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Abstract
Structures dynamic characteristics and their responses can change due to variations in system parameters. With modal
characteristics of the structures, their dynamic responses can be identified. Mode shape remains vital in dynamic analysis
of the structures. It can be utilized in failure analysis, and the dynamic interaction between structures and their supports
to circumvent abrupt failure. Conversely, unlike empty pipes, the mode shapes for pipes conveying fluid are tough to
obtain due to the intricacy of the eigenvectors. Unfortunately, fluid pipes can be found in practice in various engineering
applications. Thus, due to their global functions, their dynamic and failure analyses are necessary for monitoring their
reliability to avert catastrophic failures. In this work, three techniques for obtaining approximate mode shapes (AMSs) of
composite pipes conveying fluid, their transition velocity and relevance in failure analysis were investigated. Hamilton’s
principle was employed to model the pipe and discretized using the wavelet-based finite element method. The complex
modal characteristics of the composite pipe conveying fluid were obtained by solving the generalized eigenvalue problem
and the mode shapes needed for failure analysis were computed. The proposed methods were validated, applied to fail-
ure analysis, and some vital results were presented to highlight their effectiveness.
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Introduction

Indeed, the involvement of pipes for conveying fluid is
increasing on a daily basis and there is no sign that the
trend will cease or decline in the nearest future. This is
due to the frequent use of pipes for conveying fluid in
oil and water pipelines, marine risers, chemical plants,
nuclear industry, aerospace, irrigation, and municipal-
ity just to mention a few. These pipes are subjected to
flow-induced vibration during the operation as a result
of turbulence in the flow and this may easily cause pipe
failures. Thus, dynamic analysis of the pipes conveying
fluid is necessary for monitoring the pipes integrity to
avoid failure. Many investigators have worked on pipe

failure analysis using different techniques. Bhardwaj
et al.1 examined the reliability of the structure of a
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pipe-in-pipe in deep-waters under critical operating
conditions. In their study, the First-Order and Second-
Order, reliability techniques, and Monte Carlo
Simulation methods were employed. Chu et al.2 ana-
lyzed the failure of a steam pipe that has been in service
for more than one decade. Finite element analysis and
experimental methods were considered during the anal-
ysis. Majid et al.3 carried out the failure analysis of
eroded pipe using the computational fluid dynamics
and experimental methods. Some researchers have also
made use of machine learning and dynamic analysis in
the pipe failures analysis. For instance, Tang et al.4

investigated the plastic water pipe failure using
Bayesian network models in which a guided method
and automated learning algorithms were employed.
Also, Robles-Velasco et al.5 employed support vector
classification and logistic regression as predictive sys-
tems to predict water pipe failures. Ashrafizadeh et al.6

studied the crack failure of a gas pipe that has been in
service for roughly three decades. In their investigation,
dynamic analysis, first mode shape, and others were
considered. El-Gebeily et al.7 developed a method for
detecting pipe internal damage in which vibration
modal characteristics were employed and B-spline scal-
ing function was used to formulate the model. Other
investigations that have been carried out on pipes fail-
ure analysis can be found in Ying et al.,8 Rezaei et al.9

It can be observed in the above review that pipe
mode shapes have not been given much attention in the
failure analysis. However, with proper monitoring of
the pipe system, any pipe that has been compromised
due to internal damage, erosion or chemical attack, and
other factors can be detected through the mode shapes.
Since geometry can affect mode shapes, monitoring
mode shapes can be employed to avoid failure due to
the fact that a compromised pipe will display abnormal
mode shapes. As a result the majority if not all the fail-
ure types or modes observed or mentioned in the review
may be avoided. Nevertheless, unlike empty pipes,
dynamic analysis of the fluid pipes is difficult because
the undamped pipe will become damped as fluid starts
flowing through it. Consequently, complex eigenvalues
and eigenvectors will emerge and mode shapes con-
structions become complicated. A suitable technique
needs to be employed to be able to obtain mode shapes
that can be used in failure analysis, damage assessment,
shape estimation, and in order to avoid pessimistic
effects of vibration. While significant attentions have
been given to the techniques that can be employed to
obtain mode shapes of other structures,10–16 few
researchers have paid attentions to the methods for
obtaining the mode shapes of pipes conveying fluid.
Liu et al.17 utilized frequency response function based
technique to compute mode shapes of fluid pipe while
natural frequencies were obtained using a hybrid

analytical numerical technique based on the Transfer
Matrix Method. Yun-dong and Yi-ren18 investigated
the free vibration analysis of a pipe conveying fluid
with different boundary conditions using He’s varia-
tional iteration technique and the real part of complex
modes was employed to obtain mode shapes. Mediano-
Valiente and Garcia Planas19 studied the dynamics and
stability of clamped-pinned pipes conveying fluid using
eigenvalues of a Hamiltonian linear system and the nat-
ural frequencies and mode shapes employed in their
study were also obtained using ANSYS. Arjmandi and
Lotfi20 obtained the mode shapes of fluid-structure sys-
tems using an accelerated pseudo symmetric subspace
iteration method in conjunction with finite element pro-
gram developed for dynamic analysis of systems. Ryu
et al.21 employed the concept of quasi-mode shape to
examine unstable modal shapes associated with flutter
of viscoelastic cantilevered pipes conveying fluid
wherein extended Hamilton’s principle was used to
obtain equation of motion. Wang et al.22 investigated
the mode shapes of cantilevered pipes conveying fluid
at different flow velocity in which equation of motion
was solved using Differential Quadrature Method.
Zhou et al.23 studied the mode shapes of axially func-
tionally graded cantilevered pipes conveying fluid.
Their governing equations and the equations for
boundary conditions were also discretized using
Differential Quadrature Method. Sarkar and
Paidoussis24 utilized semi-analytical approach to obtain
the proper orthogonal modes of non-linear oscillation
of a cantilevered pipe with end-mass conveying fluid.

Regarding marine risers used widely for conveying
fluid, Alfosail et al.25 have obtained the natural fre-
quencies and mode shapes of a marine riser using
Galerkin approach in which Euler-Bernoulli beam the-
ory was employed to model the riser. Chen et al.26 uti-
lized differential transformation method to study
natural frequencies and mode shapes of marine risers
with different boundary conditions.

From the review, one can infer that more needs to be
done on the construction of mode shapes of structures
or pipes conveying fluid in order to be able to use them
to examine the integrity of the pipes regularly to avoid
plant down time, revenue loss, and catastrophic failure.
The work presented in Oke et al.27 was expanded in this
study, more AMSs were presented for different pipes at
different velocities, and these mode shapes were used to
investigate fluid pipe failure analysis. Hamilton’s princi-
ple was utilized to obtain the equation of motion of the
composite pipe conveying fluid. The equation was dis-
cretized using the wavelet-based finite element method
in which Euler-Bernoulli beam theory was employed.
The equation obtained was then expressed in state
space to obtain the generalized eigenvalue problem.
The AMSs used for failure analysis were then
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constructed from the complex modal characteristics
obtained for composite pipe conveying fluid by solving
the generalized eigenvalue problem.

Composite pipe conveying fluid system
formulation

As the fluid flows through the pipe (see Figure 1) with
inlet velocity v1 and outlet velocity v2, the fluid pipe
interaction will affect the system vibrational behavior
and may lead to failure. The strain energy U of the
laminated composite pipe element conveying fluid and
the total kinetic energy T (which is the summation of
kinetic energy of the composite pipe element and the
kinetic energy of the fluid element) can be expressed as
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in which H and M are stiffness and mass per unit
length of the laminated composite pipe element; Do and
Di are pipe outer and inner diameters; and r‘ and r‘ are
radius and density of ‘th layer. Besides, with stiffness
coefficients A11, B11, and D11, an equation utilized in
Oke and Khulief28 can be defined for healthy compo-
site pipe conveying fluid shown in Figure 1 as
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where R=(Di +Do)=4.

Equation of motion of composite pipe
conveying fluid

The Hamilton’s principle can be defined as
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Then, equation of motion for the laminated composite
pipe with fluid flow can be obtained through the simpli-
fication of equation (6) as

H(x) ∂
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∂x4
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+V
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where me =M(x)+mf . It should be noted that equa-
tion (7) contains four major terms: the pipe stiffness,
pipe inertia, Coriolis force, and centrifugal force that
arises due to fluid acceleration through the distorted
pipe curvature.

The finite element formulation of
composite pipe conveying fluid

Using the Euler-Bernoulli pipe element, equation (7)
has been discretized in order to solve it, wherein the
B-spline wavelet on the interval was used as it was in
Oke and Khulief.28 As a result, equation (7) can be
stated in a condensed form as

Figure 1. Laminated composite pipe conveying fluid.

Oke et al. 3



½M �ef€y ge + ½B�ef _y ge + ½K�efyge = f0g, ð8Þ

where

½M �e =
ðle
0

leme½TB�TfCgTfCg½TB�dz, ½B�e

=

ðle
0

2mf V ½TB�TfCgTfC0 g½TB�dz,

½K�e = ½Kp�e � ½Kc�e,

½Kp�e =
ðle
0

H
le

3
½TB�TfC

00 gTfC00 g½TB�dz , and ½Kc�e

=

ðle
0

1

le
mf V 2½TB�TfC

0 gTfC0 g½TB�dz:

Besides, equation (8) can be stated in state space using
the state vectors fzg and f _z g as
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These vectors can be expressed for harmonic motion as

fzg= fWgeivt, f _z g= ivfWgeivt: ð10Þ

By substituting equation (10) in equation (9), the gener-
alized eigenvalue problem can be obtained as

½�K� � l½ �M �½ �fWg= f0g, ð11Þ

where l= iv and v is frequency.

Now, the dimension of each matrix in equation (8) is
n 3 n while that of matrix in equation (11) is 2n 3 2n.

Numerical results and discussion

Here, AMSs of six pinned-pinned pipes (four composite
and two isotropic pipes) were examined and subsequent
failure analysis of one of them. The results obtained are
as follows:

Composite pipes

The composite pipes (P1 2 P2) defined in Table 1 that
have been considered by many investigators along with
pipe P3 were considered with fluid flow so as to study
their vibration behavior and AMSs. Pipe P3 uses the
stacking sequence given in Bauchau,29 and material
and geometric properties of P1 except length. In order
to validate the model, the fundamental frequency of
each pipe without fluid flow was firstly obtained and
the results obtained are 98.76, 33.42, and 56.48Hz
respectively. These results agreed with those available
in literature or aforementioned Refs. for P1 and P2. In
addition, the mode shapes for the first four frequencies
for these pipes are presented in Figure 2 and it can be
seen that they agreed with mode shapes of pinned-
pinned structures.

Moreover, each of these pipes was then studied one
after the other as the pipe conveying fluid at five differ-
ent velocities that are less than each pipe critical velo-
city Vc. The fluid used in this investigation was water
with density of 998:2 kg=m3 at all velocities considered.
The pipes that were initially undamped suddenly
became damped structures as a result of the fluid flow-
ing through them. Consequently, the 2n complex conju-
gate l and eigenvectors were obtained but these made
the mode shapes to become difficult to obtain as in
Figure 2. Nevertheless, by using any of the following
three methods: real part, imaginary part, and absolute
of complex eigenvectors; the AMSs were obtained from
complex eigenvectors. The AMSs obtained for the

Table 1. Composite pipes properties.

Property Pipe P1
27,30–32 Pipe P2

28,31,32 Pipe P3

Do 0.1282 m 0.1126 m 0.1282 m
Di 0.1256 m 0.1016 m 0.1256 m
Ply angles/stacking
sequence (o)

[90/45/245/06/90]
(inner to outer layers)

[ 6 545/54]
(inner to outer layers)

[0/ 6 45/0/45/0/45/0/ 6 45]
(inner to outer layers)

Length of pipe, L 2.470 m 2.00 m 3.00 m
E11 211 GPa 12.5 GPa 211 GPa
E22 24.1 GPa 7. 1429 GPa 24.1 GPa
G12 =G13 =G23 6.9 GPa 3.3194 GPa 6.9 GPa
Poisson ratio, n12 0.36 0.56 0.36
Density, r 1967 kg=m3 1730 kg=m3 1967 kg=m3
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pipes conveying fluid (damped pipes) at different
velocities are compared with their mode shapes (in
Figure 2) when they were empty pipes (undamped
pipes). The results obtained are as presented in Figures
3 to 7 for P1, Figures 8 to 12 for P2, and Figures 13 to
17 for P3 respectively, where ‘‘(a)’’ in Figures 3 to 7 is
the same as Figure 2(a), ‘‘(a)’’ in Figures 8 to 12 is the
same as Figure 2(b), and ‘‘(a)’’ in Figures 13 to 17 is the

same as Figure 2(c). It can be found that the mode
shapes for the pipes had been reduced generally when
compared to those available when they were empty.
Besides, at lower velocities, it is fascinating to see that
the mode shapes obtained for these pipes from the ima-
ginary part of their complex eigenvectors offered the
mode shapes that are similar to pinned-pinned pipes
mode shapes (see Figure 2). At the same time, the

Figure 2. Different pipes mode shapes for the first four frequencies: (a) P1, (b) P2, and (c) P3.

Figure 3. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 10 m/s.
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Figure 4. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 60 m/s.

Figure 5. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 70 m/s.

6 Advances in Mechanical Engineering



Figure 6. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 80 m/s.

Figure 7. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 90 m/s.
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Figure 8. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 10 m/s.

Figure 9. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 40 m/s.
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Figure 10. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 50 m/s.

Figure 11. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 60 m/s.
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Figure 12. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 70 m/s.

Figure 13. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at V = 10 m/s.
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Figure 14. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 40 m/s.

Figure 15. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 50 m/s.
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Figure 17. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 70 m/s.

Figure 16. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 60 m/s.
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absolute of the eigenvectors displayed similar mode
shapes in the positive side but the real part of eigenvec-
tors produced wrong mode shapes which cannot be
used for further analysis. However, one can observe
that as velocity increases, the real part of eigenvectors
gives the needed mode shapes, absolute of eigenvectors
continues displaying the mode shapes in the positive
side while the mode shapes from imaginary part are no
longer depict acceptable mode shapes.

Furthermore, it can be observed from these figures
that among the three methods examined for obtaining
mode shapes from the complex eigenvectors, mode
shapes from either absolute or imaginary part of eigen-
vectors can be used to study fluid pipe displacement,
failure, and other analyses at lower velocities.
Conversely, at higher velocities, the mode shapes from
absolute or real part of eigenvectors can be employed
for fluid pipe displacement, failure, and other analyses.
It becomes necessary to point out that the mode shapes
obtained from absolute eigenvectors that is consistent
at any velocity can be modified to look like Figure 2 by
changing the signs of the required areas. Thus, instead
of employing the mode shapes shown in Figure 2 that
are not correct mode shapes for the pipe conveying
fluid for failure and further analyses, AMSs obtained
from any of these methods can be utilized.

In addition, the very significant observation was
observed when acceptable AMSs for P1, P2, and P3

abruptly shifted from imaginary part to real part of
complex eigenvectors as velocity increases. It was
noticed further that around this phenomenon, one or
more of acceptable AMSs are presented by imaginary
part while the rest are produced by real part of complex
eigenvectors. This abrupt shift occurred between veloci-
ties of 60–70m/s (see Figures 4 and 5) for P1, between
40 and 50m/s (see Figures 9 and 10) for P2, and
between 40 and 50m/s (see Figures 14 and 15) for P3

respectively. Further examinations around these veloci-
ties revealed that the transition of the acceptable AMSs
from imaginary part to real part of complex eigenvec-
tors commenced at velocity greater than 64, 42, and
44m/s in that order for P1, P2, and P3. Interestingly,
velocity of 64m/s is closer to Vh of P1, 42m/s is closer
to Vh of P2 while 44m/s is also closer to Vh of P3.

Where Vh is the half of the critical velocity Vc and Vc is
the velocity at which fluid pipe will fracture or fail. The
details can be found in Table 2. If this table is looked
into critically, it will be observed that the transition
velocity Vt for each pipe is not far from the half of its
Vc. The Vt is the velocity at which first mode loses
shape in the imaginary part of the complex eigenvectors
and appears fully in the real part of complex eigenvec-
tors. Although, four modes were considered in this
study but Vt is related to only first mode because it will
occur first among all modes, it is the most destructive
mode, and it is also most important in the structural
dynamic analysis.

Furthermore, it can also be noticed from these fig-
ures that as velocity is closer to the transition velocity,
the mode shapes obtained from the imaginary part of
complex eigenvectors begin to lose their forms one after
the other while reverse was the case regarding the mode
shapes obtained from the real part. Hence, different
from what was reported in literature, it can be inferred
that neither only imaginary part nor only real part of
complex eigenvectors is sufficient to obtain acceptable
mode shapes of pipes conveying fluid at different
velocities.

Further, another pipe P4 was utilized to investigate
the effect of length on AMSs. This pipe has the same
properties as P1 but its Di,Do, and L are 0:292, 0:324,
and 32 m respectively. It is first frequency when it was
undamped is 1:4112Hz. When this pipe becomes fluid
pipe at different velocities, it was observed that mode
shapes and Vt behaved like those in the previous pipes.

Isotropic pipes

The observations under composite pipes extended this
investigation to isotropic pipes and as a result, the
model was modified to be able to handle isotropic
pipes. The pipes P5 and P6 considered are defined in
Table 3. The modified model was validated with empty
P5 and P6 and the first natural frequency for each pipe
was obtained to be 39.6296 and 0:8465Hz. To validate
the model further, the first frequency of P6 at 0m=s was
determined and the result obtained (0.6955Hz) is the
same as in Bao-hui et al.33 This shows the accuracy of

Table 2. Transition and critical velocities.

Pipe Transition conditions Critical conditions

Velocity
range (m/s)

Velocity
Vt

* (m/s)
First frequency
(Hz) for Vt

Velocity
range (m/s)

Velocity
Vc

* (m/s)
First frequency
(Hz) for Vc

P1 64–65 64.53 23.7233 140–141 140.08 0
P2 42–43 42.77 15.0382 84–85 84.09 0
P3 44–45 44.73 13.5749 97–98 97.30 0

*
Velocity with two decimal points.
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the model. The mode shapes for the first four frequen-
cies of these pipes when they were empty are as shown
in Figure 18 and it can be observe that they are also
agreed with mode shapes of pinned-pinned structures.

Now, as it was done under composite pipes, each of
these pipes was then examined one after the other as
the pipe conveying fluid at five different velocities that
are less than each pipe critical velocity Vc. The AMSs
obtained for these pipes conveying fluid at different
velocities are compared with their mode shapes
(in Figure 18) when they were empty pipes. The results
obtained are as presented in Figures 19 to 23 for P5,
and Figures 24–28 for P6 respectively where ‘‘(a)’’ in
Figures 19 to 23 is the same as Figure 18(a) and ‘‘(a)’’
in Figures 24 to 28 is the same as Figure 18(b). The
same things observed in figures for composite pipes
were also observed in figures for isotropic pipes. The
details can be found in Table 4. It will be noticed in this
table that the transition velocity Vt for P5 is not far
from its Vh as in Table 2 unlike that of P6 that is away
from Vh but it is closer to Vh when compare to Vc.

Moreover, in all the six pipes considered, it was
observed that the AMSs needed for pipe failure analysis
can be obtained as follows: imaginary part of complex
mode shapes will give AMSs at lower fluid velocity, real
part of complex mode shapes will give AMSs at higher
fluid velocity while both imaginary and real parts are
required to obtain AMSs around transition velocities.

Pipes failure analysis

The mode shapes obtained under different pipes are
needed for successful failure analysis based on the velo-
city of the fluid in the pipe under consideration. It
should be noted that all the pipes that have been consid-
ered above are healthy pipes and AMSs obtained at dif-
ferent velocities depict the actual shapes of such mode
shapes. However, these mode shapes will not have the
shapes of actual mode shapes once the integrity of any
of these pipes (see Figure 29 ) is compromised. The pipe
defect can grow in radial or longitudinal direction or
both as time passes by. Thus, if the cross-sections of the
region with and region without defect in Figure 29 are
expanded they can be presented as shown in Figure 30.
In this figure, to, tn, td, and ld are original pipe thickness,
thickness of the region not affected by defect, thickness
of defected region, and length of the defect along pipe
span respectively. The pipe defect could form any shape
but in this work, the defect is assumed to be circular for
simplicity as shown in Figure 30(c). The mass and stiff-
ness of the region with defect will continue to change as
defect shape increases while the volume of the fluid at
the region will increase.

As a case study, pipe P2 was considered as a pipe
with defect wherein td = to=2 m; ld = L=10 m; and
lc = L=4, L=2, and 4L=5 m where lc is the defect location
along the pipe span. The frequencies of this defected
pipe as an empty and as a pipe conveying fluid are pre-
sented in Tables 5 and 6 in that order. The effects of
the defect on the pipe can be seen in both tables and
these will continue as the defect grows till the failure
eventually occurs.

Furthermore, the presence of the defect in the pipe
can be noticed in the pipe mode shapes in which they
will be deformed unlike when the pipe is healthy. This
deformation will appear around the location where
defect is present along the pipe span. Figures 31 to 33

Table 3. Isotropic pipes properties.

Property Pipe P5 Pipe P6
33

Do 0.1282 m 0.324 m
Di 0.1256 m 0.292 m
Length of pipe, L 3.00 m 32.00 m
Modulus of elasticity, E 210 GPa 210 GPa
Poisson ratio, n 0.3 0.3
Density, r 8200 kg=m3 8200 kg=m3

Figure 18. Different pipes mode shapes for the first four frequencies: (a) P5 and (b) P6.
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Figure 19. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 10 m/s.

Figure 20. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 70 m/s.
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Figure 21. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 80 m/s.

Figure 22. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 90 m/s.
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Figure 23. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 100 m/s.

Figure 24. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 10 m/s.
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Figure 25. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 50 m/s.

Figure 26. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 60 m/s.
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Figure 28. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 78 m/s.

Figure 27. (a) Mode shapes for empty Pipe; (b–d) are imaginary, real, and absolute mode shapes for pipe conveying fluid at
V = 70 m/s.
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show the new deformed mode shapes of Figure 8(b)
and (d) while Figures 34 to 36 display the new deformed
mode shapes of Figure 11(b) to (d) for pipe P2 when its
integrity has been compromised with internal defect as
shown in Figure 29. This defect may occur due to ero-
sion, chemical attack or other factors at different loca-
tions along the pipe span. Once this occurred, the pipes
can be marked for maintenance or replacement to pre-
vent total failure and its consequences.

Table 4. Isotropic pipes transition and critical velocities.

Pipe Transition conditions Critical conditions

Velocity
range (m/s)

Velocity
Vt

* (m/s)
First frequency
(Hz) at Vt

Velocity
range (m/s)

Velocity
Vc

* (m/s)
First frequency
(Hz) at Vc

P5 73–74 73.64 17.5938 146–147 146.20 0
P6 50–51 50.24 0.5263 78–79 78.30 0

*
Velocity with two decimal points.

Figure 29. Pipe with internal defect.

Figure 30. Cross-sections of different regions of pipe with
internal defect: (a) cross-section of region without defect, (b)
cross-section of the region with defect, and (c) pipe defect and
its width.

Table 5. Frequency of empty pipe P2 with defect at different
locations.

S/N Frequency of
healthy pipe
P2 (Hz)

Frequency of pipe P2 with defect (Hz)

lc = L=4 m lc = L=2 m lc = 4L=5 m

1 33.4224 32.9600 32.5790 33.0873
2 133.6896 131.6241 133.5404 131.6785
3 300.8017 299.4132 298.8008 298.6914
4 534.7590 532.8752 532.8749 533.2888
5 835.5622 835.0721 838.5242 831.6705

Table 6. Frequency of pipe P2 conveying fluid with defect at different locations.

Velocity (m/s) Pipe type Frequency (Hz)

f1 f2 f3 f4 f5

0 Healthy pipe 17.7944 71.1778 160.1500 284.7113 444.8621
Pipe with defect lc = L=4 m 17.1242 66.6366 155.3530 281.9764 430.8833

lc = L=2 m 16.5461 70.9949 150.9925 281.9795 424.9021
lc = 4L=5 m 17.3191 66.8735 152.0967 278.3392 438.5106

10 Healthy pipe 17.6508 71.0684 160.0501 284.6162 444.7698
Pipe with defect lc = L=4 m 16.9739 66.5206 155.2505 281.8803 430.7889

lc = L=2 m 16.3911 70.8842 150.8905 281.8838 424.8072
lc = 4L=5 m 17.1709 66.7569 151.9919 278.2423 438.4172

60 Healthy pipe 12.0034 67.1654 156.5336 281.2786 441.5369
Pipe with defect lc = L=4 m 10.9959 62.3643 151.6402 278.5070 427.4814

lc = L=2 m 10.0818 66.9386 147.2962 278.5277 421.4819
lc = 4L=5 m 11.3155 62.5753 148.3008 274.8427 435.1400
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Figure 32. (a, b) Imaginary and absolute mode shapes for pipe with internal defect at lc= L/2 and conveying fluid at V = 10 m/s.

Figure 31. (a, b) Imaginary and absolute mode shapes for pipe with internal defect at lc = L/4 and conveying fluid at V = 10 m/s.

Figure 33. (a, b) Imaginary and absolute mode shapes for pipe with internal defect at lc= 4L/5 and conveying fluid at V = 10 m/s.
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Conclusions

Mode shapes are crucial in dynamic analysis of the
structures. Three different techniques for obtaining
AMSs of pipes with flowing fluid and their characteris-
tics as the fluid velocity increases were presented, and
their application in the pipe failure analysis were

investigated in this work. It was observed that when
there is substantial compromise in the pipe integrity
due to erosion, chemicals in the fluid, corrosion, and so
on; the mode shapes will be deformed. The real defor-
mation that will indicate that the pipe has been com-
promised will appear in one or more of the three
methods presented based on the fluid velocity. In this

Figure 34. (a–c) Imaginary, real, and absolute mode shapes for pipe with internal defect at lc=L/4 and conveying fluid at V=60 m/s.

Figure 36. (a–c) Imaginary, real, and absolute mode shapes for pipe with internal defect at lc = 4L/5 and conveying fluid at V = 60 m/s.

Figure 35. (a–c) are imaginary, real, and absolute mode shapes for pipe with internal defect at lc = L/2 and conveying fluid at
V = 60 m/s.
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study, at lower velocities this actual deformation was
noticed in the mode shapes from imaginary part or
absolute of complex eigenvectors while it appeared in
the mode shapes from the real part or absolute of com-
plex eigenvectors at higher velocities. On the contrary,
the deformation emerged in the mode shapes from all
techniques around transition velocities. Once the actual
deformation is noticed, the pipe under consideration
can be marked as the pipe that will fail sooner or later
if necessary maintenance is not done.

Hence, the findings in this study support the initia-
tive that AMSs can be employed to assess or monitor
fluid pipe integrity in order to reduce revenue loss, leak-
age, plant shutdown time, and prevent catastrophic
failures.
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