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ABSTRACT Non-Intrusive LoadMonitoring aims to extract the energy consumption of individual electrical
appliances through disaggregation of the total power consumption as measured by a single smart meter
in a household. Although when data from the same household are used to train a disaggregation model
the device disaggregation accuracy is quite high (80% - 95%), depending on the number of devices,
the use of pre-trained disaggregation models in new households in most cases results in a significant
reduction of disaggregation accuracy. In this article we propose a transferability approach for Non-Intrusive
Load Monitoring using fractional calculus and normalized Karhunen Loeve Expansion based spectrograms
followed by a Convolutional Neural Network in order to generate device characteristic features that do
not change significantly across different households. The performance of the proposed methodology was
evaluated using two publicly available datasets, namely REDD and REFIT. The proposed transferability
approach improves the Mean Absolute Error by 13.1% when compared to other transfer learning approaches
for energy disaggregation.

INDEX TERMS Non-intrusive load monitoring, energy disaggregation, transferability, transfer NILM,
fractional calculus, Karhunen Loeve expansion.

I. INTRODUCTION

NON Intrusive Load Monitoring (NILM) aims to extract
the power consumption of each appliance of a build-

ing or a household using as input only the aggregated con-
sumption signal [1]. While NILM is intrinsically a source
separation problem three different approaches have been
used to solve the NILM problem. First, pattern matching
(elastic matching) techniques, which are detecting device
signatures in the aggregated power consumption signal have
been proposed [2]–[5]. Second, source separation methods,
such as matrix and tensor factorization as well as sparse
coding, have been utilized separating base components and
activations [6]–[9]. Third, machine learning and deep learn-
ing based models have been used to generate data driven
models to estimate the power consumption of devices from
the aggregated signal [10]–[13].

The latest advances of machine learning and the
development of big datasets have led to successful deep
learning based NILM methodologies. NILM architectures
using Convolutional Neural Networks (CNNs) [14], Long-
Short-Term-Memory (LSTM) [15] and Recurrent Neural

Networks (RNNs) [16] have been proposed in the literature.
In detail, a causal CNN with an optimization based on gate
dilation was presented in [17] and a concatenated CNN
approach for high sampling frequencies was proposed in [18].
As regards LSTM, a bidirectional approach with optimization
on the forward and backward path, as well as Bayesian
hyper-parameter optimization was presented in [12]. RNNs
have been used in combination with convolutional layers
in [19] and using deep RNNs in [16]. Additionally, latest
research has focused on Generative Adversarial Networks
(GANs) [20], [21] and bidirectional Transformers to incor-
porate self-attention mechanisms and to further improve the
performance of the disaggregation algorithm [22].

Specifically, the above approaches have been only evalu-
ated on the same dataset, thus with splitting of testing and
training data from the same dataset, i.e. for non-transferability
setups. However, as the ground-truth appliance signals are
expensive to obtain [23], the transferability capability of a
NILM architecture is crucial to be implemented efficiently
and cost-effective in an actual smart-meter. Therefore, the
more recent evaluations have considered the transferability
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capability of the NILM architecture. However, only few
papers provide distinct discussions on the specific case of
transfer learning in the context of NILM [23]–[27] based
on the usage of real data. In detail, in [27] an approach
based on voltage/current-trajectories with dedicated feature
colouring and usage of image-processing deep learning mod-
els is presented. However, the approach is only evaluated on
appliances signals and not on the aggregated signal. In [25] a
comparison of Gated Recurrent Unit (GRU) and CNN is per-
formed utilizing a two-branchmodel layout, reporting similar
performances for GRU and CNN with an advantage in terms
of complexity for GRUs. However, [25] reports performances
only for the transferability setup, thus the performance
decrease compared to a non-transferability setup cannot be
evaluated. Specifically, in [23], [26] (with [23] being an
extension of [26]) explicit discussions on feature invari-
ance for NILM are provided and a sequence-to-point (s2p)
architecture is proposed in order to efficiently train a CNN
model for transfer learning in NILM, reporting performances
and comparisons for transferability and non-transferability
setups.

In this work the idea of having invariant features for the
same appliances from different data, as initially discussed
in [23], will be extended by utilizing a time-frequency rep-
resentation based on fractional KLE features with additional
post-processing. The contribution of this paper is threefold.
First, a definition of feature invariance in the context of NILM
is presented, with consideration to the physical nature of the
appliances. Second, a methodology for transfer learning in
NILM based on invariant features will be presented. Third,
a discussion on the most relevant topics for transfer learning
in NILM will be provided, namely amount of training data,
impact of normalization and algorithm convergence.

The remainder of this paper is organized as follows:
In Section II an introduction about transferability for NILM
is provided. In Section III the proposed method is pre-
sented. In Section IV the experimental setup is described and
in Section V the results are presented. Finally, discussion
is provided in Section VI and the article is concluded in
Section VII.

II. TRANSFERABILITY FOR NILM
As transferability approaches are a relatively recent direction
within the area of NILM, only few approaches have been
discussed in the literature [23]–[27]. Specifically, most of
the proposed approaches investigate previously published
architectures in terms of their transferability capability and
evaluate their performance on cross domain learning [23].
However, in order to achieve high accuracies for transfer
NILM systems, the architecture and input feature vectors
must be specifically optimized for the NILM problem,
in order to enable accurate cross domain learning. The quali-
tative description of such an architecture is presented below.

Let’s consider two different devices, namely a fridge
(FIGURE 1a) and a washing machine (FIGURE 1b), for
two different manufactures (e.g. Bosch, Siemens, Samsung,

etc.) each. First, considering the time domain signal for both
fridges (FIGURE 1a (i)/(ii)) it can seen, that their power
consumption values are different even though they operate
in the same state. In detail fridge one consumes 75 W
(FIGURE 1a (i)) in steady-state while fridge two consumes
100W (FIGURE 1a (ii)), thus a difference in scaling along the
y-direction is observed. Similar observations can be made for
the washing machine (FIGURE 1b (i)/(ii)). Second, there are
possible shifts along the time axis, e.g. on/off transitions of
the fridge or the washing machine might not be time aligned
(FIGURE 1a (i)/(ii)). Third, the state probabilities are very
different for the same device for each brand respectively,
e.g. fridge one has by far longer off durations than fridge
two (FIGURE 1a (v)/(vi)). Based on the above the following
three aspects must be considered, for an accurate modelling
of transfer learning in NILM:

1) Different scaling in y-direction through different power
consumption values of the same device operating in the
same state but being from a different manufacturer.

2) Time shifts along x-direction through different tempo-
ral patterns in different households.

3) Different state probabilities through different uti-
lization approaches of the same device in different
households.

To account for these three aspects, the following three
approaches are proposed in order to efficiently model
the differences of the same appliances from a different
manufacturer.

A. SCALING POWER CONSUMPTION
First, let’s assume that similar devices from different man-
ufactures are based on very similar electrical circuits. This
assumption is reasonable as most devices, e.g. fridges or
washing machines, have the same electrical components, e.g.
single-phase electrical motor in case of a fridge, and these
components only vary in size, e.g. according to the volume
of the fridge or washing machine. From power electronics
theory it is know, that the output waveforms in the frequency
domain only depends on the electrical architecture and scales
with the fundamental component of the current [29]. There-
fore, in order to accurately capture different scaling along
the y-direction the appliances’ power consumption should be
transfer into the frequency domain and then be normalized
to its fundamental component. The effect of normalization
in the frequency domain can be seen in FIGURE 1a (iii)/(iv)
and FIGURE 1b (iii)/(iv) for the fridge and washing machine
respectively. FIGURE 1a (iii)/(iv) and FIGURE 1b (iii)/(iv)
illustrate that the harmonics of two different brands of the
same device are much closer after normalization. In this
paper normalized KLE representation will be used to calcu-
late frequency transforms, since it works well especially for
low-frequency signals [11], [30].

B. TIME-SHIFTS
Second, time-shifts along the x-direction should be
accounted through incorporating temporal information in
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FIGURE 1. Comparison of two different appliances for two different brands respectively. a) Fridge and b) washing machine [28].

the architecture. Several different approaches have been
proposed in literature to incorporate temporal information,
including LSTM architectures [12], temporal concatena-
tion [31], gate dilated CNNs [17], as well as fractional
calculus [32]. In this implementation fractional calculus as
proposed in [32] will be utilized to account for tempo-
ral shifts as it has been proven to work well with CNN
architectures [32].

C. STATE PROBABILITIES
Third, as discussed before, a similar device from a different
manufacture might show different state probabilities. This is
illustrated in FIGURE 1a (v) and FIGURE 1b (v) for the
fridges and washing machines respectively. However, these
differences are mostly caused by the user, who is defining
the ratio of on/off states, e.g. how often a washing machine
is used per week. Conversely, once a device is started the
internal active states only depend on the device itself, e.g.
a washing machines runs through a cycle of rinse, wash and
spin [10]. Therefore, state probabilities should only consider
active states as they are device dependent and not user depen-
dent. An example of the effect of not considering inactive
states is illustrated in FIGURE 1a (v) and FIGURE 1b (v),
showing that active states are much closer when not consid-
ering inactive states. In order to account for this behavior, the
post-processing of the proposed architecture utilizes active
device states only.

III. PROPOSED ARCHITECTURE
Let’s consider a set of M -1 known devices each consuming
power pm with 1 ≤ m ≤ M , the aggregated power pagg

measured by the sensor will be:

pagg = f (p1, p2, . . . , pM−1, e) =
M−1∑
m=1

pm + e =
M∑
m=1

pm

(1)

where e = pM is noise generated by one or more unknown
devices and f (·) is the aggregation function. In NILM the goal
is to find precise estimations p̂m of the power consumption of
each device m using an estimation method f −1(·), i.e.,

P̂ = {p̂1, p̂2, . . . , p̂M−1, ê} = f −1(pagg) (2)

Based on the discussion in Section II, the proposed
architecture includes fractional calculus features to account
for time shifts, normalized KLE features to account for
scaling in y-direction and state correction considering only
active states in the post-processing. Therefore, Eq. 2 can
be reformulated in terms of feature vectors describing the
frequency content in terms of magnitudes A, and phase
angles 8.

P̂ = {p̂1, p̂2, . . . , p̂M−1, ê} = f −1(A,8) (3)

In detail, the architecture illustrated in FIGURE 2 consists
of framing, calculation of fractional power values, frequency
transformation using KLE with according normalization,
CNN regression for each target device m to estimate the
corresponding power consumption p̂m, and post-processing
using state correction. Detailed mathematical description of
each stage is given below.
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FIGURE 2. Block diagram of the proposed transferability NILM setup [28].

A. FRACTIONAL CALCULUS
Considering the aggregated signal pagg(t)∀t : t ∈

{1, . . . ,T }, extending the derivation to a non-integer order
is given by the fundamental operator t0D

α
t where [t0, t] is the

time frame considered and α ∈ R is the fractional order [33].
Based on the above and according to Gruenwald-Letnikov
[34] the fractional derivative of pagg can be written as:

t0D
α
t = lim

h→0

1
hα

bkc∑
j=0

(−1)j
(
α

j

)
p(t − jh) (4)

where k = t−t0
h and bkc is the integer part of k , h is the step

width and
(
α

j

)
are the binomial coefficients defined by the

factorial expansion of the Gamma function, 0(x), i.e.(
α

j

)
=

α!

j!(α − j)!
=

0(α + 1)
0(j+ 1)0(α − j+ 1)

(5)

B. NORMALIZED KLE
ConsideringK fractional componentsαk with k ∈ {1, . . . ,K }
the fractional power signal can be written as Dαkpagg. For
transforming each fractional signal Dαkpagg to the frequency
domain the KLE transform was used similar as in [35].
Therefore, let Pα denote one frame τ of the fractional signal
Dαkpagg with frame length L. Specifically, let Ñ with (Ñ < L)
be the order of the ACM used to separate each frame of the
fractional signalPα into its Subspace Components (SCs). The
ACM 9PP of signal Pα can be written as in [35]:

9PP =

 RPP(0) . . . RPP(Ñ − 1)
...

. . .
...

RPP(Ñ − 1) . . . RPP(0)

 (6)

where RPP(n) with 0 < n < (Ñ − 1) is the auto-correlation
function of the signal Pα and n is a positive integer indicating
the sample. Through eigenvector decomposition 9PP can
then be decomposed into Ñ mutually orthonormal eigenvec-
tors Q = [q0, q1, . . . , qÑ−1], where Q is unitary (QTQ =

QQT = I ). The KLE transform and its inverse can be written
as in Eq. 7 and Eq. 8 for each fractional component α.

P̃α = QTPα (7)

Pα = QP̃α =
Ñ−1∑
i=0

qTi Pαqi (8)

where P̃α ∈ RÑ is the KLE-transformed signal of Pα and the
uncorrelated SCs of P̃α are defined as pi = qTi Pαqi, where
pi can be approximated by the coefficients of FIR filter [36].
Sinusoidal shape is assumed for each SC [35], thus P̃α can be
written in terms of magnitudes Aα ∈ RÑ , and phase angles
8α ∈ RÑ . Furthermore, for each fractional component α a
KLE transform was calculated resulting in a time-frequency
representation ofK time-slices and Ñ frequency components,
i.e. A ∈ RÑ×K and 8 ∈ RÑ×K . Batch normalization was
applied to KLE spectrum magnitude and phase as discussed
in Section II.

C. POST-PROCESSING
To consider that the same appliance type can have different
state probabilities, which might depend on outer parameters,
e.g. user behavior, only the ’on’ states of the appliance estima-
tions are post-processed. An appliance is considered as being
’on’, if the estimation of its active power consumption p̂m is
above a threshold θ . To determine the active device states,
fuzzy c-means were used similar as in [37].

If the initial prediction of the regression model is too far
from any cluster center of the c-means algorithm, i.e.:

min
1≤n≤N

∥∥p̂′ − snm∥∥ (9)

where p̂′ is the initial estimation of the regression model, ε an
appliance specific error margin and snm is the cluster-center of
nth state of themth appliance calculated by the fuzzy c-means,
the estimation was updated as follows:

p̂m =

{
p̂′, if p̂′ ≤ ε
snminm , if p̂′ > ε

(10)
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TABLE 1. Short description of the REDD and REFIT dataset.

TABLE 2. Data splits for REDD and REFIT dataset.

where snminm is the nth state of the mth appliance fulfilling the
minimum condition in Eq. 9. In Eq. 10 only active device
states are post-processed according to the discussions in
Section II.

IV. EXPERIMENTAL SETUP
The NILM architecture based on fractional calculus and KLE
as described in Section III was evaluated using the datasets
and regression algorithm presented below.

A. DATASETS
The proposed architecture was evaluated using two different
datasets, namely REDD and REFIT [38], [39]. These datasets
were chosen for two reasons. First, REDD was chosen as it is
most commonly used in the energy disaggregation task, thus
the proposed architecture is evaluated on the REDD dataset
to show its performance on a classical (non-transferability)
approach, and compare it with the existing literature. The
REFIT datasets was chosen as it is ideal for training a trans-
ferability approach as it contains 20 different houses with
similar appliances, but from different suppliers (e.g. fridges
from Samsung, Bosch, Beko, etc.). Short description of the
datasets can be found in Table 1.

In the previously published literature mostly five appli-
ances are considered for disaggregation [10], namely kettle
(KT), microwave (MW), dish washer (DW), fridge (FR) and
washing machine (WM), the study was limited to these five
appliances. Furthermore, the data split of the transferability
setup was based on these five appliances, in order for all these
appliances to appear in the training, validation and testing
data respectively. The splits are tabulated in Table 2.

It must be noted that the data was not further modified, e.g.
larger gaps in the data were not removed, in order to provide
a realistic scenario for the transferability setup. Furthermore,
the data was normalized using means-std normalization using
the same values as in [23].

B. CNN-STRUCTURE AND MODEL PARAMETRIZATION
For the regression stage a two-dimensional CNN was used,
similar as in [23]. Similarly to [23] one model per device
was trained using relu activations for all intermediate lay-
ers and a linear activation in the last layer. Moreover, the
one-dimensional kernels were replaced by two-dimensional

TABLE 3. Selected CNN structure with convolutional layers of
the form Conv2d (Filters, Kernel, Padding, Strides).

TABLE 4. Parameter optimization of the CNN model with
different numbers of SCs (Ñ) and fractional components K . Best
performances are shown in bold.

TABLE 5. Hyper-parameters of the CNN model and parameters of
the Adam solver, similar as proposed in [23].

ones, to account for the two-dimensional inputs (time-
frequency representations) of the proposed method. There-
fore, the notation of the kernel-size ’x’ refers to the
two-dimensional kernel (x,x). The free parameters are shown
in Table 3.

The number of fractional signals K and the number of sub-
space components Ñ , which are defining the input size, were
optimized using grid search on a bootstrap dataset for both
the conventional and the transferability setup. The results for
the conventional setup are tabulated in Table 4.

As can be seen in Table 4 the optimized parameters were
found to be K=8 and Ñ=64. Conversely, for the transferabil-
ity setup the optimal framelength, and thus number of SC
components was found to be Ñ=256. This is in line with the
work in [23] indicating that transferability approaches need a
large framelength of input samples to account for the local
differences in appliances signals. TensorFlow was used to
train the models. In detail, the Keras backend was used utiliz-
ing the Adam optimizer for the training of each model. The
hyper-parameters of the model, as well as the parametrization
of the Adam optimizer, are tabulated in Table 5.
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TABLE 6. Six evaluated experimental protocols including their
features and dimensionality D (dimensionality for the
transferability setup in brackets).

C. EXPERIMENTAL PROTOCOLS
A total of six experimental protocols were designed, one
with respect to the use of raw active power samples similar
as in [23], serving as a baseline protocol, and five addi-
tional ones with respect to the discussions in Section II
and Section III. In detail, the second and third protocol
use the magnitudes and phases after the fractional KLE
transformation. The fourth protocol uses both magnitudes
and phases of the fractional KLE, while protocol five uses
additionally the raw samples after the fractional calculation.
Protocol six applies additional post-processing as discussed
in Section III-C. The six protocols, including their dimen-
sionality, are tabulated in Table 6.

V. EXPERIMENTAL RESULTS
The architecture presented in Section III was evalu-
ated according to the experimental setup described in
Section IV. In order to provide accurate comparisonwith non-
transferability setups, the performance was evaluated in terms
of estimation accuracy (EACC ), as proposed in [38].

EACC = 1−

∑T
t=1

∑M
m=1 |p̂

m
t − p

m
t |

2
∑T

t=1
∑M

m=1 |p
m
t |

(11)

where p̂m is the estimated power, T is the number of disaggre-
gated frames and M is the number of disaggregated devices.
Furthermore, to compare with transferability approaches
previously published in the literature, additional accuracy
metrics’ namely Mean Absolute Error (MAE) and normal-
ized Signal Aggregated Error (SAE) are introduced.

MAE =
1
T

T∑
t=1

|p̂tm − p
t
m| (12)

SAE =
|Em − Êm|

Em
(13)

where Em denotes the total energy consumption of the mth

appliance, i.e. Em =
∑T

t pm(t) · Ts, and Êm denotes
its estimated value. The results are presented for both the
conventional disaggregation setup, without consideration of
transferability in Section V-A, as well as for the transferabil-
ity setup in Section V-B.

TABLE 7. Disaggregation results in terms of EACC for the REDD
dataset using four/five appliances and the conventional setup.
Best performances are shown in bold.

TABLE 8. Comparison of the disaggregation accuracies for five
appliances of the REDD-2 dataset.

A. CONVENTIONAL SETUP
For the conventional setup, the houses 1-4 and 6 of the
REDD dataset have been used. Specifically, house 5 has been
removed due to its significant short monitoring duration [40].
For each house the data has been split in half, with the first
half being used for training and the second half for testing
respectively. The results are tabulated in Table 7.

As can be seen in Table 7 the performance increase along
the different protocols, starting from 86.2% for the baseline
protocol, using only a frame of active power samples, and
reaching 89.8% when utilizing all features. An exception is
protocol #−3 where only phase angles are used, this protocol
shows significantly lower performances, which is in line
with the work in [41] reporting low accuracies for NILM
setups using phase angles. Additional post-processing further
increase performance by 0.3%, reaching an average perfor-
mance of 90.1%. In order to compare the proposed archi-
tecture with the literature considering non-transferability
approaches the work is compared in Table 8 with the three
best performing approaches using house 2 of the REDD
dataset and the estimation accuracy as performance measure.

As can be seen in Table 8 the proposed approach out-
performs all other approaches except of the Sparse HMM
proposed in [10].

B. TRANSFERABILITY SETUP
In a further step, we evaluate the proposed transferability
setup according to the data splits tabulated in Table 2, the
results on device level are presented for REDD and REFIT
in Table 9 and Table 10 respectively. To have better compa-
rability with other transferability approaches the results are
presented in terms of MAE instead of EACC .
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TABLE 9. Disaggregation results in terms of MAE for the REDD
database using four appliances and the transferability setup.
Best performances are shown in bold.

TABLE 10. Disaggregation results in terms of MAE for the REFIT
database using five appliances and the transferability setup.
Best performances are shown in bold.

TABLE 11. Disaggregation results comparison in terms of MAE
and SAE for the REDD and REFIT database using four/five
appliances and the transferability setup. Best performances are
shown in bold.

As can be seen in Table 9 and Table 10 the MAE is being
reduced along the experimental protocols, with exception of
protocol #3, similar as for the conventional disaggregation
setup. In detail, the average MAE is reduced from 16.8 to
12.8 for the REDD database, while a reduction from 40.7 to
26.0 is observed for REFIT respectively. In detail, the most
significant reductions of MAE are observed for the DW and
the FR in the REDD dataset (55.4% and 30.2%) and for the
DW and the WM in the REFIT dataset (48.6% and 39.2%).
Moreover, to assure exact comparison with the previously
published literature, the following results are recalculated
using the data splits from [26] for REDD and [23] for
REFIT. To assure fair comparison protocol #5 is used and
post-processing or state-correction is omitted as neither [26]
nor [23] use a knowledge based post-processing after the
regression stage. The results are tabulated in Table 11.

As can be seen in Table 11 the proposed approach outper-
forms the approaches from [23] on average reducing theMAE
and SAE values by 3.4 and 0.11 for REDD and 1.46 and

0.39 for REFIT respectively. These reductions being equal
to 13.1% and 40.7% for REDD and 10.6% and 55.7% for
REFIT. Again, the most significant performance improve-
ment can be found for the FR, WM and DW.

It must be noted that there are three instances where the
proposed approach only reaches roughly equal performance
for one of the performance measures, namely for the MW
and DW in the REDD database and for the MW in the
REFIT database. In detail, for the MW in the REDD database
the MAE is improved (+2.73), while the SAE is slightly
reduced (−0.03). This indicates that the proposed approach
assigns less energy in total (worse SAE), but with a higher
accuracy (betterMAE), thus having a better false positive rate
compared to [23]. A similar observation can be made for the
MWsetup of the REFIT database showing an improvement of
MAE (+1.92) and a reduction of SAE (−0.02). Conversely,
for the DW in the REDD database theMAE values are almost
equal with a significantly better SAE value for the proposed
approach, indicating that the approach in [26] has a higher
false-negative rate.

VI. DISCUSSION
Further, to the experimental results discussed in Section V,
three topics, which are crucial for transferability approaches,
are discussed. In detail, the impact on training data
is discussed in Section (Section VI-A), the impact on
normalization is discussed in Section (Section VI-B) and the
convergence and real-time capability is discussed in Section
(Section VI-C).

A. IMPACT ON TRAINING DATA
With transferability approaches the impact on training data
on the performance of the model is crucial, since a transfer
model must capture the appliance signatures from a differ-
ent data domain [23]. In order to investigate the effect of
different amounts of training data, the MAE for different
amounts of data is displayed for the proposed protocol #5
as well as for the approach in [23], for a conventional and a
transferability setup respectively. In detail, the data from the
REDD dataset was used, utilizing REDD-1 for testing and
REDD-2,3,4,5,6 for training in case of the transferability
approach, while REDD-1 was split in a training and testing
set for the conventional approach respectively. The results are
illustrated in FIGURE 3.

As illustrated in FIGURE 3 the proposed approach outper-
forms the reference for both the conventional and the transfer
approach, showing a total reduction of MAE loss equal to
0.02 (13.3%) and 0.03 (9.9%) respectively at the end of the
training. In detail, the proposed approach shows an almost
constant improvement for the non-transferability approach,
while the advantage of the transfer approach is most signif-
icant above 700 k data-samples. Moreover, it can be seen
that the MAE loss decreases smoothly for the conventional
approach, while for the transfer approach both protocol #5
and [23] show an increase of MAE between 700-900 k data
samples. This is probably due to using house five of the
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FIGURE 3. Impact of training data on two different transfer
approaches (protocol 5 and [23]) for a conventional (non-trans)
and a transfer (trans) approach respectively.

REDD dataset for training, which is normally excluded due
to large gaps and especially short monitoring duration [40],
leading to an increase of the MAE scores. However, it can
also be seen that the proposed protocol #5 has a significantly
smaller increase in MAE than [23], thus being more robust
against the negative impact of using REDD-5 during the
training process.

Furthermore, not only the amount of data samples has
an influence on the accuracy and the convergence of NILM
models, but also the sampling rate [44]. Specifically, as shown
in [44] the optimal sampling rate of each device that is being
disaggregated varies. The proposed model is utilizing data
with sampling period of 3 sec and 6 sec using the KLE low-
frequency features. Good performance (85% - 95%) has also
been shown in [14], [17] using two-dimensional signatures
for sampling rates at one sample per minute. Energy disag-
gregation has also been evaluated on hourly level [10]. While
it was shown that excessive down-sampling does lower the
performance of NILM approaches [44], good performances
can be obtained for sampling rates as low as one sample
per minute. Even lower sampling rates (below one sample
per minute), have been evaluated in [45], but with focus on
retrieving the average energy consumption over time, rather
than the instantaneous power consumption.

B. IMPACT OF NORMALIZATION
As indicated in Section II, as well as in previous works for
transferability in NILM [23], data normalization is crucial as
appliances signatures must be invariant even though different
data readingsmight have a different scaling (e.g. two different
fridges might have a different power consumption for their
on state as discussed in Section II). For the normalization
to be effective, the normalization values must be constant
parameters for all samples, but the normalization method
might vary. Three different normalization methods will be
discussed and compared to the baseline system without nor-
malization applied. First Min/Max normalization insures that
all training samples are within a range [0,. . . ,1], with the same
scaling value being used for validation and test data. Second,

TABLE 12. Influences of different normalization techniques in
terms of MAE for the REDD dataset using four appliances and
the transferability setup of [23].

FIGURE 4. Convergence behavior for the proposed architecture
and the architecture in [23] for a fixed data size (1 M samples) of
the REDD database. Values are averaged across all appliances.

mean-variance scaling will be applied as in Eq. 14.

x =
|x − x̄|
σ

(14)

where x̄ is the mean value of x and σ is the standard devi-
ation (std) of x. Third, batch-normalizations will be used
additionally to mean-std scaling for each layer of the CNN
model, as a normalization for each batch might be useful
especially when using frequency domain features as dis-
cussed in Section II. The results are tabulated in Table 12.

As tabulated in Table 12, the setup without normalization
reports the worst performances across all appliances. This is
in line with the theoretical discussion in Section II, stating a
need for a constant scaling factor to level differences in power
consumption from different appliances, and the observations
in [23]. Conversely, Min/Max scaling as well as Mean/Std
scaling improve the performance, reporting average MAE
values of 28.2 and 21.5 respectively. Most significantly addi-
tional batch normalization further improves the performance,
which is probably due of the equalization of the frequency
patterns of the KLE as discussed in Section II.

C. CONVERGENCE AND REALTIME CAPABILITY
For sequence-to-point approaches with high dimensionality
of the input data algorithm convergence and real-time capa-
bility is crucial. Therefore, the convergence behaviour for a
fixed data size, as well as the execution times per sample
have been calculated. The comparison of the convergence of
protocol #5 of the proposedmethod is comparedwith the con-
vergence of [23] and the results are illustrated in FIGURE 4.
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TABLE 13. Comparison of the average execution time (AET) per
sample.

As illustrated in FIGURE 4, both approaches converge
within the first 10 epochs, but with a significantly faster decay
for the proposed approach. This is probably due to the larger
input size and the two-dimensional time-frequency represen-
tation providing more distinct features to the CNN model.
A similar observation has been made in [17], where the usage
of higher feature dimensions leads to faster convergence of
the CNN model.

The execution time per sample for the 5 protocols (pro-
tocol #6 has been omitted as post-processing does not show
measurable differences in execution time) has been calcu-
lated on an Intel i7 7700k CPU with 64 GB RAM using
two Nvidia GTX 1080Ti in SLI mode. The Average Execu-
tion Time (AET) per sample, when using GPU calculations,
is compared to the approach of [23], which was recalculated
using the same hardware. The results are shown in Table 13.

As tabulated in Table 13 the AET increasing subsequently
with using higher feature dimensionality, but report AETs
well below real-time (3 ms to 60 ms for disaggregating
1 sec of the aggregated data). Specifically, the AET of the
proposed protocol #5 is roughly ten times slower compare to
the approach of [23] which is due to the higher feature dimen-
sionality and especially the two-dimensional kernel of the
CNN. However, as illustrated in FIGURE 4 the convergence
is approximately by a factor five faster, thus the effective
difference of AET is in the order of a factor of two.

VII. CONCLUSION
In this article a low-frequency approach for transfer learn-
ing in NILM has been proposed. Specifically, the solution
is based on a low-frequency frequency feature description
utilizing fractional calculus and the Karhunen Loeve Expan-
sion in order to capture device and time invariant signatures
to accurately disaggregated NILM signals from different
datasets. The proposed methodology was evaluated on the
REDD and REFIT dataset showing a maximum performance
improvement by 55.4% when being compare to the baseline
architecture and 13.1% when being compared to the best
performing approach from the literature. Detailed analysis of
the device performances, as well as on the influences of data
size, convergence and normalization have been presented.
Based on the results the following three points should be
investigated: First, due to NILM being an highly ill-posed
problem transfer learning greatly benefits from approaches
that are physical related to the problem statement, i.e. accu-
rate descriptions of the current harmonics as in the proposed
approach. Second, due to different datasets having different
size and number of appliances, the influence of transfer learn-
ing on completely unknown appliances has to be investigated.
Third, as sampling frequencies vary across different datasets

and smart meter architectures, the effect on sampling frequen-
cies on the performance should be evaluated.
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