

bodied artificial agents (and in particular autonomous robots) for ontogenetic

development. The research investigates methods, endowed with which, an em-

bodied agent can develop control structures for increasingly complex and better

adapted behaviour, explicitly and incrementally from its history of interaction

with its environment. The temporal horizon of an agent is extended so that past

experience can be self-organized into a developing structure that can be used to

anticipate the future and act appropriately in environments where state informa-

tion is incomplete, such as a social environment.

A formal definition of sensorimotor experience is given, and Crutchfield’s in-

formation metric is used as the basis for comparison of experiences. Information

metrics are demonstrated to be able to characterize and identify time-extended

behaviour. A definition of a metric space of experiences is followed by the intro-

duction of an architecture that combines this with environmental reinforcement

as the basis for a system for robot ontogeny.

The architecture is demonstrated and tested in various robotic and simulation

experiments. This thesis also introduces the early communication game “Peeka-

boo” as a tool for the study of human-robot interaction and development. The

interaction history architecture is then used by two different robots to develop the

capability to engage in the peekaboo game.
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A joyful life is an individual creation that cannot be copied from a

recipe.

Mihály Cśıkszentmihályi,

Flow: The Psychology of Optimal Experience, 1990

His mother had often said, When you choose an action, you choose

the consequences of that action. She had emphasized the corollary of

this axiom even more vehemently: when you desired a consequence

you had damned well better take the action that would create it.

Lois McMaster Bujold,

Memory, 1996
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robogeek.co.uk, 2008
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Chapter 1

Introduction

The research focus of this thesis is on the investigation and design of methods,

endowed with which, an embodied agent can develop control structures for in-

creasingly complex and better adapted behaviour, explicitly and incrementally

from its history of interaction with its environment. This is conducted with the

long-term goal of a general framework for ontogeny in robots and other embodied

artificial agents.

This is an endeavour in pure Artificial Intelligence (AI); it is, after all, the

underlying goal of all AI research to produce artificial entities that exhibit some-

thing that might be called “intelligent behaviour”. By taking a developmental

viewpoint however, the researcher avoids many of the problems of design and con-

struction of “old-style” AI, and has the luxury of being able to sit back while the

artifact does the hard job of building and developing their own intelligence. The

researcher, instead of being an all-knowing designer, takes up the rather more

tractable role of the teacher. Now, of course, the question is, what should be put

into that artifact such that it can turn that teaching into intelligence?

Answering this question is the goal of the relatively new research field of de-

velopmental artificial intelligence1 (Lungarella, Metta, Pfeifer and Sandini, 2003)

1Due to the embodied, situated nature of the field, this has become synonymous with Devel-
opmental Robotics, or Epigenetic Robotics, and is a research field that is now supported by at
least two dedicated international conferences: the IEEE International Conference on Develop-
ment and Learning, and the International Conference on Epigenetic Robotics.

1



Chapter 1 - Introduction

and there has already been a great deal of work towards coming up with answers

(and, it has to be said, there probably is no single way of achieving this). Being

a new research field, it naturally draws from many disciplines, notably Devel-

opmental Psychology, Neuroscience, Cognitive Science, Robotics and Philosophy,

the synthesis of which has never been seen before.

Increasingly, the importance of embodiment and situatedness within complex

and rich environments is becoming recognized as a crucially important factors in

engendering intelligence in an artifact (see for example Clancey (1997); Pfeifer and

Bongard (2007) and the philosophical position regarding “structural coupling” of

Maturana and Varela (1987)). Moreover, it is in how an artificial agent develops its

capabilities over a life-time of interactions (ontogeny) that is important in building

a grounded intelligence, especially given the complexity of interactions in natural

environments, and the richness of sensors available to modern robots. Grounding

(“the symbol-grounding problem”, Harnad, 1990) has long been a problem for

AI. For symbols to have meaning for an artifact, they must be grounded in its

own interaction with the real-world. An artificial agent that develops everything

it “knows” through interactions with its environment, building a rich history of

interaction grounded in its own sensorimotor experience, may avoid the problems

of ungrounded symbolic artificial intelligence and take a step towards a grounded

natural intelligence.

2



Chapter 1 - Introduction

1.1 Research Questions and Challenges

The central thesis that is proposed, is

that ontogeny in an embodied agent can be based on, and built upon, a

grounded sensorimotor history.

Thus, the ultimate goal that this research hopes to contribute to is the realization

of a general framework for behavioural ontogeny in embodied artificial agents.

Within this larger endeavour, I identify the following research goals:

Goal 1: To add some formalism to key concepts in the ontogenetic paradigm. For

example:

• What defines an experience for an embodied agent?

• What is a grounded history?

Goal 2: To establish quantitative methods for comparison of robot self-experience.

Goal 3: To find, implement and test mechanisms whereby an agent may au-

tonomously and open-endedly shape its control structures for action and

behaviour, based on its ongoing history of past experiences.

Thus, the following hypotheses are proposed:

Hypothesis 1: The changing gross informational relationships between groups

of sensors of an embodied agent, situated and acting in an envi-

ronment, can be used to characterize the behaviour of that agent

(agent-environment interaction).

Hypothesis 2: It is possible for an agent to recognize its own behaviour in terms

of these informational relationships between groups of sensors.

Hypothesis 3: By using a temporally extended history as the basis for action,

links between experiences and actions may be built that allow the

agent to act such that it exhibits the appearance of prospection

of repeated and familiar events in its environment.

3



Chapter 1 - Introduction

Hypothesis 4: A robot can use its own ongoing interaction history to develop the

capability to engage in simple, social, communicative interaction

with a human partner.

Hypothesis 5: A dynamically constructed history of interactions that is used to

generate and select actions in an embodied agent can serve to

scaffold the ontogenetic development of the agent.

1.2 Methodology

I take an empirical, constructive approach in this thesis. That is, by implementing

architectures and demonstrating their capabilities, I hope to show that there is

some validity to the theory, equations and architectures proposed. This stance

is taken out of necessity, as I believe that description while often insightful, is

ultimately inadequate when one talks of embodiment and experience - it has to

be instantiated.

Thus, where possible, architectures and methods are implemented on real

robots in natural environments. Simulations are only used as a stepping stone

towards that. However, where theory and implications are discussed, I emphasize

that they are equally applicable to a more general “embodied agent” and not just

robots. Thus, implementations of proposed theory and architecture in a software

agent in an immersive game world, or an internet “bot” inhabiting a world of

data, are equally valid.

One of the major research tools employed in this research work is Informa-

tion Theory, due to the enormous potential of these techniques in organizing and

understanding relationships of real sensors (Olsson, Nehaniv and Polani, 2004;

Lungarella, Pegors, Bulwinkle and Sporns, 2005; Sporns and Pegors, 2004). (Ols-

son, 2006, Chapter 7) shows that the information-based method is suited to finding

relationships between robotic sensors and is “better”, in this respect, than other

measures. Brief comparisons to some other measures are made in this thesis (See

Section 4.3.3), however a thorough comparison is not attempted here.

4
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1.3 Contributions to Knowledge

The main contributions of this thesis are that it:

1. Defines “Interaction History” from the perspective of autonomous embodied

artificial agents;

2. Shows that the information theoretic relationships between a robot’s sensors

(exterioceptive, interioceptive and proprioceptive) can be used to character-

ize behaviour (i.e. distinguish classes of behaviours) and identify behaviours

(as being similar to one or another previously experienced behaviour or be-

haviour class);

3. Defines the Average Information Distance as a measure of sensory relations;

4. Operationalizes the meaning of “experience” from the perspective of em-

bodied artificial agents and robots;

5. Introduces2, validates and applies the “experience metric” (an information

theoretic measure) to the comparison of experiences in robots, and shows

that experiences with low values of the metric correspond to experiences

that are similar as judged by an external observer;

6. Develops techniques for self-construction and modification of a metric space

of experiences as a model of a temporally extended remembering/memory

for robotic control systems;

7. Demonstrates the operation of an architecture, that chooses actions based

on proximity of experiences in a growing metric space, on different robotic

and simulated platforms and on different tasks;

8. Introduces “Peekaboo” as a tool for research in early communicative in-

teraction of robots with humans and as a scenario in which ontogenetic

development can be studied in robots.

2Concept of experience was co-developed with Chrystopher L. Nehaniv who also created the
mathematical proof that it is a metric. All robotic implementation of the metric is my own
individual work.

5



Chapter 1 - Introduction

1.4 Overview of Chapters

Chapter 2: The thesis begins by presenting a definition of an Interaction History

for an embodied agent along with a discussion of the research motivation

and background literature to support the definition. For convenience of

reference, an overview of research work that relates to the main themes of

this thesis (developmental/learning architectures that use history) is also

collected into that chapter (Section 2.6).

Chapter 3: presents technical background information regarding how robotic

sensors can be viewed as information sources and a brief explanation of the

Information Distance measure.

Chapter 4: then takes the first steps in using the information distance metric to

identify and characterize robotic behaviour using the changing relationships

between sensors over time.

Chapter 5: Presents formal definitions of an experience and the experience met-

ric along with supporting experiments that show how sensorimotor expe-

rience can be predicted from a history of experience arranged in a metric

space of experiences.

Chapter 6: Discusses issues regarding the computational scalability of incremen-

tally constructing a metric space of experiences, merging, forgetting and the

construction of grounded categories as emergent classes of experience.

Chapter 7: Introduces a computational scheme for ontogeny in artificial agents

and robots, the Interaction History Architecture, that has at its centre the

metric space of experiences developed over the previous chapters. This is fol-

lowed by simulation experiments demonstrating robotic learning on a bench-

mark delayed-response task.

Chapter 8: The early interaction game, “Peekaboo” is introduced and the In-

teraction History Architecture is implemented in a SONY Aibo robotic dog.

6
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The architecture is used as the basis for the robot to develop the capability

to engage in a simplified version of the game. This chapter also further in-

vestigates the properties of the architecture in terms of appropriate horizon

length of experiences.

Chapter 9: A more general version of the peekaboo game that requires appro-

priate feedback through audio and visual modalities is the subject of exper-

iments in this chapter. The implementation is on an upper-body humanoid

robot that is able to provide feedback to the interaction partner using both

gestures of its arms and head as well as non-verbal expressive facial gestures.

Chapter 10: Summarizes and discusses the implications of the results, and out-

lines future directions and possible applications.

7





Chapter 2

Interaction Histories

2.1 Introduction

The central theme of this thesis is how embodied artificial autonomous agents can

develop action capabilities based on a history of interactions grounded in their

sensorimotor experience. This chapter begins by offering a definition of what

an interaction history is for such an agent. The motivation for this definition is

established by exploring literature from various fields that support an embodied

view of cognition and memory that is dynamic, developmental and grounded in

individual sensorimotor experience. The definition we formulate is particularly

concerned with dynamic “memory” or remembering systems that are part of an

embodied whole that encompasses the sensory, motor and control systems.

The contents of this chapter are organized as follows. Firstly a definition of

interaction histories is presented and is followed by a review of the background

literature that motivates it, separated into that from psychology and that from

Artificial Intelligence (AI). Finally, we review the background literature as it re-

lates to two key areas of the experimental work in this thesis: how behaviour and

experience can be characterized from the agent perspective, and how a history of

experience can be used as the basis for action.

9
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2.2 Definition of an Interaction History

An interaction history of an embodied agent is defined, in this thesis, as:

the temporally extended, dynamically constructed, individual sensori-

motor history of an agent situated and acting in its environment, in-

cluding the social environment, that shapes current and future action.

The key aspects of this definition are:

• Temporal extension: The overall horizon of an agent’s experience extends

into the past (potentially including all previous experience available to the

agent) and also into the future in terms of prediction, anticipation and

expectation.

• Dynamical construction: This indicates that the history is continually be-

ing both constructed and reconstructed. Previous experiences are modified

(including the recall potential of, and relations between, experiences) in

both the processes of “storage” and recall, and potentially affect how new

experiences are assimilated into the history in the future.

• Grounding : The history need not be symbolic (i.e. recorded in terms of

externally imposed representations) and is grounded in the sensorimotor

experience of the agent. Beyond innate structures for perception, new rep-

resentations and categories may emerge in cognitive structures as a result

of the agent-environment interaction.

• Remembering in action: The process of remembering drives and shapes the

choice of current and future action, while also, itself, dynamically re-shaping

the structures employed in remembering.

Note that the term interaction is used to indicate that this temporally ex-

tended history encompasses the sensorimotor history, the history of action as well

as the feedback of action on the history. This definition encompasses all kinds of

interaction with the environment, but specifically includes the social environment.

10



Chapter 2 - Interaction Histories

2.3 Memory and Remembering

The above definition of interaction histories implies a very specific view of what

“memory” is for an embodied agent. That is, it is constructive and thoroughly

grounded in embodiment and action, while encompassing both episodic as well as

semantic aspects. In this section supporting literature for this view of memory is

reviewed. Research from both human psychology as well as Artificial Intelligence

(AI) and Cognitive Science is considered.

2.3.1 Remembering in Human Psychology

Types of Memory

In the majority of modern-day memory research (see Tulving and Craik, 2005;

Baddeley, Conway and Aggleton, 2002), memory is separated into certain types,

largely for convenience but also because often memory manifests (and fails) in dif-

ferent ways, under different circumstances and in many widely differing ways. The

first distinction that is usually made is between short term memory, STM, and long

term memory, LTM. STM is of the order of seconds, is associated with conscious

awareness and appears to have a very different neurological basis to LTMs which

are more durable memories, potentially lasting entire lifetimes. LTM can then be

separated into procedural or non-declarative memory, which includes classical con-

ditioning and memory for skills, and propositional or declarative memory which

includes memory for events as well as “knowledge”. Tulving (1983) identifies two

kinds of declarative memory: episodic memory relating to memory of events or

episodes (with a temporal aspect and, usually, a personal aspect), and semantic

memory relating to “knowledge”, “meaning” and “categories” unconnected to any

particular event.

In terms of this traditional separation of memory types, interaction histories

as defined above would be considered to be episodic in nature. However, it can

be argued (see for instance Glenberg (1997)) that categories and “knowledge”

may emerge from essentially episodic experience, and that while semantic mem-
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ory is different in nature to episodic memory, that both are part of a continuum

of processes. Interaction histories, then, can also be considered to have a seman-

tic aspect, categories and “knowledge” emerging through the merging of similar

experiences combined with the process of basing action on these categorical ex-

periences.

A further category of memory that is of relevance to this thesis, cutting across

the categories already described, is autobiographical memory, that is, memory

that defines the individual. Tulving (2005) describes this as being both episodic

in nature, containing time located events of significance to the individual as well

a semantic knowledge relevant to the individual built-up from many episodes.

Memory as Recall versus Memory as Construction

Traditionally, human memory is seen as being able to store exact representations

of scenes and events as actual “memories”; this view most probably arising from

the very familiar experience of being able to recall what seems like very exact

detail of events from the, potentially, far distant, past. Thus, memory seems like

a vast warehouse of stored knowledge, the recall of which just needs the right

index to the right shelf. In the late 19th century, work by neuroscientists such

as Paul Broca found that the brain was organized with local functions in specific

regions, Broca himself locating “the” centre for speech production in an area of the

brain now known as Broca’s region, by examination of cases of aphasia where that

region was damaged. This localized view of brain functions, naturally resulted in

a view of memory as being stored in precise places in the brain. (Rosenfield, 1988;

Bartlett, 1932)

The view of memory as a fixed storehouse was first seriously challenged by

Bartlett (1932): “The first notion to get rid of is that memory is primarily or

literally reduplicative, or reproductive.” (Bartlett, 1932, p204). Bartlett uses the

example of a tennis stroke to illustrate how motor memory cannot have stored all

possible positions and potential sensory inputs required to produce a stroke in all

possible situations. It would be plainly impossible to remember exactly all the
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strokes one played as every one differs from every other. Instead he suggests that

every new stroke is constructed afresh from the current context, as is in the case

of recollection of memories of events. (Bartlett, 1932, p201-202)

In “The Invention of Memory” (Rosenfield, 1988), with reference to clinical

cases, Rosenfield builds on the argument that human and animal “memory” should

be viewed as a process of remembering. He argues that recollections of the past

are constructed in terms of the present context, and as such, are not localized in

fixed places or structures in the brain, but are instead reconstructed as required.

Thus, this “constructivist” viewpoint states that memory consists not of static

representations of the past that can be recalled with perfect clarity, but rather is

the result of a dynamic accretion of interaction with the environment.

However, for the constructivist point-of-view to be consistent, it has also to be

able to account for such phenomena as flash-bulb memories (Conway, 1995) where

remarkable level of detail is recalled about certain “personally significant” and

“suprising” events, sometimes years after the event, and without overt rehearsal.

Illustrating, Conway points to reports about flash-bulb memories “containing de-

tailed information concerning people, place, activity and source, and some ‘irrele-

vant’ details not usually retained in autobiographical memories.” (Conway, 1995,

p59). However, Conway does not completely reject the constructivist conception

of autobiographical memory, instead he suggests that the organizing structures

for flash-bulb memories are particularly tightly and coherently organized, and the

constructive process can retrieve “memories as a whole”. The argument that the

occurrence of high levels of detail in recall does not preclude reconstruction is

however more difficult to sustain when considering “eidetic” or “photographic”

memory. While instances of individuals with eidetic memory are disputed, the

cases of certain “savants” such as Stephen Wiltshire and Leslie Lemke (Wisconsin

Medical Society, 2007) indicate that in exceptional circumstances human memory,

usually with a concomitant impairment of some other brain function, can indeed

recall (and reproduce) vast detail from a single viewing of a scene or hearing of a

piece of music (see, for instance (Miller, 1999)).
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It seems likely in fact, that the true picture as far as human memory is con-

cerned, lies between the two. That is, human-memory has the ability to store

incredible detail, especially when the situation is extremely emotionally charged,

however, for most of us, in most situations, recall is a constructive process result-

ing from many storage events - effectively filling in and completing detail.

2.3.2 Remembering in Artificial Intelligence (AI)

Dynamic Memory

While the above discussions of memory are based on clinical and psychological

studies of human memories, a possibility of instantiation of such memories in ar-

tifacts is offered in (Schank, 1999). In earlier work, Schank and Abelson (1977)

attempt to explain the organization and “understanding” of experience by propos-

ing scripts, that is “ldots groups of causal chains that represent knowledge about

frequently experienced events.” (Schank and Abelson, 1977, ch. 3). Schank (1999)

consolidating earlier research describes dynamic memory, which is based on the

concept of “reminding”, and memory structures that at the same time construct

categories as the world is experienced and organize retrieval using those categories.

In this revised view of dynamic memory, memory is essentially reconstructive.

Categories are learnt and organized through experience and then current sensory

input is interpreted in terms of these categories at many levels and memory is re-

constructed. The structures used for remembering are Scripts (knowledge sources

for controlling inferences in particular situations), Memory Organization Packets

(MOPs - an organizing structure) and Thematic Organization Packets (TOPs) at

the highest level. Furthermore, these organizing structures help to decide what to

pay attention to; predictable, normal events are not “noted” in memory, but ones

that do not match well to the structures are used to reorganize those structures.

Thus dynamic memory is the “. . . process of learning by explaining expectation

failures engendered by predictions encoded in high-level memory structures . . .”

(Schank, 1999, p17).
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Case-Based Reasoning (CBR) (Kolodner, 1993) builds on the concept of re-

minding, building MOPs from the systems experiences (cases). CBR was derived

from the earlier work of Schank and Abelson (1977) and Schank’s subsequent

research into dynamic memory, and had notable successes in producing knowl-

edge based artificial intelligence systems including CLAVIER, a system for laying

out composite parts in a fabrication process. CBR and “Continuous-CBR” are

discussed further in Section 2.6.1.

Memory as embodied action

This thesis aligns with the “embodied cognition” hypothesis, that “cognition is a

highly embodied or situated activity and suggests that thinking beings ought there-

fore be considered first and foremost as acting beings.” (Anderson, 2003). Lakoff

and Johnson (1999) argue that all cognition, including representations and mem-

ory of categories, eventually grounds out in embodiment. Glenberg (1997) argues

that the purpose of perception and memory for the natural environment is to

guide action and that even abstract concepts can be interpreted in terms of phys-

ical actions and properties. Edelman (1992) also supports an active process view

of memory: “By its nature, memory is procedural and involves continual motor

activity and repeated rehearsal in different contexts.” (Edelman, 1992, p120). In

general therefore, memory manifests itself as embodied action of some kind. That

is, it is in actions resulting from recall that one witnesses memory and that recall

itself is dependent on embodiment.

Clancey (1997) refers to the phenomena of memory as embodied action as

“transactional experience”, and considers even “deliberating” itself as an activity.

“Speaking, visualizing and transforming things in the world occur

over time, in protracted activities, coordinated by cycles of neural cat-

egorization and composition. Creating, manipulating and interpreting

descriptions . . . involve a sequence of experiences. Having an idea -

even saying something to oneself - occurs in activity as an experience.

. . . This contrasts with the folk psychology distinction between think-
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ing and acting in the sense of first deliberating and then carrying out

a plan.” (Clancey, 1997, p218,219, original emphasis).

This view from psychology and cognitive science is supported by the modern

Artificial Intelligence (AI) community too. Pfeifer and Scheier (1999) for instance

also argue for an embodied situated memory, and memory as re-categorization.

The emphasis overall then is on the interaction with the environment and a process

view of memory.

Autobiographic Agents

An interaction history, when concerned in particular with individual memory of

events and meanings, can be considered to be an “autobiographic memory” (Tul-

ving and Craik, 2005). Dautenhahn (1996) defines an autobiographical agent, as

“an embodied agent that dynamically reconstructs its individual history (auto-

biography) during its lifetime”. An autobiographic agent may also be able to

communicate significant episodes in its past to other agents which could further

increase the temporal horizon of the agent and that of others (Nehaniv, 1999a).

Here the notion of recounting, or communication of that history, is important,

particularly in social agents.

Ho, Dautenhahn and Nehaniv (2008) describe an architecture for virtual agents

that build a reconstructive symbolic episodic memory of their interactions using

bottom-up principles. Interestingly, the agents are able to communicate their au-

tobiographies to other agents in the virtual world, and recount stories constructed

from their own and others autobiographies. The authors test agents in a complex

world and shows that having and communicating stories and histories in this way

results in increased adaptation and success.

2.4 Motivation

In this section we consider and expand upon various other aspects of the definition

of interaction histories offerred in Section 2.2 above. The themes reviewed here are
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the extension of the temporal horizon of an agent, dynamical systems, ontogenetic

development and social interaction.

2.4.1 Temporal Horizon and Extension

The temporal horizon of an agent delimits the history (whether personal or socially

acquired) that an agent has access to (Nehaniv, Dautenhahn and Loomes, 1999;

Nehaniv, Polani, Dautenhahn, te Boekhorst and Cañamero, 2002). In humans

this horizon is extremely broad, as is demonstrated by our story-telling and recall

of long-past events as well as their impact on our present and future behaviour,

and is also demonstrated by our ability to plan for situations far in the future,

possibly even beyond our own lifetimes. Autonomous embodied artificial agents

that make use of interaction histories in guiding their actions can be thought

of as extending their temporal horizon beyond that of a simple reactive agent

(for instance Braitenberg Vehicles (Braitenberg, 1984)). These agents become

post-reactive systems when acting with respect to a broad temporal horizon by

making use of temporally extended episodes in interaction dynamics (Nehaniv

et al., 2002).

Emotional state, mood and affect are also mechanisms that lead to broader

temporal horizons in animals and potentially artificial agents. Internal state as

used in affective agents can extend the temporal scope of the agent (potentially

indefinitely, but usually for the short or medium term), as previous interactions

can affect later actions through the agents’ affective state. For example, Avila-

Garćıa and Cañamero (2005) describe a situation where hormonal (affective) state

can modulate action-selection in a competitive two-resource problem where simple

reactive action-selection fails. However, in general this approach does not allow

for access to episodic historical events and so cannot, for instance, suggest more

complex alternative courses of action (Scheult and Logan, 2001).

The temporal horizon for an agent potentially encompasses the entire past

history of the agent, although it can be focused on episodes of horizon of arbitrary

size. History may inform forward temporal extension in, for example, prediction,
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anticipation and planning. The size of the temporal horizon influencing behaviour

can be varied and does vary between natural agents. Some agents, it seems, live

only in the present. Examples are the simpler Braitenberg Vehicles that do not

have a memory, and perhaps bacteria. For instance, the bacterium Escherichia

coli can be considered to have a certain minimal level of embodiment (Quick,

Dautenhahn, Nehaniv and Roberts, 1999) and ‘cognition’ (van Duijn, Keijzer and

Franken, 2006), and are able, without a nervous system, to exploit fairly simple

sensor-motor coupling through limited low-bandwidth channels to achieve reactive

behaviour such as chemotaxis.

Research in developmental psychology of human infants points to the impor-

tance of anticipation and prediction in the development of cognitive capabilities

(see, for example, von Hofsten (1993)). A traditional artificial intelligence ap-

proach to achieving this might be to build an internal model of the process or

task in question, and then to use that model to predict future states. However,

I argue that by using a temporally extended history as the basis for action, links

between experiences and actions may be built that allow the agent to act such

that it exhibits the appearance of prospection of repeated and familiar events in

its environment.

2.4.2 Dynamical Systems

A model of a dynamical system describes how the state of the system model

evolves over time, usually by means of a set of differential equations. Depending

on the relation, very complex non-linear behaviour exhibited by such systems can

be described by the model. Models of non-linear dynamical systems are usually

characterized by their stable states (or fixed points) and repeating cycles of states

(limit-cycles) and operate in a “state-space”.

Cognitive systems can be viewed as processes, patterns and structures of dy-

namical systems operating in various kinds of state spaces (agent-environment,

sensorimotor, perception-action, etc.) (Thelen and Smith, 1994; Kelso, 1995; Daut-

enhahn and Christaller, 1996). Regions and attractors (or structures) of these
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dynamical systems may reflect interesting areas in terms of remembering and

adaptive action. These structures are created by the activity of the dynamical

system consisting of the embodied cognitive system and its interaction with its

environment.

The coupling of agent and environment in this way is referred to as struc-

tural coupling (Maturana and Varela, 1987). Moreover, the generation of “good”

sensory data for a system is enhanced by sensory-motor coordination, and this

structuring of sensory data helps in turn to generate structure in the control sys-

tems themselves, see for example (Lungarella and Sporns, 2005).

From an action oriented viewpoint, an agent’s interaction with the environment

can construct the structures that are used for remembering how to act. Recon-

struction, in this context, may then involve altering the detail of the original struc-

tures, changing the relative importance of them, or, in terms of dynamical systems,

moving and altering the attractors. To illustrate, consider auto-associative Hop-

field artificial neural networks (Gurney, 1997). The dynamics of such networks

resolve to particular attractors (memories) on presentation of particular inputs.

Learning new patterns has an effect on what is already stored, and if the network

were able to learn while recalling, recall would also modify “stored” memories.

2.4.3 Ontogenetic Development

Ontogenetic development in artificial and natural organisms can be seen as an

incremental, possibly open-ended, self-organizing process of change where an or-

ganism refines its current capabilities by using internally generated drives and

motivations and exploration of its environment and embodiment to generate new

goals, capabilities and behaviours (Lungarella et al., 2003).

Human developmental psychology research teaches us that learning and de-

velopment however proceeds best when tasks that are being learnt are only just

beyond the developmental capability of the learner. It is this situation, where

a child learns through social interactions (with a teacher), that Vygotsky (1978)

refers to as the “zone of proximal development”. Thus, human development is
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continually scaffolded by building capabilities on top of existing, mastered ones.

Learning proceeds at the periphery of known experience and already mastered

interaction skills, enabling a progressive development of capabilities keeping pace

with unfolding physical development.

Blank, Kumar, Meeden and Marshall (2005) identify three essential mecha-

nisms in their “intrinsic developmental algorithm”: abstraction, the ability to find

relevant features from high-dimensional sensory data; anticipation, to go beyond

simple reactive control; and self-motivation, pushing the system toward further ab-

stractions and more complex anticipations. These mechanisms are implemented

using self-organizing maps for abstraction and an Elman-style simple recurrent

network for anticipation and production of appropriate actions. While their sys-

tem is limited, not least due to the number of training cycles required and the lack

of a demonstrated self-motivation system, the principles of development proposed

are very interesting.

I hypothesize that a dynamically constructed history of interactions that is

used to generate and select actions in an embodied agent can serve as the basis

for ontogenetic development of the agent. The history of interactions, if self-

organized, can provide abstraction as well as anticipation. Development in this

case can be seen as the increasing richness of the connections of experience with

action, mediated by suitable mechanisms. Such a history can facilitate incremental

development at the borders of experience.

The development process also depends on drives and motivation. Classical con-

ditioning and two-process reinforcement learning based on positive and negative

reinforcers, e.g. (Rolls, 1999), are potential mechanisms for connecting previous

experience with choice of action. For a review of computational approaches to

classical conditioning, see (Balkenius and Morén, 1998). It is important how-

ever to provide reinforcement that is at the same time meaningful for the task

at hand and general enough not to be merely task specific. I hypothesize that a

combination of general environmental reinforcement, coupled with an interaction

history that can suggest learning experiences “proximal” to currently mastered
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experience, can provide that kind of meaningful reinforcement.

Another approach to engendering drives and motivations in a developmental

system is to encourage a search for “novelty” and “challenge” in the learning tasks.

Novelty in a task can be determined by its predictability which can be measured by

comparing the expected and actual outcome of an action, for example (Marshall

and Meeden, 2004). A more sophisticated approach would be to take into account

not how novel a task is, but instead how much can potentially be learnt from

it. Oudeyer, Kaplan, Hafner and Whyte (2005) describe “Intelligent Adaptive

Curiosity”, an intrinsic motivation scheme based around “progress niches” that

maximizes the potential to learn in tasks it chooses to undertake. The system is

tested on an Aibo robot that has a number of objects within reach. It is observed

that the robot progresses through stages of behaviour of increasing complexity.

Starting with body-babbling type exploration, it moves to sensing visual changes

in the environment, both external to and caused by its actions. It then moves onto

trying various actions with specific toys, till finally, it uses actions appropriate to

the affordances presented by the objects.

Kozima, Nakagawa and Yano (2005) study human (infant) social development

using the robots “Keepon” and “Infanoid” both as tools for psychological investi-

gation of humans and their interactions with the robots, and as platforms on which

models of the developmental of social intelligence are tested. The intelligence is

not designed, but is allowed to emerge through interaction by endowing the robots

with basic capabilities and allowing open ontogenetic development of those capa-

bilities. In (Kozima, 2002), Infanoid first acquires a kind of “intentionality” - that

is, goal-directed spontaneous behaviour - and then uses joint-attention to identify

with others and “understand” the communicative intentions of the behaviour of

others.

Weng, Evans, Hwang and Lee (1999) explore a developmental learning algo-

rithm, named “AA-Learning”. They test it in experiments where faces are recog-

nized and an appropriate greeting uttered (the “Robot Receptionist” experiment),

and where a robot learns navigation by means of vocal commands, reinforced by

21



Chapter 2 - Interaction Histories

pulling on a “rein” (the “Robot Horse” experiment). AA-Learning is a general

learning algorithm that uses current sensor reading and “brain-state” to decide

on the next state, with temporal extension achieved by a simple recursive sensor

averaging. States are organized using a tree structure that encourages a hierar-

chical organization leading to the formation of state prototypes. States that do

not occur frequently can also be removed (“forgetting”). Reinforcement, as well

as supervised learning are used. The Interaction History Architecture, presented

in this thesis, shares many similarities to this work, but fundamentally differs in

that it directly compares temporally extended experiences.

2.4.4 Social Environment

That environment, embodiment and situatedness are important in the develop-

ment of cognition is widely accepted (see for example Clancey, 1997; Pfeifer and

Scheier, 1999; Maturana and Varela, 1987; Varela, Thompson and Rosch, 1991;

Lindblom and Ziemke, 2003). However, the role of the social environment and

social embeddedness for the development of both human-like cognition, and ar-

guably, for many forms of higher animal cognition, is only recently 1 being sup-

ported by research in AI even though it has been established in both philosophical

and developmental psychology for some time. Moreover, it is argued that the com-

plex requirements of the social environment and social culture coupled with the

necessity of placing oneself in the mind of others was a contributing factor to

the drive toward primate and ultimately human intelligence (Machiavellian in-

telligence) (Byrne and Whiten, 1988). The theory (generally credited to Jolly

(1966)) that primate intelligence originated to solve social intelligence and was

only recently extended to be used outside the social domain, is referred to as the

“social intelligence hypothesis”. Recent neurological research (Rizzolatti, Fadiga,

Gallese and Fogassi, 1996) shows that this is not merely a matter of learning

and experience, but that there exist neural structures that have the purpose of

1A notable early exception is the work of W. Grey Walter, particularly the experiments with
the robot ‘Elsie’, in the early ’50s. For a review see (Holland, 2003).
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“understanding” another’s actions in the same terms, and using the same neural

structures as the production of one’s own actions.

While a multi-agent environment provides practical difficulties of unknown

state (of other participants in the environment - non-Markovian environments),

and so is vastly more complex than environments only occupied by static ob-

jects, social embedding requires knowledge of social rules, accepted practise and

positions and roles within social hierarchies and systems.

In some of the earliest work in modern AI research to explicitly take into ac-

count social aspects of robotic interaction, Dautenhahn (1994), inspired by the

social intelligence hypothesis, uses imitation as a social tool for robots to recog-

nize each other and learn new movement skills through play. Dautenhahn (1999)

identifies key aspects of social agents or robots as being embodied individuals in

a social group that recognize each other, interact with each other, have histories

(i.e. perceiving themselves in terms of their experiences), and communicate with

each other through shared context. To illustrate, she also describes a robot-human

“dancing” experiment studying the change in temporal coordination between hu-

man and robot. In (Billard and Dautenhahn, 1998) the roles of teacher and learner

in a social learning environment are explored, with the “learner” robot learning

to associate words with grounded experiences of hills and planes2.

Robotics experiments with social interaction as key aspects are becoming more

common. For an overview of socially intelligent agents see (Fong, Nourbakhsh and

Dautenhahn, 2003), (Dautenhahn, Bond, Cañamero and Edmonds, 2002) and

(Nehaniv and Dautenhahn, 2007). Examples of social agent systems designed to

model social interactions are (Bond, 2002) and (Edmonds, 2002). An important

aspect of robotics in mediating and, potentially, therapeutic roles can be seen

within the Aurora project (Dautenhahn and Werry, 2001). This work is extended

also with “Robota” (Billard and Hayes, 1998), a doll-like robot toy, and experi-

ments using imitation and play (Billard, Robins, Dautenhahn and Nadel, 2006).

2This work draws direct inspiration from Vygotsky’s theories of socio-cultural situatedness
as a cornerstone of intelligence.
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Kose-Bagci, Dautenhahn, Syrdal and Nehaniv (2007) use drumming as a medi-

ation tool to study the interaction between an expressive humanoid robot and a

human drumming partner.

Breazeal and Scassellati (2000) investigate the social interaction that occurs

between a human-infant and caregiver with the robot Kismet taking the place of

the infant. Aspects of the design of a robot to elicit and engage in expressive

“emotion-inducing” interactive exchange are explored, with Kismet learning to

regulate the interactions such that it is continually but not over stimulated. The

regulation of interaction focusing on the interaction kinesics is also explored in

(Robins, Dautenhahn, Nehaniv, Mirza, François and Olsson, 2005). See also the

work of Kozima et al. (2005) in development of social interactive behaviour as

discussed in the preceding section.

2.5 Characterizations of Behaviour and Experi-

ence

The approach taken in this thesis is to allow embodied agents to be able to de-

velop in their action capabilities by considering and building upon the agent’s

own interaction with the environment. It is particularly important that it is not

external representations and characterizations imposed by a human observer that

are used to drive this ontogeny, but instead that the robot self-characterizes its

own behaviour in order to generate action. Therefore this section briefly reviews

other examples in the literature that describe robots able to characterize their own

behaviour. For reference, this thesis considers the characterization of behaviour

in terms of the changing informational relationships between a robot’s sensors in

Chapter 4 and by considering the comparison of experiences in Chapter 5. The

characterizations are only relevant when applied to generating action as described

in Chapter 7.

In robotics, dimension reduction and clustering techniques have been widely

used although usually in the domains of pattern or object detection and localiza-
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tion. To do so to characterize the robot-environmental relationship is however less

common. Notable exceptions are: the work of Oates, Schmill and Cohen (2000),

who cluster sensorimotor experiences following action in order to predict outcomes

of actions; Kaplan and Hafner (2005), who use information theoretic tools to char-

acterize behaviour; and Poelz and Prem (2003), who use the Isomap non-linear

dimension reduction method to ground symbols in sensorimotor data. These three

groups of research and others are discussed in the following paragraphs.

Independently of the work of this thesis, (Oates et al., 2000) describe expe-

riences as time-series of multi-variate sensor data, computing distance between

time-series and clustering experiences to produce prototypes. Experiences are

associated with the actions that initiated them, suggesting a robot could gen-

eralize about potential outcomes of its actions. Distances between experiences

are calculated by using Dynamic Time Warping followed by measuring the area

between the curves, and clusters formed by taking averages of time-warped ex-

perience curves. In contrast, information-theoretic metrics are used in this thesis

to compare experiences. Furthermore, this thesis goes further by demonstrating

how robots can direct their actions based on such experiences.

Kaplan and Hafner (2005) use information distances between sensors in an

Aibo robot to compare simple behaviours of the robot. In that method, rather

than reducing the dimension by summation within groups as I have done, they

consider distances between different behaviours as distances between the full ma-

trix of distances between all sensors. Long continuous examples of each behaviour

(1000 timesteps) are used, and the whole sequence used rather than a moving

window. The resulting distances between behaviours are shown as a projection

onto a 2-dimensional map, and they find that similar behaviours group together.

This research, which was carried out at a similar time to that reported in this

thesis, supports the view that robot behaviour can be clustered using informa-

tion relationships between sensor time-series. However, the research in this thesis

goes further using an incremental formulation using a moving window creating

trajectories through a low-dimensional information space. In addition, the use of
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the experience metric, combined with environmental reinforcement and its appli-

cation to shaping action rather than behaviour, further distinguishes the work in

this thesis.

In a series of papers Prem, Hoertnagl and Poelz (2003); Poelz and Prem

(2003); Hoernagl, Poelz and Prem (2004) look at how symbols can be grounded

in the sensory streams of a robot exploring its environment using a trajectory

in a space analogous to ours. The approach is based on “Isomap”, a type of

Multi-Dimensional Scaling capable of finding the intrinsic dimensionality of high

dimensional data while preserving the non-linear structure. Isomap is able to

find distances in non-linear manifolds by incrementally summing shorter geodesic

paths. Sensor readings are divided into windows of different lengths containing

events significant to the robot then trajectories are plotted in an Isomap reduced

3-dimensional space and compared with each other in terms of Euclidean (and

other) distances between corresponding points of the trajectories. Prem et al.

(2003) considers sensory systems in two groups corresponding to different sides

of the robot to preserve lateral differentiation. In (Hoernagl et al., 2004) object

recognition based on previous experience encoded into an Isomap representation

is described, and this work echoes work conducted for this thesis, described in

Chapter 5, on recognizing previous experience.

Although not characterizing robot behaviour in terms of its sensors, Nehmzow

(2003) describes a method to quantitatively measure the behaviour of a mobile

robot in terms of its trajectory in physical (Cartesian) space. He uses a method

inspired by dynamical systems analysis called Error Growth Factor that shows

whether trajectories diverge or converge from similar starting conditions.

2.6 Experience as the Basis For Action

In accordance with the embodied cognition perspective, this thesis does not stop

at considering experiences and their relational properties, but instead proposes

an architecture whereby action can be based on a continually developing history
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of experience (Chapter 7). Sensorimotor experiences are continually collected

by the embodied agent, associated with action and environmental reinforcement,

and related to each other by means of an information-theoretic metric measure

(Chapter 5). Current experience is used to select a similar historical experience

from which the next action is derived. This scheme is novel in certain key respects.

Firstly it is the first to use a information-theoretic metric measure on sensorimotor

experience for directing robot action, and moreover accomplishes this in real-

time. The continual reconstruction and reorganization of the space of available

experiences through forgetting and merging of experiences is also unique in this

context. Finally, bringing this together in a human-robot interaction scenario

using a variety of robotic platforms including a complex humanoid robot is an

important contribution.

In this section significant architectures from the literature that also direct

behaviour of robots using some form of history of interaction are reviewed.

2.6.1 Case-Based Reasoning

The concept of an agent learning from its past experience is one also used by

the Case-Based Reasoning (CBR) approach (Kolodner, 1993). A descendant of

Schank’s dynamic memory (Schank and Abelson, 1977; Schank, 1999), CBR uses

past experience represented as individual cases to make decisions about presented

problems.

The basic process in CBR involves first examining a target problem and retriev-

ing the best matching case from memory. These specific cases are then adapted

to match the current situation and tested, with successful outcomes forming up-

dating and adding to the cases in the history.

While CBR had great success in producing expert-system-like solutions to

real-world problems, it was inherently ungrounded, representational and applica-

ble only to problems that could be symbolically decomposed. Extension to the

continuous domain (Ram and Santamaria, 1997), however, brings the approach

much closer to the learning from interaction histories in robots as described in
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this thesis. Ram and Santamaria (1997) describe a real-time system that oper-

ates on the sensory data from a robot solving a navigation task. Their system is

a hybrid of CBR and Reinforcement Learning approaches with control achieved

through adaptation of schema-based reactive control. The level of control then is

in adapting the parameters of a set of parallel reactive modules. The operation of

the system cycles through perceive, retrieve, adapt and learn phases. In perceiv-

ing, the system reads sensor information and this is used in retrieving cases from

memory by matching a recent sequence of sensor and control parameters with

sequences represented as cases in the history. The matching is a simple squared

distance between groups (associations) of time-series. The adapt phase then uses

the parameters in the best matching case to update the current control parameters

in a way that depends on reward received.

2.6.2 Reinforcement Learning with Memory

The work described in this thesis is also related to reinforcement learning (e.g.

Sutton and Barto, 1998), particularly those examples that use intrinsic motiva-

tion (e.g. Barto and Şimşek, 2005; Bonarini, Lazaric, Restelli and Vitali, 2006)

and memory-based approaches (e.g. Lin and Mitchell, 1992; Bakker, 2002; Mc-

Callum, 1996). In contrast to traditional reinforcement learning, the Interaction

History Architecture approach uses temporally extended experience rather than

the instantaneous values of the sensorimotor and internal variables (state). This

distinction is important as, particularly where there is an interaction partner or

other agents, the environment cannot be modelled as a simple Markov Decision

Process. Q-Learning relies on this assumption, and is not guaranteed to find an

optimal solution where state information is incomplete (Lin and Mitchell, 1992).

This is also known as the Hidden State problem, and is generally addressed by

including memory into the reinforcement model.

Lin and Mitchell (1992) describe Q-learning architectures utilizing feed-forward

artificial neural networks to approximate the reinforcement learning Q function.

They test three different architectures each introducing recent sensory and ac-
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tion history in different ways to the Q-Learning function approximating network.

Testing on both a “cup picking-up” problem and a modified (more difficult) pole-

balancing problem, where only the positions and not the velocities of the cart

and pole are available, they find success for both recurrent architectures and a

simple fixed-sized history window architecture. Success is dependent on memory

depth and pay-off delay, the difficult of learning an effective policy increasing with

both the memory depth and the length of the action sequence necessary before

reinforcement payoff. I speculate that the length of history is an inherent problem

with such architectures as it becomes increasingly difficult to access historical in-

formation the further back it is. However, with an architecture such as presented

in this thesis, where the history is explicitly stored rather than being encoded in

a function or network weights, the temporal distance to relevant experience is not

an issue.

The problem of learning despite arbitrarily long time-lags is addressed by

Bakker (2002) by using a recurrent neural network architecture, known as “Long

Short-Term Memory” (LSTM). LSTM is designed for supervised time-series learn-

ing, to learn to infer the environmental state at any point, and provide this as

input into a modified Q-learning system. The system is tested on a “road-sign”

problem similar to the one used for testing the interaction history architecture

in Section 7.3, and also on the hidden-state form of the pole-balancing problem

referred to in the preceding paragraph. They find that the approach can han-

dle longer-term dependencies than the architectures it was compared with: an

Elman–style simple recurrent network, and a table-based system with memory.

These approaches require many cycles of presentation of a task to learn the

solution to the problem, and this cannot be appropriate for developmental on-

togeny in a robot as the cost of repeated failure can be high. McCallum (1996),

however, describes “Nearest Sequence Memory”, an “instance-based” state identi-

fication approach to the hidden state problem. Nearest neighbours to the current

percept are found using two different methods: geometrically, or sequence match

length, as appropriate for the representation. The geometric case measures the
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Euclidean distance between the multi-dimensional instance data. Sequence match

length finds, from the history, the longest sequence of exactly matching percepts

to the current sequence of percepts. The nearest neighbours are then used in the

Q-learning system.

Of the approaches discussed (Lin and Mitchell, 1992; Bakker, 2002; McCallum,

1996), the Nearest Sequence Memory utilizing geometric comparison of neigh-

bours, seems closest to the approach taken in this thesis, and shows remarkable

success, outperforming other approaches in terms of number of cycles, including

the recurrent-Q of Lin and Mitchell (1992), by at least an order of magnitude.

(McCallum, 1996) identifies the “raw experience” as important to this success,

and this is echoed in the approach taken in this thesis. In addition he cites the

distance metric as an area where the system could be improved, and I believe

the experience metric is crucial in the success of the architecture presented in

this thesis. The Interaction History Architecture approach (Chapter 7), then,

does not require a Markovian environment and learns rapidly (typically within a

few presentations). Furthermore, it does not require a static state space to be

circumscribed at the outset, but instead uses a growing and changing space of

experiences, where potentially in the course of ontogeny the set and character of

sensors, actuators, and embodiment may change.

2.6.3 Artificial Neural Networks with History

Connectionist systems that have memory include, for instance Elman networks or

other recurrent neural networks. Rylatt and Czarnecki (2000) showed that gen-

erally, recurrent neural networks are not well suited to learning delayed response

tasks i.e. tasks where the appropriate action is dependent not only on current

input but also on some previous input. Additionally, recurrent networks are very

hard to design beyond a certain size and this requires that sensory input be en-

coded and reduced in quantity. Approaches such as Echo State Networks and

Liquid State Machines attempt to address this limitation by training only the

output nodes of a complex recurrent neural network (Jaeger and Haas, 2004).
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Many models of associative memory and episodic memory have been pro-

posed using artificial neural networks, which exhibit properties similar to human

memory such as content-addressing, recall using partial cues and overlapping and

interference of storage (Miikkulainen, 1992). A well known model of a content-

addressable associative memory is the fully-connected, or Hopfield network. The

connection weights, trained by Hebbian learning, determine the attractors of a dy-

namical system capable of storing patterns (Gurney, 1997). Modifications allow

for hetero-associativity, and improved capacity. Another commonly used model

is that of the topological feature map (Kohonen, 1984). Miikkulainen (1992) uses

a hierarchical collection of modified feature-maps that show graceful degradation

to model some features of a human episodic memory. See also (Vogel, 2005) de-

scribing interconnected regions of associative and heter-oassociative networks that

model various types of memory and learning, including conditioned learning.

The Interaction History Architecture differs from these and many other similar

approaches as no attempt is made to model the structure or process of human-

like memory at neural level, instead emphasis is given to associating specific and

general sensorimotor episodic experience directly with action control of an em-

bodied artificial agent. Indeed, not having a neural structure avoids the problem

of developing and growing neural structure as development proceeds. Instead,

the cognitive structures that drive action and behaviour are built on the histo-

ries themselves. Additionally, in most artificial neural network approaches to the

modeling of episodic memory, the memory of episodes appear only as weights and

attractors of the system and so it is difficult to compare different memories either

within the system or for an experimenter analysing the system.

A fundamental problem with many applications of connectionist systems is

that of “designed ontology” (Clancey, 1997, p71), or a tendency for the network

to operate as a function mapping while the real intelligence is in the human

designed input vectors. I believe the approach of this thesis avoids this problem by

operating from grounded sensory data only and outputting only embodied action.

However, that is not to say that this cannot be achieved using a connectionist
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approach. An example where this problem is addressed is (Wermter and Elshaw,

2003) where action representation and semantic meaning of words is grounded in

sensory data by applying a more biologically plausible structure in a distributed

hierarchical collection of self-organizing memories.

The stance of this work is that the choice of whether to use a connectionist

approach or one using some other computational scheme, is largely one of imple-

mentation and level of modelling. Instead the question of how history can drive

embodied action in ontogeny, regardless of implementation, is considered to be

more important in the focus of this thesis.

2.6.4 Other Architectures

Other architectures that take history of action and interaction (episodic memory)

into account include top-down deliberative architectures, such as ACT-R (Ander-

son, 1996), which include memory storage and retrieval. Others such as Soar (a

general, representational, cognitive architecture and programming environment

(Rosenbloom, Laird and Newell, 1993)) have been extended to include episodic

memory (Nuxoll and Laird, 2004). In Nuxoll and Laird’s model the features of the

episode are encoded and used in retrieval by matching. Encoding a representation

for sensory input rather than using the raw data is common, except, notably in

the continuous case-based reasoning model of Ram and Santamaria (1997), and

in the architecture for interaction history presented in the present thesis. The

extension of Soar to include episodic memory by Nuxoll and Laird has only been

demonstrated on a grid world task, memories were perfect, non-modifiable and not

deleted. Any extension of this model to robotic implementation would necessarily

maintain the symbolic processing perspective that is characteristic of Soar.

Related work in the multi-agent domain (Arai, Sycara and Payne, 2000) has

agents in a grid world acquiring coordination strategies, and uses a fixed-length

episodic history expressly to counter the Markov Decision Process (MDP) as-

sumption. However, that model is also state based and so uses a profit-sharing

mechanism to assign credit to state-action pairs. Moreover, it does not compare
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episodes of history with previous ones, nor locate them in a metric space.

Other approaches include certain behaviour oriented control systems combined

with learning (Matarić, 1992; Michaud and Matarić, 1998). Most behaviour-based

models do not include learning from past experience, but of those that do the

approach taken in this thesis differs in that the history is not specified in terms of

the behaviour being selected (or indeed, the action being selected), but in terms

of the sensorimotor history.

Ho et al. (2008), also describes an architecture for an agent in a virtual word

that uses an episodic memory (that is symbolic but grounded in sensing and ac-

tion), in a cognitive architecture for virtual agents. Ho’s system is in fact an exten-

sion of behaviour-based subsumption architectures. The distinguishing feature of

Ho’s architecture though, is the communication and exchange of “autobiographic

memories” as stories between agents, resulting in better adaptivity.

2.7 Interaction Histories in Other Fields

Interaction Histories appear in various other fields notably Human-Computer In-

teraction (HCI), intelligent virtual agents, student modelling and collaborative

learning. In classical HCI, interaction histories, although not usually referred to

as such, are used as a record of a user’s interaction with an application or object

for the purpose of providing the ability to revisit or replay previous actions or to

provide an ‘undo’ facility. Intelligent software agents use histories of interaction to

make suggestions, automatically complete tasks and improve future interactions

(Rosson and Carroll, 2002, p332). Increasingly interaction history is considered as

part of the design process itself, for example Jenifer Tidwell’s design patterns for

HCI systems design (Tidwell, 1999). The process of how people learn is the sub-

ject of “student modelling” and can benefit from taking into account the sequence

of interactions of learners with a computer-based learning system thus increasing

the likelihood that desirable learning events, specific to a particular learner, at a

particular stage in their learning process, should occur (Akhras and Self, 2000).
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Extending this concept, computer supported collaborative learning environments

provide a framework (using interaction histories and sequences) for groups of peo-

ple to learn and work on problems together (Dillenbourg, 1999) (du Boulay, 2000,

p348). Such collaborative learning is thought to play a major role in construc-

tive cognitive development (Vygotsky, 1978). A key element in such a system is a

group memory of interaction between individuals, and it is suggested that interac-

tion histories that take into account context play an important role in supporting

learning (Siebra, Salgado and Tedesco, 2007). Perhaps the closest related field to

interaction histories for robot ontogeny is that of virtual software agents. Virtual

agents are often portrayed using a three-dimensional computer graphic representa-

tion and are increasingly being used in the interface between application and user,

as well as to portray humans in virtual environments. A history of interaction

with users here can be important in modelling the agent personality and making

the agent believable (Romano and Wong, 2004; Tomlinson and Blumberg, 2003).

A history of interaction also plays an important role in improving the “cognitive

fit” between software and human users (Nehaniv, 1999b).
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Sensors and Measurement of

Distance

3.1 Introduction

Any robot or embodied agent situated and acting in an environment will have

many sensors through which the agent can receive data about itself and its en-

vironment. Some sense the external environment (e.g. visual sensors, infra-red

distance sensors, sonar sensors), others sense the internal environment and body

(e.g. motor position or proprioception sensors, internal temperature sensors, gyro-

scopic accelerometers) and others still sense internal variables (e.g. affective state).

Some of these quantities are naturally discrete (e.g. buttons and switches). Gen-

erally though, the observed quantity is continuous and in current robotic systems

the sensor maps the continuous values into discrete observations to some level of

precision.

At any time, any of these sensory inputs can be modelled as a random vari-

able, i.e. a variable with values taken from a given probability distribution. Note

that these probability distributions may change over time, and with respect to

each other. The changing distribution may indicate fundamental changes in ei-

ther the agent (including the operation of the sensor), the environment, or in the

agent-environment interaction. In this thesis, a central notion is that the chang-
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ing nature of the sensory observations and their relationships to each other are

material in describing the agent-environment interaction (see Hypothesis H1).

While the changing nature of individual sensors over time provides some level

of measurement of the changing agent-environment interaction, it is clear that

how these quantities vary with respect to each other and over time may provide

a richer description of the changing interaction. In (te Boekhorst, Lungarella and

Pfeifer, 2003), (Tarapore, Lungarella and Gómez, 2004) and (Tarapore, Lungarella

and Gómez, 2006) statistical correlation, entropy and mutual information are

used to segment and quantify (or fingerprint) the agent-environment interaction.

Other papers, for example (Mirza, Nehaniv, Dautenhahn and te Boekhorst, 2005a,

details of this work are also reported in Chapter 4) and (Kaplan and Hafner,

2005), explore information distance in behaviour categorization. Furthermore,

these papers and many others including (Lungarella and Pfeifer, 2001), (Sporns

and Pegors, 2004), support the notion that active sensory-motor coordination itself

results in an increase in informational relationships between an embodied systems

sensors and effectors, as well as in the control systems (e.g. nervous system and

brain) of the agents. Behavioural characterization is explored in more detail in

Chapter 4.

To make apparent the changing relation between sensory observations over

time, a measure is required. Information distance was chosen as the primary

measurement with which to compare sensors as it appears to capture both linear

and non-linear relationships while also having the property of a true metric. Ols-

son, Nehaniv and Polani (2006b) compared the performance of the information

distance with other measures on a sensory reconstruction task. The task required

that sensory organization was recovered from the time-series data alone, and it was

found that the information distance outperformed a range of measures including

the correlation coefficient, Kullback-Leibler divergence, the 1-norm distance and

other measures. In particular, where the sensors were of different modalities, only

the information metric (used together with entropy maximizing adaptive binning,
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see Section 3.3.2) was successfully able to complete the task1. This is particularly

important for our requirements as sensors will be compared from very different

modalities.

The remainder of this chapter briefly overviews foundational mathematical

concepts relevant to the metrics on sensorimotor experience presented in Chap-

ters 4 and 5. Firstly, the information distance measure is presented, followed by

a discussion of the essential concepts of how robotic sensors can be considered as

random variables with time horizons, making such a measure applicable to them.

3.2 Information Distance

3.2.1 Information Theoretic Principles

Crutchfield (1990) takes the position that “information theory provides a quan-

titative and consistent framework with which to describe physical processes that

admit only partial knowledge” and that information can be “a quantifier of be-

havioral2 complexity”. Seen from this perspective “information” may provide us

with the tools with which to view physical processes such as the sensorimotor

experience of robots and embodied agents.

In this section important results of information theory are presented, and then

the Crutchfield-Rényi information metric is described, before this is related to

sensor measurements in robots.

Shannon Information and Shannon Entropy

Consider3 a random variable X taking values from the alphabetAX = {a1, a2, . . . , am},
with probability mass function P (X ).

1In this task the sensors were taken from a moving image, with the different modalities
corresponding to different colours.

2Crutchfield was specifically referring to the behaviour of complex systems, but I believe that
behaviour of embodied agents interacting with their environments can be considered in the same
way as they are complex systems.

3The notation used generally follows (MacKay, 2003) except for the use of calligraphic letters
to denote sensors modelled as random variables.
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Shannon entropy is a measure of the uncertainty of a random variable. The

Shannon entropy of X in the discrete domain is defined as

H(X ) ≡
∑

x∈AX

P (x) log2

1

P (x)
(3.1)

with the convention that 0 × log 1
0
≡ 0 (MacKay, 2003). The units are bits for

log base 2. The Shannon entropy is negatively related to the average information

content that can be derived from observations on a random variable. A reduction

in uncertainty (entropy) is an increase in information.

Given a second variable Y (which is not necessarily independent of X ), then

two further quantities can be derived: the conditional entropy and the joint en-

tropy. The conditional entropy is given by:

H(X |Y) =
∑

(x,y)∈AX×AY

P (x, y) log2

1

P (x|y)
(3.2)

This measures the average remaining uncertainty about X when it is known that

Y = y. The probabilities P (x, y) and P (x|y) are the joint probability of outcomes

X = x and Y = y, and the conditional probability of outcome X = x given Y = y,

respectively. The joint entropy is given by:

H(X ,Y) =
∑

(x,y)∈AX×AY

P (x, y) log2

1

P (x, y)
(3.3)

Note that entropy is additive only for independent random variables:

H(X ,Y) = H(X ) + H(Y) iff P (x, y) = P (x)P (y) ∀x ∈ AX ∧ y ∈ AY (3.4)

Where X and Y are dependent random variables, then the joint entropy will be

less than the sum of the individual entropies.

The relationship between the individual entropies, their joint entropy and their

conditional entropies is shown conceptually in Figure 3.1. Note that when the

circles representing the entropies do not overlap, the variables are independent,
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Figure 3.1: Conceptual diagram showing relationships between entropies of two
random variables and their joint and conditional entropies. Also indicated are the
information distance d(X ,Y) and the mutual information I(X ;Y).

and when the circles overlap exactly, the variables are recoding equivalents, i.e.

knowledge of the value of one variable completely determines the value of the

other.

3.2.2 Crutchfield-Rényi Information Metric

The Crutchfield-Rényi information metric (Crutchfield, 1990), in this thesis also

referred to as the information distance, is given by:

d(X ,Y) = H(X |Y) + H(Y|X ) (3.5)

Crutchfield (1990) shows that this satisfies the mathematical axioms of equiva-

lence, symmetry and the triangle inequality and so is a metric. Specifically, for

three random variables X , Y and Z, d is a metric if it satisfies the following:

1. d(X ,Y) = 0 iff X and Y are equivalent (i.e. recoding equivalents)

2. d(X ,Y) = d(Y ,X ) (symmetry)

3. d(X ,Y) + d(Y ,Z) ≥ d(X ,Z) (triangle inequality).

Thus d defines a geometric structure on any space of jointly distributed informa-

tion sources. The information metric is also shown conceptually in Figure 3.1.

Note that d(X ,Y) has a minimum value of 0 when the variables are recoding
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equivalents, and a maximum value of H(X ) + H(Y) when X and Y are indepen-

dent.

Note that while the information metric is a true metric in the space of infor-

mation sources, mutual information I(X ;Y) = H(X )−H(X |Y), and the relative

entropy or Kullback-Liebler divergence DKL(P ‖ Q) =
∑

x P (x) log
P (x)

Q(x)
, are not

metrics, failing on equivalence and symmetry respectively.

3.3 Robot Sensors as Information Sources

In the preceding review of the information-theoretic background, the random vari-

ables (or information sources), can be discrete or continuous, and come from any

source physical or otherwise. In this thesis I am concerned with sensors from

robots or other embodied agents. In general any sensor samples features of the

internal or external environment at regular intervals, and can be modelled as a

random variable X changing with time, taking values x(t) ∈ AX , from a proba-

bility distribution PX . AX = {x1, . . . , xm} is the set of m possible values of X ,

and time is taken to be discrete (i.e. t will denote a natural number).

In practise, different sensors will have different sample rates (and these may

or may not be regular) and different sample resolutions. In the experiments con-

ducted for this thesis though, a further sampling of all sensors at a universal rate

and resolution, is operated, while also normalizing the result to common values

for all sensors. This is achieved by the processes of binning and normalization.

3.3.1 Normalization of Sensor Values

A sensor S with values in the range [Smin, Smax], can be normalized by re-mapping

all samples St into the range [0, 1] as follows:

norm(St) =
St − Smin

Smax − Smin

(3.6)
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3.3.2 Binning of Sensors

A sensor S, modelled as a discrete random variable, that takes values from an

alphabet AS can be re-mapped into a new sensor S ′ that takes values from a

new alphabet BS = {0, 1, . . . , (N − 1)}, where N > 0 is the number of “bins”, as

follows:

S ′
t = ceil(norm(St) ∗N)− 1 (3.7)

where the ceil(x) is a function that returns the smallest integer not less than x.

There are, of course, alternative schemes for binning sensor data. An impor-

tant one is “adaptive binning using entropy maximization” as used by Olsson et al.

(2006b). This scheme assigns bin boundaries during quantization so as to maxi-

mize the entropy across bins. While this was implemented during the research for

this thesis, it was not used in the results presented as, for the experience metric,

comparison is only made between time-series from the same sensor taken at dif-

ferent times, not cross-modally. Additionally, it is not clear how having different

bin boundaries used to compare different experiences within a single space will

affect its metric properties, and this is flagged as a subject for further research.

For details about the experience metric see Chapter 5.

3.3.3 Sensorimotor Variables with Horizon

Any sensor or motor variable X, beginning from a particular moment in time t0

until a later moment t0 + h (h > 0), with the sequence of values

Xt0,h = x(t0), x(t0 + 1), . . . , x(t0 + h− 1) (3.8)

can be considered as the time-series data from a new random variable Xt0,h, the

sensorimotor variable with temporal horizon h starting at time t0. Note that it is

likely that a single robot “sensor” can be considered as many time-shifted sensors

of a given horizon length and use the notation Sn
t,h to refer to sensor n starting

at time t with horizon h, and Sn
t,h the corresponding random variable.
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3.3.4 Estimating the Probability Distribution Function

Consider a random variable Xt,h. If the time-series is stationary (i.e. its mean,

and statistical variance are constant over the length of the series), then its first-

order probability distribution p(x) can be directly estimated from its frequency

histogram counting the occurrence of sensor values in each of a number of bins

partitioning the data space. Likewise, a 2-dimensional frequency histogram can be

used to estimate the second-order probability distribution p(x, y) of two variables

X and Y where the samples can be “lined-up”.

This method is a naive way of estimating the probability distribution and is

subject to certain systematic errors due to the number of samples used in the

estimate, the rate of sampling, the choice of quantization level (number of bins)

and the deviation from the underlying stationarity of the data. These issues and

potential solutions, including using kernel density estimators, are considered by

Lungarella et al. (2005). In (Mirza, Nehaniv, Dautenhahn and te Boekhorst,

2005b), the effect of different quantization levels is examined in relation to the

estimation of the entropy of regions of a long wavelength sine-curve. It is found

that quantization using a very small number of bins causes artificial peaks in the

entropy which are smoothed out towards the idealized curve when using higher

numbers of bins. However, as the number of bins is increased, so is the computa-

tional requirement and so a compromise has to be reached. An important result

though is that such effects appear to be less marked for “real” data than for the

smoothly varying sine-curve examined, and so real data may not need such a high

quantization level for adequate estimation.

In the work conducted within this thesis, in the interest of keeping the com-

putational complexity to a minimum and achieving performance in real-time, the

general strategy is to use a short as possible time-series but sufficiently long enough

to be able to assume local stationarity. The number of bins is kept to a minimum

mainly to offset the choice of a short horizon (to avoid sparse population of bins),

with the assumption that real data will reduce the artificial peaks in the entropy

caused by smaller numbers of bins.
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3.4 Chapter Summary

This chapter introduced the Crutchfield-Rényi information metric and related it

to the information-theoretic comparison of sensors cast as information sources.

The concept of sensorimotor variables with horizon was introduced permitting

defined periods of sensor time-series to also be considered as information sources.

Furthermore, issues of estimation of the probability distribution functions of these

information sources from discrete sensor readings were discussed.

In later chapters these concepts will be used to permit comparison of groups

of sensors both among each other and over time realizing measures such as the

experience metric (See Chapter 5), eventually using these methods to create an

interaction history for an artificial agent that can be used to direct future action

based on past experience.
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Chapter 4

Self-recognition of Grounded

Sensorimotor Experience

4.1 Introduction

A first step towards a grounded sensorimotor interaction history for ontogeny

in robots is to establish techniques that can be used for meaningful recognition

of the robot experience from the robot’s own perspective (self-recognition), as

the robot interacts with its environment . This is necessary as we assume there

are no externally imposed symbols or categories pregiven in ontogeny. Category

formation and recognition must therefore be grounded in relationships between

what is sensed by different sensors at different times.

Thus, the goal in this chapter is to explore and validate the information metric

as a tool that an embodied agent (robot) can use to identify and categorize be-

haviour from the agent’s perspective. Ideally, categorization should be grounded

entirely in the sensorimotor data by which the robot is coupled with the environ-

ment without explicit externally imposed symbols or characterization.

A simple method is developed in this chapter (first reported in Mirza, Ne-

haniv, Dautenhahn and te Boekhorst, 2005a; Mirza, Nehaniv, te Boekhorst and

Dautenhahn, 2005) whereby the sensory input of the robot is split into two groups

(nominally “sensor” and “motor”) and the average information distance between
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the sensors of these groups is plotted as a trajectory on a graph. The trajec-

tory is then examined for its ability to organize the behaviour when compared to

an external observer’s own categorization of the same behaviour. Simple metrics

describing the trajectory structure are used for objective measurement of the dif-

ferent traces that different behaviours produce. Finally, it is shown that such a

mechanism can be used by a robot to identify its own behavioural interactions.

This chapter addresses Hypothesis 1 (regarding behaviour categorization) and

Hypothesis 2 (regarding self-identification of behaviour). It is important to rec-

ognize that the basic underlying proposal that sensory data over a period of a

time will be different for a robot executing different behaviours, is in itself trivial,

but that recognizing, categorizing and identifying behaviour is not. To illustrate,

consider a robot receiving sensory data from 10 sensors at a rate of 10Hz for 1 sec-

ond. This represents a 100 dimensional data set, and if each sensor was an integer

ranging from 1 to 4, then there are a staggering 1.6×1060 possible permutations of

the data set, each potentially describing a different behaviour. Therefore, effective

methods to reduce the complexity of the data set while retaining its character are

required.
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4.2 Sensor-Motor Average Information Distance

(AID) Plots

4.2.1 Definition of Average Information Distance (AID)

The Average Information Distance (AID), 〈dX〉t,h, of a collection of n random

variables Xt,h = (X 1
t,h,X 2

t,h, ...,X n
t,h) at time t with horizon h is defined as:

〈dX〉t,h =
1

n2

n
∑

a=1

n
∑

b=1

d(X a
t,h,X b

t,h)

=
1

2n(n− 1)

∑

1≤a<b≤n

d(X a
t,h,X b

t,h) (4.1)

where the probability density functions are estimated for a window of h time-

steps using Q bins, and the computational simplification follows from the metric

symmetry of the information distance. As with information distance, the AID is

measured in bits.

Observe that low values of the AID indicate a small information distance

on average between all variables and imply a high degree of correlation between

them. A situation where the AID would be expected to be zero would be when

the variables were unchanging. The highest value of AID would occur between

groups of completely uncorrelated random variables. Also note that the estimates

of the information distance, and therefore the AID, are dependent on the chosen

values of both the horizon length h and the number of bins Q used to estimate

the probability densities. Section 3.3.4 discusses estimating probability densities

for time-series and choosing suitable values of h and Q.

4.2.2 Groups of sensors

By grouping sensors and calculating the AID for each group, it becomes possible

to describe the changing informational relationships between groups using a very

small number of variables. Note however, that in taking the average of the possible
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Table 4.1: AIBO Telemetry Collected.

Sensors # Motors #

IR-Distance 1 Leg Joint Positions 12

Accelerometers 3 Head Joint Positions 4

Temperature/Battery 2 Tail Joint Positions 2

Buttons 8 Motor Force / Duties 18

Visual 27a

Total Sensors 41 Total Motors 36

aR,G,B in a 3× 3 grid, see Section 4.3.1

information distances between sensors, it is no longer possible to say which sensors

contribute to the changes. However, this has a potential advantage in that it frees

us, to some extent, from the details, and allows general relationships to emerge.

Specifically, grouping in this way allows consideration of patterns of activity in

one sensor as being equivalent to the same pattern of activity in any other sensor

in the group.

While any number of groups of sensors could be used, in the experiments

that follow, just two groups are considered, one that intuitively characterizes the

“agent” and another that characterizes the “environment”. Thus, all environmen-

tal sensoric inputs constitute one group, S, and all motor and internal variables

constitute another group, M (see Table 4.1 and Section 4.3.1).

The AID for each group of sensors can be calculated and plotted in two di-

mensions to realize a representation of the relation between sensors and motors.

Doing this for successive time-steps for a fixed-size moving window, results in a

representation of how the sensor-motor relationship is changing with time. I call

this plot a Sensor-Motor AIDvs.AID Plot1.

1In (Mirza, Nehaniv, Dautenhahn and te Boekhorst, 2005a) the term “Phase-plot” was used,
however, in dynamical systems theory, that term specifically refers to the plot of a variable and
its derivative, and so here, the term “AIDvs.AID Plot” is used instead.

48



Chapter 4 - Self-recognition of Grounded Sensorimotor Experience

Table 4.2: Sensorimotor Behaviour Categorization: Key to Experimental Investi-
gations.

Experiment Section

1 Investigate the effect of the horizon length, h and
number of bins, Q parameters.

4.3.4

2 Study the sensor-motor AID plots of some simple
behaviours.

4.4

3 Consider potential metrics of the AID plots suit-
able for identifying simple behaviours among a
series of behaviours.

4.5

4 Compare information distance to other distance
measures in this context.

4.3.3

4.3 Experimental Investigations

Hypotheses 1 and 2 were tested in a series of experiments (see Table 4.2) using the

robotic setup described in Section 4.3.1. Initially, the robot executed a number

of simple behaviours in isolation, and for each of these, an AID plot produced.

The plots were compared in terms of certain descriptive metrics. In the next

experiment, the same robot executed some of the same simple behaviours, but

this time as part of a continuous autonomous overall “wandering” behaviour.

The previously discovered categories were then used to characterize (identify)

each segment of that behaviour.

To begin with, I describe some preliminary investigations into the effect of

horizon length, h and number of bins, Q on the AID plots, and also briefly compare

some other distance measures with the AID in terms of the resulting graphs.

4.3.1 Experimental Setup - AIBO ERS220

Experiments were conducted on a real robot to avoid artifacts of simulation and

to provide rich sensory-motor data. The commercial robot Sony AIBO2 ERS220

2AIBO is a registered trademark of Sony Corporation. At the time of writing, the production
of the AIBO series of robots is discontinued.
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Figure 4.1: Sony AIBOTM ERS210 used in the experiments.

was used- see Figure 4.1. Behaviours were written using the Open Source software

framework Tekkotsu (Touretzky and Tira-Thompson, 2004) and executed on the

AIBO. Sensor/motor data was transmitted at regular intervals (on average 10

frames/sec.) to a workstation over wireless LAN where the data was processed

in real-time. For experimental purposes, data was also reprocessed off-line with

different parameter values.

Experiments were carried out in a low walled (50cm high) 2m×2m arena (dark

wood walls, dark green speckled floor, over-head lights, cream coloured walls of lab

beyond the walls), either empty or containing 2 white “A4-printer paper” boxes,

and/or a pink ball.

Table 4.1 summarizes the variables available to the AIBO from which data was

collected. The data was grouped into 36 motor variables and 14 sensor variables.

Further sensor variables were constructed from the AIBO’s camera located in its

head which produced 3-component colour images, 88× 72 pixels in size, received

at regular intervals. These were partitioned into an N × N grid, and for each

region, the pixel values for each colour (red, green and blue) were averaged, and

the resulting numbers taken as the values of three pseudo-sensors for each region

at that time. For the majority of experiments presented, 27 visual sensors were

used, constructed by taking the red, green and blue pixel averages of regions in a

3× 3 grid over the image. Tests were also conducted with 108 vision sensors (36
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each of R,G,B in a 6× 6 grid), and 36 sensors (red, or “Effective-Red” 3 only).

4.3.2 Preliminary Investigation

A two minute time-series of data (1195 timesteps, 1 timestep≃ 100ms) was taken

while the robot moved around the arena (in this case also containing white boxes

as obstacles) interacting with a pink ball. This interaction involved random wan-

dering behaviour coupled with object detection targeted to the pink ball. When

the ball was seen, the AIBO moved towards the ball. If necessary, the ball was

then moved to another location in the arena by the investigator. This data was

used in the preliminary investigations of this section only.

AID vs. Time Plot

The graph of Figure 4.2 shows the AID (in bits) for each sensor group against

timestep, as calculated for a horizon h = 100 timesteps and number of bins Q = 8.

In the sequence shown, the robot approaches the ball twice and each time the ball

is moved to a new location in the arena (at timesteps ∼ 550 and ∼ 850).

The AID seems to capture certain aspects of the general behaviour. The motor

group AID increases to around 2.4bits when the robot is in motion decreasing to

around 1.5bits when it stops in front of the ball. Note it does not reach zero as

the stationary state does not extend over the whole horizon. The sensor group

AID shows peaks of high and low corresponding to variability in the environment.

The lowest values of 0.7bits at timesteps ∼ 200 and ∼ 1000 correspond to times

where the visual sensors show very little change, for example when the robot sees

just the wall or the floor for some time.

3“Effective-Red” calculated as R − G+B

2
, i.e. the amount of red compensating for the effect

of green and blue on perception of red (Tarapore et al., 2004) (Varela et al., 1991, ch. 8)
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Figure 4.2: (Top) AID for sensor and motor groups against time. The robot acts
for 2 minutes (1195 timesteps). AID is calculated using probability distributions
estimated from a 100 timestep moving window (h = 100) using Q = 8 bins.
Vertical axis is AID in bits/sensor. (Bottom) Images from AIBO head camera
from selected timesteps.
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Figure 4.3: Average Information Distance (AID) against time and sensor-motor
AIDvs.AID plot. The data is from an AIBO walking from one end of the arena
to the other. (Top) Sensors and Motors AID vs. time. Annotations mark Start of
walk, Near Wall - which means that wall is in IR sensor range (i.e. 900mm) and
Stop Walking. This illustrates delay in AID responding to change (delay ≃ h)
(Bottom) Sensor-motor AIDvs.AID plot. The plot starts at the origin, time steps
are marked along path. Data has 130 time-steps, horizon h = 20 and Q = 12 bins.
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AIDvs.AID plot

If the AID for one group of sensors is plotted against the AID for another group of

sensors, the resulting trajectory helps visualize their interaction. Such a plot for

the robot walking from one end of the arena towards a wall is shown in Figure 4.3

along with a plot of the average information distance of sensors and motors against

time. This illustrates the utility of the AIDvs.AID method as it makes the

changing relations between the two groups of sensors instantly clear. In this short

sequence the trajectory of the plot shows interesting structure in terms of the

position and vertical/horizontal extent of the plot as well as in the points and

frequency of the crossing points. Later in this chapter metrics that can quantify

such features are explored.

Note that there is a delay in the trajectory responding to changes, as illustrated

by annotations on the figure. This is a result of estimating the probabilities over

a window, and the effect increases as the horizon length is increased. See also

Section 4.3.4 for an investigation into the effect of changing the horizon length.

The effect is particularly noticeable in the start-up delay where the plot traces a

line from the origin till approximately timestep 20 (the horizon length), and any

measurement of trajectory structure should ignore this start-up anomaly. This

effect needs to be considered when separating one behaviour from another.
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Table 4.3: Alternative Measures on Sensory Groupings

Distance Measurement Description

1 Simple average Time average over binned sensor values:

1

hn

t0
∑

t=t0−(h−1)

n
∑

a=1

Xa
t

2 1-norm distance (Hamming
distance)

Average of absolute numerical difference
between binned value of pairs of sensors:

1

2n(n− 1)h

t0
∑

t=t0−(h−1)

∑

1≤a<b≤n

|Xa
t −Xb

t |

3 Pairwise average of Pear-
son’s Squared Correlation
Distance

1

2n(n− 1)

∑

1≤a<b≤n

dpearson(X a
t0,h,X b

t0,h)

where dpearson = 1 − r2 and r is Pear-
son’s Correlation Coefficient (see Cooli-
can, 1994)

Note: Xa
t is the value of sensor a at time t. Calculations given for time t0 and must

be repeated for consecutive timesteps to obtain the graphs in Figure 4.4.

4.3.3 Comparison of AID to Other Measures

The data gathered in the first preliminary investigation was reanalysed using dif-

ferent distance measures (See Table 4.3) for comparison with the AID. Figure 4.4

shows the graphs produced as a result. Inspection of the relative variation in the

sensor and motor traces in these graphs suggests that the information distance

(A) may reveal more detail about the relationship between the sensors and mo-

tors than either the simple average (B) or the 1-norm distance (C). The statistical

correlation (D) appears to be different, showing more peaks and troughs in the

sensor graph than for information distance, but less so for the motor graph. The

graphs suggest that the average information distance measure both finds interest-
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Figure 4.4: Comparison of alternative AID measures. The Information Distance
distance measurement (A) is compared to the Simple Average (B), 1-norm dis-
tance (C) and the Pearson’s Squared Correlation Distance (D). Calculations made
for a horizon h = 100 over a time-series with 1195 timesteps. Entropy estimates
for information distance used Q = 8 bins.

ing features of the sensor-motor relationship as well as finding detail not revealed

by simpler measures, however this is likely to be highly task dependent and other

statistical measures may be equally useful. The usefulness of information distance

over other measures is supported in the results of (Olsson et al., 2006b) where the

“sensory reconstruction method” is used as a test problem, and suggests that

the information distance captures general relationships between sensors, not just

linear relationships.
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4.3.4 Investigation of effect of horizon length h and num-

ber of bins Q on the AID

Experiment

The choice of values for the horizon h (the moving window across which the prob-

ability density functions, and therefore the information distance, were estimated),

and for the number of bins Q (which sets the resolution of the probability den-

sity functions), can be expected to affect the resulting plots. To investigate the

effect, a time-series was chosen consisting of 450 data points taken from an exper-

imental run where the robot was “exploring” an empty arena. This “wandering”

behaviour consisted of walking forwards until an object (wall) was detected and

then turning a random amount before repeating the behaviour.

Results and Discussion

The AID was calculated over a moving time-window for many different values of

h and Q. A selection of the results are shown in Figure 4.5, showing AIDvs.AID

plots for varying values of h for a fixed Q and in Figure 4.6 where Q is var-

ied instead. The resulting trajectories (disregarding the start-up sequence) are

generally cyclic, and occupy a definite area within the AIDvs.AID space.

The results show an overall similarity, but definite progression in structure

of the trajectory. Figure 4.5 shows similarity in structure between the graphs

for h = 20 and h = 40 as well as a similarity between h = 60, h = 80 and

h = 100. The graph for h = 10 is also somewhat similar to h = 20 but is lower in

the motor dimension in addition to being more “chaotic” in structure. However,

there appears to be a smooth progression in structure that sees the chaotic nature

of the path reducing as h increases, as well as information distance on average

increasing with increasing h (to a maximum, in this case, of about 2.5 in the

motor dimension and 1.0 in the sensor dimension). Increasing h also appears to

reduce the detail and amount of “motion” in the trajectory, as well as the area

occupied, as more of the preceding time-series is considered for every point of the
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Figure 4.5: Effect of horizon length h on Sensor-Motor AIDvs.AID plots. Figure
shows a sample of results for window-size h ∈ {10, 20, 40, 60, 80, 100} with fixed
Q=8. In all cases horizontal and vertical axes are the moving window AID for
sensors and motors respectively.

AID plot. At the limit h=length of time-series, this would result in a single value

for the whole time-series.

In Figure 4.6 a similar story can be seen for the effect of increasing the variable

Q. Apart from the smallest value of Q, the overall structure of the traces are

similar, with the information distances increasing on average as Q is increased.

Increasing Q seems to increase the overall size of the trajectories (in terms of
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Figure 4.6: Effect of number of bins Qon Sensor-Motor AIDvs.AID plots. Figure
shows a sample of results for number of bins Q ∈ {4, 8, 12, 16, 20, 24} with fixed
h=60. In all cases horizontal and vertical axes are the moving window AID for
sensors and motors respectively.

the number of bits separating the extremes of the trajectory), as well as moving

the trajectory up and to the right (increasing AID for both groups). This would

be expected as a finer grained estimation of the probability density would find

more differences in the data. However, depending on the horizon h, and therefore

the number of data points used in the estimate, a very large number of bins

would be sparsely populated resulting in inaccurate estimates of the probabilities.
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Thus there is a limit to the amount of detail to be found in the plots. Again,

increasing the variable beyond a certain amount no longer results in an increase in

information distance suggesting that there is only a certain amount of information

that can be discerned from a given set of data.

Conclusion

The progressions identified as a result of varying the variables h and Q suggest

that (1) if the variable is altered a relatively small amount, then no significant

change can be expected in the AIDvs.AID trace in terms of structure of trace or

position in the AIDvs.AID space (i.e. the method is fairly robust with respect

to relatively small changes in h and Q), (2) that there is a limit to the amount

of information that can be discerned between sensorimotor streams by increasing

the quantization variables h and Q and (3) that very small values of either h or

Q result in a distorted view of the informational relationships in the data.

Suggestions for the Choice of h and Q

These results suggest that a minimum of h = 20 and Q = 8 should be considered

for quantization of robot data such as this, with values h = 60 and Q = 16 being

closer to optimal choices. However, in choosing suitable values for quantization in

the experiments conducted in this chapter, two further factors were considered.

The first was computational tractability, i.e. although this analysis was carried out

off-line, the method should be suitable for a robot to carry out self-characterization

of behaviour and thus should be operable in “real-time”. Higher values of either h,

Q or both would result in increased computation time. The second factor was the

length of behaviour that would be covered in the timeframe of the horizon length

chosen. Clearly if the horizon covered many different behaviours, then the plots

could potentially give mixed results. Shorter horizons were therefore desirable to

ensure consistency of behaviour during a single horizon length (i.e. “stationarity”

in terms of entropy). With these considerations, a value of Q = 12 was chosen

with a view to maximizing the differentiability in the plots while keeping the
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Figure 4.7: AIDvs.AID plot for selected values of horizon length h = 20 and
number of bins Q = 12. Horizontal and vertical axes are the moving window AID
for sensors and motors respectively.

computation time to an amount reasonable for on-line computation at 10 frames

of data per second and the horizon was kept small h = 20 to show a large amount

of detail only smoothing out short term variations. The AIDvs.AID plot for

these selected values is shown in Figure 4.7.
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Table 4.4: Simple Behaviours Executed

Behaviour Description Runsa

walking Walking from one end of the arena to an-
other

11

turning Turning on the spot in either direction 7

observing Robot stationary with activity in envi-
ronment, e.g. ball or hand waved in front
of visual field

5

stationary Robot remains stationary (with motors
powered) in a static environment

1

aSee text for notes on number of runs.

4.4 Characterizing Simple Behaviours

In this investigation the Aibo robot was placed in the same 2m×2m arena de-

scribed in Section 4.3.1 but without any obstacles. The robot was programmed to

execute a single behaviour at a time and data from the robot analysed using the

AIDvs.AID method. The goal was to determine if it was possible for the robot

to distinguish one class of its own behaviour from another by means of analysis

of AIDvs.AID traces.

Four behaviours were studied; walking, turning, observing and stationary (see

Table 4.4). The number of repeated examples of each behaviour were different

as in the initial data gathering phase behaviours were repeated according to the

variation in possibilities of executing each behaviour. For instance there are more

variations possible for the robot “walking” in an arena (towards a wall, away

from a wall, near a wall, in the centre, oblique path, etc.) than, say, “observing”

(wave ball, wave hand etc.). Indeed for the stationary example only one variation

was recorded as the requirement was for neither the robot to move or there to

be any movement in the environment. Further or repeat investigation should

consider having more examples of all these behaviours introducing redundancy

where necessary to arrive at equal numbers of runs, as well as to consider more
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possibilities of behaviours.

4.4.1 Morphometrics

A trajectory of informational relationships between groups of sensors has been

demonstrated, but one of the goals of this investigation is to allow the agent or

robot to be able to characterize and identify behaviours. Therefore, the agent

needs to be able to compare AIDvs.AID plots, and one mechanism for this is

to compare details of the trajectory, such as its shape. Three “morphometrics”

are discussed, that is, “measurements of shape” that can be used to objectively

describe the shape of the trajectory in just a few numbers.

Centre of Gravity (CoG)

The Centre of Gravity (CoG) of the plot describes the overall position of the

trajectory in the 2-dimensional space described by the AID axis for each sensor

group. The CoG is calculated by assuming each position on the plot to be a point

of unit mass, and summing over all points (disregarding the first h points).

Direction of Movement

Additionally, the overall movement of the AIDvs.AID plot during a behaviour

can be examined. A vector was calculated for every point with reference to the

next point in the trajectory as:

~vt =





xt+1

yt+1



−





xt

yt





The overall direction of movement or Movement Vector of the AIDvs.AID plot

is then the sum of these vectors for all points (disregarding the last point and the

first h− 1 points).
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Fractal (Capacity) Dimension

While it is possible to measure the position (CoG) of the curve in the AIDvs.AID

space, and its overall direction of movement, this does not tell us about what the

curve does in this region. Does it follow a simple path? Does it repeatedly

cross over itself? How “jagged” is the line? To measure this, it is possible to

use a measure of the fractal dimension to describe a trajectory in terms of its

“convolutedness”4.

Fractals (see Fig. 4.4.1) have the property of invariance under change of

scale, known as self-similarity and the fractal dimension is a measure of the self-

similarity of a set (Baker and Gollub, 1990). There are many ways to define the

fractal dimension and I will use the capacity dimension which is defined as

dc = lim
ε→0

log N(ε)

log(1/ε)
(4.2)

where N(ε) is the number of boxes of size ε that can “cover” the figure. The

capacity dimension can be estimated by using the “box-counting” method from

an image of the plotted path. The “box-counting” method is a general procedure

that can be applied to any image and proceeds by counting how many of N2 boxes

dividing the image have pattern detail in them and then iterating over N . The

slope of a line fitted to a log-log plot of the results gives the fractal dimension.

4.4.2 Results

CoG and Movement Vector Combined

Figures 4.9 and 4.10 show the CoG and movement vectors of all 24 experimental

runs. Figure 4.11 summarizes all runs of each behaviour type. Note that the

movement vector magnitude and direction is combined with the CoG position to

place the vectors on the graphs.

4Note that the trajectory is not a true fractal, and does not reveal more detail at higher
resolution. However, the box counting method only estimates the fractal dimension and does
not require the curve to actually be a true fractal.
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Figure 4.8: Koch curve. An example of a self-similar fractal shape. The curve has
a theoretical fractal dimension of log 4/ log 3 = 1.262. This compares to a value of
1.225 calculated by the simple box-counting method for the curve shown above.

Figure 4.9: CoG of AIDvs.AID trajectories. Summary of 24 Simple Behaviour
Experiments. Showing Centre of Gravity of each trajectory. Experiments are in
4 categories walking, turning, stationary and observing (see Table 4.4). The 4
behaviours appear in 4 quadrants of the geometric space as indicated. Horizon
h=20, number of bins Q=12.

It is clear from Figures 4.9 4.10 and 4.11 that turning and walking are very dif-

ferent from stationary and observing. This would be expected due to the activity

of the motors. Moreover, the difference between being stationary in a quiescent

and a changing environment is shown as a difference in the sensory AID, again

as would be expected. This is can also be seen to some extent with turning and
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Figure 4.10: Movement vectors of AIDvs.AID trajectories. Summary of 24 Sim-
ple Behaviour Experiments. Showing overall direction of movement of each trajec-
tory as vectors. These show further distinction between behaviour types. Exper-
iments are in 4 categories walking, turning, stationary and observing (see Table
4.4). Horizon h=20, number of bins Q=12.
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Figure 4.11: Summary of the CoGs and Movement Vectors of the 4 Behaviour
Types. All vectors of each behaviour type are summed to give an overall vector for
each behaviour, likewise for CoG. Behaviours are in 4 categories walking, turning,
stationary and observing (see Table 4.4). Window size τ=20, bin size Q=12.
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walking, the former being characterized by a far more rapidly changing sensory

input from the vision sensors.

Furthermore, it is interesting to note that turning and walking are further

distinguished by how their respective AIDvs.AID plots change during the be-

haviour, as shown by their Movement Vectors; walking has sensory and motor

AID reducing while turning has (for most of the examples) motor and sensor AID

increasing.

Note, that even if the CoG and Vector direction were used in combination to

characterize the robot behaviour, not all the turning and walking examples in this

data-set can be distinguished.
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Table 4.5: Fractal dimension. Summary of results for capacity (fractal) dimension
calculated by the box-counting method for a robot conducting simple tasks.

Behaviour mean dc min dc max dc Std Dev

walking 1.1886 1.1111 1.2521 0.04665

turning 1.3153 1.2600 1.3765 0.03985

observing 1.3133 1.2838 1.3450 0.02841

stationary 0.8663 0.8663 0.8663 N/A

Fractal Dimension

In order to better characterize the trajectories corresponding to robot behaviours,

the fractal dimension estimated by box-counting is considered as an additional

morphometric on the AIDvs.AID trajectories. Typical plots resulting from the

four types of behaviour conducted are shown in Figure 4.12 along with their fractal

dimension. The results for all the experimental runs are summarized in Table 4.5.

The fractal dimensions calculated for all of the turning and walking experi-

ments fell in non-overlapping ranges and indicates that this group of measurements

are linearly separable into the respective types.

Observe that turning has a higher fractal dimension than walking, which would

be expected as the path appears more convoluted. Conversely, observing was

found to have a very similar fractal dimension to turning. I speculate that the

waving of the hand and ball in front of the AIBO camera (observing) and turn-

ing provide a similarly high degree of rhythmic sensory activity whereas walking

straight ahead provides a steady visual field along with a steadily reducing infra-

red range reading. The stationary behaviour appears as a straight vertical line on

the plot and consequently has a fractal dimension close to 1.0.

4.4.3 Combination of Morphometrics

It was expected that all three measures of the shape of the AIDvs.AID plot

trajectory when combined would give a superior objective separation of the sub-
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walking dc=1.209304 turning dc=1.296265

stationary dc=0.8662597 observing dc=1.344958

Figure 4.12: AIDvs.AID plots. Typical trajectories for each type of behaviour
studied along with the calculated box-counting fractal dimension for each figure.

jective behaviour categories. Combining the measurements, the trajectory can be

represented in 5 dimensions: 2 for CoG, 2 for Movement Vector and 1 for Fractal

Dimension. Figure 4.14 shows a hierarchical clustering of the simple behaviours

based on the euclidean distances in the 5-dimensional space of the morphometric

measurements. It can be seen that the behaviours separate well, except for Turn05

which clusters with the Walk behaviours. Turns 06 and 07, while clustering with

the Walk examples, do form their own cluster at a separate hierarchical level from

the Walk behaviours.

4.4.4 Discussion

It is clear by inspection that the trajectories produced for the different behaviours

tested were different in terms of general shape. This was confirmed by using
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Figure 4.13: Summary of Fractal Dimension Results. Plot shows range of fractal
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(solid vertical lines) and standard deviation (dotted lines).
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Figure 4.14: Hierarchical Clustering of Simple Behaviours. This dendrogram was
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that the behaviours separate reasonably well, except for Turn05 which clusters
with the Walk behaviours, and turns 06/07 which are marginally closer to the
walk behaviours than their fellow turning behaviours.

70



Chapter 4 - Self-recognition of Grounded Sensorimotor Experience

very simple measurements of the shape in terms of its position (CoG) and overall

movement direction vector. Some individual examples of the walking and turning

behaviours were not clearly separated using CoG and Movement Vector alone.

However, a further measure of the shape of the trajectories - the fractal dimension -

was able to make a clear distinction between all examples of turning and walking.

A simple linear combination of all three metrics still however results in some

overlap in the clustering of behaviours, although the groupings could suggest

that either the subjective characterization of the behaviour by the observer was

incorrect, or simply that to the robot, certain “turning” episodes (near a wall?),

just “feel” like particular “walking” episodes.

It should be emphasized then, that clustering and characterization that is

grounded in the robot’s own experience may well be different to that which an

observer may apply.

Clearly, the characterization presented here was done after the fact, however,

to achieve this on-line, a neural network approach may be appropriate. One

possibility is to train a feed-forward artificial neural network to recognize the

categories based on a training set categorized by hand. However, a self-organizing

map approach may be able to avoid the supervised training, and therefore would

be more appropriate. This assumes that the behaviours can be segmented one

from the next (for instance by using constant sized segments). Suggesting an

approach to automatic segmentation is the subject of section 4.6.
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4.5 Identifying Behaviours

The aim of this experiment was to see if the simple behaviours of section 4.4 could

be identified within a sequential series of such behaviours. The overall behaviour

executed was exploring as described in section 4.3.4 consisting of walking and

turning behaviours.

Figure 4.15: Path traversed by AIBO during a particular “explore” experiment.
View is overhead of the 2m × 2m arena. Numbers are waypoints marking changes
in behaviour. end-of-turn waypoints are circled, end-of-walk waypoints are en-
closed in a square. EXPL02 dataset.

The path traversed by the robot in the arena, estimated from an overhead

video, is illustrated in Fig. 4.15 and annotated with numbered waypoints. The

waypoints were chosen at points where behaviour changes from walk to turn or

visa versa, and labelled such that they describe the just-completed behaviour (as

determined by an observer). As this dataset is used in a number of subsequent

experiments it will sometimes be referred to as the EXPL02 dataset.

The CoG and Movement Vectors for the AIDvs.AID plot describing the be-
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Figure 4.16: CoG and movement vectors of sensor-motor AIDvs.AID plot of
waypoints of Fig. 4.15. The behaviour sequence was separated into sections and
labelled as Walk or Turn. The CoG and Movement Vectors for each segment were
calculated and are shown separately in this combined plot. Note: trajectory itself
not shown for clarity. CoG of Walk behaviours (1,3,5,7,9,B,D,F) appear on left
side. CoG of Turn behaviours (2,4,6,8,A,C,E), while not as well grouped, appear
further to the right. Vectors for Walk move to the left, those for Turn largely
either are moving to the right or the CoG is already at the right side. h = 20 and
Q = 12.

haviour were calculated and are shown in Figure 4.16. Note that only timesteps

greater than the horizon h were counted in these summary morphometrics, as

there is a delay effect due to the probability estimation over the moving window.

In some cases, usually with the shorter duration Turn behaviours and in particular

with behaviour numbers 4, 8 and 14, there are not enough samples to fill a whole

window of horizon h, and so only the last timestep in that sequence was consid-

ered. This results in zero length movement vector, but a reasonable estimation of

the position of the CoG for the plot.
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4.5.1 Discussion

It can be seen from the plot of Figure 4.16 that the Walk behaviours are well

grouped; they lie mainly to the left of the plot (lower AID between sensors in the

Sensor group) and their respective movement vectors generally point to the left.

The Turn behaviours are not so homogeneous, but the prevailing characteristic

is of a greater AID between Motor group sensors and an increasing movement

vector. i.e. the plot is moving towards the right.

Further characterization may be possible using additional morphometrics such

as the fractal dimension, but for the short length behaviours of the Turn sections,

this would result in plots that were inadequate for fractal dimension estimation

using box counting. Self-identification of behaviour is thus possible, however, once

again automatic segmentation would be required for an on-line solution.

4.6 Segmentation of Behaviour

The preceding sections have described a technique for characterizing behaviour

from the robot’s perspective, but using externally determined behaviour transition

boundaries. As a step towards autonomous self-categorization, this section takes a

tentative look at some possible techniques that automatically segment behaviour

using the AIDvs.AID plot as the starting point.

4.6.1 Segmenting Behaviour in the AIDvs.AID Plot Us-

ing Transition Threshold

Investigation of the AIDvs.AID plots reveals localized activity in different regions

of the AIDvs.AID space punctuated by transitions between regions, and the po-

sition and other characteristics of the localized activity was shown to characterize

behaviour from the robot’s perspective. These properties are now exploited to al-

low the robot to segment experience in terms of an AIDvs.AID plot into frames

of coherent activity.
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Algorithm 4.1: SEG THR: Incremental Threshold-based Segmentation using
AIDvs.AID

Input: threshold τ , window w
Output: segments S

V: window,length w, vector of AID pairs
state←− stasis

while A = new AID pair do
push A to front of V, pop back
calculate Σv = sum of V
if Σv > τ and state = stasis then

start new segment Si, type motion

state = motion

end
if Σv < τ and state = motion then

start new segment Si, type stasis

state = stasis

end

end

The magnitude of a vector, calculated over w time-steps, describing the current

direction of the trajectory in the AIDvs.AID space is used to indicate movement

away from a localized region. When the magnitude is greater than a threshold

τ , then a period of transition begins, ending when the magnitude falls below

the threshold. This procedure is appropriate for on-line segmentation as new

data arrives, see the Algorithm 4.1:SEG THR. This procedure results in periods of

“stasis” where the trajectory does not move very fast, and periods of “transition”

where the trajectory is moving faster. Both types can be considered to be segments

of behaviour and can be characterized using the morphometrics described.

Segmentation using this technique depends on the threshold τ , the length of

the window over which the transition is estimated w and the environment. The

effect of different values of both τ and w are examined, with the view that these

parameters may be autonomously adapted to the conditions in the future.

4.6.2 Experimental Investigation

The same wandering walk used in Section 4.5 (EXPL02 dataset), consisting of

15 individual walks and turns, was subjected to segmentation using the method
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Figure 4.17: Threshold Effect on Segmentation Number of frames produced for
different values of the threshold τ and vector estimation window size w.

described above. The number of segments produced was found to depend on both

τ and w. Figure 4.17 shows that for a small window w the number of frames

reduces as the threshold is increased. This relationship is reversed for higher w.

To achieve a similar number of segments to the observed case (15) requires

either a low threshold combined with a long window, or a short window with

a medium sized threshold. Examples of segments achieved at selected window

lengths and thresholds are shown in Figure 4.18. This figure also shows that

as the window length increases, the bulk of the time-series is segmented as “mo-

tion”, i.e. transitions, whereas for short windows, especially combined with higher

thresholds, the segments that compose most of the time-series are of the “stasis”

type.

None of the segments in any of the cases appear to accurately represent turning

and walking as one observes them. This may be due to the choice of segmentation
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Observed frames
Walking -->Turning -->

Thr 0.6 Win 10
1 3 5791113 1517192123 25 27293133 35 3739 4143 4547 49 51535557596163 6567697173 75777981 83 85 87899193959799101 103105

Thr 1.4 Win 10
1 3 5 7 9 11 13 15 1719212325272931 33 3537 39 414345 47 49 51 5355

Thr 2.2 Win 10
1 3 5 7 9 11 13 15 17

Thr 3.0 Win 10
1 3 5 7

Thr 0.6 Win 20
1 3 5 7 91113 15 1719 21 2325272931 33 3537 39 4143

Thr 1.4 Win 20
1 35 7 9 1113 15 171921232527293133 3537 3941 43 45 47495153 55 57 59 616365 67 69 7173 7577 79

Thr 2.2 Win 20
1 357 9 1113 15 17 192123 2527 293133 35 37 39 41 434547 495153 55 57 59 61 6365 67

Thr 3.0 Win 20
1 3 5 7 911 13 151719 2123 2527 29 313335 3739 41 43 45 47 49 51 535557

Thr 0.6 Win 30
1 3 5 7 9 1113 151719

Thr 1.4 Win 30
1 3579 11 13 15 17 19 21 2325 272931333537 39 414345 47 49 51

Thr 2.2 Win 30
1 3579 11131517 19 21232527293133 35 37 3941434547495153 55 575961 63 656769 71

Thr 3.0 Win 30
1 3 5 7 911 13 1517192123 25 2729 31 33 35 3739414345 47 49 5153 55 57

Thr 0.6 Win 40
1 3 5 79 11 131517

Thr 1.4 Win 40
1 35 7 9 11 13 151719 2123 25 272931 3335

Thr 2.2 Win 40
1 35 7 9 11 13 15 17 19 21232527293133 35 373941 43 45

Thr 3.0 Win 40
1 35 7 9 11 1315171921 23 25 2729 31333537 39 41 43 45 4749

Figure 4.18: Wandering behaviour segmented into time-frames for a range of
threshold and window values. Each line on the figure shows a different segmen-
tation of the same data with the segments numbered consecutively. Periods of
“stasis” (odd-frames) only are marked. Observed behaviour (walk/turn) is shown
on the top part of the graph as a reference.

technique, alternatively they may represent ”close-to-wall” and ”far-from-wall” or

some other subjective (from the robot’s perspective) behaviour.
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4.6.3 Identification of Behaviour Segments

The next step is to characterize the behaviour segments in terms of known be-

haviour. The CoG and Movement vector measures are used, leaving out the

box-counting dimension due to its unreliability on short segments as noted above.

A window size w = 10 and threshold τ = 1.8 were chosen on the basis of the num-

ber of segments which resulted being of a similar order to the numbers of observed

behaviours. The behaviour thus divided into 35 behaviour segments, with 90%

of the time-series segmented as “stasis”. To illustrate how the behaviours might

be identified, Figure 4.19 shows hierarchical clustering applied to the segments

(stasis1-35 and motion2-34), along with the simple behaviours (S01, O01-05, T01-

07 and W01-11) of Section 4.4 for reference. The segments broadly segment into

three groups (boxes on the dendrogram). On the top are the Observing and Stasis

behaviours from the simple behaviours, clustered with segmented behaviours from

the very start of the time-series. In the centre are Turn behaviours, and at the

bottom are mainly walk behaviours along with Turns 5,6 and 7 which previously

had clustered with Walk. The segments that wholly lie during turn behaviours

(6, 7, 8, 12, 13, 14, 22, 27) all segment with the turn behaviours. Of the segments

that wholly or mostly lie within walk sequences (9, 10, 11, 15, 16, 18, 19, 20, 21,

25, 28, 29, 30, 33, 34, 35), most segment with Walk behaviours with the exception

of 11 and 21 which both end as turns, and 28.

This result suggests that, where the behaviour within an automatically gener-

ated segment is unambiguous, the morphometrics can be applied to successfully

identify behaviour from the robot’s perspective.
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Figure 4.19: Hierarchical clustering of autosegmented behaviours combined with
simple behaviours for reference. Segments produced using threshold τ=1.8 and
window w=10. Morphometrics CoG (x and y) and Movement Vector (x and y).
Average cluster centre linkage. Compare with Figure 4.14.

(Below) Segmentation of time-series, compared with observed behaviour.
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4.6.4 Discussion

The literature on pattern identification, regression analysis and machine classifi-

cation is vast (see for example Mitchell, 1997; Jain, Duin and Mao, 2000). When

faced with very high dimensional data, these approaches either reduce dimension-

ality drastically using techniques such as linear regression analysis and principal

components analysis, or instead they start with a lower dimensional data set by

using “features” of the data, often hand-designed. With reduced dimensional

data, classification can be performed using tools such as neural networks, linear

discriminant analysis, nearest neighbour rules and template matching to name

just a few.

With this in mind, I cannot claim that there are not better techniques for

segmenting behaviour. However this approach was taken only with a view to

seeing how far it is possible to go with the AIDvs.AID plot. In the AIDvs.AID

plot, there is drastic dimensionality reduction, and there is good evidence that

the plots can be used to characterize behaviour. However, the segmentation of

behaviour seems to suffer from being performed on data that has already been

reduced in dimension. Instead, better results may be achieved by using more

traditional techniques from machine learning on the raw data.

As mentioned in Section 2.5, much of the existing research into classification

in robotics is in object identification and localization. An example of the latter

is (Nehmzow and Smithers, 1991) where the robot uses Kohonen self-organizing

networks to build internal maps. Interestingly, from the perspective of this thesis,

they required a history of previous encoded sensing to solve their localization task,

and this again emphasizes the importance of a continually constructed interaction

history of some kind in robots tackling complex, time-dependent, tasks.

4.7 Chapter Summary

This chapter has defined a measure, the Average Information Distance, that a

robot could potentially use to characterize and recognize its own behavioural in-
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teraction with the environment. Using two groups of sensors representing the

agent and environment, a trajectory in an AIDvs.AID space further serves to

characterize behaviour. Applying measurements of shape (“morphometrics”) to

the trajectories resulted in a quantitative method for characterization and iden-

tification. Furthermore, movement in the trajectory can serve as a method for

automatic segmentation of one behaviour from the next.

However, there are limitations to the approach. Not all behaviours were easily

separated, and the choice of parameters for segmentation seems critical. Addi-

tionally, I expect that taking a gross average of the distance between all sensors

in a group removes too much information from the data. This may be resolved

by using more, or automatically generated groups, that show internal consistency.

The next chapters though, take a new approach, with the hope of solving some of

these problems.

81





Chapter 5

Sensorimotor Experience and

Metrics

5.1 Introduction

The preceding chapter explored the characterization of robot behaviour in terms

of relationships between time-series of sensor readings and the subsequent dimen-

sionally reduced trajectories in the AIDvs.AID space. In this chapter an alter-

native approach is taken, applying the information distance to the same sensors

at a different time. The notion of “temporally extended experience” is opera-

tionalized using the flow of values over the agent’s sensorimotor variables during

a particular interval of time (temporal horizon). Furthermore, clear mathemat-

ical relationships and measures between experiences are presented that provide

potentially better characterization of robot behaviour and interactions.

Later, in Chapters 7,8 and 9, robotic sensorimotor experience and their re-

lationships defined in this chapter are used to close the perception-action loop

to create simple robotic “intelligence” operating on a broader temporal horizon

based on grounded sensorimotor interaction histories. Experiments in this chapter

(Section 5.4) lay the groundwork for this by using the robot’s interaction histories

to anticipate future sensorimotor experience.
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5.2 Sensorimotor Experience and Metrics

A robot or other embodied agent’s entire view of the world is experienced through

its sensors, including those that measure internal factors such as temperature,

motor positions, and other more general internal variables. As explained in Sec-

tion 3.3 these can be modeled as random variables. A robot’s experience, then,

can be considered as the collection of all readings from all these variables over

a given time period. This is a purely sensorimotor view of experience and says

nothing about the quality or meaning of that experience.

Formally, an agent’s experience from time t over a temporal horizon h can be

defined as

E(t, h) = (X 1
t,h, . . . ,XN

t,h) (5.1)

where X 1
t,h, . . . ,XN

t,h is the set of random variables available to the agent con-

structed from time-series of sensorimotor readings from N sensors (X1, . . . , XN)

ending at time t with a horizon h timesteps (from time t− (h− 1) to t)1.

Of course it is also possible to envisage sub-experiences within any experience

made up of a subset of the sensors. Thus, for a subset S of the sensory variables,

ES(t, h) = (X k
t,h) (where each X k ∈ S) is a sub-experience of E(t, h). This would

correspond to the definition given in (Oates et al., 2000)2. Furthermore, it is

possible to envisage a dimensionally reduced experience

F (t, h) = (Y1
t,h, . . . ,YM

t,h) (5.2)

where Y1, . . . ,YM are M remapped sensor variables with M ≤ N . Such di-

mension reduction could be performed with any standard method such as Multi-

Dimensional Scaling (MDS), Principal Components Analysis (PCA) or Isomap (a

non-linear multidimensional scaling algorithm).

1Note that for the definition it is equivalent to say starting at time t with horizon h, however,
implementations must be consistent. In all my implemented code, the time of the sensor reading
or experience is taken as the time at the end of the time-series, and h the length of the timeseries.

2Note that while the Oates paper predates our publications on Experience (see Appendix B),
it was not known to me at the time of writing, and this formulation was arrived at independently.
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5.2.1 Experience Metric

Given a definition of Sensorimotor Experience and the information metric, a for-

mal measure of distance between experiences can be defined. This is useful as it

allows a direct, scaled, comparison between different sets of sensorimotor readings

of a robot or agent. A metric for comparison of sensorimotor experiences is im-

portant as it is then possible to talk of proximity and distance between different

experiences in a quantitative way.

Figure 5.1: Experience Metric. A visual illustration of the experience metric.
Each experience is shown as a collection of sensor readings of length h starting at
time t and t′. The information distance between each respective sensor over time
is summed to give the Experience Metric.

The Experience Metric, a metric on experiences of temporal horizon h, is

defined as

D(E, E ′) =

N
∑

k=1

d(X k
t,h,X k

t′,h) (5.3)

where E = E(t, h) and E ′ = E(t′, h) are experiences of an agent at time t and t′

over horizon h and d is the information distance (see Figure 5.1). D is measured

in bits. That D is a metric follows from the fact that the metric axioms (equiv-

alence, similarity and triangle inequality) hold for each of the components in the

summation, since d is a metric (see Section 3.2.2).

Other Metrics on Experience

As before for the definition of experience (Equation 5.1) it is possible to extend

the definition of experience to metrics between experiences consisting of subsets

of sensorimotor variables or remapped (dimensionally reduced) sensors. However,
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for the definition of Equation 5.3 to apply, the experiences being matched must

consist of equal numbers of sensors with equivalent horizon lengths. Where the

sensors compared are different then the reformulated metric will have a different

meaning (i.e. it will not indicate how given groups of sensors are directly related

over time). Finally, it is also possible to make comparisons between different

numbers of sensors with different horizon lengths. A few possible metrics are

listed below.

Figure 5.2: Other Experience Metrics. A visual illustration of two other possible
experience metrics. (Left) The Intersensor Temporal Experience Metric, (Right)
The Horizon Asymmetric Experience Metric: showing one possible mapping. In
this case the current experience of length h′ is mapped to an experience of length
h, alternatively, the mapping could be done on the history experience. See text
for details.

Intrasensor Temporal Experience Metric: For disambiguation this is the Ex-

perience Metric as defined in Equation 5.3.

Intersensor Metric: Informational relationship between sensors measured over

the same time. As used by Olsson, Nehaniv and Polani (2006a) to create

sensoritopic maps.

DIntersensor(E(t, h), E(t, h)) =
N

∑

i=1

N
∑

j=1

d(X i
t,h,X j

t,h) (5.4)

“Cross-modal” or Intersensor Temporal Experience Metric: This metric

compares sensors both over time and between themselves. It combines the
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ideas of the Temporal Experience Metric and the Intersensor Metric.

DIntersensorTemporal(E(t, h), E(t′, h)) =
N

∑

i=1

M
∑

j=1

d(X i
t,h,X j

t′,h) (5.5)

One interesting point about this metric is that it can be sensory asymmetric

where N 6= M . This may be important in a system where development in-

creased the sensory array over time. Even where hardware did not develop,

adding new physical sensors, this could be software controlled for instance by

ignoring certain sensors early in development and gradually reintroducing

them as development progressed. A further possibility is increased num-

bers of visual sensors derived from the camera images corresponding to an

increase in visual acuity over time.

An alternative metric that can also be used to compare groups of sensors in

a metric space is the Hausdorff experience metric (Nehaniv, 2005).

Dimensionally Reduced Experience Metric: This metric defines how expe-

riences can be compared after dimension reduction. Note that correspon-

dence between sensors is important, i.e. the same dimension reduction must

be performed on both experiences. For example, if PCA is used, then the

PCA should be calculated on either one of the experiences or a combination

of both, then the sensors rescaled using the same principal components.

DDimensionReduced(E(t, h), E(t′, h), f()) =
M

∑

k=1

d(Yk
t,h,Yk

t′,h) (5.6)

where there is a suitable function f() (such as PCA) where f() : (X 1
t,h, . . . ,XN

t,h) 7→
(Y1

t,h, . . . ,YM
t,h) with M ≤ N .

Horizon Asymmetric Experience Metric: This metric opens the possibility

of comparing experiences of different horizon lengths. A mapping function
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is used to convert a sensor of length h′ to one of length h.

DHorizonAsymmetric(E(t, h), E(t′, h′)) =
N

∑

k=1

d(X k
t,h,Zk

t′,h) (5.7)

where there is a function: f(Xt,h′) = Zt,h : where in general h′ 6= h. That is,

a mapping function that maps x(t), x(t+1), . . . , x(t+h′−1) into z(t), z(t+

1), . . . , z(t + h− 1).

A suggested mapping function for h′ > h is z(t+j) = x(t+i) where j = ⌊ih′

h
⌋.

Alternative mapping functions include a simple cut-off, where the longer

experience is truncated at the horizon length of the shorter experience, as

suggested in (Nehaniv, 2005).

5.3 Metric Spaces of Experience

The mathematical definition of a metric space generally given is, the pair (M, d)

where M is a set of objects and a d(x, y) is a distance function on the elements

of the set which satisfies the axioms of symmetry, equivalence and the triangle

inequality. See e.g. Rosenlicht (1985, p33).

If the distance function is the information distance and the set of objects, time-

series of sensors, the metric space describes informational relationships between

sensors. Such a space and its projections into a small number of dimensions have

been used by Olsson et al. (2006a) to create sensoritopic maps.

Instead, I am interested here in a metric space (E, D) that is defined on a set

of experiences E = E0, E1, . . . , Ek, as defined in Equation 5.1, and the experience

metric D(En, Em). I will refer to this space as the metric space of experiences.

One might be tempted to think of a metric space in the same way as Euclidean

space, however that can be misleading as the topological properties of a Euclidean

space do not necessarily follow from the basic definition of a metric space as given

above. The derivation of the toplogical properties of metric spaces defined on the

information distance and on the experience metric is beyond the scope of this
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thesis and is put forward as important future work. Thus, for correctness, I do

not assume any geometric or topological properties of the space and rely on the

metric properties of the distance measurement only.

Thus, to know the distances from any given experience to all others, all the

distances can be measured. This 1-dimensional space is referred to as the local

view from experience E. See Section 5.3.2 and Figure 5.4. By extension, the global

view is given by the union of all local pictures of all experiences in the space (and

determines the metric space).
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Figure 5.3: Scree (Eigenvalue) Plot for 89 Experiences in a Metric Space. Plot
can be used for dimensionality estimation. In this case the estimated dimension
is 8. Evenly spaced experiences from 911 timesteps of robot wandering (EXPL02
dataset), h = 20 and Q = 10

.

5.3.1 Dimension of a Metric Space of Experience

Theoretically, the maximum dimensionality of the space is N − 1, where N is

the number of experiences in the space, however, the actual dimension of the

89



Chapter 5 - Sensorimotor Experience and Metrics

space is generally substantially less than that, and can be estimated by the “scree

plot” method (e.g. Jolliffe, 2002, Section 6). Figure 5.3 shows such a plot for

89 evenly spaced experiences (h = 20, Q = 10) from the EXPL02 dataset (see

Section 4.5). The usual rule of thumb is that the dimension of the data can be

reduced to be equivalent to the number of components at the “elbow” of the curve

(Jolliffe, 2002), in this case 8. Alternative methods estimate the dimension to be

equal to the component number where the eigenvalue becomes 1.0, in this case,

approximately 20. In either case, it is clear that the dimensionality is a great

deal less that the maximum, but this data may not be subject to linear dimension

reduction (projection) into easily visualized two or three dimensional spaces.

The eigenvalues are estimated from the distance matrix using the method

described by Gower (1966) using a mean-adjusted association matrix α: Given

an N × N distance matrix D with elements dij, then the association matrix A

has elements aij given by

aij = −1

2
d2

ij (5.8)

The mean-adjusted matrix α, then has elements

αij = aij − āi − āj + ā (5.9)

where āi is the mean value of the ith row (or column) of A and ā is the overall

mean.

5.3.2 Views of the Metric Space of Experience

It is possible to visualize the metric space of experience by examining local views

from selected experiences that show the experience distance from a particular

experience to all others. Two horizon 20 length experiences from the EXPL02

dataset (903 time-steps, 90.3 sec) were taken as comparison models; Ewalk220 where

the robot was walking forward (timesteps 200-220 corresponding to the early part

of the path between waypoints 4 and 5 in Figure 4.15), and Eturn310 where the
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Figure 5.4: Local Picture of Experience Metric Space From a “Walk” Experience.
The figure shows, in general a smaller distance to other walk experiences. All
sensors considered. h = 20 and Q = 10

robot was turning near a wall (timesteps 290-310 corresponding to part of the

turn between waypoints 5 and 6). These experiences were compared to all others

using Q = 10 bins and the results are shown in Figures 5.4 and 5.5 alongside an

indication of the transitions between observed behaviour.

Noting that a lower experience distance indicates similarity between the expe-

riences, the results for the comparison of Ewalk220 (Figure 5.4) show a reasonable

agreement with the observed behaviour. For Eturn310 (Figure 5.5) this is less

clear although the lowest information distances do correspond to other turning

experiences.

Some of the experiences that should appear different to Eturn310 (i.e. all walking

regions) do appear similar. On closer inspection it can be seen that the similarity

tends to grow (i.e. distance falls) toward the end of a walk phase. This maybe

because, as the AIBO approaches a wall, the experience (at least in visual and

proximity terms) becomes more like that of a turn, which, owing to the reactive
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Figure 5.5: Local Picture of Experience Metric Space From a “Turn” Experience.
The figure shows, in general a smaller distance to other turn experiences. All
sensors considered. h = 20 and Q = 10

nature of the triggering of this behaviour, always occurs on approaching a wall.

To gauge how well experiences are matched to others of the same behavioural

type, the experiences in the neighbourhood of Ewalk220 and Etalk310 can be exam-

ined. Defining this neighbourhood as the collection of experiences that lie within

a “sphere” of radius r bits centred on the experience Et at time t:

Br(E
t) = {Et′ : D̄(Et, Et′) ≤ r} (5.10)

The experiences can be ranked in terms of their distance from a given expe-

rience. The 10 closest experiences to the Ewalk220 for a window size of 20 and 10

bins, are shown in Table 5.1. Timestep 828 is 4 timesteps (0.4 seconds) into a

turning phase and the error in classification is probably due to the time-window

of data still containing more data from a walk action rather than a turn action.

The sphere that contains these closest 10 experiences has a radius r = 0.797
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Table 5.1: Nearest 10 Experiences to Ewalk220 and Eturn3100

Ewalk220

End Timestep Behaviour Type
220 walk
643 walk
531 walk
240 walk
663 walk
280 walk
366 walk
458 walk
828 turn
253 walk

Ewalk310

End Timestep Behaviour Type
310 turn
389 turn
402 turn
112 turn
105 turn
693 turn
700 turn
290 turn
363 walk
694 turn

bits/sensor. For the experience Ewalk220, the closest 10 experiences are mostly

other turn experiences. Again, the only experience that is “misclassified” here is

363 which occurs 4 timesteps into a walking phase after a phase of turning. The

radius of the sphere containing these experiences is r = 1.1090 bits/sensor.

5.3.3 Discussion

These results indicate that the closest experiences in terms of the experience

metric, and thus from the robot’s perspective, are of the same type as indicated

by the external observer’s classification (executed behaviour). This agrees with

our hypothesis and encourages the use of the experience metric in classification and

identification of behaviour. Many experiences that might have been expected to

be closer, considering the executed behaviour, are actually farther away. However,

this is likely to be because they differ in a manner not immediately apparent to an

external observer. Such a situation was observed in these experiments: the “walk”

behaviour when approaching a blank wall, appears from the robot perspective to

be similar to “turn” when turning in front of a wall.
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5.4 Robotic Experiments Using the Metric Space

of Experience

This section presents a simple experiment, with two variants, designed to test the

operation of the metric space (being both constructed and used for prospection)

in real-time on a robotic platform. As new experiences are added to the metric

space, the closest previous experience is used to construct a “predicted path” of

a ball.

5.4.1 Static Path Prediction Experiment (SPPEXP)

In this experiment a ball is moved in front of a robot, i.e. in view of it’s internal

camera. The movements are simple and regular, for instance circular, vertical

or horizontal movements. In the simplest version of the experiment, the robot

is stationary. Sensorimotor data is collected, including those constructed from

the camera images, and experiences are stored in a metric space. The order of

experiences is retained, as well as an indication of the ball position at the end

of the experience. The metric space of experiences is then used to construct a

predicted path of the ball. This is done by finding the closest experience in the

space to the current one; the ball position at the end of that experience and its

subsequent experiences is then the predicted “path”. Success would be indicated

by correct prediction of the ball path, and this would only occur where the recent

sensorimotor experience was correctly matched to a similar preceding experience.

It is important to note that, the robot is not matching current ball position

with previous ball position, rather all sensory and motor3 variables are used as

information sources to detect similarity between experiences, and then the stored

ball position is used to give the experimenter an indication as to how well the

experience was chosen. For verification purposes a path is drawn on the display

of the robot’s visual field during operation, indicating the predicted future path.

3Even though in this first part of the experiment, there is no motor movement.
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Implementation and Experimental Setup (SPPEXP)

The robot used was a Sony Aibo ERS-7 and the control and sensory collection

software implemented using using URBI (Baillie, 2005). URBI provides the robot

control layer and a full-featured event based parallel scripting system. The URBI

software runs directly on the robot where actions and background behaviours are

executed, URBI receives and processes events and controls motors every 35ms.

Telemetry data (sensor values) is sent over wireless to a personal computer ap-

proximately every 80-120ms. Reception of each frame of data defines a timestep, so

the time between timesteps varies and is approximately 80-120ms. Video images

were received from the robot head camera approximately every 400ms, however

visual sensors were computed at the rate of the sensor data frame using the most

recent image from the camera. Experiences were formed from data streams from

33 internal sensors (including proprioceptive motor positions and infrared distance

measurements, see Appendix A) and 9 sensors formed from average pixel values

in a 3× 3 grid over the image.

URBI also provides a ball-detection algorithm tuned to the “pink ball” that

is shipped with the Aibo robot, and this was used for determining the path for

evaluation of suitable matching of experiences. The metric space creation and

prediction was implemented in Java and ran on-line in real-time.

Figure 5.6: Sony Aibo ERS-7, and Pink Ball

The robot was stationary in a “sitting” position, with the head pointed forward

(Figure 5.6). A pink ball was moved in the air in view of the robot’s head camera

at a distance of approximately 30cm. No particular effort was made to “sanitize”
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Table 5.2: Path Prediction Experiment - Part 1: Sequences of Movements

Start TS End TS Movement Type Iterations

1 210 Ball in visual field

211 323 Horizontal, Right to Left 2 full

324 671 Circular, Clockwise 6 1
2

680 969 Vertical, Top to Bottom 4 1
2

970 1032 Horizontal, Left to Right 1 full

the environment to aid ball-detection against the background (a normal “office”

environment with a louvred window in view). Thus, it is likely that other items

in the environment provided potentially useful information about any interaction.

The ball was moved either vertically, horizontally, or in a circle. Simple,

smooth motions of the ball were chosen so that the data would be amenable

to analysis based on the type of motion. Also, discontinuous and fast motions

were avoided due to the relatively slow rate of image capture (approximately 10

frames/second).4 The ball was moved such that the time for the ball to describe a

circle (or to move horizontally or vertically for a complete cycle) was 6-7 seconds,

Thus the horizon length was shorter than, but of the same order of magnitude

as, a single cycle of the repeated behaviour and the experiences would comprise

approximately a half of a cycle.

The horizon length of the experiences was h = 40 timesteps or approximately

3400ms (a single timestep was approximately 85ms long). The data was quantized

into 5 bins in the probability distribution estimation algorithm. Experiences were

created only every G = 4 timesteps, where G is referred to as the granularity. A

value of G = 4 was chosen to reduce the number of experiences that would be

generated to a rate that would allow for real-time processing of the experience

data on a typical office desktop computer.

4However, there is no reason to assume that more complex or discontinuous motions would
not provide appropriate experiences for the history of a robot.
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TS: 414 Exp: 204 TS: 418 Exp: 205 TS: 422 Exp: 206

TS: 426 Exp: 207 TS: 430 Exp: 208 TS: 434 Exp: 209

TS: 438 Exp: 210 TS: 442 Exp: 211 TS: 446 Exp: 212

TS: 450 Exp: 213 TS: 454 Exp: 214 TS: 458 Exp: 215

Figure 5.7: Series of 12 consecutive images from the Aibo camera showing ball
path prediction using a sensorimotor experience space. The robot does not move
its head in this sequence. Images are sequential left to right and top to bottom.
The sequence lasts approx. 4 seconds (44 timesteps or 12 experiences) and is taken
after 37 seconds of activity. The line shows the path prediction for 10 experiences
ahead. The crosses are from various methods for ball detection, only one of these
was actually used as sensory input. h = 40, Q = 5, Experience granularity G = 4
timesteps. One image shown per experience.
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Figure 5.8: Single image from the Aibo camera taken during ball prediction exper-
iment. The predicted path has been highlighted with arrows, starting from the
position of the ball during the matched experience, and ending with the position
of the ball during the 10th experience after the matched one. The lower cross-hair
is detected ball position, the upper cross-hair is predicted ball position.

Results and Analysis (SPPEXP)

Figure 5.7 shows a sequence of images from one trial with one image shown per

experience. The sequence shown in Figure 5.7 lasts just over 4 seconds and consists

of approximately 50 timesteps (1 timestep ∼ 85ms) and 12 experiences (experience

granularity G = 4 timesteps). There were 112 overlapping experiences (about 39

seconds of activity) before those shown, during which the ball was moved from

left to right four times and in a circle once (see Table 5.2). Each image shows

the robot’s camera view during an experience with the predicted path overlaid (at

run-time). For clarity a single image from the sequence is reproduced in Figure 5.8

with the position of the ball and the predicted path highlighted.

In the sequence shown and others, the robot required very few examples of

a sequence (usually one) before the appropriately predictive experience could be

located. This demonstrates that the information distance measure is capable of

placing subjectively similar experiences (to an external observer) near to each

other in the experience space (of the agent). However, it was found that while the

path of the ball could be predicted fairly well early on in the sequence, later on,

as the choice of experiences grew, the candidate experience chosen was not always
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the most appropriate.

Occasionally subjectively inappropriate experiences were matched. As an ex-

ample, consider the seventh image in Figure 5.7 (Experience 210), here the pre-

dicted path inferred from the sequence of experiences following the candidate ex-

perience corresponds to the half circle that the ball has just been through (rather

than the half-circle it is just about to go through, as in the other images). The

candidate experience chosen is informationally close to another experience half

a cycle back in time that may have been more appropriate. These two possible

experiences that could have been matched correspond to motions of the ball from

opposite sides of a circle. As the experience distance measure is the sum of infor-

mation distances between variables, then a symmetric error such as this is likely,

especially as phase-shifted periodic variables can have a small or zero5 information

distance.

This particular test scenario does not make use of the motor sensors of the

robot in constructing, and therefore matching experiences. In the next experi-

ment, this is addressed.

5.4.2 Interactive Path Prediction Experiment (IPPEXP)

In this second experiment the robot follows the motion of the ball, moved in front

of it, by using a simple reactive behaviour to adjust its head motors to attempt

to centre the ball in its field of vision. This presents a very different situation

to the previous experiment in that, in addition to the visually derived sensors,

there is also information about the experience of the robot in its own proprio-

ceptive sense of its movement arising through interaction with the environment.

The robot, as before, continually builds a metric space of experiences from its

ongoing sensorimotor experience, including its own proprioceptive sense of move-

ment arising through interaction with the environment. Experiences temporally

following the historically closest experience then provide a model for anticipation

5Variables that have a zero information distance are recoding equivalent and are not neces-
sarily identical (see Crutchfield, 1990).
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Table 5.3: Path Prediction Experiment - Part 2: Sequences of Movements

Start TS End TS Movement Type Iterations

91 185 Horizontal, Left to Right 2 full

201 272 Vertical movements, Top to Bot-
tom

2 full

283 361 Horizontal, Right to Left 1 full

376 453 Vertical, Top to Bottom 2 full

463 534 Horizontal, Right to Left 1 full

548 593 Vertical, Top to Bottom 1 full

607 852 Circular, Clockwise 4 full

866 929 Vertical, Bottom to Top 2 full

of future experience. How good this model is depends on both the predictability

and consistency of the environmental interaction as well as how “good” the histor-

ical matching is. Thus, the analysis of the experiment focuses on measuring how

well matched the historical experience is to the current one. Note that predicting

the trajectory of the tracked object corresponds to prospection regarding part of

a future temporally extended interval of sensorimotor experience.

Implementation and Experimental Setup (IPPEXP)

The implementation and experimental setup are as for SPPEXP. In addition the

robot executes a continuous reactive behaviour to follow the motion of a ball with

its head. The algorithm is simple, making appropriate incremental adjustments

to the neck, headTilt and headPan motors (see Table A.1), such that the position

of the ball is brought closer to the centre. In this experiment, the horizon, binning

and experience creation granularity are set as follows: h = 20, Q = 10 and G = 1.

The full interaction sequence lasted 965 timesteps (∼ 84 seconds) constituting

945 experiences of horizon length 20. The movements of the ball consisted of a

number of horizontal and vertical movements, and a number of clockwise circles;
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see Table 5.3. Path prediction in this experiment operates in the same way as for

SPPEXP, in that the predicted path is that traced by experiences subsequent to

the most “similar” (i.e. closest in terms of distance) previous experience. However,

in these results I focus on measuring how well the path traced during the current

experience matches the path traced during the selected nearest experience, as this

is a good indicator of how accurate the predicted path might be.

Figure 5.9: Key to Ball Path Diagrams. The diagram shows the parts of the ball
path diagrams used to visually analyse the traces of the ball in a neck-centred co-
ordinate system derived from motor positions. This serves as a key to Figures 5.12
and 5.13.

Visualizing Ball Path: The robot follows the motion of the ball with its head,

so it is not possible to directly plot the path of the ball in terms of the camera

images. Instead, it is possible to plot the direction in which the head is pointed

estimated from three motors contributing to head motion. The path is plotted in

two dimensions with the coordinates given by:

(x, y) = (W × headPan, H × (headT ilt + neck)/2)
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where W and H are the image width and height, and headPan, headT ilt and

neck are the motor values at any instant normalized into the range (0, 1). See the

explanatory diagram of Figure 5.9. Note that the plots are created for analysis

of the experiments, and this abstraction of the sensorimotor flow is not available

to the robot. Instead it allows an external observer to gain insight into what

the robot ‘expects’ will happen in an interval of the near future based on its

own previous experiences, and how accurate these expectations are (again to an

external observer).

Error Measurements: Two different measurements of path error were used.

The first measured the sum of the Euclidean distance between each corresponding

point of the paths. The second calculated a vector direction for each path and

returned the angular difference in radians between the vectors as the error.
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Figure 5.10: Euclidean Distance (Error) Between Current and Nearest Experience
Path Traces. Graph shows the difference (error) between the path of the ball
during the current experience and the path during the closest previous experience.
The top part of the graph shows the behaviour (See Table 5.3). The error in this
case is the sum of the Euclidean distance between corresponding points. Temporal
horizon h = 20, number of bins Q = 5.
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Figure 5.11: Angle error and its running average (over the last 40 timesteps)
between the current and nearest previous experience path traces. The graph (red
solid line) shows the error reducing, on average, within a given behaviour sequence.
The top part of the graph shows the behaviour (See Table 5.3). The angle error
(green dashed line) is the difference in radians between the vector directions of
each path. For errors> π/2, π− error is shown (reflection about π/2). Temporal
horizon h = 20, number of bins Q = 5.

Results and Analysis (IPPEXP)

Figures 5.10 and 5.11 show, using different error estimations, the error between

the current path and the path corresponding to the nearest previous experience

in terms of information distance. Figures 5.12 and 5.13 show traces of the paths

from experiences in regions where horizontal and vertical movements were taking

place. As can be seen from the traces, which are selected from regular intervals,

it is often the case that the paths are similar and so the experiences are well

matched. However, the objective measure of error indicates that the actual path

is not exactly the same. This is to be expected as there do not exist any precisely

identical experiences in a real situation.
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TS=120 Error=2.981 TS=140 Error=0.155 TS=160 Error=0.118

TS=290 Error=3.073 TS=310 Error=3.028 TS=330 Error=0.264

TS=470 Error=0.172 TS=490 Error=2.872 TS=510 Error=0.249

Figure 5.12: Head Movement Traces and Matched Path. A selection of path traces
from horizontal head movements. Each diagram shows the path of the ball, as
determined by robot head movements, for both the current experience at that
timestep (dark line, circle end) and for the matched (nearest previous) experience
(red line, square end). Path direction indicated by circle/square at the end of the
path. (See Figure 5.9). The closeness of the paths is measured by determining
the vector error between the path directions. Images are from evenly spaced
timesteps from three separate horizontal movement regions. h = 20, Q = 5, path
length= 20.

The error graphs also show that the opposite direction path is regularly matched
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TS=200 Error=0.976 TS=220 Error=2.159 TS=240 Error=0.554 TS=260 Error=0.079

TS=380 Error=2.357 TS=400 Error=0.025 TS=420 Error=0.031 TS=440 Error=3.095

TS=550 Error=0.039 TS=570 Error=0.013 TS=590 Error=0.051

Figure 5.13: Head Movement Traces and Matched Path. A selection of path
traces from vertical head movements. Each diagram shows the path of the ball,
as determined by robot head movements, for both the current experience at that
timestep (dark line, circle end) and for the matched (nearest previous) experience
(red line, square end). Path direction indicated by circle/square at the end of the
path. (See Figure5.9). The closeness of the paths is measured by determining the
vector error between the path directions. Images are from evenly spaced timesteps
from three separate vertical movement regions. h = 20, Q = 5, path length= 20.

as was the case in the first experiment (SPPEXP). As the sensors are not biased

left or right, and the experience distance measure is the sum of information dis-

tances between variables, then a symmetric error such as this is likely. Indeed,

such experiences are informationally very close to their ‘opposites’. Out-of-phase

periodic variables can have a small or zero6 information distance.

6Variables that have a zero information distance are recoding equivalent and are not neces-
sarily identical (see Crutchfield, 1990).
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Table 5.4: Improvement of Experience Matching Over Time

Type Iteration Number Total Percentage

< π/4 Number < π/4

HORIZ 1 0 41 0.0%

HORIZ 2 27 73 37.0%

HORIZ 3 25 75 33.3%

HORIZ 4 27 72 37.5%

VERT 1 0 34 0.0%

VERT 2 8 51 15.7%

VERT 3 15 30 50.0%

VERT 4 42 61 68.9%

VERT 5 32 52 61.5%

VERT 6 27 49 55.1%

CIRCLE 1 9 65 13.8%

CIRCLE 2 13 54 24.1%

CIRCLE 3 27 66 40.9%

CIRCLE 4 31 63 49.2%

In terms of angle, the error is less than π/4 (i.e. closer to parallel than orthog-

onal) 55.13% of the time and is greater than 3π/2 (i.e. closer to opposite than

orthogonal) 29.21% of the time. This indicates that the path and therefore the

experience is generally well matched, however due to the nature of the measure,

experiences from the opposite phase in a cycle are often selected. It is interesting

to note the opposite phase corresponds to time-reversed motion, and that the

present metric relies on probability distributions constructed from sensorimotor

flow and that these distributions do not encode the directionality of time.

Examining the progression of the error over time in these data, one would

expect to see an improvement as the same kinds of behavioural interaction are

re-experienced. How the matching of experiences improves over time is examined,
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referring to Table 5.4. During the horizontal motions after one full cycle, 37% of

experiences can be matched to similar ones in the history. Vertical motions show

that the success rate peaks at 68.9% with the 4th presentation, with a slight drop

in success rate thereafter. The Circle movements also show marked improvement

as experience grows. The initial 13.8% success rate of the very first circular motion

reflects the fact that parts of the circular motion are being matched with previous

horizontal and vertical experiences, with some limited success, even before any

such motions had been observed.

The reason for the slight drop in rate of success for vertical motions as more

experiences are added is not immediately clear and would be an important area

to explore in future work. However, it is likely that a combination of factors

contributed to the fall in success rate seen in the vertical motion sequences. Firstly,

the repeatability of paths generated by human motion probably deteriorated over

time so that later motions became less and less like the earlier motions. Secondly,

a situation where there are a only a few experiences that are similar to the target

experience would naturally result in a higher matching success than where there

are many examples of varying quality of similarity. Thus, as more examples of

varying quality are presented, it is likely that a poorer match (in terms of the

objective angle error measure) may be chosen more often.

5.5 Chapter Summary

This chapter has described a mathematically rigorous formulation of temporally

extended robotic sensorimotor experience and measures between experiences over

time. The experience metric in particular is important for describing the changing

nature of the robot’s interaction with its environment over time. Having a rigorous

and consistent measure between experiences is regarded as a step towards being

able to directly drive development and learning in the robot by accumulation and

organization of experience.

The construction and use of experience metrics for the comparison of robot
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behaviour is novel and demonstrates achievement of a degree of temporally ex-

tended prospection by an embodied agent, based on its raw sensorimotor experi-

ence. The experience metric was first described in (Mirza, Nehaniv, Dautenhahn

and te Boekhorst, 2005b) and with mathematical discussion of the metric prop-

erties along with some alternative metrics on experience in (Nehaniv, 2005). As

mentioned in Section 5.2 and 2.5, an operational formulation of experience (but

not of the metric) was previously described in (Oates et al., 2000). A measure

of distance between experiences was described there that used the area between

time-warped experience curves. The fact that independent research groups both

developed essentially the same notion operationalizing an agent-centred definition

of experience suggests that this definition is a natural one.

Experiments were described that use fairly large numbers of robotic sensors to

describe robotic experience such that a simple sort of prediction can be achieved

by the matching of present experience with experiences in the history and extrap-

olating forward from the matched past experience. It was found that proximity

in terms of experience metric corresponds well with an external observer’s notion

of similarity of experience.

The sensorimotor variables were treated by the autonomous robot in an unin-

terpreted “agnostic” manner, that is, no sensor is regarded as being different from

any another or special in any way, in terms of finding close experiences. This per-

formance was achieved despite many of the sensors not providing any seemingly

useful information about the current experience as could be seen in the case of

the first, static, ball path prediction experiment (Section 5.4.1). In the second,

interactive ball path prediction experiment (Section 5.4.2), proprioceptive motor

experience was important in this experiment in determining the experience and

matching it to the appropriate past experience.

The capability of the experience metric to find suitable matching experiences

was found to increase as more examples of a particular type of behaviour were

presented. Table 5.4 shows that this reduces somewhat for the VERTICAL motion

as more examples were presented (although this may be due to the quality of
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repeated motions presented as discussed). Further experiments that both control

the generated ball motion and have more examples of each motion type may be

necessary to investigate this effect.

Another important aspect of the experience metric is that it appears to confuse

a behaviour with its ‘opposite’ (phase-shifted or time-reversed counterparts), as

these are informationally nearly identical. This can be seen clearly in both the

simple and interactive ball-path prediction experiments as opposite direction of

path.
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Chapter 6

Construction of Metric Spaces

and Emergent Classes of

Experience

6.1 Introduction

In this chapter I consider the practical aspects of constructing a metric space of

experience on-line for an embodied agent. These are important as, for a metric

space to be useful, it should be able to be constructed and used as the experiences

arrive, and be able to continue working for the developmental lifetime of the

agent. The goal, therefore, is that computation characteristics should allow for

“real-time” operation within a finitely bounded storage. Achieving this is a great

challenge as there is an enormous amount of data arriving at the sensory surfaces

of any embodied agent, however, in pursuing this challenge there are also great

advantages to be gained. Of primary importance is the possibility of grounded

category formation, which can lead to important developmental advances for the

agent.

I begin by discussing the scalability over time of the interaction history archi-

tecture in terms of computation time and memory requirement. Specifically the

time to place a new experience in a metric space (for the purpose of returning
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a list of nearest neighbours) is investigated. Secondly I examine the storage of

the metric space of experiences, leading onto the requirement for “forgetting” and

“merging” of experiences being an integral part of an experience space. Of course

as experiences are merged, so it becomes possible to consider emergent categories

as groups of experiences.

6.2 Incremental Construction of Metric Spaces

of Experience

As the agent acts in the environment and experiences are collected using esti-

mation of entropies from a time window of binned sensor readings, they can be

“placed” in a metric space by finding all distances between the new experiences

and all experiences already in the space. This is incremental construction as

the experience distances are not all calculated at the same time, but are only

calculated as required upon arrival of a new experience. By far the most compu-

tationally expensive task in this process is the calculation of experience distance

between any two experiences. Clearly, as each time a new experience is placed,

there is one more experience to compare than the previous time, then the time to

place an experience increases linearly with the number of experiences already in

the space.

Given that new experiences arrive regularly, it is inevitable that as the number

of experiences in the space grows it will not be possible to place an experience

in the metric space before another one is available for processing. Further, given

that the time to make a single comparison is constant, the only way to reduce

computation time is to reduce the number of comparisons. This can be done

either by reducing the number of items to compare (see Section 6.3) or by not

explicitly computing all distances (see Section 6.2.1).
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6.2.1 Reducing Comparisons

One way to reduce required comparisons is to use the distances between experi-

ences in the space to infer distances to any new experience. However, as the metric

space of experiences is a non-euclidean space, then this becomes more difficult.

Note, however, that knowing the distance to all other experiences is not nec-

essary for the correct operation of the interaction history architecture. It is only

necessary to know the nearest neighbours; i.e. the nearest N experiences, or all

experiences within a “ball” of radius r.

Finding Nearest Neighbours

Say one is interested in finding all nearest neighbours of an experience Enew within

a “ball” of radius r, then the triangle inequality can be employed to reduce the

number of distances that need to be measured. Specifically:

Theorem 6.1 Given an experience Ek that is distance d(Enew, Ek) ≤ r from

Enew, then any neighbours of Ek that are further away than 2r are not within

distance r of Enew.

Proof 6.1 Consider 2 experiences Y, Z near X; near is defined to mean within

distance r, thus: d(X, Y ) ≤ r and d(X, Z) ≤ r. Then, by the triangle inequality

(d(Y, Z) ≤ d(X, Y ) + d(X, Z)), d(Y, Z) ≤ 2r. Therefore, if any 2 experiences

are further apart than 2r, then they cannot both be within radius r of any one

particular experience.

This fact can be used discard experiences from consideration when finding

nearest neighbours within a specified radius. Of course, this requires first finding

an experience with radius r of the new experience. One approach to this problem

is to simply randomly sample the experience space until one is found. Other

strategies exist, for example: using the continuous nature of the environment to

start the search for near experiences (in terms of information distance) with those

experiences near in terms of time.
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Algorithm 6.1: B2R NN: Populate Metric Space Distances for Nearest
Neighbours

Input: r, radius
Input: Enew, new experience
Output: newDistances, empty list

toTestList⇐ all experiences in metric space
while toTestList is not empty do

remove a random experience from toTestList, assign to EK

calculate d(Enew, Ek), add to newDistances
if D ≤ R then

remove all experiences further than 2r from Ek in toTestList
end

end

An algorithm to find the nearest neighbours of a new experience from a metric

space of experiences is given in Algorithm 6.1 which guarantees that all experiences

within r of the new experience Ek will be in the list newDistances. There may

also be some other experiences not with r in that list which will have been checked

as a consequence of the random sampling.

An important issue is that any strategy that does not fully populate all dis-

tances in a metric space is potentially degenerative. That is, when another expe-

rience arrives, it may not be possible to make the same guarantees as the existing

metric space is not fully populated. In practical use however, the algorithm given

should still find all neighbours as it excludes only experiences which clearly do

not fall within radius r. The result instead is that potentially more comparisons

will have to be made. This however in turn results in a better populated space.

A question remains: by how much this might reduce the space of experience to

be searched? The answer is largely dependant on r (as shown in the tests below,

see Section 6.2.1) and on the nature of the space. At one extreme, if experiences

are clustered tightly together with no experience further than 2r from any other,

then all experiences must be searched. Due to the nature of the algorithm, the

computation time would actually be greater than if all experiences were checked

in turn. At the other extreme, if the radius was smaller than any distance between

two experiences, then once again all experiences would have to be checked because
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no near neighbour would be found.

Happily, the situation is likely to be somewhere between the two. If the ex-

periences are clustered around many centres further apart than 2r, or are evenly

spaced with the minimum distance much less than r but the maximum distance

much greater than 2r, then it is likely that a near experience will be found fairly

quickly and consequently, many experiences will be discarded, reducing the com-

putation time significantly.

Finding a suitable radius r

With the strategy given above, an important question is: what value should r

take? This clearly depends on the nature of the space and how many nearest

neighbours are needed. (The latter quantity is important in the choice of next

action within the interaction history architecture action selection presented in

Section 7.) Thus, r is likely to change as the robot interacts in the environment

and so should be adaptive.

A strategy to adapt r suitably to the current metric space is to instead take

K, the number of nearest neighbours desired, as a reference point. Starting with

r at an initial value, for every new experience, find all neighbours within radius

r. If this number is greater than K, adjust r downwards and visa-versa.

Test of B2R NN algorithm in artificial and real metric spaces

To quantify the computational saving that can be achieved by the B2R NN algo-

rithm, two tests were conducted. Firstly, an artificial euclidean metric space with

evenly spaced random points was used to investigate the relationship between the

density of the points in the space, N , and the radius, r. Secondly, a real metric

space of experience taken from an Aibo interacting with a human partner was

used to investigate the effect of varying the radius, r.

In figure 6.2 the results from the artificial space are shown. The metric space

was 3-dimensional euclidean and contained randomly placed points. The maxi-

mum possible distance in the space was 17.32 (no units), with an observed average
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Figure 6.1: Graphic showing relationship between r and N in determining the
number of calculations made by the B2R NN algorithm in an artificial metric space.

distance between any 2 points of approx. 7.2 and a minimum distance to any

neighbour between 2.3 and 0.7 depending on the number of points.

The results show that when the radius r is relatively small (in this case r ≤ 1.0)

then there is no or very little reduction in the number of calculations required to

find the neighbours in a ball of radius r. As the radius increases, less than 20% of

the calculations are needed, However, this saving of 80% is lessened as the radius

grows until it eventually comes back down to 0. While these observations are true

to some extent for any number of points, the certainty of gaining such a speed-up

is increased with the density of points in the space.

Figure 6.3 shows the results when the algorithm was tested in a metric space

that resulted from an Aibo interacting with a human partner. The Aibo variously

looked at the partner’s face, hid its face with it’s forearm (peekaboo) and looked

at the pink ball. The space had a total of 372 experiences in it. The distances for

the 373rd experience were pre-calculated for the purposes of the test, and used as

a look-up table in the tests of the B2R NN algorithm.
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Figure 6.2: Graphs showing relationship between r and N in determining the
number of calculations made by the B2R NN algorithm in an artificial metric space
for selected N . Each point is the mean of 20 runs, error bars show 1 Std. Dev.

A similar shaped curve is again observed indicating that, with a good choice

of r, significant saving in number of calculations can be achieved.

6.3 Storage Requirements: Merging, Forgetting

and Emergent Classes of Experience

Another strategy for reducing the number of computations of distance between

experiences is to reduce the number of experiences in the space in the first place.

The memory storage required to maintain a experience space consists of: the

storage of the experience1, plus that of the metric space itself (i.e. distances), plus

1In storing an experience, all that is required are the binned values of the sensors, not the
actual values of the sensors. In addition meta-information will be stored with the experience
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Figure 6.3: Graph showing effect of r in determining the number of calculations
made by the B2R NN algorithm in a real metric space taken from an Aibo inter-
acting with a human partner. Each point is the mean of 20 runs, error bars show
1 Std. Dev.

constant factors. The storage of fixed length experiences grows linearly with the

number of experiences. The non-constant storage of the distances increases faster.

At any time it is proportional to P N
2 , the number of permutations of 2 items from

N items, where N is the number of experiences. In terms of complexity this is

order O (n log n).

Thus, it is not possible to store all experiences and all distances indefinitely for

a metric space that is growing. At some point it will exceed the storage available.

Also, many calculations in the space are dependant on the number of experiences

and so computational complexity is also affected. Therefore, two strategies are

examined that may reduce the number of experiences within a metric space as it

e.g. next action, quality, weight etc.See Section 7.2.1.
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is growing: forgetting and merging. The later strategy is particularly important

as it also leads to the emergence of grounded categories.

6.3.1 Forgetting

In terms of a metric space of experiences, forgetting corresponds to removing indi-

vidual experiences from the space, including all meta-information and distances to

other experiences. This is a useful way to reduce both computational complexity

in maintaining the space as well as reducing storage requirement.

The question is: how should experiences be chosen for removal? Of course, it

could be random, however, it seems to make more sense to base removal on some

quality of the experience itself. For instance, time. i.e. how often the experience

has been “accessed” or “used” or how long ago it was last “accessed”. This

would correspond to natural, intuitive ideas of forgetting. An alternative measure

could be the quality of the experience in terms of reward signals. In this scheme,

experiences that were neither “very good” nor “very bad” might be candidates

for forgetting. In terms of the metric space of experiences, another measure might

be how isolated an experience is from others.

6.3.2 Merging Experiences in a Growing Metric Space

This strategy is based on the idea that if two experiences are very similar, then

they could potentially be treated as the same experience for the purposes of com-

parison with other experiences. Intuitively, this is what happens as we experience

the world. As we engage in an activity that we do many times, such as drinking

a mug of tea at our desk, we do not notice that it is similar to any one particular

time we engaged in that activity in the past, only that it is similar to a generalized

activity: i.e. past experiences have been merged into a single experience (for the

purpose of comparison at least).

The general strategy is to replace two experiences in the space by a single

experience that has features taken from one or other of the experiences or both.
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Individual strategies are distinguished by how the two experiences are chosen, e.g.

by using a threshold T merge, and by what features of the experiences are retained or

discarded. Two strategies are discussed: calculation of an intermediate experience;

and, merging by deletion, where one of the experiences is deleted.

Calculating an Intermediate Experience

Merging two experiences Ea and Eb, and replacing them with one that is some-

way between the two, can be considered as a problem of finding an intermediate

experience Eab, such that: d(Eab, Ea) ≤ d(Ea, Eb) ∧ d(Eab, Eb) ≤ d(Ea, Eb).

Ideally the intermediate experience would be half-way between the two, i.e. d(Eab, Ea) =

d(Eab, Eb). This calculation is not mathematically straightforward due to the non-

euclidean nature of the space and may take quite long to compute. One possibility

is to find a combination of binned sensor readings that is approximately half the

hamming distance between the two sets of values, however, this possibility is not

explored further here.

Alternatively, one or other of the distances d(Eab, Ea) or d(Eab, Eb) can be

zero, which amounts to keeping one of the experiences and removing the other.

Clearly, however, the merged experience is closer to one experience than the other.

This becomes less of a problem as d(Ea, Eb) approaches zero.

Merging by deletion

Due to the difficulty of mathematically merging two experiences an alternative

strategy is to remove one of the experiences entirely. This may not be satisfactory

as that experience probably had important information that may be useful. The

fact of its existence is one such, i.e. the fact that it occurred and was similar to

other experiences gives a sense of familiarity and may be important in choosing

a list of N nearest neighbours. Another important piece of information is the

subsequent action that was taken after that particular experience, which may

or may not have been different from the other experience. Finally, the distance

information may also be important.
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A modified strategy would be to remove one of experiences from the space, but

retain other information such as number of merged experiences and subsequent

actions with the remaining experience. This is in fact the preferred strategy in the

Interaction History Architecture. See Section 7.2.5 and Algorithm 7.1 for further

details.

An obvious choice for merging criteria is to merge any two experiences closer

than a threshold T merge. A fixed threshold can be used but that raises the prob-

lem of finding a suitable value. Alternatively it could be an adaptive threshold

responding to some other criteria such as maximum number of experiences in the

space. For the special case T merge = 0 no information is lost in the merge of the

sensorimotor experiences themselves.

With reference to the Interaction History Architecture (introduced in the next

chapter) where the experiences in the metric space are augmented with other

information such as reward feedback from environmental interaction, then an

alternative way of choosing experiences to merge would be to use those other

features2 of the experiences as merging criteria. Of course, these other features

could be combined with the distance threshold to refine the choice.

Distances to a merged experience are estimated by measuring the experience

distance to the remaining experience in the merged pair.

Retaining Distances

An alternative to the complete removal of an experience from the metric space,

is to delete only the sensorimotor experience data and retain only the existing

distance information. This will result in a reduction of memory requirement while

retaining important structural information about the metric space. The space

would then contain parent experiences about which everthing is known, and child

experiences having only distance and meta information. Any new experiences

would only be able to be directly compared to parents and distances to child

2Candidates are next action and assigned quality (See Section 7.2.1). Interestingly, merging
according to quality provides a powerful method of adapting the experience space to the changing
feedback reward from the environment for any given emergent category of experience.
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experiences only inferred.

This strategy has the advantage that only sensorimotor information is lost,

and that a natural hierarchy within the metric space can easily be built. The

disadvantage is in that the distances from child experiences cannot be known,

and that the complexity and storage requirements are not reduced significantly.

6.3.3 Grounded Categories

A direct consequence of merging of experiences in the metric space is that natural

categories are formed along with “representative” experiences of those emergent

categories. The merged experiences can be thought of as a grounded representa-

tion of a class of experiences. Importantly, as experiences are directly associated

with action, then the category is grounded not only in the sensory domain - which

would leave it as an abstract representation without meaning - but also in how

the agent responds to that class of experiences, closing the loop and grounding

meaning too.

However, there are limitations to the kinds of categories formed by the type of

merging discussed here. Firstly, categories cannot be split after they are formed,

and they can only become larger. This leads to less and less resolution between

experiences as development proceeds, whereas one might expect general categories

to be refined with further experience. Secondly the resulting experience after a

merge may not be representative of all the experiences that have been merged.

This is also affected by the order of merging. If new experiences are always merged

into old then experiences will cluster within a radius of T merge, and so the “true”

cluster centre can never be very far from the merged experience. However, if the

old experiences are merged into new ones, then the cluster centre can be “dragged”

arbitrarily far from the “true” cluster centre.

An approach to resolve this problem would be to continually calculate a true

cluster centre and retain the closest experience to that as the new merged experi-

ence. Splitting of clusters, would however require the retention of more experiences

within a single cluster. One implementation would be to delay merging. That is,
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to create cluster structure, for instance in a tree, and only merge (or split) de-

pending on some further criteria of time, or depth of tree. A heuristic approach to

this may be possible using retained distances and a parent/child experience tree

structure discussed previously.

In (Weng et al., 1999), hierarchies of “brain states” are built automatically

using a “classification and regression tree” that combines dimension reduction

using principal components analysis and linear discriminant analysis. Merging is

done on a group of neighbourhood states in the tree (i.e. not a pair), although

the authors do not address the issue of splitting categories after they are merged.

6.4 Chapter Summary

An experience space that is manageable in terms of the resources available for

computation is important in any practical implementation. Therefore this chapter

explores techniques that can both reduce computation time to find the nearest

neighbours of an experience in a metric space of experiences, and reduce the

storage space required to hold a metric space. The first technique presented makes

use of the metric nature of the space to reduce the number of calculations needed

when searching for neighbours within a given distance of a given experience. The

next approach uses both deletion of experiences in the space (forgetting) as well

as merging of experiences that are a short distance apart. Merging and forgetting

not only reduce storage space and computation time, but also provide a method

whereby classes of experience, i.e. categories, may emerge through the natural

relationships between experiences resulting from embodied interaction. Moreover,

as experiences are merged and forgotten, the metric space will be continually

changing and so be able to adapt and change in response to the new experiences

of the agent.

Merging and forgetting are used in these ways in the full architecture for robot

ontogeny based on experiential interaction histories described in the next chapter

(7), and in the implementation in Chapter 9.
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Interaction History Architecture

7.1 Introduction

Referring back to the definition of an Interaction History given in Section 2.2,

this chapter proceeds by addressing the challenge of “shaping current and future

action” based on the history of interaction as embodied in the metric space of

experience. Moreover, the challenge is not to merely control action, but also

provide a framework upon which a robot can build its ontogenetic development

through interaction with its environment.

This chapter builds on the properties of the metric space of experience estab-

lished in the preceding chapters, and adds two aspects: an action or behaviour

selection mechanism and a method of combining the robot experiences with infor-

mation from the environment that enables the robot to judge success or failure of

its actions. The Interaction History Architecture that is presented is then tested

in a simple iterated scenario using a simulated wheeled robot (“The Road-Sign

Problem”) that is used to asses the ability of the architecture to select appropriate

actions based on its past experience.
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Figure 7.1: A Schematic of the Main Components of the Interaction History
Architecture

7.2 An Interaction History Architecture

The Interaction History Architecture is shown schematically in Figure 7.2. The

approach is as follows:

1. to continually gather sensorimotor data and find “suitable” episodes of sen-

sorimotor experience in the history near (in terms of the experience metric)

to the current episode;

2. depending on the course of subsequent experience, to choose from among

actions that were executed when these episodes were previously encountered;

3. where no suitable experiences are found, to choose random actions.

There are two key aspects of this architecture. The first is the metric space of

experience whereby new experiences appear as points in a growing and changing

metric space. In this architecture the metric space is enhanced with quality infor-

mation from the environment, internal drives or affective state. Each experience
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is also associated with actions executed during the experience. The second is the

action selection system. This “closes the perception-action loop” and also closes

an internal loop feeding back and modifying the experience space. The quality

associated with each experience combined with proximity in the metric space is

used to select experiences from the history and select actions associated with those

experiences.

7.2.1 Metric Spaces of Experience

The metric space is constructed continuously as the robot experiences its environ-

ment. A new experience is created every Granularity G timesteps, and consists

of Horizon h timesteps counting back from the current timestep. Where h > G

the experiences will overlap. Each sensor reading is quantized into Q evenly-sized

bins. Each new quantized experience is compared to other experiences in order

to determine its neighbours. This process, if all experiences are compared, re-

sults in a distance matrix between experiences which defines the structure of the

metric space as it is experienced by an individual robot. The mechanisms for con-

structing the nearest neighbour list are examined in Chapter 6. A quality value is

assigned to the quantized experience, determined by factors such as environmen-

tal reward/punishment, internal drive and affective state. The actual formula for

calculation of quality is specific to the application and goal and can be a deter-

mining factor in the eventual behaviour and course of development, although it

can be fairly general and thus applicable to a wide range of situations. Finally,

the last action executed during the experience is also noted and stored with the

quantized experience.

Thus the metric space of experience in the Interaction History Architecture,

the interaction history space, can be described by the tuple (ǫ, D, q, a), where ǫ

is a collection of quantized “experiences”, D is the a matrix of distances between

elements of ǫ, q is a vector of quality values and a a vector of actions. This

description is extended for “clustered” experiences later in this chapter.
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7.2.2 Action Selection

A simple mechanism is adopted for action selection whereby the robot can execute

one of a number of “atomic” actions (or no action) at any timestep. This is seen

as a tractable first-step, and a more sophisticated action or behaviour generation

capability would allow for more open-ended development.

The actual action selected will either be a random selection of one of the atomic

actions, or will be an action that was previously executed after an experience in the

history that is near to the current episode. An advantage of this approach is that

behaviour can be bootstrapped from early random activity, and later behaviour

built on previous experience.

The process of action selection is as follows:

1. up to K candidate experiences from the experience space within a given

information distance radius1 r0 of the current experience Ecurrent are initially

selected;

2. these K experiences are ranked as E1, . . . , EK according to how close they

are to Ecurrent;

3. then, sequentially, experience Ei is chosen with probability a linear function

of the quality of Ei until either an experience is chosen or the ranked list is

exhausted;

4. if an experience is chosen from the candidate list, then the particular action

that was executed following the chosen experience is then chosen as the

action to be executed next, otherwise a random action is chosen.

The linear mapping from quality to probability ensures that, with small prob-

ability, the robot may still choose a random action as this may potentially help

to discover new, more salient experiences. This has the advantage of emulating

body-babbling, i.e. apparently random body movements that have the (hypothe-

sized) purpose of learning the capabilities of the body in an environment (Meltzoff

1The radius can be fixed in this formulation, but, may instead be adapted on-line.
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and Moore, 1997). Early in development, there are fewer, more widely spread ex-

periences in the space, so random actions would be chosen more often. Later in

development, it is more likely that an the action selected will come from past

experience.

Roulette-Wheel Action Selection

In later implementations (including the T-Maze implementation described in Sec-

tion 7.3), the process was improved to use a roulette-wheel selection from a prob-

ability list. The chance of random action selection is also represented in that

list. The probabilities are calculated using a “gravitational model” where each

experience is represented as a point mass a particular distance from the Ecurrent.

The probability of selecting an experience Ei from E1, . . . , EK is:

pi = Ch

miqi

D(Ecurrent, Ei)
2 (7.1)

where qi is the quality value of Ei, mi is the mass (i.e. how many experiences have

been merged into this experience) and D(Ecurrent, Ei) is the experience distance.

Ch is an optional quantity that is used to adjust for “horizon effect” when con-

sidering experiences of different horizon length together (see Section 7.3.3), and

is given by

Ch =

√
h√

Hmax

(7.2)

The chance of random is added to the list as:

p0 =

∑K

i=1 pi

(rmax/τ)2 (7.3)

where rmax is the radius of the ball that includes the ranked experiences and τ is

a temperature factor, that controls the chance of random action selection.

Then the weighting on the “roulette wheel” is given by:

wi =
pi

∑K

i=0 pi

(7.4)
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7.2.3 Update of Environmental Reward

Each experience in the interaction history space is associated with a quality value

q, see Section 7.2.1. This value has bearing on the selection of the experience, and

in turn on the action-selection process. The quality value is intended to reflect how

useful the experience is in terms of positive or negative environmental feedback,

and is derived directly from the internal reward function or an external reward

measured by the robot’s sensors.

In the simplest case, the immediate (instantaneous) reward received from the

environment is associated with the current experience. An alternative scheme

is for the quality associated with an experience to be dependent not only on

the current reward, but also on the future reward. The future reward for an

experience Et,h for some given horizon hfuture is a function F() on all reward

values received for hfuture timesteps after time t. Of course, this value cannot be

known completely until at least hfuture timesteps have passed, but it is estimated

until that point. Two functions have been used in the implementations in this

thesis. The first, Fmin max(), returns the most proximal maximum or minimum

reward. The second, Fmax simply returns the maximum reward over the horizon.

7.2.4 Feedback Loop

Finally, a feedback process evaluates the result of any action taken in terms of

whether there was an increase in quality after the action was executed, and then

adjusts the quality of the candidate experience, from which the action was derived,

up or down accordingly. By this mechanism, the metric space is effectively altered

from the point of view of the action-selection system. Closing of the perception-

action loop in this way with feedback together with growth of the experiential

metric space, results in the construction of modified behaviour patterns over time.

This can be viewed as a form of ontogenetic development and adaptation, that is,

a process of change in structure and skills through embodied, structurally coupled

interaction.
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7.2.5 Merging and Deletion of Experiences in the Interac-

tion History Space

As discussed in Chapter 6, it is necessary to employ strategies such as merging

and forgetting, if storage and computation requirements are to be controlled. The

merging strategy in the Interaction History Architecture is to merge any two

experiences closer than a threshold Tmerge (see Algorithm 7.1). Tmerge was fixed

for the most part, however alternative strategies were trialled during development

of the algorithm, including adapting the threshold such that the maximum number

of experiences in the space remained constant.

Algorithm 7.1: Algorithm IHA MERGET: Choose and Merge 2 experiences
using a threshold

for Ei
in all experiences do

for Ej
in neighbours of Ei do

if d(Ei, Ej) ≤ Tmerge then
actions(Ei) = actions(Ei) + actions(Ej)
quality(Ei) = (quality(Ei) + quality(Ej)) /2
weight(Ei) = weight(Ei) + weight(Ej)
delete all distances to and from Ej in the metric space
delete Ej

end

end

end

Algorithm 7.1 shows how the meta-information associated with experiences

that are merged are also assimilated. Actions from both merged experiences are

accumulated, resulting in an action probability distribution; the quality values

are averaged; and, a weight value, indicating the number of experiences that have

been merged together, set to the sum of the weights of the merged experiences.

Experiences may also be deleted, that is, forgotten. This serves two particular

purposes in the present architecture. The first is to provide a mechanism where

the interaction history space can be continually modified and so be adaptive to

changes in the environmental interaction. The second, more practically, is to

reduce the number of experiences in the space and so reduce computational com-
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plexity in estimating distances to new experiences inserted into the space (see also

Chapter 6). There are a number of different strategies to decide which experiences

should be forgotten, and the one used here is to forget those experiences which

have lower quality values and thus will have little or no impact on future action

selection. Specifically, experiences older than hfuture with a quality less than or

equal to Tpurge will be deleted.

7.3 Experiment - The Road-Sign Problem (RSP-

EXP)

In this section the capabilities of the Interaction History Architecture are explored

using a simple simulated test-bed - The Road-Sign Problem, which is an extention

of the T-Maze task.

In the classic T-Maze task, an agent (e.g. rat or wheeled robot) is required

to navigate a simple maze with a reward at the end of one arm of the T. Also

known as a delayed response task, this is a popular test-bed for reinforcement

learning as the reward is given at sometime after the decision to turn left or right

at the junction is taken. The Road-Sign problem is an extension of a simple T-

Maze learning environment where an indication of the reward position is given

by an earlier disconnected event. Thus the agent can make use of its experience

in making the decision to turn left or right. This problem provides a benchmark

test-bed for autonomous agents with some kind of short-term memory.

The aim is to find how well the system performs in this simple task, i.e. is it

able to associate the signal and reward over a series of runs through the maze?

Also investigated is the possibility of using multiple metric spaces with different

horizon lengths and find if the system is able to choose actions from experiences

with appropriate horizon length.

This section continues by detailing the implementation and experimental sce-

narios. The following setion presents the results.
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Figure 7.2: The T-Maze task

7.3.1 Implementation and Experimental Setup - (RSP-

EXP)

Player/Stage was chosen to simulate a robot and the maze itself. The control and

interaction history software was written in C++ using the YARP framework for

interprocess communication. The simulation uses a pioneer robot model with a

SICK laser scanner for localization, and a CMU camera with colour blob detection

in the place of vision. See Table A.2.

The robot collects sensorimotor data continually at a rate of approximately 10

frames per second, creating experiences and placing them in a metric space. In

this implementation it is possible for the robot to construct multiple spaces each

of different horizon lengths on-line simultaneously.

The agent is in a “T-Maze” (Figure 7.2) at the bottom end of the T. The basic

task is to travel to the junction and turn either right or left (a single action choice

per iteration). A reward is placed at one arm of the T the choice of which is a

variable of the experiment. While travelling to the junction, the agent encounters

a signal in the form of a light (detected by the CMU blob detector) on either

the left-hand side or the right-hand side. In the simplest version of the task this

faithfully indicates the position of the reward in the T. Of course more complex

relationships between signal and reward can be devised.
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The experimental runs consist of multiple iterations of a maze with different

positions of lights and reward with the robot being placed back at the start with its

history intact after it has reached one or other end of the T. The initial heading is

also slightly randomized to ensure that the routes taken by the robot on different

iterations are not always the same. Details follow:

Reward: The motivational system is a simple reward signal and returns 1 when

the robot reaches the end of the correct arm of the T and 0 at all other times.

Alternative schemes can have negative rewards for reaching the wrong end of the

arm, as well as returning an intermediate value while the robot is traversing the

maze.

In this experiment, reward is updated from all future rewards received over

a horizon hfuture using the Fmin max function to update the reward - see Sec-

tion 7.2.3.

Actions: In order to study the effect of the interaction history in detail the robot

is constrained to make a single action selection decision (turn left or right) at the

junction of the T. In exploratory trials the system was less constrained, but this

led to difficulties interpreting the results so the situation was simplified to have a

single decision point that could be compared across trials. Additonally, the robot

has a basic wall-avoidance reactive capability.

Common History: In order to compare decisions made across all runs of any

particular trial, each run was preceded by an interaction history pre-populated

with experience common to all runs. The common history was gathered during

a single run where the robot was constrained to make the correct decisions and

contained 219 experiences over 4 iterations of the maze, with the reward alternat-

ing between left and right over the 4 scenarios. Figure 7.3 shows the local view

from the experience ending at timestep 18 (E18), which is the timestep at which

the first of the four action decisions takes place. This shows that the nearest

experiences (distance 0.11731 bits) are those around E136 in the 3rd iteration (the

other left turn scenario). The distances to the other two decision points, E77 and

E193 are 0.30491 and 0.31401 bits respectively, and are not as close.
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Figure 7.3: Distances from experience E18 (1st decision point) in common history.
Action decisions are made at E18 (turn left), E77 (turn right), E136 (turn left) and
E193 (turn right) marked by vertical dotted lines.

7.3.2 Experimental Trials

The following experiments were conducted:

1. Action Selection: Each trial consisted of 10 runs. Each run started with the

interaction history space populated with the same starting experiences from

a “common history” (see below). Then the robot completed 2 iterations of

the T-Maze. Thus each trial presents 20 decision opportunities. No random

selection chance was permitted in these trials, all decisions were made on

the history information only.

2. Action Selection with Body-babbling: In this experiment the robot starts

with an interaction history empty of experiences. It then undergoes 100

iterations of the T-maze. In this experiment, the robot uses random actions

to explore the possible outcomes of its actions.

3. Multiple Horizon Lengths: An exploratory trial was carried out using an

interaction history space that included experiences of three different horizon
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Table 7.1: Summary of Results from 5 Trials

Trial Correct (L) Correct (R) Total % Correct Parameters
1 9/10 5/10 14/20 85% h=64 Q=5 Neighbours=20

2 3/10 4/10 7/20 35% h=64 Q=5 Neighbours=20

3 7/10 8/10 15/20 75% h=64 Q=5 Neighbours=4

4 10/10 9/10 19/20 95% h=64 Q=5 Neighbours=2

5 4/10 5/10 9/20 45% h=16 Q=5 Neighbours=2

lengths (16, 64, 128). The architecture selects the experience of shortest

distance from among all three horizons at any point. This result assessed in

terms of which horizons, if any, provided usable history information.

4. Alternative Distance Measures: The common history was constructed for

certain alternative distance measures and compared to that constructed us-

ing the information distance measure.

7.3.3 Results - (RSPEXP)

Experiment 1: Test of Action-Selection Mechanism

The operation of the action-selection system given a known, favourable history was

examined in this series of exploratory trials. Table 7.1 shows the results from five

of the trials. In the first two, the results vary, but in total are not much better than

chance (total correct over trials 1 and 2, 21/40, 52.5%). The reason seems to be

that up to 20 nearest neighbour experiences are chosen for roulette wheel selection.

As there are only two good examples of a similar turn (left or right) in the common

history, then there is a large likelihood that an inappropriate experience, and

therefore incorrect action, is chosen. To illustrate, consider Table 7.2, a list of

selection probabilities from Trial 1 taken from the output of the action-selection

process. A correct decision (action 2) has a probability of 44.80% of being chosen.

However, if only the top two experiences are considered for selection, then a correct

decision would be taken 100% of the time.

Trial 4 shows such a situation where the nearest neighbour list was reduced to
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Table 7.2: Example of roulette wheel choice of experiences and associated actions
ordered by weighted distance.

Exp Hor Weighted % Distance Mass Value Action Freq.
0 1 2 3

136 64 17.421436% 0.173884 1 1.0 1.0
19 64 12.480776% 0.205438 1 1.0 1.0
18 64 9.317441% 0.237768 1 1.0 1.0

194 64 6.884041% 0.276618 1 1.0 1.0
137 64 5.582502% 0.307176 1 1.0 1.0
120 64 5.166194% 0.319313 1 1.0 1.0
178 64 5.056741% 0.322750 1 1.0 1.0
77 64 4.804414% 0.331117 1 1.0 1.0
78 64 4.593748% 0.338624 1 1.0 1.0
3 64 4.492898% 0.342404 1 1.0 1.0

128 64 3.812116% 0.371722 1 1.0 1.0
62 64 3.770775% 0.373755 1 1.0 1.0
61 64 3.516556% 0.387029 1 1.0 1.0

186 64 3.487553% 0.388635 1 1.0 1.0
121 64 3.224787% 0.404158 1 1.0 1.0

2 64 3.222349% 0.404311 1 1.0 1.0
11 64 3.165672% 0.407914 1 1.0 1.0

251 64 00000% 0.374959 1 1.0
244 64 00000% 0.337201 1 1.0
236 64 00000% 0.272928 1 1.0

Columns: Exp: experience number, Hor : horizon length, Weighted % : chance of selection

of experience based on distance, value and weight, Distance: experience distance from current

experience, Mass : number of merged experiences, Value: future expected reward, Action Freq:

a frequency distribution of next actions from this experience. (Actions are 0=none, 1=Forward,

2=Left, 3=Right)

2. In this case, the history selection was correct 95% of the time. In this trial the

horizon length was 64 timesteps which was long enough to include the experience

of the light at the point that the decision was to be made. When the horizon is

too short, as in Trial 5, then the robot again operates no better than chance.

Experiment 2: Action Selection with Body-Babbling

It has been established in the experiments so far that, given a history of experience

where the robot executes the appropriate actions at the correct time, it is possible

to use the interaction history architecture to correctly select actions. However,

it will not always be possible to have such a perfect history on which to scaffold

further learning and development. Consequently, random actions are used here, in

137



Chapter 7 - Interaction History Architecture

an initial exploratory phase, to find appropriate actions and their environmental

effects in given situations.

In this architecture, randomness is used in a number of different ways. Firstly

it is used to select from a given set of experiences (and their associated actions)

based on proximity in the metric space and other factors. Secondly, random

actions can be selected instead of an action associated with one of those expe-

riences. The chance of using random selection in this case is dependent on the

relative proximity of experiences in the neighbourhood of the current experience.

Finally, the relative chance of selecting a random action can be varied as develop-

ment progresses. This can be viewed as a process of balancing exploration (high

randomness) with exploitation (low randomness), and is a process widely used

in machine learning. The process is often referred to as “simulated annealing”

(Kirkpatrick, Gelatt and Vecchi, 1983) whereby an analogy with the process of

working metal using controlled temperature reduction is used. In this architec-

ture, the temperature adjusts the chance of randomness (see Equation 7.3). The

temperature is adaptively modified from a high start, being reduced after high

reward and increased after low reward.

In this experiment, the robot starts with no history, progressively building an

interaction history as repeated instances of the maze are presented. A total of

100 instances are presented, alternating between two left positioned and two right

positioned lights and rewards. Instead of creating regularly spaced experiences,

experiences having an horizon length of h = 100 timesteps are created each time

either the action or reward changes. Merging of “near experiences” takes place

for experiences closer than 0.1bits; this value was chosen as a small number in

relation to the radius of experiences considered to be neighbours (1.0bits) which

itself is small in relation to the potential extent of the metric space (> 10bits).

Experiences with a quality value of 0 (Tpurge ≤ 0) after a future horizon hfuture =

200 timesteps has passed, are deleted (forgotten) as they can no longer affect the

choice of experience and thus action. The two nearest neighbours are presented

for action selection at each decision point, along with a chance of random. The
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temperature coefficient starts at 2.0 and is adaptively adjusted as the rewards

are received, to a minimum value of 0.5 and a maximum of 2.0. These values

for temperature where chosen to provide sufficient randomness (high exploration)

while allowing reasonable exploitation of experience.
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Figure 7.4: Cumulative success rate for 100 cycles of the Road-Sign problem.
History starts empty, and random actions are used to find appropriate actions.
h = 100, Q = 5, merge threshold 0.1, adaptive “temperature” reduction.

The results show that despite two unsuccessful random turns that an overall

success rate of 60% is achieved after 10 cycles, 80% after 20 cycles and 90% after

40. Overall, of 100 cycles, 50 each of Left and Right; 94 were successful, with 45 of

those being Left turns and 49 Right. The results are summarized in Figure 7.4. A

scree plot analysis of the dimensionality of the experiences remaining in the metric

space after the 100 cycles, reveals that they can be adequately represented in three

dimensions, and Figure 7.5 shows a plot of the relative positions of experiences in

the experience space projected into 3 dimensions. The 100 experiences on which

a turning decision were made were examined further. Looking at the local picture

139



Chapter 7 - Interaction History Architecture

0.80.91.01.11.21.31.4

−
2.

1
−

2.
0

−
1.

9
−

1.
8

−
1.

7
−

1.
6

−
1.

5

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Figure 7.5: Experiences projected into 3-dimensions. Clusters shown (colours and
symbols distinguish the clusters) were created using K-means with 4 initial cluster
centres. Data clusters into 3 main groups. See text for discussion.

from two experiences from late cycles, one of each turn type, it can be seen that

near experiences were also turning decision experiences of the same type. The

closest 22 experiences to Exp540 (the last but one Right turn cycle) were of the

same type and within a ball of radius 0.253bits, while the closest 17 experiences

to Exp534 (the last Left turn cycle) were also of the same type and within radius

0.193bits. This is typical of the turning experiences.

Experiment 3: Multiple Horizon Lengths

Following the experiments with a fixed single horizon length for experiences, trials

were carried out using multiple simultaneous metric spaces of different horizon

length experiences. At any action selection point, the system could choose from

similar experiences both within a single space as well as from other spaces. It was

expected that the choice of experience would reflect the ideal horizon length for

the problem at hand. However, instead it was found that the nearest neighbours

were consistently of shorter horizon lengths as there is naturally less variation in
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shorter samples. Thus, when a set of horizons included a horizon length too short

to learn the task, the system tended to choose experiences from that metric space

and so failed to learn the task. We refer to this phenomena as the “horizon effect”.

See Figure 7.6.

In order for this strategy to succeed, it may be necessary to bias the experience

choice to favour longer horizons over shorter ones. This is achieved by introducing

a further term in the selection probabilities in Equation 7.1, Section 7.2.2 that

balances the probabilities of selection of experiences in favour of those from longer

horizons. Further testing of this problem was not carried out though, and is left

as a direction for future research.

Experiment 4: Alternative Distance Measures

As discussed in Chapter 4, it is possible to use alternative distance measures in

place of the information distance. Here, the information distance measure was

compared with two other measures of distance, the Hamming metric and the

Pearson’s Squared Correlation distance in the creation of the metric space. See

table 4.3.

Figures 7.8 and 7.7 show the Hamming and Pearson’s distances from experi-

ence Exp : 18 to all others in the common history as was shown for the information

metric in Figure 7.3. All the measures clearly show most similarity between equiv-

alent experiences (i.e. Exp : 136 the other turn-left experience). They also show

similarity to experiences at the same point in the maze but with the light on the

opposite side of the wall. The Pearson’s and information metric also show marked

similarity between Exp : 18 and certain others in the history, showing that they

both reveal correlations in the experience beyond the obvious.
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Figure 7.6: Experience distances for 3 different horizons (h=16, 64, 128). Horizon
16 (top) is not long enough to include the sensing of the light in the history at
the point of action selection.
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Figure 7.7: Pearson correlation distances (see Figure 7.3 for comparison with
information distance.

Figure 7.8: Hamming distances (see Figure 7.3 for comparison with information
distance.
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7.4 Related Work

7.4.1 Comparison with CCBR

Table 7.3: Continuous Case-Based Reasoning: Comparison to the Interaction
History Architecture.

Feature CCBR IHA

Episodic Memory
Representation

“cases” are associations
(groupings) of sensors read-
ings and control parameters
over a period of time

“experiences” are complete
sets of sensorimotor readings
over a given window of time

Retrieval Best matching “case” to cur-
rent input

K nearest neighbour ex-
periences from history,
probability-based selection
of experience and action

Distance
Measure

Euclidean distance Experience Metric

Action Control Schema parameters associated
with best matching case are
used to modify current be-
haviour

Action following selected expe-
rience is executed

Modification of
Memory

Modify chance of retrieval Merging and deletion of expe-
rience, as well as modification
of chance of retrieval

Exploration none “body-babbling” emulated by
selecting random actions with
some probability. “Tempera-
ture”, and nearest neighbours
modify this chance.

Emergent
Representations

None - cases are modified. Classes of experiences associ-
ated with action emerge as
a result of merging (see Sec-
tion 9.3.4)

Continuous Case-Based Reasoning (CCBR) (Ram and Santamaria, 1997) has

many similarities to the Interaction History Architecture (IHA) presented in this

thesis, as discussed in Section 2.6.1. See table 7.3 for a comparison of the main
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features of the approaches. I believe that IHA has certain advantages over the

CCBR approach. In particular, the metric used in IHA allows for more robust

comparison of sensorimotor details concentrating on the statistics of the partic-

ular time-series, and so better able to recognize regularities in time-series than

a simple Euclidean metric. Also, the metric nature of the space is also able to

recommend a number of increasingly distant matches (neighbours) and is able

to weight their similarity along with a qualitative value from the environmental

feedback to provide, potentially, more appropriate actions. At the same time, in-

novations from the CCBR approach could be incorporated into IHA, such as the

focus on behaviour rather than action, and how the associations between sensor

and action can be tuned.

7.4.2 Road-Sign Problem - Related Work

Much of the recent literature on solutions to the road-sign problem for autonomous

agents are either neural-network based or evolutionary algorithm based. Rylatt

and Czarnecki (2000) describe an Elman-style recurrent neural network solution

using a type of learning called CRBP, Complementary Reinforcement Backprop-

agation Learning. Although in that original paper they do not tackle the whole

problem. Bakker (2002) presents a solution to the problem that outperforms the

Elman-style network, using a recurrent neural network (LSTM) as a feed into

a reinforcement learning system. Thieme and Ziemke (2002) go further, testing

four different neural network architectures, with the highest reliability achieved

by Extended Sequential Cascaded Networks - a high-order recurrent neural net-

work architecture. They showed that a short-term memory can be realized for

delayed response tasks through synaptic plasticity and dynamic modulation of

sensorimotor mapping.

Interestingly, Thieme and Ziemke (2002) also found that a simple feed-forward

neural network could also reactively solve the road-sign problem. This is achieved

by moving towards the light and then simply following the wall till the goal is

reached. The memory of state is in the agent-environment interaction. In a
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similar vein, Bovet and Pfeifer (2005) explore the possibility that a “memory-

less” agent could solve the road-sign problem. Although the agent does not have

a conventional memory, it is not strictly reactive. In their case memory is achieved

through a combination of some unchanging aspect of the environment (a coloured

wall) and plasticity of synaptic weights between reward and the visual modality.

In effect, the visual system has been altered by the interaction with the light and

the subsequent presentation of the environmental stimulus induces the appropriate

motor response.

Kim (2004) takes an alternative approach of evolving a controller based on

Finate State Machines to analyse the role of internal memory. They looked at

the size of the internal memory and states required to learn various forms of the

problem involving one, two or more lights. They also studied the effect of noise

on their model. They found that purely reactive controllers cannot solve the

problem and multi-states were required. The simplest arrangement of a single light

requiring two-states, with more states required as the number of lights increased.

Lin̊aker and Jacobsson (2001) work at a high level, extracting significant events

and clustering them to reduce the number of states down to a handful. They use

a vector quantization network to extract model vectors representing event classes

which in turn forms the input to a simple recurrent neural network which learns

the associations between events and behaviours.

These works show that if the system is “hand-crafted” a memory with only a

few states is all that is needed to solve the problem, and even that is not necessary

if features of the environment can be used effectively. However, the approach taken

in this thesis is not to find the best solution, but to test the interaction history

architecture, as a general system for developmental learning, on one category of

problems.

The seemingly trivial problem (i.e. The Road-Sign Problem) considered here

can be thought of in a wider context. Clearly the “road-sign” itself can be any-

thing that distinguishes one experience from another and potentially informs an

agent what it should do next, and may be far more complex than a light. I be-
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lieve however that an embodied interaction history constructed from the agents

perspective can still be used to successfully direct future actions of agents in these

extended problems.

7.5 Chapter Summary

This chapter introduces the Interaction History Architecture, an architecture

whereby an embodied robotic agent can progressively use a developing history

of interaction with the environment to direct action towards a high expected re-

ward. The central structure in the architecture is the interaction history space

which consists of a metric space of experience enhanced with environmental feed-

back and next action information. The architecture was then used to demonstrate

that a robot was able to successfully develop the capability to complete a simple

learning task that requires memory. This was achieved after the required be-

haviour was experienced a very few times, and contrasts with neural networking

approaches (e.g. Lin̊aker and Jacobsson, 2001; Rylatt and Czarnecki, 2000) which

required many thousands of epochs of learning. The road-sign problem, while

seeming trivial, is important as it clearly demonstrates developing action directly

using the history of sensorimotor experience. The robot used all of its available

sensors in the construction of experience, had no designation of which sensor car-

ried the road-sign signal, and variation in the path of the robot provided noise

and thus variation in every cycle of the maze. Thus, with appropriate extensions

and modifications it may be possible to use an interaction history in other, more

complex situations.

As discussed in Section 2.6.1, this approach to ontogeny and developmental

learning in embodied agents is closely related to Case-Based Reasoning (CBR)

in the continuous domain (Ram and Santamaria, 1997) using matching of expe-

riences (“cases”) from the history combined with environmental reinforcement to

find appropriate action. Section 2.6.2 discusses extensions to the reinforcement

learning paradigm that use historical information to overcome the hidden-state
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problem, and the “instance-based” state identification approach of (McCallum,

1996) is similar in many ways to the approach presented in this chapter. I empha-

size that the use of time-extended episodes of sensorimotor experience (not state)

and the experience metric are important distinguishing factors of the approach in

this thesis. The experience metric allows for more robust comparison of sensori-

motor details concentrating on the statistics of the particular time-series, and so is

better able to recognize regularities in time-series than a simple Euclidean metric.

The metric nature of the space is also able to recommend a number of increasingly

distant matches (neighbours) and is able to weight their similarity along with a

qualitative value from the environmental feedback to provide, potentially, more

appropriate actions. This approach then does not require a Markovian environ-

ment and the agent with extended temporal horizon learns rapidly. Furthermore,

it does not require a static state space to be circumscribed at the outset, but in-

stead uses a growing and changing space of experiences, where potentially in the

course of ontogeny the set and character of sensors, actuators, and embodiment

may change.
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Peekaboo

8.1 Introduction

For robots to develop cognitive abilities appropriate for interaction with human

partners and beyond those oriented around objects and navigation, we argue (see

Section 2.4.4) that the complex requirements of the social environment in general,

and communicative interaction in particular, are necessary in the robot’s ontogeny.

Motivated by this position, this chapter and the next use a simple non-verbal

interaction game as a scenario where a robot can develop communicative skills

foundational in the development of a “social” intelligence.

This chapter describes two experiments that use the experience metric space

in a robot that develops the capability to play a simple interaction game. In the

first, a human partner engages in a “peekaboo” game with a robot, and in the

second the effect of the experience horizon length on the ability of a robot to

develop the capability to play the game is investigated.

The chapter first motivates the choice of the peekaboo game as an interaction

scenario for this study, followed by a description of the experiments and assessment

of results as they relate to the research hypotheses.

149



Chapter 8 - Peekaboo

8.1.1 Peekaboo as a Research Tool

The development of gestural communicative interaction skills is grounded in the

early interaction games that infants play. In the study of the ontogeny of so-

cial interaction, gestural communication and turn-taking in artificial agents, it

is instructive to look at the kinds of interactions that children are capable of in

early development and how they learn to interact appropriately with adults and

other children. A well known interaction game is “peekaboo”, where classically

the caregiver, having established mutual engagement through eye-contact, hides

their face momentarily. On revealing their face again the care-giver cries “peek-

a-boo!”, “peep-bo!”, or something similar. This usually results in pleasure for the

infant which, in early development, may be a result of the relief1 in the return

of something considered lost (i.e. the emotionally satisfying mutual contact), but

later in development also may be a result of the meeting of an expectation (i.e. the

contact returning as expected along with the pleasurable and familiar sound), and

the recognition of the pleasurable game ensuing (Montague and Walker-Andrews,

2001; Veatch, 1998).

Bruner and Sherwood (1975) studied peekaboo from the viewpoint of play

and learning of the rules and structures of games. They also recognize that the

game relies on (and is often contingent with) developing a mastery of object

permanence as well as being able to predict the future location of the reappearing

face. The individual parts of the game can be viewed as gestures in a non-verbal

communicative interaction. The hiding of the face is one such gesture, and the

vocalization, and the showing of pleasure (laughing) are others. In order for the

interaction game to proceed successfully, the gestures must be made by either

party at the times expected by the players, and that absence or mis-timing can

result in the game cycle being broken. Learning of the game is supported by

further gestures such as a rising expectant intonation of the voice during hiding,

as a reassurance or cue of the returning contact. Later in development the roles

1In the context of humour, peekaboo in its early stages is an example of relief laughter. That
is relief that the “caregiver”, who is thought to have disappeared, actually has not (Veatch,
1998).
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of the game can become reversed with the child initiating the hiding, while still

obeying the established rules by, for instance, uttering the vocalization on renewed

contact.

In all this, the rhythm and timing of the interaction are crucial and Bruner and

Sherwood suggest that the peekaboo game and other early interaction games act

as scaffolding on which later forms of interaction, particularly language and the

required intricate timing details, can be built (Pea, 2004, pp 424-5). Discussing

scaffolding, Roy Pea notes that “. . . there are regularly structured situations in

which the range of meanings is actually quite limited and that these simple formats

provide a highly constrained situation in which the child can bootstrap some of the

conventions of turn taking and meaning making with words that are required of a

language user.” (Pea, 2004, pp434-425), emphasizing, therefore, the importance

of early communication games such as peekaboo in the development of language.

In relation to the development of social cognition in infants, “peekaboo” and

other social interaction games, that are characterized by a building and then

releasing of tension in cyclic phases, are important as they are considered to con-

tribute developmentally to infant understanding and practise of social interaction.

Peekaboo provides the caregiver with the scaffolding upon which infants can co-

regulate their emotional expressions with others, build social expectations and

establish primary intersubjectivity (Rochat, Querido and Striano, 1999).

8.1.2 Hypotheses

The robotic experiments of this chapter attempt to address Hypothesis 4 (see

Section 1.1):

Hypothesis 4: A robot can use its own ongoing interaction history to develop

the capability to engage in simple, social, communicative interaction with a

human partner.

The communicative interaction chosen is the peekaboo game. Our assumption,

informed by the argument above, is: given that the requirement for successful
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peekaboo is the ability to follow a spatio-temporally structured set of “rules”,

then peekaboo is an appropriate example of social, communicative interaction.

As well as testing the hypothesis by observation of the robot’s behaviour, we

will also test the following two sub-hypotheses that will provide a quantitative

verification of this hypothesis:

Sub-hypothesis 4a: that using the Interaction History Architecture to engage

in the peekaboo interaction, the robot performs better than when randomly

selecting action

Sub-hypothesis 4b: that the horizon length of experience needs to be of a sim-

ilar scale to that of the interaction.

8.2 Motivational Dynamics

The approach taken in the interaction history architecture is to combine a met-

ric space of experiences with environmental reinforcement (quality) in order that

appropriate past experiences and consequently actions can be selected. The envi-

ronmental feedback can be general, or task-specific.

8.2.1 Biased Sensor

In these experiments a “biased-sensor” is used (Weng et al., 1999), designed to

provide feedback for the peekaboo game. This approach combines motivational

reward feedback with sensing. The game has an inherent temporal structure in

its cycles, and so use is made of a dynamic system of coupled equations based on

a signal originating in the environmental interaction (e.g. perception of a face).

It should be noted that since motivational systems are important, but not a di-

rect focus of this research, a simple system for feedback was selected. However,

other implementations, both more general or more specific, would work well when

combined with this architecture. Indeed a modified system including an audio
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modality is used in Chapter 9. Future work could explore the relation between

motivational systems and interaction history architectures more deeply.

A biased sensor m is required such that following a period of peekaboo-like

interaction, the sensor will have a high value, providing appropriate feedback to

the experience history selection process. Intuitively then, the sensor should both

react to seeing a face and react strongly when a face is returns to view after having

been lost for some time. Also, if a face is seen continuously without being lost

then the resulting signal should not be as high as for the intermittent case nor as

low as for a situation where no face is seen at all. This would encourage peekaboo

while also preferring a situation where there is a face seen.

Design of Biased Sensor

The biased sensor is based on a a physical sensor that can detect a generic hu-

man face in an image. A suitable face detection algorithm is provided by the

Intel OpenCV HAAR Cascades (OpenCV, 2000). The second part of the process

implements a “desire” d to see a face when one is lost.

The interaction of these two variables m and d then forms a dynamical system

that are coupled by equations governing how they change. m is required to reduce

steadily in the absence of a face (“falling motivation”) and increase when one is

seen (“excitement”). The rate of increase should be modulated by the current

value of the “desire” variable d. The desire to see a face conversely decreases

while one is seen (“boredom”) but increases (at a rate dependant on m) when one

is not seen (“increasing desire”).

Implementation of Biased Sensor

The following equations 8.1, 8.2, 8.3 and 8.4 describe how m and d are computed

at every timestep. The equations operate in two distinct situations determined by

a binary meta-sensor f , determined by the face detection algorithm, representing

detection or not of a face in the image (ignoring small gaps of < 50ms).
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∆m = −δ3m if f = 0 “falling motivation” (8.1)

∆m = α2d + β(Cmax −m) if f = 1 “excitement” (8.2)

∆d = α1m− δ1(1−m)d if f = 0 “boredom” (8.3)

∆d = −δ2d if f = 1 “increasing desire” (8.4)

d, m constrained such that d, m ∈ [0, 1]

The labels after the equations indicate which part of the motivation system they

govern.

The equations operate such that in the absence of desire d, when a face is seen

m tends to a constant value set by Cmax. When no face is seen, m decays at rate

δ3. See equation 8.1.

In the experiments described in this chapter m is used as the quality value for

the experiences.

Choice of Parameters

Table 8.1: Parameters of dynamic equations for motivational system.

Parameter Description Valuea

α1 rate of increase of d based on m 0.12

α2 rate of increase of m based on d 0.12

Cmax value that m tends to after long periods
of f = 1

0.25

β rate that m tends to Cmax 0.02

δ1 rate of decay of d when no face is seen 0.05

δ2 rate of decay of d when a face is seen 0.05

δ3 rate of decay of m when no face is seen 0.05

aSee text for how parameter values were chosen.
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The parameters of the dynamics equations are shown in Table 8.1 along with

the values used in the experiments of this chapter. These values were chosen

as reasonable settings that would be expected to give reasonable feedback given

the speed of motion of the robots motors. Note that these are not particularly

tuned values or should they be considered in any way specially selected. Many

other combinations of values would also work well in this and other situations.

However, it should be noted that with these values, the system is receptive to

cyclic peekaboo episodes having a wide range of period lengths.2 Thus, these

parameters do not specify an exact length of time the face should be hidden in

order to produce maximum feedback.

8.3 Interaction Experiments

8.3.1 Experiment 1: Sensorimotor contingencies in the in-

teraction game “Peekaboo”

The purpose of this experiment was to investigate whether an embodied inter-

action history in a robot could be used for the robot to act appropriately in an

interaction that requires following a spatio-temporally structured set of “rules”,

that when followed result in high value according to an internal motivational

system.

Experiment 1: Experimental Setup

The robot stays in a “sitting” position (see Figure 8.1) throughout the experiment

with the forelegs free to move, facing the human interaction partner at a distance

2Actually, this is governed largely by the length of the face-absent part of a repeating peeka-
boo cycle. High values of motivation can be reached with very short periods of face disappearance
of just over 50ms up to absent periods of around 9.5 seconds - which is how long it takes for
both variables to reach zero from a maximum value with the parameter setting used.
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Figure 8.1: Aibo playing “peekaboo” game. Left: Sony Aibo with human partner
Right: Using a static image. (Top: hiding head with front-leg, Bottom: Aibo’s
view, showing face detection.)

of 30-50cm. The actions which the robot can execute are listed in Table 8.2. Each

action takes two seconds or less.

Table 8.2: Possible Aibo Actions in Peekaboo Early Interaction Game

Action Description

0 Do Nothing

1,2 Look right/left

3 Track ball with head

4,5 Re-centre head

6,7 Hide head with left/right foreleg

8,9 Wave with left/right foreleg

10 Wag tail

The human partner takes a passive role with the usual interaction feedback

from the partner provided by an internally generated motivational value in the

robot. The action to “hide head with foreleg” means that the robot covers its

forward facing camera with one or other of its forelegs, before uncovering it again

a short time later.

In this experiment and the next, I define a peekaboo sequence to have occurred
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when the robot having detected a face, through action looses detection and returns

to detect the face again, with this cycle repeating at least once. This is marked,

due to the nature of the motivational dynamics (see Section 8.2), with a high

value for the motivational variable m. The duration of the sequence is measured

from the point of the first loss of face detection through to the last point at which

high motivation can be sustained without a break in the sequence. The average

cycle period is the average duration of a single face loss/re-detection cycle within

a peekaboo sequence.

Figure 8.2: Experiment 1: Time series of motor and sensor values showing en-
gagement of robot in peekaboo game. The bottom part of the graph shows when
the face is seen (black bars), and the two internal variables (“desire” and “moti-
vation”) are shown varying in response to this. The actions executed are shown
at the top of the trace.
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Experiment 1: Results and Analysis

Fifteen exploratory trials were conducted, each lasting between 3 and 5 minutes.

The results tend to show that the robot, after a period of random movement

does start to engage in repeated cycles of behaviour. In 10 of the trials the robot

engages in peekaboo as defined above. If the robot were not to take action to

block its own camera view, it would have long periods of detecting a face which

does not result in a high value for the motivational variable. Instead the robot

generates intermittency in detecting a face by executing actions that turn the

head away (actions 1,2,6 or 7 in Table 8.2). The trace of the internal variables

as well as the actions executed from one short trial where peekaboo behaviour

was observed is shown in Figure 8.2. The sequence consists of 8 repeated cycles

of hiding interspersed with other actions, which importantly include actions to

re-centre the head.

The trials also showed that it is easy for the robot to “get stuck” in areas

of the experience space, especially if all other factors in the environment remain

unchanged. This occurs 4 times in these trials, usually with the robot repeating

an action such as waving.

Results also show that relatively few experiences are selected and thus mod-

ified (with regard to their stored quality value) over time. In some of the trials,

particular experiences were selected multiple times, but this is not always the

case. In the trial of Figure 8.2, 34 choices of action were made, the first 11 were

random actions, and 13 of the remaining 23 actions were selected from a total of

12 previous experiences (the other 10 being randomly selected).

8.3.2 Experiment 2: Investigation of the Effect of Horizon

Length

The purpose of this investigation was initially to evaluate whether the model for

development based on interaction history performed better than random for the

task of playing the game of peekaboo. Secondly, the hypothesis that the horizon
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length of experience would affect the ability to acquire peekaboo behaviour was

tested by trying a number of different horizon lengths in a controlled experiment.

The hypothesis was that the horizon length of experience needs to be of a similar

scale to that of the interaction in question. If it is too short, the experience does

not carry enough information to make useful comparisons to the history. If it is

too long, then the interesting part of the interaction becomes lost in the larger

experience.

Experiment 2: Experimental Setup

Again the robot stays in a “sitting” position throughout the experiments but

facing instead a picture of a face (see Figure 8.1) at a fixed distance of 40cm. A

picture was used rather than an interaction partner in these particular experiments

to allow analysis of the robot’s interactions in isolation when comparing horizon

lengths, and for experimental repeatability.

Six trials of two minute duration each, for horizon lengths of 8, 16, 32, 64

and 128 timesteps (0.96, 1.92, 3.84, 7.68 and 15.36 seconds respectively) were

run. For comparison, a further six trials were run where the choice of action was

random and not based on history. In each of the trials the metric space started

unpopulated (empty).

Experiment 2: Results

Table 8.3 summarizes the results of 36 trial runs, while Figure 8.3 shows, for

selected trials, time-series graphs of the motivational variables coupled with the

actions taken. Peekaboo behaviour, as defined in Section 8.3.1 above, was seen

in 18 of the 36 runs. All but one of the horizon size 8 trials, and four of horizon

size 16, also showed peekaboo behaviour. The sequences were mostly generated

by repetitive actions for long durations.
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Table 8.3: Peekaboo Experiment 2 Results Summary. Duration and average cycle
period in timesteps (ts) of peekaboo sequences for each trial. Where peekaboo is
achieved using a waving instead of hiding action this is indicated as “waving”.

Run Random Horizon 8 Horizon 16 Horizon 32 Horizon 64 Horizon 128

length/period length/period length/period length/period length/period length/period

1 120ts / 40ts 180ts / 45ts 260ts / 40ts none 400ts / 57ts none
waving none

2 220ts / 55ts 150ts / 40ts none none none none
3 220ts / 45ts Fig 6A 140ts / 45ts Fig 6F none 100ts / 40ts

640ts / 42ts 200ts / 50ts none
4 200ts / 60ts 130ts / 45ts Fig 6E none none none

150ts / 70ts 260,240ts / 40ts
5 160ts / 50ts none 140ts / 35ts Fig 6C Fig 6D 120ts / 40ts

waving 540ts / 47ts 220,100 / 37ts
waving 100 / 40ts

6 Fig 6B 250ts / 42ts 120ts / 40ts 840ts / 47ts none none
80,140ts / 40ts waving

Figure 8.3A (horizon size 8) shows the best example of peekaboo behaviour; the

average cycle period is approximately 42 timesteps or 5 seconds, and the sequence

duration is around 640 timesteps (76 seconds). During this sequence the head is

hidden to the left and right and this is interspersed with head-centring actions.

Through all of these episodes, periods of no action serve to alter the timing of the

cyclic periods. Although all of the trials using random action selection showed

some peekaboo behaviour, they were irregular both in terms of cycle period length

and in terms of the actions used to generate the sequence (see Figure 8.3B for

example).

Of the longer horizon length (32, 64 and 128) trials, three showed peekaboo

behaviour using repeated actions (for example Figure 8.3D) . Three also showed

peekaboo using an action (waving) which would not normally cause a break in

face detection. In this particular circumstance, “rocking” of the robot caused a

break in face detection of more than 50ms3 and led to a peekaboo sequence (see

Figure 8.3C for an example.)

Experiment 2: Analysis

All of the trial runs of random action selection resulted in some peekaboo se-

quences, although with mixed, irregular actions. There are probably two main

3Breaks of less than 50ms were ignored by the motivation system. See Section 8.2
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Figure 8.3: ... continued ... C: Emergent behaviour resulting in high m and d.
Horizon size 32. Dynamics generate high values when the face is intermittently
lost when the waving paw returns to hit the hind knee and jogs the robot. D:
Irregular response to regular actions. Horizon size 64. The regular hiding of the
head does not always result in high value, this maybe because the face is not
detected during the period that the head points forward. continued over ...
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Table 8.1 the system would result in high values of the variable m after a few

cycles where the face signal was lost for anywhere between 50ms to 9.5 seconds.

Thus it was very likely that a high motivational value should be reached at some

point with even random actions. Secondly, four out of ten of the actions would

result in some loss of face detection, and even the wave actions caused jogging of

the camera which sometimes caused loss of face detection.

However, to see longer peekaboo sequences with regular actions, some con-

trolled behaviour must be selected and this is only seen in the experience-driven

trials. As a contrary example see Figure 8.3F where no peekaboo-like dynamics

are seen.

In some of the experience-driven trials repeated behaviour was seen that could

have resulted in high motivation if the head had been pointed forward. Experience

alone was not able to re-centre the head. On one occasion however, when the head

was re-centred (randomly) then the experience space allowed a resumption of the

peekaboo sequence (see Figure 8.3E). Thereafter, a recentering action is selected

along with hiding actions.

The best of the cyclic behaviour was seen in the experience-driven trials of

horizon size 8 and 16 timesteps (approx. 1 and 2 seconds respectively). This

result indicates that it may be necessary to have an appropriately sized time-

horizon, and this may be related to the length of single actions (about 2 seconds),

and thus the natural period4 of the cyclic behaviour. A reason why this may be

the case is that, to bootstrap the initial repetitive behaviour, it is necessary to

focus on an experience of one cycle length when there is only a single (possibly

randomly generated) example of the cycle in the agent’s experience.

8.4 Chapter Summary

The interaction history architecture was implemented in an Aibo robot that was

able to execute a fixed set of simple actions. The simple interaction game “peeka-

4Note that the motivational system itself does not dictate this period as any cyclic behaviour
of period up to 19 seconds can result in high values of m.
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boo” was used to evaluate the Interaction History Architecture in a human-robot

interaction scenario. The first exploratory experiment showed that the robot was

able to develop the capability to play the game based on its own experience and an

internal motivational system that was designed to reinforce a correctly executed

peekaboo sequence. Further results indicate that the horizon length of experience

plays an important role in the types of interaction that can be engaged in. The

experimental results support the hypothesis that horizon length needs to be of

a similar scale to that of the interaction in question, and thus should be deter-

mined, at least in part, by the types of interaction that will take place. Random

action-selection regularly resulted in short sequences of peekaboo behaviour, how-

ever, only with the interaction history deriving action based on experience was

the robot able to engage in sustained peekaboo behaviour, albeit only some of the

time. This result supports Sub-hypothesis 4a, and combined with the support for

Sub-hypothesis 4b, offers support for Hypothesis 4.
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Chapter 9

Peekaboo with a Humanoid

Robot

9.1 Introduction

This chapter continues the investigation of the Interaction History Architecture

as the basis for developing appropriate actions in response to the ongoing history

of the robot-environment interactions. The peekaboo game is used again, but

this time with the addition of an audio modality, the use of an upper-body hu-

manoid robot, and environmental reward resulting directly from the human-robot

interaction. The architecture is fully implemented and includes both merging of

and deletion of experiences as the mechanism for modifying the metric space of

experiences.

9.2 Experimental Setup

This section details any additions or variations to the general architecture de-

scribed in Chapter 7, as well as the specific setup parameters of the metric space

creation and control architecture used in these experiments. Reasonable values

were chosen for the various parameters, such as horizon length and merging thresh-

old, based on the results of previous experiments and the nature of the present
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experiment. Furthermore, this section describes the setup for conducting the ex-

periments and retrieving results.

9.2.1 Motivational Dynamics

In this experiment, motivation feedback (reward) is provided through two mech-

anisms: observation of a face, and audio feedback.

Face

As before, a face can be detected in the robot’s camera image and this provides

direct positive reward. Habituation causes this reward to drop-off over time. The

reward for face detection, Rf , constrained to be in the range [0, 1], is a function

of the number of consecutive timesteps a face is seen. First the reward rises

linearly, then holds at 1 for a period before decaying towards 0. Rf is calculated

incrementally as follows:

Rt+1
f = Rt

f +



























1/Trise t < Trise

0 Trise ≤ t < (Trise + Thold)

−Rt
f/Tfall (Trise + Thold) ≤ t

(9.1)

where Trise, Thold and Tfall are paremeters that control the length of the attack,

hold and decay phases. At any time a face is not detected, Rt+1
f = 0.

In this experiment the parameters were set as follows: Trise = 4, Thold = 2 and

Tfall = 20. These parameters were chosen as reasonable values that would give a

quick response to seeing a face (reaching the maximum value in 4 timesteps, or

around 1.2 seconds given a timestep length of 300ms) but would also only slowly

yield habituation (after around 6 seconds).

Sound

New to this experiment, sound is captured from a microphone, and used both as

an additional sensory signal as well as providing further environmental reward.
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The “energy” of the sound over the period of a timestep, εsound, provides a new

sensory input to the robot. It is calculated as the sum of the amplitude of the

sound signal for every sound sample in a period of a timestep, and is normalized to

take values in the range [0,1]. In converting εsound to a reward signal Rs, low level

background noise is attenuated by taking the square of the sound sensor variable

for all values below a threshold Tsound, above which the reward value is set to 1.

Taking the square of the sound signal results in a greater attenuation of smaller

values of the variable than larger ones thus effectively reducing background noise

and emphasizing the reward when the sound is above the threshold.

Rs =











ε2
sound εsound < Tsound

1 εsound ≥ Tsound

(9.2)

Resulting Reward Signal

The final reward signal generated by the robot in response to it’s environmental

interaction is a combination of the sound and face reward signals, as follows:

R = max(1, α(Rf + Rs)) (9.3)

where α, in the range [0,1] attenuates the reward signal. With α = 0.5, R is the

average of the reward signals, and with α = 1, either of the reward signals can

result in a maximum resulting reward. For these experiments, α is set between

these two values at α = 0.75, meaning that neither reward signal on its own can

result in a maximum R, but requires support from the other reward signal.
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9.2.2 Interaction History Architecture Components and

Settings

Metric Space of Experiences

The sensor rate during these experiments resulted in an average timestep length

of approximately 300ms. Experiences were created every G = 2 timesteps, quan-

tizing the sensor data into Q = 5 bins. The horizon h for experiences was either 16

or 20 depending on the run. Quality was assigned to experiences as the maximum

environmental reward received in the subsequent hfuture = 32 or hfuture = 40

timesteps (again, depending on the run).

Experiences older than hfuture timesteps were deleted (forgotten) where they

were associated with a quality value of less than or equal to Tpurge = 0.9. Expe-

riences were merged where both their distance in the metric space of experiences

was less than Tmerge = 0.6bits and they were associated with the same next action.

A combination of the merging and forgetting processes resulted in a manageable

sized metric space for real-time operation.

Action Selection

The closest K = 4 neighbours of the current experience within a radius of

rmax = 2.0bits of Ecurrent were considered in the action-selection process (see

Section 7.2.2).

9.2.3 Experimental Materials and Methods

Robot

The robot used was the upper-body humanoid Kaspar2 robot created at the Uni-

versity of Hertfordshire, see Figure 9.1. The robot has 17 individually controlled

motors: three in the neck controlling head orientation, two controlling the eyes

(the eyeballs are connected and move in unison - there is no vergence control), two

controlling the mouth for facial expression, and five controlling each arm. The
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Figure 9.1: The Kaspar2 robot (University of Hertfordshire) used in the experi-
ments.

motor control boards provide a serial link and the control software was written

in C++. The interaction history architecture was written in C++ as multiple

interacting modules, with the communication layer and abstraction of hardware

control provided by the YARP framework (Metta, Fitzpatrick and Natale, 2006).

Actions

A total of 17 actions were available to the robot, and these can be considered in

3 groups: movement actions, facial expressions and resetting actions. These are

listed in Table 9.1 and selected actions and expressions are shown in Figures 9.2

and 9.3. The types of action that the robot can execute at any time depends on

which action was last executed. This is so that the robot does not attempt to

execute actions that could possibly damage it. The configuration therefore defines
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Table 9.1: Kaspar2 Peekaboo: Actions
Group Number Action Description

Movement
Actions

3 HL Head Left
4 HR Head Right
6 HID Hide Head with Hands
8 RAU Right Arm Up
9 LAU Left Arm Up
12 RAW Wave Right Arm
13 LAW Wave Left Arm
14 TR “Think” Right - raise right arm

to chin and look right
15 TL “Think” Left - raise left arm to

chin

Facial
Expressions

1 Smi Smile
2 Neu Neutral
16 Frn Frown

Resetting
Actions

0 Rst All motors to resting position
7 NA No Action
5 HF Head to forward position
10 RAD Right Arm Down
11 LAD Left Arm Down

the set of next actions possible after any given action and the action selection

process is responsible for ensuring that these conditions are met. For reference,

these action state dependencies are illustrated in Figure E.1 and in Appendix E.

Defining a Peekaboo Sequence

A “peekaboo” sequence is defined to be a sequence of actions beginning with the

robot hiding its face (action 6 - HID), followed by any number of “no-action”

actions (action 7 - NA) and ending with the robot back in the resting position

(action 0 - Rst). Furthermore, for the purposes of evaluating the results of this

experiment the actions should be selected from previous experience rather than

executed randomly.

To measure the relative amounts of peekaboo in any given period of behaviour,

psel(A
HID), the percentage of times the hiding action was selected as compared

to other “movement” actions, was used as a measure and is calculated as fol-
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Figure 9.2: Kaspar2 Sample Actions. (top-left) Normal resting position, (top-
right) Hiding action, (bottom-left) both arms are raised (a combination of two
actions required), (bottom-right) The “think right” (TR) action.

lows. Given N possible actions {A1, A2, . . . AN} and a period of behaviour con-

sisting of K actions executed (selected or random), action An will be executed

F (An) = Frand(A
n) + Fsel(A

n) times, where Frand indicates the frequency of ran-

dom executions and Fsel the frequency of the action being deliberately selected.

Then the percentage of times the Hiding action AHID was selected is given by

Psel(A
HID) = 100

Fsel(A
HID)

K
(9.4)
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Figure 9.3: Kaspar2 Expressions. (left) Smile, (middle) Neutral, (right) Frown.

Note that for the purpose of evaluating “peekaboo”, only actions in the “movement

actions” group were considered (see Table 9.1).

Method

The robot and human partner were positioned facing each other at a distance

of a few feet, with their eye-level at approximately the same height. The robot

control software was started with the interaction history containing no previous

experiences. Interaction then commenced with the robot executing various actions

and the human offering vocal encouragement when it was thought appropriate.

The interaction then continued for approximately two to three minutes.

Three different conditions were tried. Firstly, any hiding action was encour-

aged with a call of “peekaboo” when the robot revealed its face again. The

second condition encouraged an alternative action which also turned the robot’s

head away from the interaction partner. Both “head left” and “think right” were

used for this purpose. The final condition was to offer no vocal encouragement at

all during the interaction.

The experimental hypothesis was that encouraging the hiding action would

result in a higher rate of peekaboo sequences than would be expected from ran-

dom action selection. Furthermore, this should also be the case when other ac-

tions are encouraged instead. Finally, this hypothesis was also tested by the
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no-encouragement condition with the expectation that no action would be se-

lected in preference to any other. This experimental hypothesis is in support of

Hypothesis 4, Section 1.1.

Note that for all these experiments I personally took the role of the human

partner and so was fully aware of the capabilities of the robot and of the software.

Further experiments should also utilize interaction partners that did not have such

prior knowledge.

Success Criteria

To consider a run successful the encouraged behaviour should be executed repeat-

edly for some extended period of the run. Remembering that the system starts

by executing random actions and building-up experience before potentially using

its history to execute the appropriate action repeatedly, then we might reason-

ably consider the run to be successful if the behaviour made up at least a third

to half of overall behaviours executed. Furthermore, a full peekaboo cycle would

be comprised of more than one (usually 2 or 3) selected actions that together

make up the selected behaviour. So from an action perspective if the encouraged

action was selected more than around 10 − 15% of the time, then the run could

be considered successful. However, the percentage of selection alone was not the

sole criteria for judging success. Instead, each trace was examined to see when,

if, and how often repeated behaviour was executed (all traces are reproduce in

Appendix C for reference). Ultimately however, some runs were still considered

borderline - that is they may have failed to satisfy some aspect of the criteria.

The comments in Table 9.2 offer explanations for the decisions in these and other

cases.

9.3 Results

A total of 22 runs were completed. 16 of these for the first condition (encouraging

the Hiding action), 3 for the second condition and 3 for the no-encouragement
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Table 9.2: IHA on KasparII: Experimental Runs Summary

Run Encouragement
Type

Horizon Comment HID
Chosen
%

Resulta

d0032 Peekaboo 16 HID action executed early and
repeated many times

55.17% Success

d0033 Peekaboo 16 HID action executed early and
repeated many times

41.18% Success

d0034 None 16 HID action only twice randomly 0.00% Success

d0035 Encourage HL 16 HL action chosen often. HID
also chosen. HL=36.59%

14.63% Success

d0036 Peekaboo 16 HID chosen often. 42.11% Success

d0037 Peekaboo 16 3 HID actions selected, but
RAW selected more often

13.64% Fail

d0038 Peekaboo 16 No random HID to encourage. 0.0% Fail

d0039 Peekaboo 16 Hid was only action chosen
(once) but run too short

12.50% Borderline

d0041 Peekaboo 16 Mixed actions - some peekaboo 5.49% Fail

d0042 Peekaboo 16 Mixed actions 9.68% Fail

d0043 Peekaboo 16 HID only twice 1.09% Fail

d0044 Peekaboo 16 Peekaboo throughout 18.87% Success

d0045 None 16 Few random HID actions 0.00% Success

d0046 Encourage HL 16 HL action chosen many times,
HID a few times. HL=11.84%

2.63% Success

d0049 Peekaboo 20 Only a few random HID actions 3.26% Fail

d0050 Peekaboo 20 HID chosen often 26.32% Success

d0051 Peekaboo 20 HID chosen often 19.32% Success

d0052 Peekaboo 20 HID not chosen enough for suc-
cess over run. However, regular
peekaboo was begining to occur
at the end.

4.96% Borderline

d0053 Peekaboo 20 HID chosen often 17.46% Success

d0054 Peekaboo 20 HID chosen very much. HID
was 1st action

61.76% Success

d0055 Encourage TR 20 TR (Think-Right) encouraged.
TR=26.00%

0.00% Success

d0056 None 20 Some HID actions chosen 2.53% Success

aSee text Section 9.2.3 for explanation of Success/Fail criteria.
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condition. The results are summarized in Table 9.2 and more details of the re-

sults from the individual experiments are given in Appendix C. In most of the

experimental runs it was fairly straightforward to estimate whether the experi-

ment successfully supported, or clearly failed, the hypothesis that the interaction

history would result in increases in frequency of the encouraged action. However,

in 2 of the runs, this was not possible (“borderline” in Table 9.2). In run d0039,

the hiding action was the only one to be selected (rather than chosen randomly)

however the run was too short1 for successful evaluation. In run d0052, the figures

for the whole run do not indicate success, however, the results are borderline as

the peekaboo behaviour was clearly beginning to occur towards the end of the

run.

Where a result could be determined, 14 out of 20 runs (70%) were successful.

In the following sections representative results from each condition are discussed.

9.3.1 Peekaboo Encouragement Condition

Figure 9.4 shows for the first run (d0032), how the motivational variables (face,

sound and resultant reward) vary with time, along with the actions being executed.

The interaction partner encourages the first “peekaboo” sequence (“hide-face” on

the diagram). Note that a “peekaboo” action is actually a combination of the

action to hide the face (action 6), any number of “no-action” actions (action 7)

and an action to return to the forward resting position (action 0) (for clarity only

the primary action is shown on the trace). This results in a maximal reward

shortly after the hide-face action, and as the interaction partner continues to

reinforce the peekaboo behaviour with vocal reward, this pattern can be seen

repeated throughout the trace.

As the chance of choosing a random action rather than selecting one using the

history gradually declines the early part of the run will be more exploratory (have

more randomly selected actions) whereas towards the end of the run, actions will

be more likely to be deliberately selected using past experience. It can be seen

1In this case the program terminated with a fault before execution was complete.

177



Chapter 9 - Peekaboo with a Humanoid Robot

Figure 9.4: Kaspar2 Results d0032. Example of Peekaboo Encouragement Condi-
tion. The trace shows, against time, the detection of the face and audio encour-
agement as well as the resulting reward. Along the top are shown the actions
executed.

that during the first half of the run various different actions are tried, but during

the second half of the run, the “hide-face” action is chosen regularly.

The timing of the motivational feedback given by the interaction partner to

the robot is important in determining what actions are executed. In Figure 9.5

from run d0050, the encouragement for the hiding action (and subsequent actions

to return the robot to the resting position) is only received after the robot ad-

ditionally turns its head to the side. The result is that when the robot decides

to repeat the hiding action, it generates experiences which are likely to generate

the actions that were executed following the original hiding action, i.e. the robot

hides its face, returns to face the front and immediately turns its head to the side.

This behaviour (of the architecture) is an important part of how not just single

actions are repeated, but instead how sequences of actions and robot behaviour

are replayed, and it is this that encourages a fuller development of capabilities of

the robot. It is important to note also that a specific sequence of actions are not
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Figure 9.5: Kaspar2 Results d0050. Showing a repeated action sequence. A mul-
tiple action sequence is encouraged and repeated here.

learnt, instead it is the continuing generation of experience through the structural

coupling of the embodied agent and its environment that drives this observed

repeated behaviour. This can be clearly seen from Figure 9.5 in that the timing

of the subsequent head-turn following a hiding action is not always the same, and

indeed does not always occur.

9.3.2 Alternative Action Encouragement Condition

To illustrate that the operation of the interaction history is not limited to the

peekaboo behaviour, the interaction partner also encouraged certain alternative

actions rather than hiding. In two cases the “head left” (HL) action was encour-

aged (once also with a different call of “hello!” instead of “peekaboo!”) and in

one case the “think right” (TR) action was encouraged instead. In each of these

cases the predominant action after some time was the encouraged one. Figure 9.6

from run d0035 shows a situation where the head-left action was encouraged, and
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Figure 9.6: Kaspar2 Results d0035. Encouraging and alternative action. The
“head left” (HL) action is encouraged and repeated.

it can be seen that the HL action was chosen in 36.9% of the “movement” actions

whereas the Hiding action, for reference was chosen in 14.63%.

9.3.3 No Encouragement Condition

The final condition where the interaction partner offered no or very little en-

couragement resulted in various kinds of behaviour, none of which reinforced any

particular action over any other, other than “doing nothing”. An example is

shown in Figure 9.7, where no encouragement at all is offered. In this case, some

random actions are chosen but as time goes on, movement actions are not cho-

sen and the robot executed actions that keep it stationary (the resetting actions

in Table 9.1). In this case 152 actions are executed with only 32 actions of the

“movement” type, evenly spread among these actions. The remaining 120 being

mainly “Rst” and “NA”.

In the other cases where no encouragement was offered (runs d0034 and d0056
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Figure 9.7: Kaspar2 Results d0045. No Encouragement condition. No encourage-
ment is offered and the robot develops no action pattern.

- see Appendix C) the robot did receive some reward albeit not a maximal reward.

In these cases the robot did have actions from recent behaviour to choose from,

however, the behaviour did not become repeated over the long term as continual

merging and purging of experiences that do not result in near maximal reward

resulted in only transitory behaviour. Thus the modification of the space through

merging and deletion plays an important role.

9.3.4 Emergent Classes of Experience

Analysis of the results shows that there was an extensive reduction in the number

of experiences in the metric space through forgetting and merging, often reducing

the number of experiences by over 50%, and sometimes by much more. The

merged experiences were however fairly small in number (as experiences were

often deleted rather than merged).

Examining a single example, run d0033, a successful peekaboo run merged
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Table 9.3: Merged and Forgotten Experiences
Run Total Deleted Merged % Deleted % Merged

d0032 193 73 11 37.82 5.70
d0033 181 63 14 34.81 7.73
d0034 145 119 17 82.07 11.72
d0035 203 97 5 47.78 2.46
d0036 114 35 5 30.70 4.39
d0037 191 114 20 59.69 10.47
d0038 199 183 0 91.96 0.00
d0039 57 6 8 10.53 14.04
d0041 446 315 23 70.63 5.16
d0042 330 170 18 51.52 5.45
d0043 409 356 1 87.04 0.24
d0044 283 101 7 35.69 2.47
d0045 179 163 0 91.06 0.00
d0046 371 243 17 65.50 4.58
d0049 531 346 65 65.16 12.24
d0050 205 58 0 28.29 0.00
d0051 422 133 76 31.52 18.01
d0052 554 389 68 70.22 12.27
d0053 367 92 55 25.07 14.99
d0054 448 268 12 59.82 2.68
d0055 329 145 15 44.07 4.56
d0056 305 264 21 86.56 6.89

experiences 14 times. One experience that was merged with many later ones was

experience number 1 (the second experience). That experience was merged with

8 other experiences and was associated with action 6 (HID - the “hiding” action).

Often when the HID action was chosen, it was experience number 1 which was

found to be similar to the current experience. Thus it is possible to say that a

class of experiences was emerging during this run that “represented” to the robot

that it should next execute the peekaboo “hiding” action.

9.4 Chapter Summary

The Interaction History Architecture was implemented for the upper-body hu-

manoid robot Kaspar2. The peekaboo interaction game was used to evaluate the
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architecture in terms of how the robot could use its own personal interaction his-

tory to develop the capability to engage in the game. Results show that giving

appropriate encouragement to the robot as it executed certain series and groups

of behaviours can result in those behaviours being selected in preference to others

in equivalent conditions and this result supports the hypothesis that encouraging

the hiding action would result in a higher rate of peekaboo sequences than would

be expected from random selection. Furthermore, encouraging alternative action

sequences resulted in those actions being repeated and inviting the conclusion that

this behaviour is fairly general and is not limited to peekaboo. Additional support

for the hypothesis was found in the conditions that offered no encouragement and

in these cases no single action or sequence was selected in preference to any other.

It was found that classes of experiences emerged through the process of merg-

ing of experiences as the interaction progressed. These classes of experience and

their associated next-action can be said to be emergent, grounded “representa-

tions” that have “meaning” from the robot’s own perspective in the actions they

generate.
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Chapter 10

Conclusions

10.1 Summary

This thesis has presented a framework for the ontogeny of behaviour in artificial

autonomous agents (and particularly in robots) that is centred on the agent’s own

grounded sensorimotor history of interactions. The thesis started by defining what

an interaction history is for an autonomous agent and motivated that definition

with reference to literature, taken from psychology and cognitive science as well

as artificial intelligence, that supported an embodied grounded perspective on

memory, development and cognition.

Next, exploratory research into how such a definition for an interaction history

could be realized was presented. A Sony AIBO robotic dog was used to investigate

how a robot might characterize and recognize its own behaviour from its senso-

rimotor history alone, with the view that such a capability would be an essential

feature of a useful interaction history. In these experiments changing informa-

tion theoretic relationships between sensors provided a useful characterization of

behaviour.

Having defined what it means to have a grounded interaction history, and

conducted some preliminary research, it was possible to arrive at a natural opera-

tional definition of a sensorimotor “experience” and how such experiences can be

aggregated to form a space of experiences. Various information theoretic measures
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of the distance between experiences were developed and presented to support this

aggregation. One such measure, the experience distance, was taken forward in the

subsequent research and its properties investigated. The experience distance is a

metric measure and the space of experiences a metric space. The dimensionality

of an autonomously constructed metric space of experiences is potentially very

large, however it was established in experiments that the actual dimension was in

fact considerably smaller and reflected the ordered nature of the space when pop-

ulated with natural experiences of a robot interacting within its environment. In

robotic experiments where a ball was moved in front of a robot, the metric space

was successfully used to anticipate the future motion of the ball by finding histori-

cal experiences with short experience distance to the current experience (i.e. were

“similar”). Additionally, methods of constructing (and maintaining) an experi-

ence space were investigated with the goal that they should be computationally

manageable.

The research mentioned thus far addressed the first two research goals provid-

ing formalism to concepts such as experience and history as well as establishing

quantitative methods for comparison of robot self-experience (See “Research Ques-

tions and Challenges” Section1.1). The remaining research (Chapters 7,8 and 9)

addressed the third goal, i.e. “To find, implement and test mechanisms whereby

an agent may autonomously and open-endedly shape its control structures for

action and behaviour, based on its ongoing history of past experiences.” Thus, an

architecture for controlling an autonomous embodied agent based around the met-

ric space of experience, the Interaction History Architecture (IHA), was designed

and implemented with controllers for various robots, simulated and physical. The

architecture was tested on a simple test scenario - the “Road-Sign Problem” and

it was established that a robot could use its sensorimotor history as embodied in

the IHA to make the correct turning decisions.

The IHA was then given a considerably harder task, that is, to develop in a

robot the capability to play the simple communicative interaction game “peeka-

boo” with a human partner. The architecture was implemented for both an AIBO
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robotic dog as well as an upper-body humanoid robot with expressive capabilities.

Two different schemes were used for generating environmental reward to support

the developmental learning, the first being based on the detection of a face only

and the second receiving reward for both seeing a face and hearing a sound. The

results of the experiments showed how it was possible for the robot to play peek-

aboo in various ways with the human partner, in some cases using unexpected

combinations of actions to achieve high reward from the interaction. Further-

more, in the second experiment with the humanoid robot, it was established that

sequences of interactions and behaviours other than the peekaboo hiding interac-

tion could be specifically encouraged and then repeated. It was also established

that the history length of experiences in the metric space needed to be of an

appropriate length in relation to the interaction such that the best performing

horizon lengths were approximately the same length as the time it took the robot

to hide and reveal its “face”.

Clearly, there is much research to conduct yet before the capability of develop-

ing wide ranges of behaviours in wide ranges of scenarios through ontogeny over

long periods of time is possible for a robot using its interaction history. How-

ever this research takes some important and significant steps towards such a goal.

Needless to say, the ontogeny of prospective ability of children and other mam-

mals is an extended process lasting years and we cannot yet hope to mirror its

complexity and success in artificial systems, although the work presented here

suggests that we have made a small start in this direction.

This summary concludes by reviewing the research questions and contributions

to knowledge. Then, in the following sections, various issues arising from and

implications due to the research presented are discussed. Finally, we look forward

at possible directions for further research.
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10.1.1 Review of Research Questions

Hypothesis 1: The changing gross informational relationships between groups of

sensors of an embodied agent, situated and acting in an environment, can

be used to characterize the behaviour of that agent (agent-environment in-

teraction).

The experimental results of Chapter 4 established that this was the case; a

robot executed different behaviours (walking, turning etc.) and it was pos-

sible for the experimenter to characterize the various behaviours based on

the informational relationships between sensors. Furthermore, later exper-

iments (Section 5.4) showed that motion of a ball, both with and without

concomitant motor information from sensorimotor coordinated action, could

be distinguished and thus characterized as similar to recent movement.

Hypothesis 2: It is possible for an agent to recognize its own behaviour in terms

of these informational relationships between groups of sensors.

This was studied and established in Sections 4.5 and 4.6 as regards the Aibo

wandering in the arena, as well as in the experiments mentioned regarding

ball-motion in Section 5.4.

Hypothesis 3: By using a temporally extended history as the basis for action,

links between experiences and actions may be built that allow the agent to

act such that it exhibits the appearance of prospection of repeated and famil-

iar events in its environment.

The experiment regarding prediction of ball-motion (Section 5.4) lays the

foundation for this capability establishing that self-recognition of experience

can be used for prediction. Later experiments with the interaction history,

Section 7.3 in particular, show that such a history can be combined with

actions that appear to predict where future reward might be highest.
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Hypothesis 4: A robot can use its own ongoing interaction history to develop

the capability to engage in simple, social, communicative interaction with a

human partner.

This kind of capability was demonstrated in Chapters 8 and 9. The task re-

quired the robot to aquire the capability to engage in a communicative inter-

action (“peekaboo”) with a human partner. The robot could execute a lim-

ited number of actions and had a reward system that encouraged peekaboo-

like interaction, but otherwise had no direct knowlege of the game. It was

found that, by exploring the possibilities by executing actions at random, a

history of interactions would be developed and exploited in an on-line man-

ner that enabled the robot to successfully engage in a peekaboo interaction.

Hypothesis 5: A dynamically constructed history of interactions that is used to

generate and select actions in an embodied agent can serve to scaffold the

ontogenetic development of the agent.

The experiments of this thesis neither confirm nor refute this hypothesis.

Certainly, it has been established that a robot may use its own interaction

history to generate appropriate action, and that this history is dynamic

(through merging, forgetting, and - depending on implementation - update

of the value of previous experience) and so should change as circumstances

change. However, development in terms of scaffolding new behaviour on top

of old and learning increasingly complex behaviour patterns has not been

addressed in these experiments, and so such a property of the interaction

history cannot be confirmed until further experiments are conducted (see

“Future Directions”, Section 10.3).

10.1.2 Summary of Contributions

The main contributions of this thesis are that it:
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1. Defines “Interaction History” from the perspective of autonomous embodied

artificial agents;

2. Shows that the information theoretic relationships between a robot’s sen-

sors (exterioceptive, interioceptive and proprioceptive) can be used to au-

tonomously characterize behaviour (i.e. distinguish classes of behaviours)

and identify behaviours (as being similar to one or another previously expe-

rienced behaviour or behaviour class);

3. Defines the Average Information Distance as a measure of sensory relations;

4. Operationalizes the meaning of “experience” from the perspective of em-

bodied artificial agents and robots;

5. Introduces, validates and applies the experience metric (an information the-

oretic measure) to comparison of experiences in robots, and shows that

distances between experiences with low values of the metric correspond to

experiences that are similar as judged by an external observer;

6. Develops techniques for self-construction and modification of a metric space

of experiences as a model of a temporally extended remembering/memory

for robotic control systems;

7. Demonstrates the operation of an architecture, that chooses actions based

on proximity of experiences in a growing metric space, on different robotic

and simulated platforms and on different tasks;

8. Introduces “Peekaboo” as a tool for research in early communicative in-

teraction of robots with humans and as a scenario in which ontogenetic

development can be studied in robots.
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10.2 Issues, Reflections and Implications

This section discusses some of the issues raised during this research and some of

the lessons learnt.

10.2.1 Assumptions

During this thesis certain claims for properties of experiences and their compar-

isons, as well as the approach to basing action on past experience, were made.

However these rely on some assumptions. These assumptions and their implica-

tions are briefly discussed here.

An important assumption that is made in the underlying interaction history

approach is that the environment is predictable at some (temporal) level. That

is, it is essentially causal and that it is not random. That this assumption holds

is essential for past experience to be a guide to future experience. However, it is

not required to be completely deterministic as the stochasticity in the approach

allows for varied responses. Nor is it necessary for the environment to exhibit the

same unchanging dynamics as the system is adaptive and can adapt to changing

environmental conditions.

It is usually assumed in the calculation of entropy of a random variable that

it is stationary (i.e. its mean, and statistical variance are constant over the length

of the series). It is likely however, that random variables estimated from the

changing sensorimotor sensor time-series of a robot will not be stationary over the

whole time-series but will exhibit local stationarity. Thus calculation of entropy

for shorter horizon length experiences will be valid. Nevertheless, should this

not be the case (for instance, where the horizon is much longer than windows

of stationarity of the interaction environment), it is not an issue for the metric

space of experiences as, in this case, the entropy calculation will give an “average”

entropy and this is sufficient for the practical comparison of experiences.
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10.2.2 Characteristics of Experience Space and Metrics

The first sets of experiments in Chapter 4 involving the Aibo robot executing

simple behaviours show how the changing informational relationships between

sensors can be used to characterize those behaviours from a grounded sensorimotor

perspective. However, the question remained as to what level of distinction could

be drawn from a trajectory in a 2-dimensional space as the difference between

behaviours becomes less well defined. The extension to the experience metric in

Chapter 5 addresses this issue and shows how behaviours can be distinguished

to the extent that a motion of a ball can be predicted from previous continuous

experiences. These experiments demonstrate that an anticipatory mechanism that

operates from continuous experience is a possibility.

The results of these experiments suggest the following properties of the metric

space of experiences:

• the distance between sensorimotor experiences in the metric space reflects

their subjective similarity;

• proximity in the metric space is not dependant on exact matching between

sensorimotor timeseries, but instead depends on statistical informational

similarity of a sensory stream with the same stream in the past, summed

over all sensors;

• the metric space can be continually and incrementally constructed directly

from sensorimotor experience.

10.2.3 Interaction History Architecture (IHA) Experiments

The interaction scenarios reported in Chapters 7,8 and 9 have a number of lim-

itations which were relaxed as the experiments increased in complexity. Having

established some of the capabilities of metric space of experiences in the ball-

prediction experiments (Section 5.4) , the IHA was demonstrated successfully on

a benchmark delayed-response task in Section 7.3 which offered environmental
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interaction but was limited in that there was no interaction partner. The second

scenario, “peekaboo”, introduced in Chapter 8, is considerably more complex, re-

quiring that the robot developed behaviour sensitive to environment and timing

to achieve success. However, for the purpose of testing the dependence on horizon

length, the environment was simplified, using a static image of a face in place of

the interaction partner. In Chapter 9 however a full interactive peekaboo scenario

was employed that had a human interaction partner that could provide feedback

both by showing and hiding their own face as well as through audio responses and

calls. The robot also had the ability to feedback its current reward state to the

interaction partner through facial expressions.

10.2.4 Development or Just Learning?

A reasonable question to ask, given that something akin to physical development

in an animal does not occur in these experimental demonstrations, is: Is this de-

velopment, or is it just learning? To answer this, let us examine the important

facets of development as identified by Lungarella et al. (2003): (a) Incremental

(b) Importance of Constraints (c) Self-Organizing (d) Self-Exploration (e) Spon-

taneous Activity (f) Prospective Control (g) Categorization, Sensorimotor Coor-

dination (h) Value Systems (i) Social Interaction. It is clear that what is being

described here is something that is able to not only learn, but also structure its

learning over time, increasing its capabilities over time and building (scaffolding)

new learning on previously mastered tasks. Development involves a general form

of self-organized, unsupervised, open-ended learning, where goals and motivations

drive the agent towards better and better coupling with its environment. The in-

teraction history architecture put forward by this thesis meets most if not all of

these important facets of a developmental architecture, at least at a rudimentary

level. However, the implemented and demonstrated solutions are only a step along

the way, and still, for instance, do not have the constraint unfolding capability and

progressive drives and value (motivation) systems required for true development.

Therefore, even though the mastery of individual tasks may be called “learning”,
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these are just snapshots of a more wide-ranging developmental activity that the

system is capable of due to the dynamic capacity for remembering of the history

of interactions that lies at the heart of the system.

10.2.5 Action Correspondence

An important issue in any interaction is how actions and behaviour of other agents

can be both recognized and elicited. Humans can understand (give meaning to and

ground with reference to own actions) the physical actions and behaviour of others

as well as socially motivated action. In this thesis, the way that the robot can elicit

social communicative behaviour through their own gestures in the peekaboo game

scenario is an example of this. The interaction history architecture at the moment

relies on generic visual sensors and the special “face-detection” sensor, combined

with the temporally extended statistical model built up in the interaction history,

to provide information about the other party in the interaction.

However, there are ways of improving this and one such is to consider the

mirror neuron system (Rizzolatti et al., 1996). Mirror neurons in the primate

cortex have been shown to fire both when an action is executed and when the

same action is seen in others. There is an argument that this shows that there is

a neural basis for social interaction. For the purposes of an interaction history, if

internally constructed “meta-sensors”/“meta-actuators” could be conceived that

would offer the same functionality of a mirror neuron system, then their inclusion

in the metric space of experience would greatly enhance the ability of the system

to develop action capabilities that took into account the actions of other people

and robots in the environment.

One way that such a system could be developed through interaction as part

of the interaction history, rather than through an explicit design and creation

of a mirror-neuron system, is to give the agent an early developmental drive for

imitation. Such a drive would quickly start building up correspondences between

certain sequences of image sensor signals and the agent’s own motor systems.

However, to make full use of this, enhancements and modifications would be
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needed to the architecture, particularly in the area of separation of motor and

sensor experience systems and how action is generated.

10.2.6 Applications in and Outside Robotics

The immediate application for the interaction history architecture is as a devel-

opmental architecture for autonomous robots operating in complex, incomplete-

information environments that require an adaptive flexibility to cope with different

scenarios as well as a level of plasticity so that learning and development can be

scaffolded on previous capabilities and experience.

Other applications are any in which action policies need to be adapted and

developed based on time-series data. An example might be activating alarm

systems in the prediction of severe weather conditions. Another might be in

advising trading policy dependent on market and economic data. However, in

these systems, accuracy is important and so a refined version of the system would

be needed.

Another application may be in assistive technologies that learn appropriate

actions depending on a wide-range of sensor input and observed patterns of be-

haviour. Sensor input might be room temperature, the switching on and off of

electrical items, etc., and actions might be to switch on the lights in anticipation

of the arrival home of the resident.

10.2.7 Emergent Classes of Experience

The possibility of creation and use of grounded emergent categories of experi-

ence was discussed in Section 6.3.3 and demonstrated in the humanoid peekaboo

experiment of Chapter 9. In the peekaboo experiment with a humanoid robot,

it was observed that a class of experiences emerged during the interaction that

was associated with a next action of “hide”. It can be said then, that a class of

experiences had emerged, grounded in the sensorimotor interaction of the agent,

that “represented” that it should next execute the “hide” action.
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Thus, merged experiences combined with action present the possibility of truly

grounded representations. This is an important consequence of having an incre-

mentally constructed interaction history, and is in-fact essential if that history

is to be practical. The applications of such grounded representations are wide-

reaching. One speculative example would be a capability of forming categories of

objects that depended on appearance as well as how they were interacted with

(affordances). This learning of affordances could also be combined with verbal

(audio) representations, leading to an “understanding” of meaning of “words”

and proto-language.

10.3 Future Directions

As mentioned in the introduction, developmental AI is a new field, and as such

appropriate tools for study are still to be developed. The peekaboo scenario is

a contribution to this, and has also since been used as an experimental scenario

in other cognitive robotics research (Ogino, Ooide, Watanabe and Asada, 2007),

however, further scenarios where development (ontogeny) can be both demon-

strated and measured are required. The scenarios currently demonstrated are

complex, involving a human partner, but limited in terms of the potential to

demonstrate wide-reaching ontogenetic development.

The next important area is the requirement for an action system that can

change and grow, incorporating new actions and abilities, and refining old ones

is essential to allow more open-ended development. Similarly, the structures re-

quired to model other agent’s actions in comparison to one’s own is an area where

important progress can be made starting with this architecture as a basis.

Another area for future research is to understand the properties of the metric

space of experience. A better grasp of the mathematical and topological structure

of the space may lead to more efficient implementations, especially regarding ex-

perience recognition and the emergence of ‘prototypical’ experiences and activities

and dimension reduction in the space.
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In terms of technical challenges, a demonstrated long-term capability to create

and maintain a metric space for the life-time of an agent is required. The inter-

action history architecture has been shown to run in real-time for over an hour in

the delayed response task, but needs to be able to be self-maintaining for much

longer periods. To cope with the vast number of experiences, mechanisms such as

forgetting and merging of experiences are required. This may be done on-line as

was demonstrated in the experiments in Chapter 9, and/or it may be possible to

further consolidate experiences in a “sleeping state”.

While the current implementation of the metric space and the associated ac-

tion architecture is currently practical in terms of demonstrating underlying prin-

ciples, an alternative approach is worth considering. A more biologically plausible

configuration is certainly conceivable. A possible future direction would be to

implement an artificial neural network that uses the basic ideas of the interac-

tion history architecture. A system can be envisaged that had many overlapping

associative networks that were able to store patterns of sensory activity (see for

example Vogel, 2005; Shanahan, 2006), and these be connected hierarchically us-

ing systems of “information distance” neurons. Each of these special neurons

would continually output the information distance between the stream of data at

its inputs, thus recognizing when current sensory input was similar to a memory

of that sensory input triggered by the re-experiencing mediated by the associative

networks. These neurons then feedback into action control areas to close the per-

ception action loop. However, it is not completely clear how temporally extended

experience could be captured and employed in such a system.

Further research work which is already underway will see the Interaction His-

tory Architecture incorporated as a higher-level behaviour advice module in the

open-source robot iCub built by the European FP6 RobotCub project

(http://www.robotcub.org/). The iCub robot has an order of magnitude more

sensors and has complex control structures, behaviour modules and reactive pro-

cesses that allow dynamic actions such as reaching, grasping, crawling and drum-

ming, and is therefore a challenge in terms of computing requirements as well as
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generating complex behaviour and action advice. This complexity however offers

interesting possibilities for ontogenetic development to be studied further in the

context of the interaction history.

10.4 Conclusion

This thesis puts forward a computational framework that can be used by embodied

artificial agents (and in particular autonomous robots) for ontogenetic develop-

ment. The temporal horizon of an agent is extended so that past experience can

be self-organized into a developing structure that can be used to anticipate the

future and act appropriately in environments where state information is incom-

plete, such as the social environment. The Crutchfield-Rényi information metric is

used as the basis for the experience metric to compare sensor time-series modelled

as random variables, and was demonstrated to be able to characterize and iden-

tify time-extended behaviour and help in selecting actions for robots and agents

operating over a broad temporal horizon, i.e. requiring episodic memory. A met-

ric space consisting of sensorimotor “experiences” was presented and was also

demonstrated to reflect subjective ideas of similarity of behaviour in the proxim-

ity of experiences in the space. Capabilities afforded by using the metric-space

were combined with a reinforcement-learning paradigm using temporally extended

experience, not state, to create an architecture that could develop complex time-

dependent action capabilities. Demonstrations on various robotic platforms in

various scenarios indicate that this may be a promising approach to ontogenetic

development in robots.
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Robot Sensors
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Table A.1: AIBO ERS-7 Sensors

Sensor Min Max Description
legRF1 -134 120 Right fore leg
legRF2 -9 91 Right fore leg
legRF3 -29 119 Right fore leg
legRH1 -134 120 Right hind leg
legRH2 -9 91 Right hind leg
legRH3 -29 119 Right hind leg
legLF1 -120 134 Left fore leg
legLF2 -9 91 Left fore leg
legLF3 -29 119 Left fore leg
legLH1 -120 134 Left hind leg
legLH2 -9 91 Left hind leg
legLH3 -29 119 Left hind leg
neck -79 2 Neck tilt1
headTilt -16 44 Neck tilt2
headPan -91 91 Head pan
tailPan -59 59 Tail pan
tailTilt 2 63 Tail tilt
mouth -58 -3 Mouth
pawLF 0 1 Left fore leg,paw sensor
pawLH 0 1 Left hind leg,paw sensor
pawRF 0 1 Right fore leg,paw sensor
pawRH 0 1 Right hind leg,paw sensor
accelX -19.6 19.6 Acceleration sensor(front-back)
accelY -19.6 19.6 Acceleration sensor(right-left)
accelZ -19.6 19.6 Acceleration sensor(up-down)
chinSensor 0 1 Chin sensor
backSensorF 0 60 Back sensor(front)
backSensorM 0 60 Back sensor(middle)
backSensorR 0 60 Back sensor(rear)
headSensor 0 35 Head sensor
distanceChest 19 90 Chest distance sensor
distanceNear 5.7 50 Head distance sensor(near)
distanceFar 20 150 Head distance sensor(far)
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Table A.2: Simulated Pioneer Sensors

Sensor Min Max Description
posX -4.00 4.00 Horizontal Position
posY 0.00 8.00 Vertical Position
Yaw -2.00 2.00 Direction
minL 0.00 8.00 Min of left sonar ranger values
minR 0.00 8.00 Min of right sonar ranger values
rangeL 0.00 8.00 Average of Left sonar group
rangeF 0.00 8.00 Average of Front sonar group
rangeR 0.00 8.00 Average of Right sonar group
blobL 0 4661 Left blob detector
blobR 0 4661 Right blob detector
reward 0 4 Resulting Reward sensor
action 0 3 Action

Table A.3: Kaspar2 Sensors

Sensor Min Max Description
HEAD LR 740 2100 Head Pan Left-Right
HEAD UD L 640 2200 Left Neck Elevation Motor
HEAD UD R 820 2200 Right Neck Elevation Motor
EYES LR 930 2060 Eyes Pan Left-Right
EYES UD 980 1920 Eyes Up-Down
EYELIDS 1150 1700 Eyelids Open-Close
MOUTH OPEN 600 1730 Mouth Open
MOUTH SMILE 600 2200 Mouth Corner Elevation
ARM R 1 650 2200 Right Shoulder Rotate
ARM R 2 1090 2200 Right Shoulder Elevate
ARM R 3 910 2200 Right Arm Rotate
ARM R 4 600 2200 Right Elbow Bend
ARM R 5 780 2200 Right Forearm Rotate
ARM L 1 600 2200 Left Shoulder Rotate
ARM L 2 780 2000 Left Shoulder Elevate
ARM L 3 600 2140 Left Arm Rotate
ARM L 4 600 2200 Left Elbow Bend
ARM L 5 600 2200 Left Forearm Rotate
FACE 0 1 Face detection signal
SOUNDS 0 1 Sum of Sound Amplitudes for Timestep
reward 0 1 Resulting Reward sensor
action 0 20 Action
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Publications

The research work of this thesis has contributed to 10 publications, 9 in peer-

reviewed publications including one journal, one book-chapter and 7 publications

in conference proceedings. I am first author in the majority of the work with

my co-authors being my research supervisors: Professor Chrystopher L. Nehaniv,

Professor Kerstin Dautenhahn and Dr. René te Boekhorst. The book chapter,

still in press, showcases this work along with the work of Prof. Nehaniv and Dr.

Lars Olsson on the related theme of the use of information theory to learn sensory

relations and mappings using uninterpreted sensory data.

B.1 Chronological List of Publications

(1) 2005 : Type: CONFERENCE

Authors: N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst.

Title: Using sensory-motor phase-plots to characterise robot-environment

interactions.

Details: ‘Proc. of 6th IEEE International Symposium on Computational

Intelligence in Robotics and Automation (CIRA2005)’, pp. 581–586.

Notes: Contains description of “AID Phase-plots”, referred to in this thesis

as AIDvs.AID plots, and experiments with characterization and identifica-

tion of behaviour of an Aibo (Chapter 4).
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(2) 2005 : Type: TECHNICAL REPORT

Authors: N. A. Mirza, C. L. Nehaniv, R. te Boekhorst and K. Dautenhahn.

Title: Robot self-characterisation of experience using trajectories in sensory-

motor phase space.

Details: Technical Report 424, University of Hertfordshire, Computer Sci-

ence, 2005.

Notes: Introduces the box-counting fractal dimension estimation as an ad-

ditional morphometric for characterizing AIDvs.AID plots (Section 4.4.2).

Introduces the segmentation method described in Section 4.6.

(3) 2005 : Type: CONFERENCE

Authors: N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst.

Title: Using temporal information distance to locate sensorimotor experi-

ence in a metric space.

Details: ‘Proc. of 2005 IEEE Congress on Evolutionary Computation

(CEC2005)’, Vol. 1, IEEE Press, Edinburgh, Scotland, UK, pp. 150–157.

Notes: First description of Sensorimotor Experience as described in this

thesis, and the experience metric, but referred to as the “total temporal

information distance”. Discusses Local and Global views, and shows results

of the metric applied to an Aibo wandering in an arena. See Sections 5.2

and 5.3.2.

(4) 2005 : Type: CONFERENCE

Authors: C. L. Nehaniv.

Title: Sensorimotor Experience and Its Metrics: Informational Geometry

and the Temporal Horizon.

Details: ‘Proc. of 2005 IEEE Congress on Evolutionary Computation

(CEC2005)’, Vol. 1, IEEE Press, Edinburgh, Scotland, UK, pp. 142-149.
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Notes: Though this does not contain my name on the author list, the work

presented includes results from experiments designed and conducted by my-

self. See Section 5.2.

(5) 2005 : Type: CONFERENCE (Poster and Short Procedings Article)

Authors: N. A. Mirza, C. L. Nehaniv, R. te Boekhorst and K. Dautenhahn.

Title: Robot self-characterisation of experience using trajectories in sensory-

motor phase space.

Details: ‘Proc. of Fifth International Workshop on Epigenetic Robotics:

Modeling Cognitive Development in Robotic Systems (EpiRob2005)’, Lund

University Cognitive Studies, pp. 143–144.

Notes: Box-counting fractal dimension estimation as an additional mor-

phometric for characterizing AIDvs.AID plots (Section 4.4.2).

(6) 2006 : Type: CONFERENCE

Authors: C. L. Nehaniv, N. A. Mirza, K. Dautenhahn, and R. te Boekhorst.

Title: Extending the temporal horizon of autonomous robots.

Details: Proc. of the 3rd International Symposium on Autonomous Minirobots

for Research and Edutainment (AMiRE2005), pages 389-395. Springer,

2006.

Notes: Summaries work on experience metrics and local/global picture.

(7) 2006 : Type: CONFERENCE

Authors: N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst.

Title: Interaction histories: From experience to action and back again.

Details: In Proceedings of the 5th IEEE International Conference on De-

velopment and Learning (ICDL 2006), Bloomington, IN, USA, 2006.

Notes: Introduces Interaction History Architecture and Ball Prediction ex-

periments (Chapter 7) and early Peekaboo experiments (Chapter 8, and
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Section 8.3.1).

(8) 2006 : Type: CONFERENCE

Authors: N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst.

Title: Peekaboo: Effect of experience length on the interaction history

driven ontogeny of a robot.

Details: Proceedings the of 6th International Conference on Epigenetic

Robotics, pages 71-78, Paris, France, 20-22 September 2006. Lund Univer-

sity Cognitive Studies.

Notes: Experiments with Peekaboo investigating Horizon length and num-

ber of bins - see Section 8.3.2.

(9) 2007 : Type: JOURNAL

Authors: N. A. Mirza, C. L. Nehaniv, K. Dautenhahn, and R. te Boekhorst.

Title: Grounded sensorimotor interaction histories in an information theo-

retic metric space for robot ontogeny.

Details: Journal of Adaptive Behaviour: Special Issue, 2007. Volume 15,

Number 2, pages 167-187. SAGE Publications.

Notes: Brings together work on experience, experience metrics and peeka-

boo experiments.

(10) 2007 : Type: BOOK CHAPTER

Authors: C. L. Nehaniv, N. A. Mirza, L. Olsson.

Title: Development via Information Self-structuring of Sensorimotor Expe-

rience and Interaction

Details: 50 Years of Artificial Intelligence: Essays Dedicated to the 50th

Anniversary of Artificial Intelligence. Volume 4850/2007, pages 87-98. Springer.

Notes: Experience metrics and brief description of Aibo experiments.
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Kaspar Peekaboo Results

This appendix contains the results from 15 experimental runs of the history ar-

chitecture running on the KasparII robot. The human interaction partner either

encourages Peekaboo, another action or gives no encouragement at all. These

results are summarised in Chapter 9.
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Table C.1: Actions executed (consolidated): Run d0032

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 16 2 0 1 1 16 4 1 0 0 1 0 1 0 43

chosen 33 0 0 0 16 21 0 2 0 0 0 0 1 0 73

both 49 2 0 1 17 37 4 3 0 0 1 0 2 0 116

Table C.2: Actions executed (primary): Run d0032
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 20.00 0.00 10.00 40.00 10.00 10.00 0.00 10.00 0.00 100.00

chosen : 0.00 0.00 84.21 0.00 10.53 0.00 0.00 5.26 0.00 100.00

both : 6.90 0.00 58.62 13.79 10.34 3.45 0.00 6.90 0.00 100.00

Percentage Random v Chosen Actions

random 100.00 0.0 5.88 100.00 33.33 100.00 0.0 50.00 0.0

chosen 0.00 0.0 94.12 0.00 66.67 0.00 0.0 50.00 0.0

Overall Chosen %: 0.00 0.0 55.17 0.00 6.90 0.00 0.0 3.45 0.0 65.52
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Table C.3: Actions executed (consolidated): Run d0033

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 27 0 0 1 3 17 5 3 1 2 1 0 4 2 66

chosen 9 0 0 0 14 3 0 0 0 0 0 0 1 1 28

both 36 0 0 1 17 20 5 3 1 2 1 0 5 3 94

Table C.4: Actions executed (primary): Run d0033
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 0.00 0.00 16.67 27.78 16.67 5.56 0.00 22.22 11.11 100.00

chosen : 0.00 0.00 87.50 0.00 0.00 0.00 0.00 6.25 6.25 100.00

both : 0.00 0.00 50.00 14.71 8.82 2.94 0.00 14.71 8.82 100.00

Percentage Random v Chosen Actions

random 0.0 0.0 17.65 100.00 100.00 100.00 0.0 80.00 66.67

chosen 0.0 0.0 82.35 0.00 0.00 0.00 0.0 20.00 33.33

Overall Chosen %: 0.0 0.0 41.18 0.00 0.00 0.00 0.0 2.94 2.94 47.06
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Table C.5: Actions executed (consolidated): Run d0034

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 7 1 0 5 2 9 4 2 2 1 2 0 0 2 37

chosen 60 1 0 0 0 0 1 0 1 0 0 0 0 0 63

both 67 2 0 5 2 9 5 2 3 1 2 0 0 2 100

Table C.6: Actions executed (primary): Run d0034
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 7.69 0.00 15.38 30.77 15.38 15.38 0.00 0.00 15.38 100.00

chosen : 50.00 0.00 0.00 50.00 0.00 0.00 0.00 0.00 0.00 100.00

both : 13.33 0.00 13.33 33.33 13.33 13.33 0.00 0.00 13.33 100.00

Percentage Random v Chosen Actions

random 50.00 0.0 100.00 80.00 100.00 100.00 0.0 0.0 100.00

chosen 50.00 0.0 0.00 20.00 0.00 0.00 0.0 0.0 0.00

Overall Chosen %: 6.67 0.0 0.00 6.67 0.00 0.00 0.0 0.0 0.00 13.33
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Appendix C

Table C.7: Actions executed (consolidated): Run d0035

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 17 5 2 9 4 15 3 1 1 0 1 0 1 1 60

chosen 13 15 2 11 6 2 0 0 0 0 0 0 0 0 49

both 30 20 4 20 10 17 3 1 1 0 1 0 1 1 109

Table C.8: Actions executed (primary): Run d0035

HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 27.78 11.11 22.22 16.67 5.56 5.56 0.00 5.56 5.56 100.00

chosen : 65.22 8.70 26.09 0.00 0.00 0.00 0.00 0.00 0.00 100.00

both : 48.78 9.76 24.39 7.32 2.44 2.44 0.00 2.44 2.44 100.00

Percentage Random v Chosen Actions

random 25.00 50.00 40.00 100.00 100.00 100.00 0.0 100.00 100.00

chosen 75.00 50.00 60.00 0.00 0.00 0.00 0.0 0.00 0.00

Overall Chosen %: 36.59 4.88 14.63 0.00 0.00 0.00 0.0 0.00 0.00 56.10
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Appendix C

Table C.9: Actions executed (consolidated): Run d0036

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 12 3 1 4 3 14 1 2 1 2 0 0 1 0 44

chosen 4 0 0 0 8 7 0 0 0 0 0 0 0 0 19

both 16 3 1 4 11 21 1 2 1 2 0 0 1 0 63

Table C.10: Actions executed (primary): Run d0036

HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 27.27 9.09 27.27 9.09 18.18 0.00 0.00 9.09 0.00 100.00

chosen : 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

both : 15.79 5.26 57.89 5.26 10.53 0.00 0.00 5.26 0.00 100.00

Percentage Random v Chosen Actions

random 100.00 100.00 27.27 100.00 100.00 0.0 0.0 100.00 0.0

chosen 0.00 0.00 72.73 0.00 0.00 0.0 0.0 0.00 0.0

Overall Chosen %: 0.00 0.00 42.11 0.00 0.00 0.0 0.0 0.00 0.0 42.11
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Appendix C

Table C.11: Actions executed (consolidated): Run d0037

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 5 1 2 1 1 13 3 1 1 0 1 0 2 1 32

chosen 57 0 0 6 3 0 0 0 0 0 4 0 3 0 73

both 62 1 2 7 4 13 3 1 1 0 5 0 5 1 105

Table C.12: Actions executed (primary): Run d0037

HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 8.33 16.67 8.33 25.00 8.33 8.33 0.00 16.67 8.33 100.00

chosen : 0.00 0.00 30.00 0.00 0.00 40.00 0.00 30.00 0.00 100.00

both : 4.55 9.09 18.18 13.64 4.55 22.73 0.00 22.73 4.55 100.00

Percentage Random v Chosen Actions

random 100.00 100.00 25.00 100.00 100.00 20.00 0.0 40.00 100.00

chosen 0.00 0.00 75.00 0.00 0.00 80.00 0.0 60.00 0.00

Overall Chosen %: 0.00 0.00 13.64 0.00 0.00 18.18 0.0 13.64 0.00 45.45

0.0

0.2

0.4

0.6

0.8

1.0
0.0

0.2

0.4

0.6

0.8

1.0

 0  50  100  150  200  250  300  350  400

fa
ce

 {
0,

1}
  s

ou
nd

 [0
..1

]  
   

   
   

   
   

   
  r

ew
ar

d 
[0

..1
]  

   
   

   
   

   
   

 

Timestep

Encourage Peekaboo Interaction, (d0037)

A
ct

io
ns

ri
g

h
t 

a
rm

 u
p

w
a

v
e

 r
ig

h
t

w
a

v
e

 r
ig

h
t

c
e

n
tr

e
 h

e
a

d
ri
g

h
t 

a
rm

 u
p

w
a

v
e

 r
ig

h
t

c
e

n
tr

e
 h

e
a

d
le

ft
 a

rm
 u

p

c
e

n
tr

e
 h

e
a

d
h

id
e

 f
a

c
e

c
e

n
tr

e
 h

e
a

d
ri
g

h
t 

a
rm

 u
p

ri
g

h
t 

a
rm

 d
o

w
n

h
id

e
 f

a
c
e

h
id

e
 f

a
c
e

th
in

k
 l
e

ft

th
in

k
 r

ig
h

t

th
in

k
 r

ig
h

t

h
e

a
d

 r
ig

h
t

h
id

e
 f

a
c
e

h
e

a
d

 l
e

ft

h
e

a
d

 r
ig

h
t

th
in

k
 r

ig
h

t

th
in

k
 r

ig
h

t

th
in

k
 r

ig
h

t

Figure C.6:

213



Appendix C

Table C.13: Actions executed (consolidated): Run d0038

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 3 0 0 0 0 2 0 1 0 1 0 0 0 2 9

chosen 140 0 0 0 0 22 0 0 0 0 0 0 0 5 167

both 143 0 0 0 0 24 0 1 0 1 0 0 0 7 176

Table C.14: Actions executed (primary): Run d0038
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 0.00 0.00 0.00 0.00 33.33 0.00 0.00 0.00 66.67 100.00

chosen : 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00

both : 0.00 0.00 0.00 0.00 12.50 0.00 0.00 0.00 87.50 100.00

Percentage Random v Chosen Actions

random 0.0 0.0 0.0 0.0 100.00 0.0 0.0 0.0 28.57

chosen 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 71.43

Overall Chosen %: 0.0 0.0 0.0 0.0 0.00 0.0 0.0 0.0 62.50 62.50
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Appendix C

Table C.15: Actions executed (consolidated): Run d0039

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 5 2 0 1 2 3 1 1 0 1 0 0 0 1 17

chosen 4 0 0 0 1 14 0 0 0 0 0 0 0 0 19

both 9 2 0 1 3 17 1 1 0 1 0 0 0 1 36

Table C.16: Actions executed (primary): Run d0039
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 28.57 0.00 28.57 14.29 14.29 0.00 0.00 0.00 14.29 100.00

chosen : 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

both : 25.00 0.00 37.50 12.50 12.50 0.00 0.00 0.00 12.50 100.00

Percentage Random v Chosen Actions

random 100.00 0.0 66.67 100.00 100.00 0.0 0.0 0.0 100.00

chosen 0.00 0.0 33.33 0.00 0.00 0.0 0.0 0.0 0.00

Overall Chosen %: 0.00 0.0 12.50 0.00 0.00 0.0 0.0 0.0 0.00 12.50
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Appendix C

Table C.19: Actions executed (consolidated): Run d0042

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 28 6 8 11 4 22 5 3 1 0 0 2 3 1 94

chosen 8 1 5 8 6 13 0 1 0 0 0 16 0 1 59

both 36 7 13 19 10 35 5 4 1 0 0 18 3 2 153

Table C.20: Actions executed (primary): Run d0042
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 18.75 25.00 12.50 15.62 9.38 0.00 6.25 9.38 3.12 100.00

chosen : 3.33 16.67 20.00 0.00 3.33 0.00 53.33 0.00 3.33 100.00

both : 11.29 20.97 16.13 8.06 6.45 0.00 29.03 4.84 3.23 100.00

Percentage Random v Chosen Actions

random 85.71 61.54 40.00 100.00 75.00 0.0 11.11 100.00 50.00

chosen 14.29 38.46 60.00 0.00 25.00 0.0 88.89 0.00 50.00

Overall Chosen %: 1.61 8.06 9.68 0.00 1.61 0.0 25.81 0.00 1.61 48.39
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Appendix C

Table C.23: Actions executed (consolidated): Run d0044

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 32 9 3 7 3 13 6 4 1 4 0 1 5 2 90

chosen 15 3 1 1 10 4 1 1 0 1 0 0 3 1 41

both 47 12 4 8 13 17 7 5 1 5 0 1 8 3 131

Table C.24: Actions executed (primary): Run d0044
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 27.27 9.09 9.09 18.18 12.12 0.00 3.03 15.15 6.06 100.00

chosen : 15.00 5.00 50.00 5.00 5.00 0.00 0.00 15.00 5.00 100.00

both : 22.64 7.55 24.53 13.21 9.43 0.00 1.89 15.09 5.66 100.00

Percentage Random v Chosen Actions

random 75.00 75.00 23.08 85.71 80.00 0.0 100.00 62.50 66.67

chosen 25.00 25.00 76.92 14.29 20.00 0.0 0.00 37.50 33.33

Overall Chosen %: 5.66 1.89 18.87 1.89 1.89 0.0 0.00 5.66 1.89 37.74
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Appendix C

Table C.25: Actions executed (consolidated): Run d0045

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 7 4 3 6 3 10 3 8 1 5 2 2 1 1 56

chosen 57 1 0 0 0 32 1 3 0 2 0 0 0 0 96

both 64 5 3 6 3 42 4 11 1 7 2 2 1 1 152

Table C.26: Actions executed (primary): Run d0045

HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 14.81 11.11 11.11 11.11 29.63 7.41 7.41 3.70 3.70 100.00

chosen : 20.00 0.00 0.00 20.00 60.00 0.00 0.00 0.00 0.00 100.00

both : 15.62 9.38 9.38 12.50 34.38 6.25 6.25 3.12 3.12 100.00

Percentage Random v Chosen Actions

random 80.00 100.00 100.00 75.00 72.73 100.00 100.00 100.00 100.00

chosen 20.00 0.00 0.00 25.00 27.27 0.00 0.00 0.00 0.00

Overall Chosen %: 3.12 0.00 0.00 3.12 9.38 0.00 0.00 0.00 0.00 15.62
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Appendix C

Table C.27: Actions executed (consolidated): Run d0046

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 21 6 2 5 3 20 4 6 0 2 1 1 4 3 78

chosen 32 9 0 3 2 19 1 1 0 0 0 30 3 0 100

both 53 15 2 8 5 39 5 7 0 2 1 31 7 3 178

Table C.28: Actions executed (primary): Run d0046
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 20.00 6.67 10.00 13.33 20.00 3.33 3.33 13.33 10.00 100.00

chosen : 19.57 0.00 4.35 2.17 2.17 0.00 65.22 6.52 0.00 100.00

both : 19.74 2.63 6.58 6.58 9.21 1.32 40.79 9.21 3.95 100.00

Percentage Random v Chosen Actions

random 40.00 100.00 60.00 80.00 85.71 100.00 3.23 57.14 100.00

chosen 60.00 0.00 40.00 20.00 14.29 0.00 96.77 42.86 0.00

Overall Chosen %: 11.84 0.00 2.63 1.32 1.32 0.00 39.47 3.95 0.00 60.53
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Appendix C

Table C.31: Actions executed (consolidated): Run d0050

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 19 7 7 3 2 12 2 3 0 2 0 0 2 0 59

chosen 7 5 0 0 10 2 0 0 0 0 0 0 0 0 24

both 26 12 7 3 12 14 2 3 0 2 0 0 2 0 83

Table C.32: Actions executed (primary): Run d0050
HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 30.43 30.43 8.70 8.70 13.04 0.00 0.00 8.70 0.00 100.00

chosen : 33.33 0.00 66.67 0.00 0.00 0.00 0.00 0.00 0.00 100.00

both : 31.58 18.42 31.58 5.26 7.89 0.00 0.00 5.26 0.00 100.00

Percentage Random v Chosen Actions

random 58.33 100.00 16.67 100.00 100.00 0.0 0.0 100.00 0.0

chosen 41.67 0.00 83.33 0.00 0.00 0.0 0.0 0.00 0.0

Overall Chosen %: 13.16 0.00 26.32 0.00 0.00 0.0 0.0 0.00 0.0 39.47
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Table C.41: Actions executed (consolidated): Run d0055

0 3 4 5 6 7 8 9 10 11 12 13 14 15 Tot

Rst HL HR HF Hid NA RAU LAU RAD LAD RAW LAW TR TL

random 23 7 5 10 4 19 3 7 2 3 0 2 4 0 89

chosen 20 5 0 1 0 39 0 0 0 0 0 0 13 0 78

both 43 12 5 11 4 58 3 7 2 3 0 2 17 0 167

Table C.42: Actions executed (primary): Run d0055

HL HR Hid RAU LAU RAW LAW TR TL total

Frequency As Percentage of Primary Actions

random : 21.88 15.62 12.50 9.38 21.88 0.00 6.25 12.50 0.00 100.00

chosen : 27.78 0.00 0.00 0.00 0.00 0.00 0.00 72.22 0.00 100.00

both : 24.00 10.00 8.00 6.00 14.00 0.00 4.00 34.00 0.00 100.00

Percentage Random v Chosen Actions

random 58.33 100.00 100.00 100.00 100.00 0.0 100.00 23.53 0.0

chosen 41.67 0.00 0.00 0.00 0.00 0.0 0.00 76.47 0.0

Overall Chosen %: 10.00 0.00 0.00 0.00 0.00 0.0 0.00 26.00 0.0 36.00
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Appendix D

Source Code CD

Source Code CD

AID

Java code.

Requires Tekkotsu

Online visualization of the AID vs AID plot.

Robot controlled is an Aibo ERS220.

IHA

C++ code. Using YARP framework.

Full implementation of Interaction History Architecture for robot ontogeny.

Robots that can be controlled are: Aibo (URBI), Simulated Pioneer (Player/Stage

2.0) and KASPAR (SSC32 serial control).

This code is Open Source and is also available as part of the iCub software issued

by the RobotCub project (http://www.robotcub.org/). See http://eris.liralab.it/wiki/Main Page
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Kaspar2 Peekaboo Action States
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RESTING
Possible Actions:

Rest(0) Face (1,2,16)
Do Nothing (7)

Raise Arms (8 9)
Think (14 15)
Hide Face (6)

Turn Head (3,4,5)

HIDING
Possible Actions:

Rest(0) Face(1,2,16)
Do Nothing(7)

(6) Hide
Face0

1,2,16
7, 5

1,2,16
7

THINKING LEFT
Possible Actions:

Rest(0) Face(1,2,17)
Do Nothing(7)

1,2,16
7

(0) Rest

(15)
ThinkL

LEFT ARM UP
Possible Actions:

Rest(0) Face (1,2,16)
Do Nothing (7)

Raise Right 2 (17)
Wave Left (13)
Lower Left (11)

1,2,16
7, 13

(0) Rest
(11) Lower
Left Arm

(9) Raise
Left Arm

RIGHT ARM UP
Possible Actions:

Rest(0) Face (1,2,16)
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(0) Rest
(10) Lower
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Lower Arms 2 (19,20)
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(17) Raise
Right Arm 2

(0) Rest

(17) Lower
Right Arm2
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HEAD TURNING
Possible Actions:

Rest(0) Face(1,2,16)
Do Nothing (7)

Turn Head (3,4)
Face Forward(5)
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7, 3,4

(5) Face
Forward

Actions
0       Rest
1       Smile
2       Neutral
3       head-left
4       head-right
5       head-forward
6       Hide-face
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10     RArm-Down
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16     Frown

(3,4) Turn
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THINKING RIGHT
Possible Actions:
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Do Nothing(7)
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Appendix F

Interaction History Architecture

Software Modules

F.1 Modules

F.1.1 Data Store

Description: The Data Store collects sensor data and creates experiences, placing them in a

metric space and associating quality values and action values to create the interaction

history space.

Executable: data store.cpp

Files: data store.cpp Main executable

experience/DataFrame.h Class to store a single data frame

experience/Experience.h Class to store a single experience

experience/ExperienceProcessor.h Processing functionality for experiences e.g. merge/delete

them.

experience/ExperienceProcessor.cpp

experience/DistanceSpaceClass.h Class to hold the Distance Space and processing

functionality at the Distance Space level.

experience/DistanceSpaceClass.cpp

experience/BinWindowMaxEntropy.h Adaptive binning using entropy maximiza-

tion
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experience/WindowIDCalc.h Information Distance calculation (Moving Window)

experience/ExperienceProcessorFileRW.cpp Read-Write Experiences

experience/serialization.h Serialization code

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

–save <file> Save Experience Space when finished

–load <file> Load Experience Space from <file> before start

–connect to sensors <port> Connect to the specified sensor port on startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

dsnumber Int Data Store Number for multiple data stores (default 1)

HORIZONS Int Int ... List of horizons to keep metric spaces for

num bins Int Number of bins in quantization. (default 5)

granularity Int Rate at which experiences are created in timesteps (default 1)

experience action gap Int For tuning correct association of action with experience

(default 1, i.e. next action)

regular experiences String Experiences created depending on timestep (default TRUE)

action experiences String Experiences created when action changes (default FALSE)

value experiences String Experiences created when reward value changes (default FALSE)

num actions Int Number of actions configured (default 4)

write curr dist to port String Current Distance list written to a port (default TRUE)

write max dsp neighbours Int Number of neighbours to output (default 0)

write max dsp radius Double Max radius of experiences in neighbour list (default 0)

neighbour radius Double Neighbourhood size (default 1.0)

merge adapt type String Merge Adaptation Type NONE, CYCLE TIME, NUM COMPARISONS

(default NONE)

merge threshold Double Adaptive Merge Threshold (default 0.0)

merge increment Double Adaptive Merge Increment (default 0.01)

only merge same actions String (default FALSE)

merge exp threshold Int For NUM COMPARISONS Merge Adaptation (default 400)

merge cycle time threshold Int For CYCLE TIME Merge Adaptation (default 400)

purge experiences String Purge Experiences switch (default FALSE)

purge threshold Double To purge only experience with quality less than this(default

0.0)

adaptive binning String Adaptive Binning using Entropy Maximization (default FALSE)

adaptive binning window size Int Adaptive Binning - window over which entropy is
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maximized (default 32)

histogram resolution Int Adaptive Binning (default 256)

future horizon Int Horizon over which quality is updated (default 200)

future value update type String Can be MAX, or BIASED (default MAX)

metric space heuristic String Can be NONE, TREE or NEIGHBOUR (default NONE)

verify heuristic String For testing (default FALSE)

heuristic start threshold Int For Neighbour Heuristic algorithm (default 40)

heuristic tree radius Double For Tree heuristic algorithm (default 1.0)

num image sensors x Int Number of image sensors to make from image - X direction

(default 8)

num image sensors y Int Number of image sensors to make from image - Y direction

(default 8)

use reward action in exp String Whether experience includes the reward and action

as sensors (default TRUE)

Ports Created: /<name>/ds<dnumber>/data:in Input port

/<name>/ds/currdist:out:<horizon> Output port for current experience neighbours

F.1.2 Kaspar2 Control

Description: Control for the Kaspar2 Robot and Sensor Collector. As well as providing the

sendAction() function for the Kaspar2 robot, this module reads all necessary sensor data

including image data, motivation feedback data, sound data and face detection data then

consolidates them and writes them to a port.

Executable: kaspar/kaspar control

Files: kaspar/kaspar control.cpp Main executable

kaspar/KasparActions.cpp Class for holding kaspar action specifications

kaspar/KasparActions.h

kaspar/KasparSequence.h Class for holding kaspar motor control sequences for ac-

tions

Execution Parameters: –file <file> configuration file

–hwconfig <file> hardware configuration file

–dbg <N> Debug level (0-60)

–connect to image <port> Connect to the specified image port on startup

–connect to coords <port> Connect to the specified port for detected face coordi-

nates on startup

–connect to reward <port> Connect to the specified port for reward data on startup
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–connect to soundsensor <port> Connect to the specified sound sensor port on startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

action defs file String File in which action definitions are configured (default action defs.txt)

num image sensors x Int Number of image sensors to make from image - X direction

(default 8)

num image sensors y Int Number of image sensors to make from image - Y direction

(default 8)

sensordatarate Int Sensor data rate for output in ms (default 100)

reward display String Display reward by using expressive actions (default TRUE)

action ehi Int Action (expression) to execute for High reward (default 1)

action elo Int Action (expression) to execute for Low reward (default 16)

action emid Int Action (expression) to execute for Mid reward (default 2)

th ehi Int High Threshold for expression change (default 0.8)

th elo Int Low Threshold for expression change (default 0.3)

Ports Created: /<name>/ac/action:out Action Advice output port

/<name>/sensor:out Sensor output port

/<name>/action:cmd Action Reader input port

/<name>/image:in Image input port

/<name>/coords:in Face Coordinates input port

/<name>/reward:in Reward input port

/<name>/soundsensor:in Sound Sensor input port

F.1.3 Kaspar Action Selection Process

Description: Wrapper for the action selection process

Executable: kaspar action selection

Files: kaspar action selection.cpp Main executable

include/iCub/iha/action selection main loop.h Generic action selection loop. This

is the main process that takes in the nearest neighbour list and uses the roulette

wheel action selection process to generate action advice.

kaspar/KasparActions.cpp Class for holding kaspar action specifications

kaspar/KasparActions.h

kaspar/KasparSequence.h Class for holding kaspar motor control sequences for ac-

tions

Execution Parameters: –file <file> configuration file
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–dbg <N> Debug level (0-60)

–connect to action <port> Connect to the specified action port on startup

–connect to dist <port> Connect to the specified nearest neighbour distance port on

startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

action defs file String File in which action definitions are configured (default action defs.txt)

neighbour radius Double Max radius of neighbourhood. (default 1.0)

temperature Double Starting temperature (affecting chance of random) (default 4.0)

temp dec Double Decrement of temperature per action step (default 0.002)

Ports Created: /<name>/ac/action:out Action Advice output port

/<name>/ac/currdist:in:<horizon> Input port for current experience neighbours

F.1.4 Send Action Utility

Description: Utility to send an action to an active control process

Executable: send action

Files: <control>/send action.cpp Main executable

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

–connect to action <port> Connect to the specified action port on startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

Ports Created: /<name>/ac/singleaction:out Action Advice output port

F.1.5 Motivation Dynamics

Description: Collects the sound sensor and face detection data and writes a resultant reward

to a port

Executable: motivation dynamics

Files: motivation dynamics/motivation dynamics.cpp Main executable

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

–connect to coords <port> Connect to the specified port for detected face coordi-

nates on startup

–connect to soundsensor <port> Connect to the specified sound sensor port on startup
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Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

Ports Created: /<name>/reward:out Reward output port

/<name>/coords:in Face Coordinates input port

/<name>/soundsensor:in Sound Sensor input port

F.1.6 Sound Sensor

Description: Creates a single valued sensor from a YARP sound stream

Executable: sound sensor

Files: sound/sound sensor.cpp Main executable

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

–connect to soundsensor <port> Connect to the specified sound sensor port on startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

soundsensorrate Int Rate at which the sound sensor data is produced on the output

port in ms. (default 100)

soundgain Double To compensate for low volume sound source. (default 2.5)

Ports Created: /<name>/soundsensor:out Sound Sensor output port

/<name>/sound:in Sound Stream input port

F.1.7 Face Detector - IHA modifications to opencv facedetect

Description: Detects faces in YARP images on a port using multiple HAAR cascades. Chooses

largest face if more than one is detected and outputs the coordinates on a YARP port.

Executable: facedetect

Files: iha facedetect/face detect.cpp Main executable

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

Configuration Options: To be set in configuration file

PORTS Group Group level; List of ports. Requires definitions for input, output and

coords ports.

CASCADES Group Group level; List of cascades.

Ports Created: Specified in config file. Opens an Input port for images, an Output port

for images and an output port for Coordinates of detected faces.
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F.1.8 iCub Control

Description: Control for the icub robot (ODE simulator currently) and Sensor Collector. As

well as providing the sendAction() function for the iCub robot, this module reads all

necessary sensor data including image data, motivation feedback data, sound data and

face detection data then consolidates them and writes them to a port.

Executable: iCub/icub control

Files: iCub/icub control.cpp Main executable

iCub/ICubActions.cpp Class for holding iCub action specifications

icub/ICubActions.h

icub/ICubSequence.h Class for holding iCub motor control sequences for actions

Execution Parameters: –file <file> configuration file

–hwconfig <file> hardware configuration file

–dbg <N> Debug level (0-60)

–connect to image <port> Connect to the specified image port on startup

–connect to coords <port> Connect to the specified port for detected face coordi-

nates on startup

–connect to reward <port> Connect to the specified port for reward data on startup

–connect to soundsensor <port> Connect to the specified sound sensor port on startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

action defs file String File in which action definitions are configured (default action defs.txt)

num image sensors x Int Number of image sensors to make from image - X direction

(default 8)

num image sensors y Int Number of image sensors to make from image - Y direction

(default 8)

sensordatarate Int Sensor data rate for output in ms (default 100)

Ports Created: /<name>/ac/action:out Action Advice output port

/<name>/sensor:out Sensor output port

/<name>/action:cmd Action Reader input port

/<name>/image:in Image input port

/<name>/coords:in Face Coordinates input port

/<name>/reward:in Reward input port

/<name>/soundsensor:in Sound Sensor input port
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F.1.9 iCub Action Selection Process

Description: Wrapper for the action selection process

Executable: icub action selection

Files: icub action selection.cpp Main executable

include/iCub/iha/action selection main loop.h Generic action selection loop. This

is the main process that takes in the nearest neighbour list and uses the roulette

wheel action selection process to generate action advice.

icub/ICubActions.cpp Class for holding iCub action specifications

icub/ICubActions.h

icub/ICubSequence.h Class for holding iCub motor control sequences for actions

Execution Parameters: –file <file> configuration file

–dbg <N> Debug level (0-60)

–connect to action <port> Connect to the specified action port on startup

–connect to dist <port> Connect to the specified nearest neighbour distance port on

startup

Configuration Options: To be set in configuration file

name String Base name for ports (default iha)

action defs file String File in which action definitions are configured (default action defs.txt)

neighbour radius Double Max radius of neighbourhood. (default 1.0)

temperature Double Starting temperature (affecting chance of random) (default 4.0)

temp dec Double Decrement of temperature per action step (default 0.002)

Ports Created: /<name>/ac/action:out Action Advice output port

/<name>/ac/currdist:in:<horizon> Input port for current experience neighbours
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IHA Process Diagram
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Figure G.1: IHA Process Diagram showing main processes and connections.
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eds, ‘Socially Intelligent Agents: Creating Relationships with Computers and

Robots’, Kluwer Academic Publishers, pp. 29–36.

Bovet, S. and Pfeifer, R. (2005), Emergence of delayed reward learning from sen-

sorimotor coordination, in ‘Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS)’, pp. 841–846.

Braitenberg, V. (1984), Vehicles: Experiments in Synthetic Psychology, A Brad-

ford Book MIT Press.

Breazeal, C. and Scassellati, B. (2000), ‘Infant-like social interactions between a

robot and a human caregiver’, Adaptive Behavior 8(1), 49–74.

Bruner, J. S. and Sherwood, V. (1975), Peekaboo and the learning of rule struc-

tures, in J. Bruner, A. Jolly and K. Sylva, eds, ‘Play: Its Role in Development

and Evolution’, New York: Penguin, pp. 277–285.

Byrne, R. W. and Whiten, A. (1988), Machiavellian Intelligence, Clarendon Press.

Clancey, W. J. (1997), Situated Cognition: On human knowledge and computer

representations, Learning in doing: Cognitive and compuational perspectives,

Cambridge University Press.

Conway, M. (1995), Flashbulb Memories, Essays in Cognitive Psychology,

Lawrence Erlbaum Associates.

Coolican, H. (1994), Research methods and statistics in psychology, 2 edn, Hodder

& Stoughton.

247



Crutchfield, J. (1990), Information and its metric, in L. Lam and H. Morris,

eds, ‘Nonlinear Structures in Physical Systems - Pattern Formation, Chaos and

Waves’, Springer-Verlag, New York, pp. 119–130.

Dautenhahn, K. (1994), Trying to imitate- a step towards releasing robots from

social isolation, in P. Gaussier and J.-D. Nicoud, eds, ‘Proceedings From Percep-

tion to Action Conference’, IEEE Computer Society Press, Lausanne, Switzer-

land, pp. 290–301.

Dautenhahn, K. (1996), Embodied cognition in animals and artifacts, in ‘Proc.

AAAI FS Embodied Cognition and Action’, AAAI Press, pp. 27–32. Technical

report FS-96-02.

Dautenhahn, K. (1999), Embodiment and interaction in socially intelligent life-

like agents, in C. L. Nehaniv, ed., ‘Computation for Metaphors, Analogy and

Agent’, Vol. 1562 of Springer Lecture Notes in Artificial Intelligence, Springer,

pp. 102–142.
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Tarapore, D., Lungarella, M. and Gómez, G. (2004), Fingerprinting agent-

environment interaction via information theory, in F. Groen, N. Amato,
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