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Abstract: An accurate and robust Automatic License Plate Recognition (ALPR) method proves
surprising versatility in an Intelligent Transportation and Surveillance (ITS) system. However, most
of the existing approaches often use prior knowledge or fixed pre-and-post processing rules and
are thus limited by poor generalization in complex real-life conditions. In this paper, we leverage a
YOLO-based end-to-end generic ALPR pipeline for vehicle detection (VD), license plate (LP) detection
and recognition without exploiting prior knowledge or additional steps in inference. We assess the
whole ALPR pipeline, starting from vehicle detection to the LP recognition stage, including a vehicle
classifier for emergency vehicles and heavy trucks. We used YOLO v2 in the initial stage of the
pipeline and remaining stages are based on the state-of-the-art YOLO v4 detector with various data
augmentation and generation techniques to obtain LP recognition accuracy on par with current
proposed methods. To evaluate our approach, we used five public datasets from different regions,
and we achieved an average recognition accuracy of 90.3% while maintaining an acceptable frames
per second (FPS) on a low-end GPU.

Keywords: automatic license plate recognition; convolutional neural networks; YOLO

1. Introduction

The volume of motor traffic is increasing day by day on the roadways, and it is essential
to improve the traffic management system by ensuring road safety, traffic efficiency and
mobility in a reliable way. An ALPR system is a fully automated, high- speed camera-based
system that tracks, records, and reports vehicle license plates. Advancements in ALPR
technology and the wide adoption of deep learning networks can improve the existing
systems and also maximize the operational efficiency of ITS systems. It is also used in the
commercial industry for parking management [1], automated toll collection [2], security,
and surveillance [3,4].

A state-of-the-art ALPR system consists of three main stages: vehicle detection (VD),
license plate detection (LPD), and license plate recognition (LPR). Additionally, a classifica-
tion process is also performed to identify the type of vehicle which can be easily expanded
on for the vehicle make, model, year and more to make it more useful to the overall system.
It is critical to identify an emergency vehicle, such as an ambulance or fire services, and
allow them to pass without issuing traffic tickets or fines. The whole process starts with
the image data source, for example, a CCTV camera overlooking a motorway. The images
obtained from the camera first pass through the VD stage, where the vehicle patches are
obtained. Then, each vehicle patch goes through the LPD stage to get the LP patch, followed
by the LPR stage to detect all characters and recognize the LP text to identify the vehicle.
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It is very important to consider all three stages because each one affects the perfor-
mance of the next. For example, starting off with the vehicle patches gives you a great
advantage, as you can assume 100% accuracy for the vehicle detection stage. This also
applies to the LP detection stage: starting with the LP patch allows you to assume that you
have 100% detection accuracy on the two previous stages, which eliminates a considerable
amount of variability that would otherwise be present in your practice and your final result
will not reflect it. This “skipping” of stages will not be reflected in the recognition accuracy,
hence why it is critical to include all stages of the pipeline in an ALPR system.

The majority of previous works on the ALPR pipeline use a pre-defined rules and/or
post processing steps. Each country may have different LP layouts and, thus, the positions
of letters and digits on the LP changes. For example, vehicles entering from one country
into another may have a different LP layout, and some may have a personalized LP. Such
scenarios have a completely different LP layout from what is normally used in the reference
country. So, any pre-defined rules that may have been setup to increase the recognition rate
will most likely fail in those cases. Furthermore, if this is a known issue, it can be exploited
and cause further problems, so using any specific prior knowledge is not the way forward.

In this paper, we propose a fully automated ALPR pipeline that does not use any
pre-defined rules, uses a wide range of datasets that have different character sequences
and conditions, and increases the datasets by more than three times by using various
data augmentation and data generation techniques coupled with the You Only Look Once
(YOLO) detector at each stage. There are three main stages that comprise the whole ALPR
system. The first stage is the vehicle detection stage, where all the vehicles in the image
are detected. Following the vehicle detection stage, each vehicle patch is cropped and fed
into an LP detector, which detects the LP of the vehicle. Since each vehicle can only have
one LP, the detection with the highest confidence is chosen if multiple detections occur.
Additionally, for each vehicle patch after the vehicle detection stage, each vehicle patch
goes through a ResNet50 classifier [5] to classify the vehicles into three classes: trucks,
emergency vehicles, and others. The final stage is the LP character detection stage, where
each character of the LP is detected and assembled to form the full LP text. The major
contributions of this paper are as follows:

• A streamlined, generalizable ALPR pipeline
• A fully automated ALPR system that does not require any pre-defined rules or post-

processing steps.
• A customized data augmentation technique and data generation to synthesize new

license plates to increase data
• An elementary vehicle classifier that can be expanded on
• A methodological analysis of the proposed method with preceding works in literature.
• In addition, we have evaluated our ALPR system with five datasets from five different

regions of the world, so we can show the generalizability of the proposed work and also in
real-world applications such as different lighting conditions, backgrounds, and orientations.

The paper is structured as follows: Section 2 gives an overview of the related works.
Section 3 outlines the methodological approach, and Section 4 explains the experimental
design and results. Finally, we conclude and confer a summary of the key contributions
and results of this paper.

2. Related Work

This section explores some relevant works on ALPR system and its challenges in
methodology. An ALPR workflow includes mainly three stages: vehicle detection, license
plate detection, and license plate recognition.

Previous works have validated their results by considering one or two stages of the
ALPR system. Examples of this are [6,7] where the first two stages, the VD and the LPD
stages, were skipped. In particular, one of the studies [7] only considered the LPD stage
and focused on obtaining the angle of the LP bounding box (BB). Since it achieved great
detection results, it simplified the problem by forcing their ALPR system to output only



Sensors 2022, 22, 9477 3 of 17

one BB per image (only one vehicle for every image), which is not practical, especially for a
general ALPR system. Similarly, the VD stage was not considered in some studies [8,9] but
the LPD and LPR stages were performed. This might be just because of what was needed
for their specific application; however, the full pipeline is needed for a complete automated
ALPR system. Likewise, Refs. [9,10] consider only one LP per image, thus one vehicle per
frame; this is not practical in real-time scenarios. As multiple vehicle images are bound in
a single frame, it may have a chance to increase the processing time. However, this may
be useful for parking spaces, where the conditions are very fixed and only one vehicle is
present at the entrance gate, but it is not suitable for a real-world general framework on
roadways. Even though the processing of these three stages is not convenient, the final
accuracy depends on the relative contribution of all three stages. To obtain a completely
automated system, we should have to process the whole three stages.

Some relevant works in literature consider the whole pipeline, such as [11,12] and
achieve great results. However, Ref. [11] only considers one dataset with Brazilian LPs,
where the images were only frontal views of the vehicles. In the literature, most works
authenticate their results using no more than three datasets, which biases the generaliz-
ability of the method [8,9]. Subsequently, Ref. [12] achieved very good results on previous
methods and compared their method on eight public datasets. Despite the fact that their
results were significant, they relied on exploiting specific country layouts, and were limited
to particular set of rules based on a country associated with that LP layout. For example,
it works only if the first two characters of the LP are characters. If a LP is detected with
the digit “1”, the system would consider it a character “I” instead of a digit, and it may
have a huge impact on the final result. Thus, the generalizability of this method is poor
and limited on roadways with a distinct LP layout. In our work, we make use of different
country layouts, and our findings are promising for a universally pertinent ALPR system.

Having an ALPR system that performs in real-time is very important. This is because
if a vehicle is travelling at, for example, 60 miles per hour and you have a low FPS, the
vehicle might only be in the frame once or twice, and depending on the camera location
and how many vehicles are in the frame and their speeds, vehicles might be completely
missed. Thus, having an ALPR system that performs at a relatively high FPS is important
not only to ensure all vehicles are detected but also to allow the system more attempts to
detect and recognize the LP as the vehicle moves across the frame, where each position will
present different lighting conditions, camera angles, backgrounds, etc.

Examples of where the FPS was too low to use in practical settings are [8,10]. Despite
Ref. [10] using a dedicated GPU (GT-740M), it performed very slowly at 230 ms (4 FPS) to
only detect LPs, which is way too slow for real-world applications with high-speed moving
vehicles. A previous study [8] achieved relatively good results, but on a very high-end GPU
(NVIDIA Tesla K40c), they had multiple steps, using high-demanding methods such as sliding
windows, causing their system to operate at two seconds per frame, which is not practical.

There are some works that achieve great FPS, such as [7,9,11,12], which achieve 76 FPS
using a high-end GPU, but the recognition accuracy is very poor on the SSIG- SegPlate
dataset, at 63%. Ref. [7] achieved a very good ∼5 ms per frame on a relatively inexpensive
GPU (FTX980) for the LPD stage, which is the only stage they considered and is not really
comparable to the overall FPS of the above methods. One study [9] also used a relatively
inexpensive GPU (NVIDIA 1080 Ti) and was able to process images in 0.0443 s for both
the LPD and LPR stages, but they only considered one LP per image. Another study [12]
achieved 73 FPS with a high-end GPU (NVIDIA Titan XP) when one vehicle is present in
the image, but when five vehicles are present, the FPS drops to 29 FPS, which is still good.
This is because they are using the YOLOv2 detector, which is known for its speed.

Advances in object detection using YOLO have an immense influence on ALPR system.
Frequently, many authors adopted YOLO inspired models to improve performance [13,14].
A real-time object detector YOLOV2 model is employed in [15], and it is distinct for its speed
and accuracy. A fast YOLO model [11] was employed in a cascaded manner and achieved
a low recall rate. Using modified YOLO models, an LP detection was performed [16] and
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deployed to predict rotation angles of a LP [7]. A conclusive YOLO version is performed
in [17], but shows a lack of accuracy on larger-sized objects. ALPR systems have been
described in some reviews [18–21].

Based on the above, methods that gain a high FPS are due to modifications that are
not in an overall ALPR system, such as skipping stages or only considering one vehicle per
image. This might work well for specific application domains, but it is not appropriate for
a general ALPR system.

3. Proposed Method

In this paper, we present a fully automated ALPR pipeline that does not use any pre-
defined rules, together with the experimental findings associated with the YOLO detector.
Each feature extraction model of our proposed system is expounded on in the following
sub-sections and also explains the datasets used in detail.

This work is an improvement of the ALPR system explained in [12], even so, taking it
towards a more generic automated ALPR system and utilize a better version of YOLO that
makes bounding box coordinates and class probabilities directly from the image pixels [22].
This is because [12] have already achieved great results in five public datasets, demonstrated
their results very clearly, and obtained a better recognition rate than most previous methods.
They also leveraged post-processing rules to improve the recognition results. So here, we
use the 5 datasets but with no post-processing or fixed rules based on country-specific
layouts to ensure non-exclusive accuracy. Experiments were performed using the state-of-
the-art YOLO v2 detector for the first stage and v4 detector for the remaining stages in the
darknet framework [22] with a vehicle type classifier using ResNet50.

3.1. Datasets

Using more than one dataset is vital for a good overall ALPR system to obtain all
kinds of different variations, such as lighting, backgrounds, vehicle sizes, and camera
angles. Having an ALPR system that performs well in a wide range of datasets also
means it will perform better in the real world. Most of the previous works focused on and
showed their results based on a single dataset [8,10,11]. Using a few datasets makes the
LPs biased towards those countries, and all the processing steps will be biased or will not
provide enough substantial variations in the LP itself. Refs. [6,7,9] use a few datasets, but
again, not quite enough, and most cases cover only one country. Ref. [12] uses 8 publicly
available datasets, which contain significant variations between them, but Ref. [12] focuses
on separating the ALPR system based on the country detected and has fixed rules at
inference, which is not ideal for a fully automated ALPR as there are too many countries to
cover. To ensure reproducibility, it is essential to keep the datasets publicly available, so
that other researchers can make comparisons without any ambiguity about the parameters
used. There are eight publicly available datasets that are common in the literature. In this
paper, we use five publicly available datasets. The datasets used were Caltech Cars [23],
English LP [24], OpenALPR EU [25], AOLP [26], and UFPR ALPR [27]. Table 1 shows key
details of the datasets.

Table 1. An overview of the datasets used in our experiments and its specifications.

Dataset Resolution Country Year # Samples

Caltech Cars 896 × 592 America 1999 124

English LP 640 × 480 EU 2003 509

OpenALPR EU diverse EU 2016 108

AOLP diverse Taiwan 2013 2049

UFPR ALPR 1920 × 1080 Brazil 2018 4500

Total Samples 7290
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3.2. Proposed Framework

All stages of the pipeline are made up of a YOLO detector [28], more specifically a
YOLOv4 tiny detector [29] and a YOLO v2 for the first stage. YOLO was chosen because
it is currently the state-of-the-art detector when it comes to speed without sacrificing too
much accuracy. It is also used by many proposed methods in this domain because of its
speed and desire to obtain real-time performance, such as [7,9,11,12]. However, all previous
methods use old versions of YOLO, as YOLOv4 was recently published in 2020. In Figure 1,
the full pipeline of our ALPR is illustrated.
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Figure 1. Illustration of the proposed framework.

The process starts with the full image, for example, from a surveillance camera which
first goes through the vehicle detector stage (1), where all vehicles are detected. All the
vehicle patches of the detected vehicles get cropped, and each of those patches then goes
through two models. First, it goes through the vehicle classifier to determine what type of
vehicle it is, for example, an emergency vehicle or a truck. Secondly, each vehicle patch
also continues through to the LP detector (2), where the LP is detected. So now we would
have an LP patch for each of the vehicles detected. All those LP patches then go through
the final stage, the LP character detector (3), which is a detector that detects all characters
in the LP patch. From there, the full LP characters are constructed. So, at the end, for every
vehicle in the image, we will end up with the type of the vehicle (which can be extended to
multiple classes, even to the vehicle make, model, year, etc. if needed) and the LP of the
vehicle. An algorithmic representation of the proposed method can be seen in Algorithm 1.

3.3. Vehicle Detection (VD)

For the vehicle detection, the same exact method as [12] was used. As a very high
accuracy with excellent FPS was already achieved, there was not much improvement to be
made in 99.92% recall when an intersection over union (IoU) of 0.25 was used. In addition,
this method has a very high accuracy of 117 FPS. However, an addition was made to ignore
all vehicle patches that were less than 40 pixels, either in width or height, as they would be
too small for even a human to read the LP when enlarged. YOLOv2 is used for this stage;
the model architecture is shown in Table 2.
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Table 2. Vehicle detection model architecture.

Layer Filters Size/Strd Input Output

0 conv 32 3 × 3/1 608 × 416 × 3 608 × 416 × 32
1 max 2 × 2/2 608 × 416 × 32 304 × 208 × 32
2 conv 64 3 × 3/1 304 × 208 × 32 304 × 208 × 64
3 max 2 × 2/2 304 × 208 × 64 152 × 104 × 64
4 conv 128 3 × 3/1 152 × 104 × 64 152 × 104 × 128
5 conv 64 1 × 1/1 152 × 104 × 128 152 × 104 × 64
6 conv 128 3 × 3/1 152 × 104 × 64 152 × 104 × 128
7 max 2 × 2/2 152 × 104 × 128 76 × 52 × 128
8 conv 256 3 × 3/1 76 × 52 × 128 76 × 52 × 256
9 conv 128 1 × 1/1 76 × 52 × 256 76 × 52 × 128

10 conv 256 3 × 3/1 76 × 52 × 128 76 × 52 × 256
11 max 2 × 2/2 76 × 52 × 256 38 × 26 × 256
12 conv 512 3 × 3/1 38 × 26 × 256 38 × 26 × 512
13 conv 256 1 × 1/1 38 × 26 × 512 38 × 26 × 256
14 conv 512 3 × 3/1 38 × 26 × 256 38 × 26 × 512
15 conv 256 1 × 1/1 38 × 26 × 512 38 × 26 × 256
16 conv 512 3 × 3/1 38 × 26 × 256 38 × 26 × 512
17 max 2 × 2/2 38 × 26 × 512 19 × 13 × 512
18 conv 1024 3 × 3/1 19 × 13 × 512 19 × 13 × 1024
19 conv 512 1 × 1/1 19 × 13 × 1024 19 × 13 × 512
20 conv 1024 3 × 3/1 19 × 13 × 512 19 × 13 × 1024
21 conv 512 1 × 1/1 19 × 13 × 1024 19 × 13 × 512
22 conv 1024 3 × 3/1 19 × 13 × 512 19 × 13 × 1024
23 conv 1024 3 × 3/1 19 × 13 × 1024 19 × 13 × 1024
24 conv 1024 3 × 3/1 19 × 13 × 1024 19 × 13 × 1024
25 route 16 38 × 26 × 512
26 reorg /2 38 × 26 × 512 19 × 13 × 2048
27 route 26–24 19 × 13 × 3072
28 conv 1024 3 × 3/1 19 × 13 × 3072 19 × 13 × 1024
29 conv 35 1 × 1/1 19 × 13 × 1024 19 × 13 × 35
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3.4. Vehicle Type Classification (VTC)

For the vehicle type classification, as a start, a classifier was made for trucks and
emergency vehicles, which could easily be expanded to other classes. There is also a third
class, “other”, which refers to all other types of vehicles, for example, cars and motorcycles.
Images were gathered from random places on the internet, including images from Open
Images V6 [30]; 449 samples of emergency vehicles, 374 samples of trucks, and 831 samples
of “other” were used. The classifier used is a ResNet50 [31] with data augmentations of
rotation, width and height shifts, brightness, shear, zoom, and horizontal flip. Transfer
learning was used where the weights used are from the ResNet50 model trained on the
COCO dataset [32]. All the ResNet50 layers are frozen, and average pooling was added to
the end, followed by a fully connected layer of 32, followed by the SoftMax output layer,
which led to 65,667 trainable parameters with 23,587,712 frozen weights that were trained
on the COCO dataset.

3.5. License Plate Detection (LPD)

The LPD stage is a YOLOv4-tiny model. The training images are the cropped vehicle
patches from the full images. To increase the dataset and improve accuracy, the dataset was
doubled using the negative images of all samples; this doubling of the dataset increased
the accuracy significantly. The detection is constrained to detections with an IoU of greater
than 0.65, and if multiple were detected, the highest confidence score was chosen, as a
vehicle can only have one LP. The full model architecture can be seen in Table 3. By using
the latest YOLOv4 detector, we will see in Section 4 that this detector outperforms previous
methods in the same dataset.

Table 3. LP detection model architecture.

Layer Filters Size/Strd Input Output

0 conv 32 3 × 3/2 416 × 416 × 3 208 × 208 × 32
1 conv 64 3 × 3/2 208 × 208 × 32 104 × 104 × 64
2 conv 64 3 × 3/1 104 × 104 × 64 104 × 104 × 64
3 route 2 1/2 104 × 104 × 32
4 conv 32 3 × 3/1 104 × 104 × 32 104 × 104 × 32
5 conv 32 3 × 3/1 104 × 104 × 32 104 × 104 × 32
6 route 54 104 × 104 × 64
7 conv 64 1 × 1/1 104 × 104 × 64 104 × 104 × 64
8 route 27 104 × 104 × 128
9 max 2 × 2/2 104 × 104 × 128 52 × 52 × 128

10 conv 128 3 × 3/1 52 × 52 × 128 52 × 52 × 128
11 route 10 1/2 52 × 52 × 64
12 conv 64 3 × 3/1 52 × 52 × 64 52 × 52 × 64
13 conv 64 3 × 3/1 52 × 52 × 64 52 × 52 × 64
14 route 13–12 52 × 52 × 128
15 conv 128 1 × 1/1 52 × 52 × 128 52 × 52 × 128
16 route 10–15 52 × 52 × 256
17 max 2 × 2/2 52 × 52 × 256 26 × 26 × 256
18 conv 256 3 × 3/1 26 × 26 × 256 26 × 26 × 256
19 route 18 1/2 26 × 26 × 128
20 conv 128 3 × 3/1 26 × 26 × 128 26 × 26 × 128
21 conv 128 3 × 3/1 26 × 26 × 128 26 × 26 × 128
22 route 21–20 26 × 26 × 256
23 conv 256 1 × 1/1 26 × 26 × 256 26 × 26 × 256
24 route 18–23 26 × 26 × 512
25 max 2 × 2/2 26 × 26 × 512 13 × 13 × 512
26 conv 512 3 × 3/1 13 × 13 × 512 13 × 13 × 512
27 conv 256 1 × 1/1 13 × 13 × 512 13 × 13 × 256
28 conv 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
29 conv 18 1 × 1/1 13 × 13 × 512 13 × 13 × 18
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Table 3. Cont.

Layer Filters Size/Strd Input Output

30 yolo
31 route 27 13 × 13 × 256
32 conv 128 1 × 1/1 13 × 13 × 256 13 × 13 × 128
33 up 2x 13 × 13 × 128 26 × 26 × 128

34 route 33–23 26 × 26 × 384
35 conv 256 3 × 3/1 26 × 26 × 384 26 × 26 × 256
36 conv 18 1 × 1/1 26 × 26 × 256 26 × 26 × 18
37 yolo

3.6. License Plate Recognition (LPR)

The first two stages are much easier; they do not bring any major challenges, and
with enough data, it is fairly easy to get high accuracy. The real challenge is the final stage,
where you must obtain each character of the LP to ultimately identify the vehicle.

In this stage, again, the YOLOv4 tiny detector was used. Table 4 shows the full LPR
YOLO network architecture. There were no major modifications done to the architecture
apart from: (1) changing the network input to 352 × 128, which was chosen because the av-
erage aspect ratio (w/h) of all LP patches across all datasets is 2.86; (2) the number of filters
in each convolutional layer before each YOLO layer was filters = ((classes + 5) × anchors),
where the number of classes is 36 (0–9 + A–Z) and the number of anchors is 3, resulting
in 123 filters; (3) disabled the flip augmentation, as this will result in flipped characters,
which will not be useful for the model to learn. Only LP patches that are larger than 20 and
10 pixels in width and height, respectively, were considered to be LPs.

It is important to note that all digits and characters were considered their own class,
so the classes were 0–9, and A–Z, making a total of 36 classes. Unlike other methods such
as [6,11,12], where, for example, the digit “0” was assumed to be the same class as the
letter “O”. Then, using this coupled with the fixed rules of the LP character sequence, they
would choose whether it is a zero or “O” after the predictions have happened based on
how the LP characters are sequenced for that country in the dataset. For example, if the first
three characters of an LP in a certain country are said to always be letters, then any digit
zero predicted for the first three characters will be classified as the letter “O”. However,
as discussed earlier, having such fixed rules is not ideal and will breakdown in certain
cases, such as foreign or custom LPs; it is not generalized. So here, all digits and letters are
considered in the alphabet as having their own specific class. This allowed for no fixed
post-processing at all during inference and allowed for a general ALPR system.

Table 4. LP recognition model architecture.

Layer Filters Size/Strd Input Output

0 conv 32 3 × 3/2 352 × 128 × 3 176 × 64 × 32
1 conv 64 3 × 3/2 176 × 64 × 32 88 × 32 × 64
2 conv 64 3 × 3/1 88 × 32 × 64 88 × 32 × 64
3 route 2 1/2 88 × 32 × 32
4 conv 32 3 × 3/1 88 × 32 × 32 88 × 32 × 32
5 conv 32 3 × 3/1 88 × 32 × 32 88 × 32 × 32
6 route 54 88 × 32 × 64
7 conv 64 1 × 1/1 88 × 32 × 64 88 × 32 × 64
8 route 27 88 × 32 × 128
9 max 0 2 × 2/2 88 × 32 × 128 44 × 16 × 128

10 conv 128 3 × 3/1 44 × 16 × 128 44 × 16 × 128
11 route 10 1/2 44 × 16 × 64
12 conv 64 3 × 3/1 44 × 16 × 64 44 × 16 × 64
13 conv 64 3 × 3/1 44 × 16 × 64 44 × 16 × 64
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Table 4. Cont.

Layer Filters Size/Strd Input Output

14 route 13–12 44 × 16 × 128
15 conv 128 1 × 1/1 44 × 16 × 128 44 × 16 × 128
16 route 10–15 44 × 16 × 256
17 max 2 × 2/2 44 × 16 × 256 22 × 8 × 256
18 conv 256 3 × 3/1 22 × 8 × 256 22 × 8 × 256
19 route 18 1/2 22 × 8 × 128
20 conv 128 3 × 3/1 22 × 8 × 128 22 × 8 × 128
21 conv 128 3 × 3/1 22 × 8 × 128 22 × 8 × 128
22 route 21–20 22 × 8 × 256
23 conv 256 1 × 1/1 22 × 8 × 256 22 × 8 × 256
24 route 18–23 22 × 8 × 512
25 max 2 × 2/2 22 × 8 × 512 11 × 4 × 512
26 conv 512 3 × 3/1 11 × 4 × 512 11 × 4 × 512
27 conv 256 1 × 1/1 11 × 4 × 512 11 × 4 × 256
28 conv 512 3 × 3/1 11 × 4 × 256 11 × 4 × 512
29 conv 123 1 × 1/1 11 × 4 × 512 11 × 4 × 123
30 yolo
31 route 27 11 × 4 × 256
32 conv 128 1 × 1/1 11 × 4 × 256 11 × 4 × 128
33 up 2× 11 × 4 × 128 22 × 8 × 128

34 route 33–23 22 × 8 × 384
35 conv 256 3 × 3/1 22 × 8 × 384 22 × 8 × 256
36 conv 123 1 × 1/1 22 × 8 × 256 22 × 8 × 123
37 yolo

From the early baseline experiments carried out, it was found out that there were only a
few characters that were performing poorly, specifically, characters with an average precision
(AP) below 0.95. The low-performing characters (LPC) were all letters, and they were “G”,
“K”, “M”, “O”, “Q”, and “S”. To increase the AP of the LPC, the number of samples that
include any LPC was increased by using data permutations and data generation.

3.6.1. Data Permutations

In this method, every LP that contained any of the LPC was duplicated by replacing
other numbers or other letters that were not the LPC with LPC characters. This is illustrated
in Figure 2.
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other letters resize into a narrow vertical patch that would distort the character, which
caused the model to get confused and perform poorly.

3.6.2. Data Generation

With data generation, all LP samples that contained the LPC were doubled by using
three different augmentation techniques to imitate certain natural changes that might
happen to the LP under certain circumstances. This is illustrated in Figure 3.
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Figure 3. Data generation techniques on different license plates.

The first is generating an artificial shadow and placing it randomly over the LP patch.
This will change the overall look of some of the characters, and this situation can also be
met in practice. The second is adding a color that is similar to the sun, but more importantly,
adding a variation to the LP that will force the model to learn to ignore it making it more
generalizable for real-world scenarios. The third method is adding random blur, which is
to replicate bad camera angles, speeding vehicles, etc. So, for each LP patch sample that
included the LPC, each of these three techniques had an equal chance of being applied.
Using these two methods increased the number of samples by 2381, and all those samples
included the LPC, which were in addition to the doubling of samples from using the
negative image of each sample, making a total of 16,961 samples.

Figure 4 shows two histograms of all the character counts before and after the data
generation. We can clearly see that each LPC has a significant increase in the number
of total characters, giving the model more samples to train on and hence improving the
accuracy for those characters. This turned out to be very useful, as we will see in Section 4.

Sensors 2022, 22, 9477 11 of 18 
 

 

Figure 4 shows two histograms of all the character counts before and after the data 
generation. We can clearly see that each LPC has a significant increase in the number of 
total characters, giving the model more samples to train on and hence improving the ac-
curacy for those characters. This turned out to be very useful, as we will see in Section 4. 

 
Figure 4. The total number of character occurrences for all datasets before and after data generation. 

4. Results 
Since some papers only partially considered the ALPR pipeline, each stage will be 

evaluated and compared separately in this section. Only the UFPR ALPR dataset had fixed 
training, validation, and testing sets. For the rest of the datasets, they were split using 0.7, 
0.2, and 0.1 ratios for training, validation, and testing sets, respectively. To ensure there 
was no bias in selecting the sets, each experiment was carried out using five different ran-
dom splits. All results are obtained using the test sets average results across the five splits. 
The evaluation metrics commonly used in object detection are precision [7,8] and recall, 
and they can be written as: Precision = TP TP  + FP 

Recall = TPTP + FN 
where TP is the metric defined based on ground truth correctly labeled as positives, FP is 
negative examples incorrectly labelled as positives, FN is a false negative, and TN refers 
to the examples correctly labelled as negatives. 

To predict the quality of object detection, we use the Jaccard index called Intersection 
over Union (IoU), which can be expressed as  IoU = area Bp ∩ Bgtarea Bp ∪ Bgt  
where BP is the predicted bounding box and Bgt is ground truth bounding box. 

4.1. Vehicle Detection Results 
As we can see from Table 5, the VD stage is not an issue; a very impressive accuracy 

can be achieved across all datasets and is not open to much improvement. What should be 
noted, is that the slight precision loss is only due to false positive vehicles detected that 
did not have an LP visible (apart from AOLP). So, all vehicles that should have been de-
tected were detected, just with some extra vehicles detected in the background, which did 
not have an LP visible. A confidence and IoU threshold of 0.5 and 0.25 were used, respec-
tively. 

  

Figure 4. The total number of character occurrences for all datasets before and after data generation.

4. Results

Since some papers only partially considered the ALPR pipeline, each stage will be
evaluated and compared separately in this section. Only the UFPR ALPR dataset had fixed
training, validation, and testing sets. For the rest of the datasets, they were split using 0.7,
0.2, and 0.1 ratios for training, validation, and testing sets, respectively. To ensure there was



Sensors 2022, 22, 9477 11 of 17

no bias in selecting the sets, each experiment was carried out using five different random
splits. All results are obtained using the test sets average results across the five splits. The
evaluation metrics commonly used in object detection are precision [7,8] and recall, and
they can be written as:

Precision =
TP
TP

+ FP

Recall =
TP
TP

+ FN

where TP is the metric defined based on ground truth correctly labeled as positives, FP is
negative examples incorrectly labelled as positives, FN is a false negative, and TN refers to
the examples correctly labelled as negatives.

To predict the quality of object detection, we use the Jaccard index called Intersection
over Union (IoU), which can be expressed as

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

)
where BP is the predicted bounding box and Bgt is ground truth bounding box.

4.1. Vehicle Detection Results

As we can see from Table 5, the VD stage is not an issue; a very impressive accuracy
can be achieved across all datasets and is not open to much improvement. What should be
noted, is that the slight precision loss is only due to false positive vehicles detected that did
not have an LP visible (apart from AOLP). So, all vehicles that should have been detected
were detected, just with some extra vehicles detected in the background, which did not
have an LP visible. A confidence and IoU threshold of 0.5 and 0.25 were used, respectively.

Table 5. Results attained in vehicle detection (%) and the recall rates achieved in all datasets.

Dataset Precision Recall Avg IoU

Caltech cars 100.00 100.00 96.84

English LP 99.88 100.00 94.98

AOLP 98.96 99.52 94.27

Open ALPR EU 100.00 100.00 95.30

UFPR ALPR 99.50 100.00 90.35

Average 99.71 99.90 94.35

4.2. Vehicle Type Classification Results

Trucks and emergency vehicles are just used as example classes; this stage can be
expanded to many more classes and data, even identifying, for example, vehicle make,
model, year, color, etc. In Figure 5, we can see some samples of the two main classes.

In Table 6, the results are shown. All samples used are made public and can be accessed
through the repository. The results are all from the average test sets across the five different
splits. As we can see, a very high accuracy of 98.22% is achieved. This stage can easily be
expanded by just adding more annotations to the samples.
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Table 6. Vehicle type classification test set results.

Accuracy (%) Loss

98.22 0.1130

4.3. LP Detection Results

In Table 7, we can see that the average recall for the LP detection stage across all
datasets is above 99%, which is certainly an acceptable performance. A confidence threshold
of 0.75 and an IoU threshold of 0.5 were used.

Table 7. LP detection results (%) in all five datasets.

Dataset Precision Recall Avg IoU

Caltech cars 100.00 99.19 86.72

English LP 99.61 99.21 83.70

AOLP 99.43 99.67 86.26

Open ALPR EU 100.00 99.07 85.54

UFPR ALPR 96.78 98.67 83.52

Average 99.16 99.36 85.15

As we can see from the results, the first two stages of the ALPR are not a problem, and
very high accuracy can be consistently achieved throughout multiple datasets. However,
there could be improvements to the average IoU.

4.4. LP Recognition Results

In this section, we will focus specifically on the results of the last stage, the LPR stage,
skipping the first two stages to isolate this stage. In the next section, we will see the results
of the full ALPR pipeline. So here, all LP patches from all datasets are considered; this is to
evaluate only the LP recognition stage.

Table 8 shows the results; a confidence threshold of 0.75 and IoU threshold of 0.5 were
used. We can see that we get pretty impressive results across all datasets, apart from the
UFPR ALPR dataset; the reason why this is the case will be discussed in the next section.

Table 8. LP recognition results without the first two stages (%).

Dataset Precision Recall Avg IoU

Caltech cars 100.00 98.98 90.42

English LP 99.91 99.87 93.16

AOLP 99.94 99.87 89.38

Open ALPR EU 100.00 98.66 91.30

UFPR ALPR 98.57 91.08 85.57

Average 99.68 97.69 89.97
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4.5. Full ALPR Pipeline Results

Here we see the results of the full ALPR pipeline. A correct LP recognition is only
considered if all stages in the pipeline were successful and all LP characters are correctly
detected. So, if, for example, a vehicle or an LP is not detected and does not go to the next
stage(s), it is considered a wrong sample.

As we can see from Table 9, without any post-processing to the LP patches or any
fixed rules based on prior knowledge of the LPs after predictions, highly accurate results
are achieved across all datasets. Each crop at each stage is directly fed into the next stage
the same way it was detected. Note that for the Caltech cars, English LP, AOLP, and Open
ALPR EU, we have a relatively small number of FN, and in some cases where the test set is
so small, this makes a huge impact on the final recall when it really is just one vehicle or LP
that is not detected correctly.

The UFPR ALPR is clearly the more challenging dataset; however, it has to be noted
that the UFPR ALPR dataset is made up of images from a video. For example, you would
have 30 images from the same video with slight differences as the vehicle is moving. The
UFPR ALPR test set is made up of 60 videos, with each having a total of 30 frames. In
practice, when you have a video stream like that, you will have many different opportunities
(frames) to correctly detect the full LP as the car moves across the frame, and you can, for
example, consider a recognition with 100% confidence if the same LP for the same vehicle
has been detected three times in a row (3 frames in a row). That is, the rest of the frames in
which the vehicle is present is not significant as you only need as little as three consecutive
frames for the LP to be successfully recognized. If we treat the UFPR ALPR dataset in this
way, as in practical settings, from the bottom of Table 9 (UFPR ALPR as vid), we can see the
recognition result is significantly higher as we do not need to detect the LP of the vehicle
on every frame if we have already detected it correctly 3 times in 3 consecutive frames.

We can see that the full ALPR pipeline, all stages, are performing very well, and while
the final stage is clearly the least performing, it is still producing very good results without
assuming any prior knowledge on the LP across all datasets and considering all characters
of the alphabet as their own class.

Table 9. Full ALPR pipeline results. Please note these results are chosen from one of the five test sets
just to include the exact TP and FN to demonstrate how significant just one incorrect sample in the
relatively small test sets can be in some datasets. All the other test sets had very similar results.

Dataset Stage TP FN Recall

VD 14 0 100

Caltech cars LPD
LPR

13
13

1
1

92.86
92.86

VD 52 0 100

English LP LPD
LPR

50
50

2
2

96.15
96.15

VD 218 1 99.54

AOLP LPD
LPR

216
214

3
5

98.63
97.72

VD 12 0 100

Open ALPR LPD
LPR

12
12

0
0

100
100

VD 1800 0 100

UFPR ALPR LPD
LPR

1769
1117

31
683

98.28
62.06

UFPR ALPR as vid LPR 44 16 73.33

Average LPR 89.56
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4.6. Comparison

In this section, we compare the results of proposed systems with the results of this
work across five datasets. Table 10 summarizes all the results.

Table 10. ALPR comparison to other methods across all datasets used. * The first two stages of the
pipeline were skipped. ** When considering the UFPR ALPR dataset as a video.

Method
[33] [5] [34] [35] [36] OpenALPR [12] Proposed

Dataset

Caltech cars - - - - 95.7 ± 2.7 99.1 ± 1.2 98.7 ± 1.2 97.1

English LP 97.0 - - - 92.5 ± 3.7 78.6 ± 3.6 95.7 ± 2.3 95.5

AOLP - 99.8 * - - 87.1 ± 0.8 - 99.2 ± 0.4 98.0

Open ALPR EU - - 93.5 85.2 93.5 91.7 97.8 ± 0.5 98.7

UFPR ALPR - - - - 62.3 82.2 90.0 ± 0.7 62.1 (73.3 **)

Average - - - - 87.8 ± 2.4 90.7 ± 2.3 96.9 ± 1.0 90.3

As we can see, without any processing at inference or relying on any fixed rules in a
streamlined pipeline, similar and comparable results are achieved while still considering
all characters as their own class, 0–9 and A–Z. Table 11 shows the results for each character.

We can clearly see that there are only a few characters that are performing poorly (AP
less than 95), which are the “K”, “M”, “O”, and “Q” characters, and for those letters, it is very
understandable why they would be very hard and challenging for a model to distinguish
between. However, with more data and more data generation techniques, the accuracy of
these characters can be increased, and a full generic ALPR system can be achieved.

A video demonstration of our method using unseen data is available at https://youtu.
be/aZFHGMyllAI (accessed on 27 October 2022) for better understanding. Figure 6 shows
a few example images when processing it in real time.

Table 11. All characters’ average precision (AP) across all datasets in the test sets combined.

C AP (%) TP FP C AP (%) TP FP

0 98.26 724 22 I 98.90 94 0
1 99.65 844 4 J 100.00 145 0
2 100.00 497 0 K 83.86 115 0
3 99.51 645 0 L 100.00 146 0
4 99.93 811 16 M 86.50 165 23
5 100.00 758 0 N 100.00 48 0
6 99.94 922 6 O 38.96 35 28
7 99.17 669 15 P 99.99 282 0
8 98.72 1037 15 Q 70.84 43 1
9 99.66 1103 8 R 99.98 148 2
A 98.82 1494 2 S 96.47 228 0
B 97.98 363 0 T 100.00 112 0
C 97.64 133 3 U 100.00 128 0
D 99.53 99 13 V 100.00 171 0
E 97.59 136 6 W 95.70 229 1
F 99.06 40 1 X 98.69 107 0
G 95.68 147 0 Y 99.95 274 0
H 99.96 109 0 Z 100.00 280 0

https://youtu.be/aZFHGMyllAI
https://youtu.be/aZFHGMyllAI
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which LP detection or classification failed.

4.7. Performance Evaluation

Table 12 shows the time it takes to perform each stage in seconds when there are 1,
2, and 3 vehicles in the frame where the LP is visible. It also shows the total FPS it takes
to process the whole frame for all stages. It has to be noted that these performance results
are not a fair comparison to other methods because a very low-end GPU (NVIDIA GTX
1060) was used in these experiments, whereas most other methods used a very high-end,
expensive GPU. However, the fact that we achieve this FPS even when using a low-end
GPU shows promising results in terms of performance. We believe that if the same high-end
GPUs were used, this ALPR pipeline could easily achieve real-time performance.

Table 12. The FPS for the full ALPR pipeline, as well as the processing time in seconds for each stage
of the pipeline when there are 1, 2, and 3 vehicles in the frame.

Vehicles
Stage 1 2 3

Vehicle detection 0.0349 0.0389 0.0449

LP detection 0.0080 0.0150 0.0239

LP recognition 0.0120 0.0239 0.0239

Total FPS 18 13 11

5. Conclusions

We have presented a method to perform the ALPR task in a fully automated and
stream-lined pipeline that includes all three stages, including a vehicle classifier, without
exploiting any prior knowledge of the LP, or utilizing fixed pre/post processing rules.
This establishes the generalizability and suitability of the proposed method in a real-time
context. We performed our experiments in a darknet framework using the YOLOv4 detector.
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Despite the positions, YOLO has remarkable versatility in learning features, and we tune
parameters separately at each stage to improve the performance.

Data augmentation techniques were performed to deal with illumination and artifacts,
and multiple data generation techniques were developed to increase data samples. Com-
petitive results were achieved when compared to previous methods tackling the full ALPR
problem. Our method shows promising results in terms of accuracy and performance on
five different publicly available datasets. Only a few characters are left that are poorly
detected; with slightly more data, a very robust and general ALPR system is possible. This
method is a step towards a complete and fully automated ALPR system that works with
any type of LP regardless of where it is from or its layout, which will be essential in a
complete future ITS system. We have also made this methodology open source to use
and/or contribute to. The full implementation of the ALPR pipeline is openly available at:
https://github.com/RedaAlb/alpr-pipeline (accessed on 27 October 2022) and it allows
researchers to compare novel approaches. In our future work, we intend to investigate
the possibilities of advancements in the ALPR system using latest versions of YOLO. We
intend to explore the possibilities of a more robust model in real-world applications and
investigate the challenges of contemporaneous events.
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