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a b s t r a c t 

DBSCAN is arguably the most popular density-based clustering algorithm, and it is capable of recovering 

non-spherical clusters. One of its main weaknesses is that it treats all features equally. In this paper, 

we propose a density-based clustering algorithm capable of calculating feature weights representing the 

degree of relevance of each feature, which takes the density structure of the data into account. First, 

we improve DBSCAN and introduce a new algorithm called DBSCANR. DBSCANR reduces the number of 

parameters of DBSCAN to one. Then, a new step is introduced to the clustering process of DBSCANR to 

iteratively update feature weights based on the current partition of data. The feature weights produced 

by the weighted version of the new clustering algorithm, W-DBSCANR, measure the relevance of variables 

in a clustering and can be used in feature selection in data mining applications where large and complex 

real-world data are often involved. Experimental results on both artificial and real-world data have shown 

that the new algorithms outperformed various DBSCAN type algorithms in recovering clusters in data. 
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. Introduction 

The digital universe is growing in size every year. This wealth 

f data being generated are usually stored in digital media, hence 

ffering huge potential for its automatic mining. Raw data by itself 

re unlikely to be useful, and given its size they are very expen- 

ive to label. Clustering algorithms follow the unsupervised learn- 

ng framework, which does not require labeled data to learn from. 

iven a data set Y containing n points, a clustering algorithm will 

roduce a set of clusters so that the points assigned to a given 

luster are similar according to some measure. These algorithms 

ave been applied as a dominant data analysis tool in diverse fields 

ncluding medicine, marketing, bioinformatics, image processing, 

omputer security, geography, physics, and astronomy (see for in- 

tance [1] , and references therein). 

There are indeed different approaches clustering algorithms 

ay employ. Arguably, the most popular approaches are par- 

itional, hierarchical, and density-based. Algorithms following 

he partitional approach produce a set of K disjoint clusters 

 = { S 1 , S 2 , . . . , S K } whose sum of cardinalities equals the cardi-

ality of the data set itself — That is, 
∣∣⋃ 

S ∈ S S l 
∣∣ = n . Hierarchical 
l 
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lgorithms go a step further by also producing information about 

he relationships between clusters, usually at a high computational 

ost. Density-based algorithms define clusters as areas of higher 

ensity, which allows clusters with arbitrary shapes. In this paper 

e focus on density-based algorithms. We direct readers interested 

n other approaches to the many sources in the literature (see for 

nstance [2,3] , and references therein). 

DBSCAN [4] is a classic example of density-based algorithm, 

hich remains very relevant [5] . It recovers clusters in a two- 

tep approach: (i) it identifies the core points, that is, a set of 

igh-density points; (ii) it forms clusters from these core points 

y grouping reachable points. Reachability is defined in such a way 

hat no two points of different high-density regions, separated by a 

ontiguous low density region, are reachable from each other. This 

efinition makes DBSCAN intuitive and rather popular among the 

ensity-based clustering algorithms. 

Unfortunately, DBSCAN does have shortcomings. Among these 

e have: (i) it requires two parameters with no obvious method 

o determine their optimum values. In fact, this algorithm is rather 

ensitive to these parameters; (ii) it is not particularly suitable for 

ata sets containing clusters with widely different densities; (iii) 

t treats all features equally regardless of their contribution to the 

lustering. Various algorithms have attempted to address the short- 

omings (i) and (ii), for details see Section 2 . 

We find (i) and (ii) to be important, but (iii) is particularly in- 

eresting. This is an issue because in real-world data sets it is un- 
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ikely that all features will be relevant. In fact, even among rele- 

ant features there may be different degrees of relevance. Hence, 

ensity-based clustering algorithms may benefit from taking into 

ccount the relevance of each feature during the clustering proce- 

ure. This princip has been successfully applied to partitional algo- 

ithms and hierarchical algorithms (see for instance [6–8] , and ref- 

rences therein), but no such large research effort has been done 

n density-based clustering algorithms. 

The main contribution of this paper is two-fold. We first in- 

roduce DBSCANR, a density-based clustering algorithm that uses 

everse nearest neighbour to address shortcomings (i) and (ii). 

econd, we extend this work by introducing automatic feature 

eights. These feature weights are used to model the degree of 

elevance of each feature, and can be seen as a generalisation of 

eature selection. The latter either selects or deselects a particular 

eature. Feature weights assign a degree of relevance to each fea- 

ure, a factor between zero and one. 

. Related work 

Unfortunately, there is no precise widely accepted definition for 

he term cluster . A loose definition often employed is that a cluster 

s a compact set of similar points. Clearly, clusters may have dif- 

erent cardinalities, shapes and densities. Density-based clustering 

lgorithms aim at discovering high-density regions that are sepa- 

ated from each other by contiguous regions of lower density [9] . 

t is intuitive to assign the term cluster to such high-density areas. 

hese algorithms rely heavily on a density estimation function, but 

hey do not usually make assumptions regarding the number of 

lusters in a data set, or the data distribution. This can lead to the 

dentification of arbitrarily shaped clusters. In this section we de- 

cribe some of the key algorithms related to our research, giving 

mphasis to those we experimentally compare with. 

DBSCAN is often considered the most popular density-based 

lustering algorithm. As such, it can detect clusters of different car- 

inalities and shapes. Given a data set Y containing n points y i , 

ach described over V features, DBSCAN begins by assigning each 

 i ∈ Y into one of three categories: (i) core; (ii) (directly) reach- 

ble; (iii) outlier. A core point is a y i ∈ Y with at least minPts points

ithin a distance of ε. In other words, let 

(y i , y j ) = 

V ∑ 

v =1 

(y i v − y jv ) 
2 , (1) 

nd 

 ε (y i ) = { y j ∈ Y : d(y i , y j ) ≤ ε} . (2)

he point y i ∈ Y is a core point iff | N ε (y i ) | ≥ minP ts , where minPts

s a user-defined threshold. A point y j is said to be directly reach- 

ble from y i iff y i is a core point and y j ∈ N ε (y i ) . A point y j is

eachable from y i if there is a path of points y i , . . . , y j where each

oint is directly reachable from the previous. Outliers are points 

hat are unreachable from any other point in the data set. DBSCAN 

roduces a clustering using the definitions above and following 

hree simple steps: (i) for each y i ∈ Y , compute N ε (y i ) and identify

he set of core points; (ii) for each core point, identify all reach- 

ble and directly reachable points; (iii) assign each non-core point 

excluding outliers) to its connected cluster. 

DBSCAN produces a clustering based on three things: ε, minP ts , 

nd the distance function in use. Under usual conditions ε is in- 

ersely proportional to the number of clusters. A high ε leads 

o larger neighbourhoods and by consequence a lower number of 

lusters, while a low ε has the opposite effect. It is often stated 

hat density-based clustering algorithms are capable of recovering 

lusters of arbitrary shapes. This is a very tempting thought, which 

ay lead to some disregarding the importance of selecting an ap- 

ropriate distance or similarity measure. This measure is the key 
2 
o produce homogeneous clusters as it defines homogeneity, so it 

as an impact on the actual clustering. Most likely the impact will 

ot be as obvious as if one were to apply an algorithm such as 

 -means [10] (where the distance in use leads to a clear bias to- 

ards a particular cluster shape, which is something that can also 

e exploited [11] ). However, the impact of this selection will still 

xist at a more local level. If this was not the case, DBSCAN would 

roduce the same clustering regardless of the distance measure in 

lace. 

OPTICS [12] still requires two parameters, minPts and ε, but it 

anages to address DBSCAN’s inability to deal with clusters of dif- 

erent densities. It does so by taking into consideration the dis- 

ance between core points and the minPts th nearest point when 

alculating the reachability distances. This essentially allows OP- 

ICS to identify clusters in data of varying density. One should note 

hat a higher ε incurs more computational cost [13] . 

ISDBSCAN [14] has pioneered the use of reverse nearest neigh- 

our (RNN) [15] in DBSCAN-based algorithms. Let us first make 

ome important definitions. The nearest neighbour of y i ∈ Y is the 

oint y j ∈ Y with the lowest distance to y i , with y i � = y j . With this,

e can now define the k -neighbourhood of y i as the set NN k (y i )

ontaining the k -nearest points to y i , with y i / ∈ NN k (y i ) . We can

ow make an important definition we will use later on. 

efinition 1. The reverse k -neighbourhood of a point y i ∈ Y is 

iven by 

NN k (y i ) = { y j ∈ Y : y i ∈ NN k (y j ) } . (3)

ISDBCAN calculates the k -influence space IS k (y i ) = NN k (y i ) ∩
NN k (y i ) . Note that NN k (y i ) � = ∅ but there is no such guarantee for

NN k (y i ) . However, this RNN-based approach allows the algorithm 

o capture local densities in different regions of the data space, 

eading to the recovery of clusters having heterogeneous densities. 

n addition, ISDBSCAN attempts to lower the difficulty of using DB- 

CAN by removing one of its parameters, ε, leaving only k (the 

umber of nearest neighbours) as a parameter. 

ISDBSCAN performs the clustering task in two-steps. First, it at- 

empts to identify all outliers in a given data set. It does so by 

alculating the k -influenced outlierness of a point y i given by 

NF LO k (y i ) = 

∑ 

y j ∈ IS k (y i ) 

den k (y j ) 

| IS k (y i ) | den k (y i ) 
, (4) 

here den k (y i ) = 

1 
d(y i ,y t ) 

and y t is the k th-neighbour of y i . Second,

he clustering algorithm is applied to the residual data set. This al- 

orithm builds a cluster based on the density of y i if | IS k (y i ) | ≥
 / 3 k . This was the best threshold identified by its authors. Of

ourse, it is fair to assume that a different threshold may be found 

n experiments on different data sets. Hence, one may even argue 

hat this threshold is in fact a parameter with no clear method to 

dentify its optimal value. Such thought leads ISDBSCAN to have 

he same number of parameters as DBSCAN. 

RNN-DBSCAN [16] aims at reducing the number of parameters 

f DBSCAN by adapting ISDBSCAN’s RNN k -based density estima- 

ion. Thus, RNN-DBSCAN is able to recover clusters with different 

egrees of density by setting a single parameter, k . Unlike ISDB- 

CAN, the density of a point is determined by a special combina- 

ion of nearest neighbourhood and reverse nearest neighbourhood 

nstead of the influence space. Given y i , y j ∈ Y there are three sce-

arios for connectivity. 

1. The point y j is directly density-reachable from y i if y j ∈ NN k (y i )

and | RNN k (y i ) | ≥ k . 

2. A point y j is density-reachable from y i if there exists a sequence 

of points C = (y i , . . . , y j ) , such that each of these points is di-

rectly density-reachable from the previous, and | RNN (y t ) | > k . 
k 
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3. The point y j is density-connected to point y i , if there is a point

y t ∈ Y such that both y i and y j are density-reachable from y t . 

Using the above, RNN-DBSCAN defines a cluster using a simple 

efinition: any two points y i , y j ∈ Y belong to the same cluster if

hey are density-reachable or density-connected. RNN-DBSCAN in- 

eed requires a single parameter to tackle the problem of variable 

ensity clusters, however, it does so considering all the features to 

e equally relevant. 

Adaptive DBSCAN (ADBSCAN) [17] is a recent advancement 

n density-based clustering that requires two parameters, k and 

oise _ percent (the prior estimate of the noise ratio of the data set). 

his algorithm automatically discovers the number of clusters by 

nitially building a nearest neighbour graph, and eventually divid- 

ng the data set into subgraphs. In the latter, two vertices are con- 

idered to be subgraph core points if they are the nearest neighbour 

o each other. The density of a point y i ∈ Y is give by 

(y i ) = log 

[ ∑ k 
j=1 d(y i , y 

j 
i 
) 

k 

] 

, (5) 

here y k 
i 

is the k th nearest neighbour of y i . The original au-

hors then specify a criteria for a subgraph to be a core sub- 

raph based on the existence of a subgraph core point, the value 

f noise _ percent , the average, quartile, and standard deviation ob- 

ained with (5) . ADBSCAN is indeed an enhancement of DBSCAN 

s it seems to act well on data sets with large density variations. 

owever, it introduces a new parameter to do so. 

Density Peak Clustering (DPC) [18] has recently gained popular- 

ty [19–22] , due to its effectiveness and intuitive distance threshold 

arameter (with a suggested standard value). The general idea be- 

ind DPC is that cluster centres are high-density points that are 

urrounded by lower-density neighbours, and that these centres 

ave a high relative distance to other points of higher density. DPC 

dentifies K clusters and automatically assign points to them. The 

ocal density of point y i ∈ Y is the number of neighbours adjacent 

o y i within a user-defined cutoff distance d c . 

As popular as it may be, DPC is not without weaknesses. Hence, 

t has been a target of numerous extensions. DPC-DBFN [23] im- 

roves clustering recovery by calculating local densities using a 

uzzy kernel rather than a crisp kernel. Once the cluster centre is 

dentified, before the label assignment, a new step is introduced 

o the DPC clustering process to form the high-density regions 

alled cluster backbones. This is constructed by labelling a data 

oint as a dense point, border point or noisy point. A point y i is

 dense point if its density is equal to or higher than the aver-

ge density over all points in the data set. Otherwise, y i is either 

 border point or a noise point depending on the variance of the 

istance between points. DPC-DBFN improves DPC to find clusters 

ith various densities, shapes, and sizes, however, it introduces a 

ew controlling parameter to distinguish border points from noise 

oints. 

The above clustering methods enhance DBSCAN, however, they 

reat all the features equally regardless of their degree of rele- 

ance, which can have a detrimental impact on the clustering. 

ne could argue that nowadays the most interesting data sets are 

igh-dimensional. In this type of data meaningful clusters often 

ppear to be discovered in a particular subset of features rather 

han on all the available features [24,25] . A common solution is 

o apply a feature selection algorithm before the clustering. How- 

ver, this introduces two issues: (i) it assumes that all clusters 

ave the same relevant features; (ii) it assumes that all selected 

eatures are equally relevant. Both issues go considerably against 

ntuition. In real-world data sets, it is perfectly possible to have 

 set of relevant features in which the relevance of each of them 

iffers. 
3 
. DBSCANR and W-DBSCANR 

.1. DBSCANR 

In this section we introduce our density-based clustering al- 

orithm, DBSCANR. Very much like DBSCAN (for details, see 

ection 2 ), DBSCANR needs to determine whether a point y i ∈ Y 

s core or directly reachable . In the case of DBSCANR this is deter- 

ined using reverse nearest neighbour, RNN k (y i ) (see Definition 1 ). 

efinition 2. A point y i ∈ Y is said to be a core point if 

 RNN k (y i ) | ≥ k. (6) 

Notice that we use the quantity of reverse nearest neighbours 

s the density of a point. So, the density of y j ∈ Y is higher than

hat of y i ∈ Y if | RN N k (y j ) | > | RN N k (y i ) | . We can now make an-

ther important definition for DBSCANR. 

efinition 3. A point y j ∈ Y is said to be directly-reachable from a 

oint y i ∈ Y , with y i � = y j if 

1. y i is a core point, 

2. y j ∈ RNN k (y i ) . 

The key idea of our method is that, each point in a cluster has 

o comprise of at least a given minimum number of points ( k ) in

ts reverse nearest neighbour. This way reverse nearest neighbour- 

ood estimates density of a point by discarding those that do not 

onsider the query point as their nearest neighbour. We find the 

bove definitions of core and directly reachable entities to be more 

obust than those used by DBSCAN, and our experiments support 

his statement. 

Given the basic definitions above, we can now go further and 

ntroduce other new key definitions for our method. 

efinition 4. A point y j ∈ Y is density-reachable from y i ∈ Y with

espect to k , if there exists a sequence of points C = (y i , . . . , y j ) ,

uch that each element is directly-reachable from the previous. 

Density reachability is the transitive closure of direct reacha- 

ility. Any point other than core can not be mutually density and 

irect reachable, leading to the asymmetry illustrated in Fig. 1 c. 

his figure shows the more interesting asymmetric case of this def- 

nition in a 2 D vector space, which measures distance using (1) . 

ithin cluster S c , two core entities are density-reachable from each 

ther. The same can not be said for the entities that are not core .

he following definition relates those non-core entities to the core 

ntities they are density-reachable from. 

efinition 5. A point y j ∈ Y is density-connected to y i ∈ Y with re-

pect to k , if both y i and y j are density-reachable from y t ∈ Y . 

Density-connectivity is a symmetric relation (see Fig. 1 b). Sim- 

lar to the approach taken by DBSCAN, a DBSCANR cluster is a set 

f density-connected points holding the maximality with respect 

o density-reachability. 

efinition 6. The purpose of any clustering algorithms is to 

plit a data set Y containing n entities y i ∈ R 

V into K clusters 

 = { S 1 , S 2 , . . . , S K } . Here, we are particularly interested in hard-

lustering so that a given point y i can be assigned to a single clus- 

er S c ∈ S, and 

∑ K 
l=1 | S l | = n . Our final clustering satisfies the fol-

owing conditions: 

1. ∀ y i , y j ∈ Y : if y i ∈ S c and y j is density-reachable from y i wrt. k,

then y j ∈ S c . (Maximality) 

2. ∀ y i , y j ∈ S c , y i is density-connected to y j wrt. k . (Connectivity) 

Given k , we can recover a cluster in a two-step process. First, 

elect the core point from the data set with the highest density 
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Fig. 1. Reverse nearest neighbour based density-reachability and density-connectivity. (a) y 1 is density-reachable from q ; q is not density-reachable from y 1 . (b) y 1 and y 2 
are density-connected by q . 
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Algorithm 2 : RecoverCluster (C, q, k ) . 

Input 

C: Core point vector. 

q : A point of high density. 

k : Minimum number of points. 

Output 

S c : A cluster 

1: Set seeds ← ∅ and S c ← ∅ . 
2: For each y i ∈ C 

If y i ∈ RNN k (q ) and y i has never been assigned to S c 
Add y i to seeds . 

3: Add q to S c , and remove q from seeds (if q ∈ seeds ). 

4: For each y i ∈ seeds 

If y i has never been assigned to S c 
Set q ← y i . 

Repeat steps 2 to 4 until | seeds | = 0 . 

5: For each y i ∈ S c 
Add to S c all points in NN k (y i ) that are not in C and have 

never been assigned to S c . 

Algorithm 3 : W-DBSCANR ( Y, k, β). 

Input 

Y : Data set. 

k : Minimum number of points. 

β: Weight exponent. 

Output 

S : A clustering S = { S 1 , S 2 , . . . , S K } 
W : A set of weight vectors W = { w 1 , w 2 , . . . , w K } 

1: Set K to be the number of clusters in the clustering produced 

by Algorithm 1. 

2: Set w cv ← 

1 
V , for c = 1 , 2 , . . . , K and v = 1 , 2 , . . . , V . 

3: S = UpdateClustering ( Y, k, S, W ). 

4: Update feature weights for each cluster (as per Equation 17). 

5: Repeat steps 3 and 4 until | S| has converged. 

I

c  

b  

{

see Definition 2 ), using it to retrieve all related density-reachable 

oints. Second, assign the latter to the cluster of the core point. 

DBSCANR starts with the highest density core point y i ∈ Y from 

 sequence of core points C. If there is more than one point with

he same highest density, then one of them is selected uniformly at 

andom. Afterwards, DBSCANR retrieves all points that are density- 

eachable from y i wrt. k . This method, iteratively, recovers all clus- 

ers comprising the core points. Finally, each point that does not 

atisfy the condition for core point (see Definition 2 ) will be as- 

igned to the cluster of its nearest core point. Although we use only 

lobal values for k , DBSCANR recovers clusters of different densities 

nd shapes simultaneously (see Definition 6 ). 

lgorithm 1 : DBSCANR (Y, k). 

Input 

Y : Data set. 

k : Minimum number of points. 

Output 

S : A clustering S = { S 1 , S 2 , · · · , S K } 

1: Set S ← ∅ and C ← ∅ . 
2: Add each point in Y to C (as per definition 2). 

3: Identify the point q ∈ C with the highest density, and remove q 

from C. 

4: S c = RecoverCluster (C, q, k ) 

5: If | S c | ≥ k 

Add S c to S 

6: Remove each point in S c from C 

Repeat steps 3 to 6 until | C| has converged. 

7: Assign each unclustered point to the cluster of its nearest core 

point. 

We can formalise the whole algorithm as follows. 

In the above, the quantity of nearest neighbours, k , is a user- 

efined parameter. The quantity of clusters, K, is automatically 

ound by the algorithm. 

There are reasons why using reverse nearest neighbours makes 

ur algorithm superior to others. Notice that the k -nearest neigh- 

ourhood of a point usually contains k points. However, with re- 

erse nearest neighbour no such guarantee exists as local densities 

re taken into account. This is particularly helpful when attempt- 

ng to identify clusters with very different local densities. For in- 

tance, Fig. 2 illustrates the neighbourhood using coloured circles. 
4 
n Fig. 2 (a), the black circle of point 1 along with other coloured 

ircles of point 2, 3, 4, and 5 corresponds to the k -nearest neigh-

ourhood at k = 3 . NN k (1) = { 2 , 3 , 4 } , NN k (2) = { 3 , 4 , 5 } , NN k (3) =
 2 , 4 , 5 } , NN (4) = { 2 , 3 , 5 } and NN (5) = { 2 , 3 , 4 } . 
k k 
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Fig. 2. The neighbourhood are shown in different colours (a) k-nearest neighbourhood at k = 3 (b) reverse k-nearest neighbourhood at k = 3 . 

Algorithm 4 : UpdateClustering ( Y , k , S, W ). 

Input 

Y : Data set. 

k : Minimum number of points. 

S: A clustering. 

W : A set of weight vectors. 

Output 

S : A clustering S = { S 1 , S 2 , · · · , S K } 

1: Set C ← ∅ . 
2: Add each weighted core point in Y to C (as per definition 7). 

3: Identify the point q ∈ C with the highest density, and remove q 

from C. 

4: S c = RecoverCluster (C, q, k, W ) 

5: If | S c | ≥ k 

Add S c to S 

6: Remove each point in S c from C 

Repeat steps 3 to 6 until | C| has converged. 

7: Assign each unclustered point to the cluster of its nearest 

weighted core point. 

Algorithm 5 : RecoverCluster (C, q, k, W ) . 

Input 

C: Weighted core point vector. 

q : Weighted core point with the highest density. 

k : Minimum number of points. 

W : A set of weight vectors W = { w 1 , w 2 , . . . , w K } . 
Output 

S c : A weighted cluster 

1: Set seeds ← ∅ and S c ← ∅ . 
2: For each y i ∈ C 

If y i ∈ RN N 

W 

k 
(q ) and y i has never been assigned to S c 

Add y i to seeds . 

3: Add q to S c , and remove q from seeds (if q ∈ seeds ). 

4: Identify y i ∈ seeds , such that y i has not been assigned to any 

cluster. Set q ← y i . Repeat steps 2 to 4 until | seeds | = 0 . 

5: For each y i ∈ S c 
Add to S c all points in N N 

W 

k 
(y i ) that are not in C and have 

not been assigned to a cluster. 
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In Fig. 2 (b), the coloured circles represent the reverse k- 

earest neighbourhoods of each point at k = 3 . RNN k (1) = ∅ ,
NN k (2) = { 1 , 3 , 4 , 5 } , RNN k (3) = { 1 , 2 , 4 , 5 } , RNN k (4) = { 1 , 2 , 3 , 5 }
nd RNN k (5) = { 2 , 3 , 4 } . Since point 2, 3, 4, and 5 do not have

oint 1 as their neighbour, the reverse nearest neighbour set of 

oint 1 is empty, hence no circle around point 1 in Fig. 2 (b). It is

nteresting to note that the empty reverse nearest neighbour set 

f point 1 can be associated with the separation of two widely 

ariable clusters. This indicates that the reverse nearest neighbour 

an be used to identify the border point of a widely variable den- 

ity cluster such as point 1, without the need of any special com- 

ination, while still maintaining the competitiveness in cluster- 

ng recovery when compared with DBSCAN and its state-of-the- 

rt counterparts. Hence, our algorithm can find naturally mean- 

ngful clusters rather than clusters that fit a certain static neigh- 

ourhood query. Unlike ISDBSCAN and RNN-DBSCAN, we used 

nly RNN for our neighbourhood calculation rather than any spe- 

ial combination of the nearest neighbourhood and its reverse 

ounterpart. 

When two clusters of widely variable densities are separated 

y very narrow sparse regions, recovering cluster borders may be- 

ome difficult. To address this issue only core points are clustered 

n the initial clustering recovery step of our algorithm. We take the 

iew that cluster borders are surrounded by non-core or border 

oints, in the final clustering recovery step we assigned the bor- 

er points to its nearest core neighbour cluster. Within the same 

luster if the density varies, this cluster extension strategy includes 

ll the points rather than assigning the non-core points as outliers 

ust because it does not meet the clustering definition based on a 

pecial neighbourhood search condition. 

DBSCANR requires a single user-defined parameter, and it is 

ble to recover clusters of different densities. However, very much 

ike its competitors DBSCANR still treats all features equally. 

.2. Weighted DBSCANR (W-DBSCANR) 

In most pattern recognition tasks different features may have 

ifferent degrees of relevance, and this certainly applies to clus- 

ering. Even if we assume that all features in a given data set are 

elevant, there may be different degrees of relevance. Given a clus- 

er S l ∈ S, one can set the weight of a feature v to be inversely

roportional to the dispersion of v within S l [26] . In other words, 

eatures that are more compact within a cluster are more discrim- 
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Table 1 

The synthetic data sets we experiment with. 

No noise features + 50% noise features + 100% noise features 

Entities Clusters Features Noise Features Noise Features Noise 

Data set n K V Features V Features V Features 

Aggregation 788 7 2 0 3 1 4 2 

Grid 655 2 2 0 3 1 4 2 

D31 3100 31 2 0 3 1 4 2 

Flame 240 2 2 0 3 1 4 2 

Mixed 1479 5 2 0 3 1 4 2 

Pathbased 300 3 2 0 3 1 4 2 

R15 600 15 2 0 3 1 4 2 

Spiral 312 3 2 0 3 1 4 2 

Toy 373 2 2 0 3 1 4 2 

Diamonds 800 2 2 0 3 1 4 2 

Table 2 

The real-world data sets we experiment with. 

Entities Clusters Features 

Data set n K V 

Banknote 1372 2 4 

Iris 150 3 4 

Ecoli 336 8 7 

Seeds 210 3 7 

BreastC. 699 2 9 

BreastT. 106 6 9 

Liver 583 2 9 

Wine 178 3 13 

Leaf 340 30 14 

Zoo 101 7 16 

Parkinsons 195 2 22 

Leuk 72 3 39 

TeachingA. 151 3 56 

Soya 47 4 58 

Libras 360 15 90 

ALLAML 72 2 7129 

Carcinom 174 11 9182 

CLL-SUB 111 3 11340 

Colon 62 2 2000 

GLIOMA 50 4 4434 

Lung 203 5 3312 

Lymphoma 96 9 4026 

ORL 400 40 1024 

Prostate-GE 102 2 5966 

Tox-171 171 4 5748 
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Table 3 

The real-world data sets with added noise we experiment with. 

+ 50% noise features + 100% noise features 

Entities Clusters Features Noise Features Noise 

Data sets n K V Features V Features 

Banknote 1372 2 6 2 8 4 

Iris 150 3 6 2 8 4 

Ecoli 336 8 11 4 14 7 

Seeds 210 3 11 4 14 7 

BreastC. 699 2 14 5 18 9 

BreastT. 106 6 14 5 18 9 

Liver 583 2 14 5 18 9 

Wine 178 3 20 7 26 13 

Leaf 340 30 21 7 28 14 

Zoo 101 7 24 8 32 16 

Parkinsons 195 2 33 11 44 22 

Leuk 72 3 59 20 78 39 

TeachingA. 151 3 84 28 112 56 

Soya 47 4 87 29 116 58 

Libras 360 15 135 45 180 90 
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t

natory than those that are less compact. We considerably expand 

he above in order to introduce, perhaps for the first time, feature 

eighting to a density-based clustering algorithm. Given y i , y j ∈ S l 
e can calculate their distance using 

 

W (y i , y j ) = 

V ∑ 

v =1 

w 

β
lv (y i v − y jv ) 

2 
, (7) 

here β is a user-defined parameter, and w lv is the weight of fea- 

ure v at cluster S l . Clearly, the balanced use of (7) for density esti-

ation requires each weight to be non-negative and 

∑ V 
v =1 w lv = 1 

or each cluster S l ∈ S. Hence, the weighted k −neighbourhood of 

 i is the set N N 

W 

k 
(y i ) containing the k −nearest points to y i , cal-

ulated using (7) , with y i / ∈ N N 

W 

k 
. Notice that in this case the l in

7) represents the cluster y i belongs to. The above allow us to re- 

isit our definition of reverse k -neighbourhood ( RNN k ), and present 

ts weighted version. 

N N 

W 

k (y i ) = { y j ∈ Y : y i ∈ N N 

W 

k (y j ) } . (8)

ow, we are ready to make some important definitions for our al- 

orithm. 

efinition 7. A point y j is weighted directly density-reachable 

rom a point y with respect to k and β , if 
i 

6 
1. y j ∈ RN N 

W 

k 
(y i ) 

2. | RN N 

W 

k 
(y i ) | � k (i.e. y i is a weighted core point ) 

efinition 8. A point y j is weighted density-reachable from a 

oint y i , if there exists a sequence of points C W = (y i , . . . , y j ) , such

hat each element is weighted directly density-reachable from the 

revious. 

efinition 9. A point y j is weighted density-connected to a point 

 i , if both y i and y j are weighted density-reachable from a common 

oint y t . 

Weighted density-connectivity is a symmetric relation. We now 

ntroduce the notion of weighted density-based cluster. Similar to 

BSCAN, a weighted density-based cluster can now be defined as 

 set of weighted density-connected points which hold maximality 

ith respect to weighted density-reachability. 

efinition 10. Weighted clusters are a partition of a data set Y 

ontaining n entities y i ∈ R 

V into K non-empty disjoint clusters 

 = { S 1 , S 2 , . . . , S K } . Here, we are particularly interested in hard-

lustering so that a given point y i can be assigned to a sin- 

le cluster S c ∈ S. Thus, the final clustering is a maximal set of 

eighted density-connected entities subject to S k ∩ S l = ∅ for k, l =
 , 2 , . . . , K and k � = l satisfying the following conditions : 

1. ∀ y i , y j ∈ Y : if y i ∈ S c and y j is weighted density-reachable from

y i with respect to k and β, then y j ∈ S c . (Maximality) 

2. ∀ y i , y j ∈ S c : y i is weighted density-connected to y j with respect

to k and β . (Connectivity) 

Our proposed clustering algorithm recovers weighted cluster in 

wo steps. First, it identifies the weighted core points with the 
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Table 4 

Results of the experiments on the original synthetic data sets (no noise features have been added). We measure cluster recovery using the Adjusted Rand index (ARI), 

F-Measure (FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Aggregation ARI 0.9834 (10/0.06) 0.9082 (7/0.14) 0.9911 (12) 0.9966 (13) 0.9065 (29/0.1) 0.9927 (30) 0.9978 (12) 1 (17/1.4) 

FM 0.9915 (11/0.06) 0.7016 (7/0.15) 0.9947 (12) 0.9982 (13) 0.0784 (29/0.1) 0.9957 (24) 0.9988 (12) 1 (17/2.2) 

NMI 1 (18/0.06) 0.9381 (7/0.15) 0.9958 (9) 0.9958 (8) 0.9435 (29/0.1) 0.9884 (33) 0.9957 (12) 1 (17/2.2) 

Acc 1 (16/0.06) 0.9489 (7/0.15) 0.9987 (9) 0.9987 (13) 0.9374 (29/0.1) 0.9962 (24) 0.9987 (12) 1 (17/2.2) 

D31 ARI 0.8224 (42/0.04) 0.4649 (27/0.09) - 0.8591 (35) - 0.9541 (83) 0.9354 (35) 0.9445 (33/1.8) 

FM 0.9445 (42/0.04) 0.0859 (11/0.14) - 0.948 (35) - 0.9774 (83) 0.9681 (35) 0.9735 (15/3.2) 

NMI 0.9917 (27/0.03) 0.3686 (11/0.14) - 0.9656 (35) - 0.9678 (83) 0.9574 (35) 0.964 (16/3.4) 

Acc 0.9943 (27/0.03) 0.1246 (11/0.14) - 0.9741 (35) - 0.9774 (83) 0.9681 (35) 0.9735 (15/3.2) 

Flame ARI 0.9715 (14/0.12) 0.8969 (7/0.08) 0.9497 (8) 0.9881 (8) 0.0128 (41/0) 0.9666 (6) 0.9833 (8) 0.9833 (7/2.4) 

FM 0.9896 (14/0.12) 0.9601 (7/0.08) 0.9774 (8) 0.9942 (8) 0.4138 (41/0) 0.991 (6) 0.9955 (8) 0.9955 (7/1.5) 

NMI 1 (3/0.06) 1 (20/0.04) 0.9621 (8) 1 (8) 0.0437 (53/0.5) 0.9355 (27) 0.9635 (8) 1 (2/1.1) 

Acc 1 (3/0.06) 1 (15/0.05) 0.9957 (8) 1 (8) 1 (41/0.05) 0.9917 (6) 0.9958 (8) 1 (2/1.1) 

Grid ARI 0.6377 (4/0.07) 0.8585 (5/0.07) 0.9397 (7) 0.9397 (7) 0.1031 (197/0.45) 0.5207 (299) 0.9457 (4) 1 (4/1.1) 

FM 0.6724 (5/0.07) 0.64 (30/0.02) 0.9843 (7) - 0.2132 (197/0.45) 0.8609 (299) 0.9859 (4) 0.9859 (4/3.3) 

NMI 0.8829 (7/0.07) 0.4288 (21/0.02) 0.8995 (7) - 0.1185 (179/0.45) 0.4832 (299) 0.9075 (4) 0.9075 (4/3.3) 

Acc 0.8958 (7/0.07) 0.9398 (5/0.07) 0.9847 (7) - 0.4225 (77/0.5) 0.8611 (299) 0.9863 (4) 0.9863 (4/3.3) 

Mixed ARI 1 (2/0.05) 0.9998 (5/0.3) 1 (23) 0.9989 (36) 1 (43/0) 0.6125 (29) 1 (14) 1 (14/1.9) 

FM 1 (2/0.05) 0.7987 (7/0.23) 1 (23) 0.9998 (36) 0.4 (43/0) 0.4831 (31) 1 (14) 1 (12/4.2) 

NMI 1 (2/0.04) 0.9982 (7/0.23) 1 (12) 1 (14) 1 (43/0) 0.6128 (29) 1 (14) 1 (12/4.2) 

Acc 1 (2/0.04) 0.9993 (7/0.23) 1 (12) 1 (13) 0.9491 (43/0) 0.7904 (31) 1 (14) 1 (12/4.2) 

Pathbased ARI 0.8948 (9/0.08) 0.7867 (9/0.1) 0.8819 (12) 0.9065 (6) 0.7505 (32/0.5) 0.5756 (96) 0.959 (6) 0.959 (6/1.6) 

FM 0.8116 (3/0.06) 0.6281 (9/0.11) 0.959 (12) 0.9671 (6) 0.226 (29/0.2) 0.824 (95) 0.987 (6) 0.9771 (8/1.9) 

NMI 0.956 (9/0.08) 1 (4/0.22) 0.8947 (12) 0.9336 (6) 0.7357 (32/0.5) 0.6044 (96) 1 (1) 1 (4/2.3) 

Acc 0.9898 (9/0.08) 1 (4/0.22) 0.9726 (12) 0.9862 (6) 1 (25/0) 0.82 (95) 1 (1) 1 (1/3.2) 

R15 ARI 0.9893 (30/0.05) 0.8682 (8/0.22) 0.9743 (26) 0.9857 (30) 0.9098 (42/0.1) 0.9964 (39) 0.9928 (22) 0.9929 (30/1.8) 

FM 0.995 (30/0.05) 0.8949 (8/0.24) 0.9882 (26) 0.9933 (30) 0.0485 (43/0.15) 0.9983 (39) 0.9967 (22) 0.9967 (30/3.3) 

NMI 1 (6/0.02) 0.9916 (8/0.24) 1 (12) 1 (12) 0.9666 (42/0.1) 0.9971 (39) 0.9942 (22) 0.9942 (30/3.3) 

Acc 1 (6/0.02) 0.9943 (8/0.24) 1 (12) 1 (12) 1 (43/0.15) 0.9983 (39) 0.9967 (22) 0.9967 (7/2.2) 

Spiral ARI 1 (2/0.04) 0.5617 (5/0.21) 1 (5) 1 (2) 1 (26/0) 0.1487 (4) 1 (2) 1 (2/1.3) 

FM 1 (2/0.04) 0.7367 (12/0.02) 1 (5) 1 (2) 0 (26/0) 0.5542 (4) 1 (2) 1 (2/1.2) 

NMI 1 (2/0.04) 1 (9/0.07) 1 (5) 1 (2) 1 (26/0) 0.204 (19) 1 (2) 1 (2/1.2) 

Acc 1 (2/0.04) 1 (9/0.07) 1 (5) 1 (2) 1 (26/0.05) 0.5545 (4) 1 (2) 1 (2/1.2) 

Toy ARI 0.967 (13/0.06) 1 (32/0.07) 1 (17) 0.9917 (15) 1 (36/0.25) 0.8008 (43) 1 (16) 1 (12/1.6) 

FM 0.8301 (17/0.1) 0.9067 (18/0.12) 1 (17) 0.9991 (15) 0 (36/0.25) 0.9331 (43) 1 (16) 1 (11/2.5) 

NMI 1 (8/0.05) 1 (10/0.29) 1 (17) 1 (15) 1 (36/0.25) 0.7198 (43) 1 (10) 1 (2/4) 

Acc 1 (8/0.05) 1 (3/0.49) 1 (17) 1 (15) 1 (36/0.25) 0.9517 (43) 1 (2) 1 (2/1.4) 

Diamonds ARI 0.9975 (12/0.06) 0.9751 (27/0.07) - 0.995 (36) 1 (39/0.05) 1 (41) 0.995 (22) 1 (9/1.5) 

FM 0.9994 (12/0.06) 0.9937 (27/0.08) - 0.9987 (36) 1 (39/0.05) 1 (41) 0.9987 (22) 1 (10/1.3) 

NMI 1 (35/0.09) 1 (33/0.07) - 1 (12) 1 (39/0.05) 1 (41) 1 (2) 1 (2/1.6) 

Acc 1 (12/0.06) 1 (2/0.6) - 1 (12) 1 (35/0) 1 (41) 1 (2) 1 (2/1.5) 
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argest number of similar core points in its neighbourhood. Second, 

t retrieves all points that are weighted density reachable from y i . 

.2.1. Calculating feature weights in W-DBSCANR 

Feature weighting, can be thought of as a generalization of 

eature selection. Under this view, feature selection assigns a bi- 

ary weight. A weight of one means the feature is selected, and a 

eight of zero means the feature is deselected. Feature weighting 

ssigns a value, usually in the interval [ 0 , 1 ] , to each feature. In our 

odel, the higher this value is for a particular feature, the more 

elevant the feature is. In fact, we go further and assign a weight 

o each feature at each cluster. Feature weighting is a rather intu- 

tive approach because even among relevant features there may be 

ifferent degrees of relevance. That is, a feature v may have differ- 

nt degrees of relevance at different clusters. Also, feature weights 

an be used as a starting point for feature selection (see for in- 

tance [27] , and references therein). 

In order to calculate feature weights we introduce a new step to 

BSCANR. This allows us to iteratively update each feature weight 

t each cluster based on the current partition. In the first iteration 

e set each feature weight, w cv , to 1 
V so that all feature weights 

ave the same value to start from. 

With the above, we can recover K clusters from the first 

teration of our algorithm, and represent this clustering using 

raphs. Let G be a graph with K components G (1) , G (2) , . . . , G (K) ,
7 
o that the vertices of G (c) (with 1 ≤ c ≤ K) represent the data 

oints of a cluster S c ∈ S. Given G (c) , we can generate V graphs

 (c, 1) , G (c, 2) , . . . , G (c,V ) , so that each edge of G (c, v ) (with 1 ≤ v ≤ V )

s the feature-wise distance between its endvertices calculated us- 

ng 

 

W 

cv (y i v , y jv ) = 

d W (y i , y j ) 

w 

β
cv 

. (9) 

he equation above ensures a fair distribution of d W (y i , y j ) over

ach feature v . Notice that d W (y i , y j ) is calculated over all features.

owever, the division by w 

β
cv ensures the degree of relevance of a 

eature v at cluster S c ∈ S is taken into account. A lower weight 

eads to a higher distance, and by consequence a less compact 

luster. 

The above requires a precise definition of compactness. Given a 

raph G (c, v ) , representing the feature v at cluster S c ∈ S, we can cal-

ulate its compactness based on the edges of its minimum span- 

ing tree (MST), G 

∗
(c, v ) , after removing all vertices of degree one. 

et 

 i jc = 

{
1 , if there exists an edge between y i , y j ∈ S c in G 

∗
(c, v ) 

0 , otherwise . 

(10) 
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Table 5 

Results of the experiments on the original real-world data sets (no noise features have been added). We measure cluster recovery using the Adjusted Rand index (ARI), 

F-Measure (FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Banknote ARI 0.0216 (12/0.21) 0.0214 (42/0.1) -0.0109 (34) -0.0081 (46) 0.0789 (181/0.5) 0.1216 (178) 0.8433 (14) 0.8513 (14/2.5) 

FM 0.4162 (33/0.18) 0.3584 (40/0.06) 0.4029 (34) 0.4062 (42) 0.2062 (92/0) 0.6112 (178) 0.9586 (14) 0.9868 (35/2.6) 

NMI 1 (10/0.03) 1 (26/0.09) 0.0835 (34) 0.0867 (42) 0.0635 (196/0.2) 0.1936 (251) 1 (12) 1 (11/3.7) 

Acc 1 (10/0.03) 1 (4/0.56) 0.5037 (39) 0.5106 (45) 0.6306 (181/0.5) 0.6786 (178) 1 (6) 1 (2/1.2) 

BreastC. ARI 0.8526 (10/0.94) 0.8502 (42/0.17) 0.6505 (45) 0.0404 (8) 0.7828 (179/0.4) 0.2948 (299) 0.8452 (34) 0.8661 (36/1.2) 

FM 0.8244 (8/0.58) 0.0576 (20/0.11) 0.912 (45) 0.3964 (8) 0.006 (179/0.4) 0.771 (299) 0.9568 (34) 0.9674 (38/1.5) 

NMI 1 (3/0.25) 0 (10/0.11) 0.8399 (28) 0.0299 (9) 0.6912 (179/0.4) 0.3915 (299) 0.787 (34) 0.8265 (38/1.5) 

Acc 1 (3/0.25) 0.6176 (10/0.11) 0.9725 (28) 0.6617 (8) 0.9882 (179/0.45) 0.7725 (299) 0.9599 (34) 0.97 (38/1.5) 

BreastT. ARI 0.152 (2/0.48) 0.0148 (4/0.08) 0.0976 (5) 0.2892 (3) 0.3905 (20/0.35) 0.4087 (30) 0.2773 (3) 0.4532 (3/2) 

FM 0.2339 (2/0.24) 0.1503 (4/0.08) 0.3673 (5) 0.3977 (3) 0.0842 (20/0.35) 0.5704 (23) 0.5305 (3) 0.5831 (3/1.4) 

NMI 0.4241 (2/0.24) 0.1687 (4/0.08) 0.5478 (5) 0.629 (3) 0.5548 (32/0.25) 0.5472 (24) 0.7102 (1) 0.7846 (1/2.9) 

Acc 0.3333 (2/0.24) 0.2692 (4/0.08) 0.541 (5) 0.4891 (3) 0.5 (21/0.45) 0.5943 (23) 0.7222 (2) 0.766 (2/3) 

Ecoli ARI -0.0084 (4/0.19) 0.4217 (14/0.03) - - 0.4221 (36/0.15) 0.6581 (3) 0.4206 (3) 0.5398 (3/1.7) 

FM 0.1607 (4/0.09) - - - 0.1162 (52/0) 0.5115 (2) 0.4517 (3) 0.4988 (3/1.5) 

NMI 0.6687 (4/0.09) - - - 0.4978 (52/0) 0.6268 (3) 0.6423 (1) 0.6423 (1/1.1) 

Acc 0.7765 (4/0.09) - - - 0.6465 (52/0) 0.756 (3) 0.5863 (3) 0.6726 (3/1.5) 

Iris ARI 0.628 (5/0.25) 0.6063 (13/0.03) 0.4607 (12) 0.4008 (6) 0.886 (40/0) 0.851 (21) 0.8681 (7) 0.9222 (5/1.5) 

FM 0.8434 (5/0.13) 0.8266 (13/0.04) 0.6178 (12) 0.4662 (6) 0.4122 (42/0.05) 0.9466 (21) 0.9533 (7) 0.9733 (5/2.1) 

NMI 0.9583 (7/0.13) 0.893 (2/0.22) 0.7111 (12) 0.654 (6) 0.8862 (40/0) 0.8366 (21) 0.8498 (7) 1 (3/3.7) 

Acc 0.9899 (7/0.13) 0.9615 (2/0.22) 0.7197 (12) 0.554 (6) 0.8929 (40/0) 0.9467 (21) 0.9533 (7) 1 (3/1.4) 

Leaf ARI - 0.0058 (2/0.08) - - 0.2681 (21/0.3) 0.3646 (2) 0.4096 (2) 0.4136 (2/1.6) 

FM - - - - 0.0076 (20/0.3) 0.5596 (5) 0.5327 (2) 0.5796 (3/2.5) 

NMI - - - - 0.6472 (21/0.3) 0.7064 (2) 0.8876 (1) 0.9238 (1/2.8) 

Acc - - - - 0.0833 (17/0.45) 0.5353 (2) 0.7283 (1) 0.7816 (1/2.8) 

Leuk72 ARI 0.8947 (2/3.4) - 0.7439 (16) 0.8264 (3) 0.743 (28/0.3) 0.8809 (1) 0.8809 (3) 0.8809 (2/1.1) 

FM 0.9635 (2/1.7) - 0.9055 (16) 0.9439 (3) 0.4366 (28/0.3) 0.9568 (1) 0.9574 (4) 0.9574 (4/1.1) 

NMI 1 (2/0.92) - 0.9366 (10) 0.9437 (3) 0.7227 (28/0.3) 0.8593 (1) 1 (1) 1 (1/1.4) 

Acc 1 (2/0.92) - 0.9828 (10) 0.9848 (3) 0.7826 (28/0.35) 0.9583 (1) 1 (1) 1 (1/1.4) 

Libras ARI 0.0369 (4/1.42) 0.0014 (2/0.17) - 0.2676 (4) 0.2861 (37/0.15) 0.1346 (39) 0.3752 (5) 0.4141 (5/1.4) 

FM 0.2827 (4/0.71) - - 0.3701 (4) 0.0509 (37/0.15) 0.3102 (6) 0.473 (5) 0.4783 (5/5) 

NMI 0.8451 (4/0.71) - - 0.6401 (4) 0.5629 (37/0.15) 0.4461 (6) 0.7992 (1) 0.8462 (2/1.3) 

Acc 0.6545 (4/0.71) - - 0.4231 (4) 0.4545 (37/0.15) 0.3194 (6) 0.5851 (2) 0.7297 (2/1.3) 

Liver ARI 0.0521 (9/0.08) 0.0565 (11/0.12) 0.0072 (46) 0.032 (9) -0.0003 (179/0.1) 0.0387 (174) 0.0327 (5) 0.076 (10/1.2) 

FM 0.5399 (2/0.82) 0.5404 (4/0.29) 0.4753 (49) 0.5343 (13) 0.1338 (162/0.45) 0.5473 (174) 0.5399 (5) 0.5424 (5/3.7) 

NMI 0.0499 (4/0.02) 0.0141 (11/0.13) 0.0063 (46) 0.0084 (13) 0.0078 (162/0.45) 0.0163 (263) 0.4421 (1) 0.2766 (1/4.5) 

Acc 0.6822 (41/0.13) 0.7794 (6/0.15) 0.6149 (49) 0.6521 (9) 0.06 (92/0.5) 0.7547 (1) 0.875 (1) 0.7778 (3/2.5) 

Parkinsons ARI 0.1877 (7/0.65) -0.0069 (4/0.08) 0.0834 (10) 0.2473 (5) 0 (89/0) 0.3595 (2) 0.2967 (8) 0.3891 (4/1.9) 

FM 0.601 (10/0.47) 0.4282 (4/0.1) 0.5705 (10) 0.6434 (5) 0.1299 (89/0.25) 0.7381 (2) 0.6822 (8) 0.7328 (5/1.5) 

NMI 0.6616 (5/0.25) 0 (2/0.32) 0.2718 (10) 0.2626 (5) 0 (89/0) 0.2736 (11) 1 (1) 1 (3/4.2) 

Acc 0.9167 (5/0.25) 0.7526 (4/0.1) 0.7832 (10) 0.8177 (5) 0.7541 (89/0) 0.8308 (2) 1 (1) 1 (1/1.6) 

Seeds ARI 0.4916 (18/0.5) 0.4202 (15/0.06) 0.3855 (12) - 0.4083 (40/0.15) 0.7664 (2) 0.6132 (3) 0.7909 (9/2.8) 

FM 0.7641 (18/0.25) 0.6222 (26/0.04) 0.516 (12) - 0.3829 (57/0.35) 0.9135 (2) 0.8537 (3) 0.9176 (9/4.4) 

NMI 0.9368 (16/0.23) 0.9596 (4/0.09) 0.5773 (12) - 0.482 (55/0.35) 0.7343 (2) 1 (1) 1 (1/1.7) 

Acc 0.9836 (16/0.23) 0.988 (4/0.09) 0.6519 (12) - 0.2349 (59/0.4) 0.9143 (2) 1 (1) 1 (1/1.5) 

Soya ARI 1 (2/6.38) - 0.9776 (5) 0.9776 (4) 1 (22/0.15) 0.5952 (9) 1 (2) 1 (2/1.2) 

FM 1 (2/3.19) - 0.9868 (5) 0.9868 (4) 1 (22/0.15) 0.8506 (9) 1 (2) 1 (2/1.6) 

NMI 1 (2/3.19) - 1 (7) 1 (5) 1 (22/0.15) 0.7623 (9) 1 (1) 1 (1/1.4) 

Acc 1 (2/3.19) - 1 (4) 1 (2) 0.5 (22/0.15) 0.8298 (9) 1 (1) 1 (1/1.4) 

TeachingA. ARI 0.022 (11/3.01) 0.0092 (4/0.02) 0.0182 (9) - 0.0026 (50/0.45) 0.0714 (1) 0.0119 (3) 0.0339 (10/1.5) 

FM 0.3359 (6/1.44) 0.1795 (4/0.05) 0.3885 (9) - 0 (34/0.2) 0.3985 (54) 0.4024 (6) 0.4665 (10/5) 

NMI 0.4051 (3/0.02) 0.2415 (3/0.02) 0.0611 (9) - 0.0499 (50/0.45) 0.1112 (1) 0.3062 (1) 0.5328 (5/2.6) 

Acc 0.5455 (3/0.02) 0.619 (3/0.02) 0.4552 (9) - 0.6667 (45/0.45) 0.4702 (1) 0.6 (2) 0.8 (5/2.6) 

Wine ARI 0.4497 (17/0.95) - 0.5635 (9) 0.3738 (3) 0.3967 (32/0.4) 0.8465 (46) 0.7123 (3) 0.8672 (4/1.7) 

FM 0.6939 (23/0.51) - 0.817 (9) 0.5526 (3) 0.2134 (32/0.05) 0.9514 (46) 0.9015 (3) 0.9506 (5/2.3) 

NMI 1 (7/0.38) - 0.9057 (9) 0.5871 (3) 0.4164 (35/0.2) 0.8237 (46) 0.8044 (2) 1 (2/2.1) 

Acc 1 (7/0.38) - 0.969 (9) 0.6433 (3) 1 (39/0.25) 0.9494 (46) 0.8989 (3) 1 (2/2.1) 

Zoo ARI 0.8142 (2/2.05) 0.9106 (4/0.25) 0.4972 (6) 0.7696 (3) 0.543 (32/0) 0.4185 (31) 0.8203 (4) 0.7357 (5/1.7) 

FM 0.7298 (2/1.02) 0.5506 (4/0.27) 0.6973 (6) 0.7222 (3) 0 (12/0.5) 0.4842 (19) 0.7484 (4) 0.7462 (5/1.3) 

NMI 0.9279 (2/1.02) 0.9645 (3/0.34) 0.8379 (6) 0.8885 (3) 0.7621 (32/0) 0.5554 (31) 0.8543 (4) 0.8566 (5/1.3) 

Acc 0.9231 (2/1.02) 0.9831 (3/0.34) 0.7831 (6) 0.8817 (3) 1 (12/0.5) 0.5644 (31) 0.8614 (4) 0.8416 (5/1.3) 
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Now that we have a measure of compactness, we would like to 

inimise it over all clusters and features. Let ˆ w cv be the weight 
8 
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Table 6 

Results of the experiments on the high-dimensional data sets. We measure cluster recovery using the Adjusted Rand index (ARI), F-Measure (FM), Normalised 

Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

ALLAML ARI 0.1653 (3/17.23) - 0.0833 (11) - 0.05 (29/0.15) 0.2037 (7) -0.035 (2) 0.1171 (1/1.2) 

FM 0.4836 (3/17.23) - 0.4805 (11) - 0 (22/0.25) 0.6535 (7) 0.2516 (2) 0.55 (3/1.3) 

NMI 0.3632 (3/16.99) - 0.6255 (7) - 0.078 (29/0.15) 0.2491 (5) 0.1204 (2) 1 (1/1.2) 

Acc 0.8684 (3/16.99) - 0.931 (7) - 0.1822 (29/0.15) 0.75 (5) 0.7059 (2) 1 (1/1.2) 

Carcinom ARI 0.2975 (2/20.91) - - - 0.5734 (29/0.4) 0.1986 (21) 0.4885 (2) 0.5981 (2/2.3) 

FM 0.4542 (2/20.91) - - - 0 (8/0.5) 0.3506 (2) 0.5777 (2) 0.6616 (2/2.3) 

NMI 0.906 (2/19.85) - - - 0.7033 (34/0.3) 0.4097 (3) 0.8412 (1) 0.8741 (1/2.3) 

Acc 0.8667 (2/19.85) - - - 0 (8/0.5) 0.408 (21) 0.7292 (1) 0.7619 (1/2.3) 

CLL-SUB ARI -0.0129 (2/15.6) - - - - 0.2297 (2) 0.0341 (2) 0.0794 (2/2.1) 

FM 0.1411 (2/18.29) - - - - 0.6081 (10) 0.3985 (2) 0.4424 (2/1.9) 

NMI 0.312 (2/15.6) - - - - 0.4682 (2) 0.2358 (2) 0.3011 (2/1.4) 

Acc 0.5185 (2/18.29) - - - - 0.6036 (10) 0.5472 (2) 0.6296 (2/2.1) 

Colon ARI 0.013 (4/14.9) - -0.0101 (12) 0.1307 (3) -0.0178 (29/0.4) 0.1911 (4) 0.1052 (4) 0.2327 (3/2.9) 

FM 0.5133 (6/18.53) - 0.5016 (12) 0.5581 (3) 0.36 (24/0.3) 0.654 (24) 0.5914 (4) 0.6903 (3/2.9) 

NMI 0.2443 (3/13.25) - 0.0024 (12) 0.195 (3) 0.1064 (28/0.25) 0.1743 (4) 0.0664 (4) 0.3674 (1/2.7) 

Acc 0.6364 (3/13.25) - 0.5167 (12) 0.7241 (3) 0.5 (24/0.3) 0.7419 (4) 0.6935 (4) 0.7778 (1/2.7) 

GLIOMA ARI 0.3967 (2/15.86) - - - 0.3235 (8/0.45) 0.3527 (2) 0.4841 (3) 0.5128 (2/1.4) 

FM 0.5536 (3/15.6) - - - 0 (8/0.45) 0.6607 (13) 0.7498 (3) 0.775 (2/1.4) 

NMI 0.7368 (2/15.86) - - - 0.492 (11/0.5) 0.5018 (1) 0.9069 (2) 0.9069 (2/1.7) 

Acc 0.7143 (2/12.48) - - - 0.7273 (25/0) 0.66 (13) 0.9524 (2) 0.9524 (2/1.7) 

Lung ARI 0.2603 (2/11.46) - 0.263 (10) - 0.4969 (51/0.5) 0.3588 (2) 0.4413 (3) 0.6364 (5/1.1) 

FM 0.3624 (2/11.1) - 0.6315 (10) - 0.0012 (51/0.5) 0.5568 (20) 0.4891 (3) 0.7012 (5/1.1) 

NMI 0.7337 (4/9.32) - 0.6578 (10) - 0.5758 (60/0) 0.4369 (20) 0.5559 (3) 0.6922 (5/1.1) 

Acc 0.7535 (2/11.1) - 0.7634 (10) - 0.8333 (60/0) 0.6897 (4) 0.7438 (3) 0.8438 (2/1.1) 

Lymphoma ARI 0.2824 (2/25.63) - - - 0.6461 (17/0) 0.4346 (1) -0.0115 (2) 0.2843 (2/1.5) 

FM 0.3322 (2/25.63) - - - 0.0055 (17/0) 0.4291 (12) 0.3606 (2) 0.5596 (2/1.5) 

NMI 0.7506 (2/25.63) - - - 0.7831 (17/0) 0.5303 (1) 0.7626 (2) 0.7686 (2/2.5) 

Acc 0.4912 (2/26.68) - - - 1 (17/0) 0.5729 (1) 0.6047 (2) 0.6364 (2/1.8) 

ORL ARI 0.1328 (3/4.79) - - - 0.4027 (31/0.15) 0.1863 (35) 0.4377 (2) 0.4575 (3/1.9) 

FM 0.4667 (3/4.79) - - - 0.0214 (29/0.25) 0.3302 (24) 0.6005 (3) 0.6059 (3/1.7) 

NMI 0.7961 (3/4.79) - - - 0.7957 (31/0.15) 0.5971 (35) 0.9397 (1) 0.9302 (2/1.2) 

Acc 0.5063 (3/4.79) - - - 0.125 (29/0.25) 0.3575 (24) 0.7526 (1) 0.8071 (2/1.4) 

Prostate-GE ARI 0.0359 (5/16.09) - 0.0204 (21) 0.0003 (5) - 0.0586 (21) 0.0216 (2) 0.0805 (2/1.6) 

FM 0.4534 (2/20.9) - 0.5024 (17) 0.4195 (5) - 0.5971 (23) 0.4218 (5) 0.5567 (6/1.1) 

NMI 1 (2/9.85) - 0.0089 (13) 0.0367 (5) - 0.0762 (21) 0.1678 (1) 0.1871 (2/1.2) 

Acc 1 (2/9.85) - 0.5517 (17) 0.53 (5) - 0.6275 (21) 0.6429 (2) 0.7222 (2/1.4) 

TOX-171 ARI 0.1497 (4/14.21) - 0.1234 (7) - - 0.179 (2) 0.0075 (2) 0.1517 (3/1.1) 

FM 0.2617 (4/14.84) - 0.4109 (7) - - 0.4514 (2) 0.1893 (2) 0.4358 (3/1.1) 

NMI 0.4812 (3/12.76) - 0.4063 (7) - - 0.2639 (2) 0.3508 (1) 0.3944 (2/3.1) 

Acc 0.6071 (5/13.38) - 0.5455 (7) - - 0.462 (2) 0.56 (1) 0.566 (2/1.3) 
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Finally we have 
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[ C cv 
C cu 

] 1 
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. (17) 

e are now ready to present our feature weighted density-based 

lustering method W-DBSCANR as follows: 
9 
. W-DBSCANR complexity 

Since W-DBSCANR is an extension of the DBSCANR algorithm, 

nd DBSCANR needs to calculate the k-nearest neighbours of each 

oint, if n is the cardinality of the data set, the direct implemen- 

ation of W-DBSCANR has O (n 2 ) time complexity. The time com- 

lexity of W-DBSCANR depends on the following five parts: 1) the 

ime complexity of finding k-nearest neighbours. The key issue of 

BSCAN-type clustering methods is identifying each point type, 

hich is a k-nearest neighbour problem. DBSCANR is not any dif- 

erent. Therefore, improving the k-nearest neighbour’s complexity 

ill improve the computational complexity of DBSCANR and of W- 

BSCANR. Many techniques were proposed to improve the runtime 

f the nearest neighbour query. For instance, Kd-tree [28] , semi- 

onvex hull tree [29] , and trinary-project tree [30] are some ex- 

mples to name but a few. Most of the proposed algorithms de- 

enerate in higher dimensional space [31] . If Kd-tree is used for 

he nearest neighbour query, the time complexity of finding the re- 

erse nearest neighbours of each point is O (n log n ) [32] . DBSCANR

omputes all pairwise distances to determine the core and non- 

ore points, which requires O (n 2 ) . 2) the time complexity of find-

ng the core points. Determining the core point requires O (n ) time 

iven the nearest neighbours have already been calculated. 3) the 

ime complexity of clustering the core points. If c is the number of 

ore points and r is the number of core points in the reverse near- 

st neighbour of the c points, then clustering core points requires 
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Table 7 

The results of our experiments on the synthetic data sets with 50% added noise features. We measure cluster recovery using the Adjusted Rand index (ARI), F-Measure 

(FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Aggregation ARI 0.8428 (11/0.15) 0.8583 (27/0.03) - - 0.7619 (45/0.2) 0.7382 (13) 0.7216 (8) 0.8705 (8/2.1) 

FM 0.6525 (11/0.15) 0.6041 (9/0.11) - - 0.083 (53/0.4) 0.7054 (10) 0.6434 (9) 0.9975 (19/1.2) 

NMI 0.9013 (11/0.15) 0.9702 (9/0.11) - - 0.7868 (45/0.2) 0.8087 (13) 0.9053 (1) 0.9924 (19/1.2) 

Acc 0.9029 (11/0.15) 0.9866 (9/0.11) - - 1 (40/0) 0.8414 (10) 0.7551 (7) 0.9975 (19/1.2) 

D31 ARI 0.2285 (13/0.08) 0.0571 (53/0) - - - 0.2955 (9) 0.288 (9) 0.2998 (10/2.6) 

FM 0.3234 (13/0.08) 0.2158 (7/0.14) - - - 0.3671 (10) 0.3852 (9) 0.3995 (10/2.6) 

NMI 0.8015 (19/0.08) 0.9059 (5/0.2) - - - 0.6702 (14) 0.8716 (3) 0.9157 (3/4.6) 

Acc 0.5632 (19/0.08) 0.7725 (5/0.2) - - - 0.3771 (10) 0.6675 (3) 0.7981 (3/1.2) 

Flame ARI 0.5742 (15/0.22) 0.3878 (28/0.03) - -0.0017 (7) 0.0193 (37/0) 0.6777 (63) 0.0078 (7) 0.9833 (8/1.1) 

FM 0.8816 (15/0.22) 0.7905 (26/0.03) - 0.5638 (7) 0.1779 (42/0.15) 0.9056 (63) 0.5814 (7) 0.8214 (4/2.8) 

NMI 1 (8/0.13) 0.6519 (28/0.03) - 0.1633 (7) 0.0467 (42/0.4) 0.5534 (63) 0.1572 (7) 1 (1/2.2) 

Acc 1 (8/0.13) 0.9348 (28/0.03) - 0.5975 (8) 0.6456 (37/0) 0.9125 (63) 0.6 (6) 1 (1/2.2) 

Grid ARI 0.8277 (6/0.12) 0.8082 (17/0.04) 0.888 (21) - 0.7171 (34/0.45) 0.5785 (3) 0.1533 (4) 0.8867 (7/4.9) 

FM 0.5229 (20/0.21) 0.5127 (8/0.1) 0.9698 (21) - 0.3719 (40/0) 0.872 (3) 0.6297 (4) 0.9764 (9/1.2) 

NMI 0.2735 (6/0.12) 0.68 (2/0.34) 0.8655 (9) - 0.6727 (34/0.45) 0.5619 (3) 1 (1) 1 (2/1.7) 

Acc 0.949 (9/0.1) 0.9316 (16/0.05) 0.9776 (9) - 0.8824 (34/0.5) 0.8809 (3) 1 (1) 1 (2/1.7) 

Mixed ARI 0.6509 (41/0.16) 0.8594 (5/0.21) 0.8435 (14) 0.864 (11) 0.89 (44/0.2) 0.7132 (16) 0.8809 (7) 1 (8/1.5) 

FM 0.4335 (13/0.12) 0.3199 (9/0.16) 0.6209 (14) 0.5593 (11) 0.2344 (44/0.2) 0.5041 (16) 0.6326 (7) 1 (18/1.1) 

NMI 0.7429 (25/0.12) 0.9126 (2/0.43) 0.8368 (12) 0.8153 (11) 0.8143 (44/0.2) 0.6062 (16) 0.8257 (9) 1 (18/1.1) 

Acc 0.8842 (26/0.12) 0.8876 (9/0.16) 0.9094 (12) 0.9147 (11) 0.9731 (53/0.5) 0.8465 (16) 0.9182 (7) 1 (18/1.1) 

Pathbased ARI 0.5674 (6/0.12) 0.3361 (38/0.02) 0.1511 (18) - 0.6217 (38/0.45) 0.3689 (131) 0.1663 (5) 0.671 (5/1.3) 

FM 0.5546 (8/0.13) 0.5375 (38/0) 0.3372 (18) - 0.2692 (48/0.5) 0.697 (131) 0.5377 (5) 0.7407 (31/1.1) 

NMI 0.7612 (2/0.02) 0.7867 (3/0.26) 0.2863 (18) - 0.6394 (42/0.5) 0.3835 (4) 1 (2) 1 (2/3.7) 

Acc 0.8161 (8/0.13) 0.8 (4/0.2) 0.4808 (18) - 1 (55/0.15) 0.7067 (131) 1 (2) 1 (2/2.2) 

R15 ARI 0.1331 (10/0.1) 0.2404 (10/0.14) 0.2352 (9) - 0.2938 (33/0) 0.3647 (6) 0.2447 (7) 0.9893 (8/1.3) 

FM 0.4238 (10/0.1) 0.405 (9/0.2) 0.4742 (9) - 0.0947 (34/0.15) 0.5208 (28) 0.4846 (7) 0.995 (13/1.1) 

NMI 0.6464 (10/0.1) 0.8872 (6/0.25) 0.713 (9) - 0.7511 (33/0) 0.6767 (7) 0.888 (2) 0.9914 (7/1.2) 

Acc 0.5243 (10/0.1) 0.7456 (6/0.25) 0.4789 (9) - 1 (33/0) 0.505 (44) 0.7062 (4) 0.995 (7/1.2) 

Spiral ARI 0.0179 (10/0.14) 0.3519 (49/0.01) -0.0001 (7) - 0.0017 (36/0.5) 0.035 (83) 0.0104 (4) 1 (4/1.2) 

FM 0.3187 (15/0.19) 0.3813 (48/0) 0.2325 (7) - 0.1373 (37/0.1) 0.4436 (87) 0.3101 (4) 0.8394 (6/1.3) 

NMI 1 (5/0.07) 0.8269 (4/0.09) 0.0303 (7) - 0.0414 (36/0) 0.0577 (8) 0.7987 (2) 1 (2/1.8) 

Acc 1 (5/0.07) 0.9429 (4/0.09) 0.3662 (7) - 1 (36/0) 0.4423 (87) 0.8 (2) 1 (2/1.8) 

Toy ARI 0.8249 (14/0.17) 0.6834 (32/0.05) 0.1105 (12) -0.0358 (10) 0.3125 (29/0.3) 0.4261 (240) 0.6258 (7) 0.779 (7/2) 

FM 0.6944 (20/0.2) 0.475 (32/0.06) 0.5142 (12) 0.4095 (9) 0.2952 (123/0.5) 0.8015 (240) 0.5077 (6) 1 (15/1.2) 

NMI 0.854 (8/0.13) 1 (3/0.3) 0.1363 (12) 0.0461 (10) 0.2627 (29/0.15) 0.3844 (3) 1 (3) 1 (1/2.4) 

Acc 0.9926 (8/0.13) 1 (3/0.3) 0.7707 (12) 0.6935 (9) 0.8107 (29/0.3) 0.8338 (5) 1 (1) 1 (1/2.4) 

Diamonds ARI 0.8368 (17/0.15) 0.0418 (17/0.05) 0.0001 (11) - 0.0015 (43/0.5) 0.8233 (9) 0.9311 (6) 0.995 (7/1.3) 

FM 0.9551 (17/0.15) 0.337 (36/0.02) 0.348 (11) - 0.3311 (38/0) 0.9537 (9) 0.9825 (6) 1 (39/1.2) 

NMI 1 (35/0.16) 1 (2/0.47) 0.0327 (11) - 0.0139 (114/0.5) 0.7738 (9) 1 (1) 1 (1/2.4) 

Acc 1 (5/0.05) 1 (2/0.47) 0.5051 (11) - 1 (85/0.4) 0.9538 (9) 1 (1) 1 (1/2.1) 
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 (c log c + rc) time. 4) the time complexity of clustering the un-

lustered points to their nearest core points. If there are l unclus- 

ered points and l is fairly less than the cardinality of the data set, 

hen clustering l points requires O (l) time. 5) the time complexity 

f updating feature weights for each cluster. If t is the number of 

terations required for steps 3 and 4 of Algorithm 3 , m is the num-

er of features, and n is the data points, updating feature weights 

or each cluster require O (tmn ) time. Thus the time complexity of 

-DBSCANR is O (n 2 ) . 

. Set up of experiments 

In this section we describe the set up of our experiments. We 

xperiment with both real-world and synthetic data sets, with and 

ithout added noise features. 

The real-world data sets we experiment with were obtained 

rom the popular UCI machine learning repository [33] and scikit- 

eature selection repository [34] , for details see Table 2 . These data 

ets have no missing values, or features with a range of zero. From 

ome of these data sets we have generated two others by adding 

 0 . 5 V � and V noise features, respectively. Here, a noise feature is

ne composed entirely of within-domain uniformly random noise. 

e have added noise features so that we can evaluate how the 

lgorithms we experiment with perform under such conditions. 
10 
The synthetic data sets we experiment with were also also ob- 

ained online [35] , for details see Table 1 . We generated two extra 

ata sets from each of these in a similar way to what we did re-

arding the real-world data sets. 

We have normalised all the data sets we experiment with using 

 i v = 

y i v − ȳ v 

range ( y v ) 
, (18) 

e opted for (18) rather than the z -score because the former is bi-

sed towards features under a unimodal distribution. Such features 

re inclined to have a lower standard deviation (when compared to 

ultimodal features) which leads to higher z -score. Hence, features 

ith a unimodal distribution are likely to have a higher contribu- 

ion to the clustering than features with a multimodal distribution. 

owever, multimodal features are those that are usually of partic- 

lar interest during clustering. 

The algorithms we experiment with require parameters, we 

ave set those according to the below. In all cases we attempted 

o identify the best possible parameters for each of the algorithms. 

ll algorithms are deterministic, so the results in our tables are the 

est we could find. 

1. DBSCAN: We experimented with k from 3 to 50 in steps of 1, 

and ε from the minimum pairwise to maximum pairwise dis- 

tances for each data set in steps of 0.01. 
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Table 8 

The results of our experiments on the synthetic data sets with 100% added noise features. We measure cluster recovery using the Adjusted Rand index (ARI), F-Measure 

(FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Aggregation ARI 0.5994 (12/0.23) 0.0755 (8/0.04) 0.5602 (9) - 0.6433 (48/0.5) 0.628 (7) 0.6257 (4) 0.7407 (5/1.5) 

FM 0.3918 (12/0.23) 0.1824 (6/0.06) 0.3723 (9) - 0.075 (40/0.05) 0.4803 (3) 0.469 (4) 0.9988 (13/1.2) 

NMI 0.7414 (11/0.2) 0.7958 (6/0.06) 0.7 (9) - 0.6079 (48/0.5) 0.6601 (7) 0.8693 (2) 0.9957 (13/1.2) 

Acc 0.7636 (11/0.2) 0.7068 (6/0.06) 0.6917 (9) - 1 (41/0) 0.7373 (7) 0.7857 (2) 0.9987 (13/1.2) 

D31 ARI - 0.0056 (10/0.02) - - - 0.1553 (4) 0.0848 (4) 0.0291 (3/1.1) 

FM - 0.0704 (3/0.2) - - - 0.2243 (80) 0.1909 (4) 0.181 (3/2.4) 

NMI - 0.7699 (3/0.2) - - - 0.4651 (4) 0.8067 (1) 0.9299 (1/1.2) 

Acc - 0.4959 (3/0.2) - - - 0.2371 (4) 0.4946 (1) 0.7589 (1/1.2) 

Flame ARI 0.1367 (15/0.28) 0.0284 (6/0.07) -0.011 (9) -0.0245 (6) 0.0397 (34/0.15) 0.5031 (41) 0.0539 (3) 0.1028 (3/1.6) 

FM 0.5364 (17/0.3) 0.3902 (7/0.05) 0.417 (9) 0.3843 (6) 0 (34/0.15) 0.8339 (41) 0.4816 (3) 0.5794 (3/2.1) 

NMI 1 (10/0.23) 0 (3/0.15) 0.0822 (9) 0.0256 (6) 0.0672 (34/0.15) 0.4304 (40) 1 (1) 1 (2/4.2) 

Acc 1 (6/0.17) 0.6453 (7/0.05) 0.6343 (9) 0.588 (6) 0.6667 (57/0.5) 0.8583 (40) 1 (1) 1 (1/1.6) 

Grid ARI 0.7089 (9/0.21) 0.3819 (40/0.03) 0.02 (11) 0.0182 (9) 0.5282 (45/0.5) 0.2213 (299) 0.467 (4) 0.7664 (4/3.5) 

FM 0.5692 (23/0.31) 0.4289 (40/0.03) 0.4071 (11) 0.4142 (6) 0 (43/0.45) 0.7356 (299) 0.8273 (4) 0.9749 (8/1.2) 

NMI 0.2795 (8/0.19) 1 (3/0.19) 0.0662 (11) 0.0672 (6) 0.5063 (55/0.5) 0.2637 (7) 1 (1) 1 (1/1.7) 

Acc 0.9529 (14/0.19) 1 (3/0.19) 0.5974 (11) 0.5951 (6) 0.8136 (45/0.5) 0.7359 (299) 1 (1) 1 (1/1.4) 

Mixed ARI 0.5203 (35/0.24) 0.028 (6/0.08) - - 0.033 (53/0.5) 0.631 (7) 0.4079 (4) 0.6919 (4/3.9) 

FM 0.2916 (35/0.24) 0.1301 (33/0.01) - - 0.0952 (54/0.1) 0.3883 (7) 0.4124 (4) 1 (12/1.1) 

NMI 0.6022 (35/0.24) 0.8031 (5/0.11) - - 0.0767 (53/0.5) 0.5414 (7) 0.7331 (2) 1 (12/1.1) 

Acc 0.8435 (30/0.23) 0.6444 (5/0.11) - - 0.8049 (53/0.5) 0.8134 (7) 0.74 (2) 1 (12/1.1) 

Pathbased ARI 0.3964 (10/0.23) 0.0854 (7/0.05) 0.2568 (9) - 0.4454 (33/0.45) 0.2887 (71) 0.3684 (6) 0.4717 (17/1.1) 

FM 0.5259 (41/0.37) 0.1846 (6/0.08) 0.622 (9) - 0.1684 (33/0.45) 0.6884 (72) 0.5313 (6) 0.7513 (11/1.3) 

NMI 0.7956 (2/0.05) 0.823 (2/0.22) 0.3761 (9) - 0.501 (33/0.45) 0.257 (71) 0.7755 (1) 1 (1/4.3) 

Acc 0.8012 (10/0.23) 0.9231 (2/0.22) 0.6947 (9) - 1 (33/0.45) 0.6933 (71) 0.7273 (1) 1 (1/4.3) 

R15 ARI 0.2323 (2/0.21) 0.1799 (6/0.07) - - 0.2216 (40/0.05) 0.1735 (38) 0.2053 (4) 0.3546 (5/1.5) 

FM 0.4498 (2/0.21) 0.2813 (2/0.34) - - 0.0639 (42/0.1) 0.3916 (18) 0.4224 (5) 0.9967 (22/1.1) 

NMI 0.9183 (3/0.07) 0.8954 (2/0.34) - - 0.6896 (42/0.1) 0.4921 (4) 0.7437 (2) 0.9942 (22/1.1) 

Acc 0.7292 (3/0.07) 0.8563 (2/0.34) - - 0.0623 (40/0.05) 0.3533 (31) 0.664 (2) 0.9967 (22/1.1) 

Spiral ARI 0.0181 (12/0.25) 0.0083 (5/0.06) - - 0.0023 (37/0.35) 0.0175 (203) 0.0037 (3) 0.0172 (3/3) 

FM 0.2547 (12/0.25) 0.1892 (9/0.04) - - 0.1034 (38/0) 0.4198 (147) 0.3353 (3) 1 (8/1.1) 

NMI 0.7808 (4/0.12) 0.2856 (3/0.15) - - 0.0463 (38/0) 0.0538 (10) 0.1388 (1) 1 (8/1.1) 

Acc 0.6923 (4/0.12) 0.5789 (2/0.28) - - 1 (38/0) 0.4327 (203) 0.4583 (2) 1 (8/1.1) 

Toy ARI 0.7162 (15/0.27) 0.5753 (51/0.04) 0.0783 (7) 0.0881 (5) 0.6485 (30/0.5) 0.6997 (291) 0.1568 (3) 0.578 (5/2) 

FM 0.6424 (10/0.27) 0.4625 (42/0.03) 0.4393 (7) 0.4895 (5) 0.2817 (31/0) 0.8967 (291) 0.3937 (5) 1 (8/1.2) 

NMI 0.4987 (12/0.27) 0.3622 (3/0.22) 0.0379 (8) 0.1043 (5) 0.5085 (30/0.5) 0.5598 (291) 1 (2) 1 (1/2.9) 

Acc 0.9544 (9/0.23) 0.8742 (42/0.03) 0.758 (7) 0.7622 (5) 0.9091 (30/0.5) 0.9249 (291) 1 (2) 1 (1/1.2) 

Diamonds ARI 0.2398 (30/0.25) 0.0186 (12/0.03) 0.0007 (9) - 0.0004 (64/0.5) 0.6356 (254) 0.0764 (4) 0.3328 (4/3) 

FM 0.6616 (30/0.25) 0.3345 (17/0.03) 0.3374 (9) - 0.3525 (46/0) 0.8986 (254) 0.5862 (4) 1 (44/1.2) 

NMI 1 (17/0.19) 1 (2/0.25) 0.0202 (8) - 0.0164 (46/0) 0.5349 (254) 1 (2) 1 (1/2.4) 

Acc 1 (16/0.19) 1 (2/0.25) 0.5072 (9) - 0.5038 (67/0.2) 0.8988 (254) 1 (1) 1 (1/1.6) 
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by W-DBSCANR on the Iris data set. 
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2. OPTICS: We used a method OPTICS (AutoCl) [36] in order to 

obtain flat partition. We set the speed control parameter of OP- 

TICS (AutoCl), ε to ∞ . The minimum number of points k was 

chosen from 3 to 50 in steps of 1, and minimum cluster ratio 

m cr was choosen from 0.01 to 5 in steps of 0.01. 

3. ISDBSCAN, RNN-DBSCAN AND DBSCANR: These algorithms have 

a single parameter k . We experiment with values of k from 3 to

50 as in [14,16] . As in the other algorithms, the selected k was

that which produced the best cluster recovery. 

4. ADBSCAN and DPC-DBFN: Both of them require a user-defined 

k . However, ADBSCAN demands one additional parameter, the 

percentage of noise in the data set. We experiment with the 

parameters within the allowed range based on the authors rec- 

ommendation. That is, values from 0 to 0.5 in steps of 0.05. 

5. W-DBSCANR: We have two parameters minimum number of 

points, k and weight exponent, β . We maintain the same range 

of values of k from 3 to 50 in steps of 1 and β was chosen from

1.1 to 5 in step of 0.1. 

We evaluated cluster recovery using four commonly used Clus- 

ering Valuation Indices (CVI): the Adjusted Rand Index (ARI) [37] , 

ormalised Mutual Information (NMI) [38] , F-measure (FM), and 

ccuracy (Acc) [39] . The range of ARI lies between −1 and 1, and

hat of all other metrics is between 0 and 1. A higher value indi-

ates better clustering recovery. 
11 
. Experiments 

.1. Experiment on original data sets without noise features 

In this section, we discuss the results of our experiments on 

he original data sets without noise features (see Tables 1 and 2 ). 

able 4 presents the results of the eight algorithms we experiment 

ith, including our proposed two algorithms, on the ten original 

ynthetic data sets. All of our results are presented in terms of 

our evaluation metrics (see Section 5 ), and all algorithms were 
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Table 9 

The results of our experiments on the real-world data sets with 50% added noise features. We measure cluster recovery using the Adjusted Rand index (ARI), F-Measure 

(FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Banknote ARI 0.0414 (28/0.24) 0.0088 (6/0.08) -0.001 (11) 0.0071 (8) 0.0385 (92/0.5) 0.0578 (2) 0.0089 (3) 0.0535 (3/1.9) 

FM 0.3758 (10/0.3) 0.3577 (12/0.04) 0.3597 (11) 0.3777 (8) 0.2055 (67/0) 0.6157 (2) 0.3819 (8) 0.9311 (17/1.1) 

NMI 1 (12/0.17) 1 (4/0.21) 0.0259 (11) 0.037 (8) 0.0502 (171/0.5) 0.0781 (2) 0.058 (3) 1 (2/2.4) 

Acc 1 (12/0.17) 1 (4/0.21) 0.556 (11) 0.5664 (8) 0.59 (92/0.5) 0.6224 (2) 0.7778 (2) 1 (2/1.9) 

BreastC. ARI 0.8424 (9/0.76) 0.01 (2/0.12) 0.8303 (50) 0.816 (12) 0.8394 (166/0.5) 0.8241 (266) 0.8609 (48) 0.8717 (32/1.5) 

FM 0.8152 (8/0.85) - 0.9518 (50) 0.9428 (12) 0.0116 (115/0.45) 0.9505 (266) 0.961 (48) 0.9658 (36/2.7) 

NMI 0.7133 (11/0.82) - 0.8977 (20) 0.8087 (18) 0.7371 (166/0.5) 0.7445 (266) 0.7756 (48) 1 (1/1.4) 

Acc 0.9927 (3/0.42) - 0.9855 (20) 0.967 (23) 0.9735 (142/0.45) 0.9542 (266) 0.9642 (48) 1 (1/1.4) 

BreastT. ARI 0.1181 (2/0.57) - - - 0.2495 (27/0.25) 0.286 (37) 0.1917 (2) 0.2842 (2/1.1) 

FM 0.1822 (2/0.57) - - - 0.0535 (28/0) 0.4311 (33) 0.361 (2) 0.4447 (3/2) 

NMI 0.3535 (2/0.57) - - - 0.4064 (27/0.35) 0.4121 (37) 0.528 (1) 0.528 (1/1.1) 

Acc 0.2921 (2/0.57) - - - 0.7143 (26/0.4) 0.4623 (32) 0.5333 (1) 0.5333 (1/1.1) 

Ecoli ARI 0.2715 (6/0.36) - - - 0.0803 (42/0.05) 0.2642 (132) 0.298 (3) 0.51 (2/1.2) 

FM 0.1629 (6/0.36) - - - 0.0092 (42/0.05) 0.3296 (2) 0.33 (3) 0.3304 (3/2.5) 

NMI 0.4654 (3/0.22) - - - 0.2088 (41/0.3) 0.3705 (2) 0.5608 (2) 0.7252 (1/1.4) 

Acc 0.619 (6/0.36) - - - 0.4712 (42/0.05) 0.5089 (227) 0.5506 (3) 0.6154 (1/1.4) 

Iris ARI 0.5286 (2/0.42) 0.5281 (8/0.08) - 0.4437 (5) 0.5584 (39/0.2) 0.5394 (10) 0.4869 (5) 0.4986 (3/1.3) 

FM 0.6129 (5/0.3) 0.6132 (13/0.07) - 0.5013 (5) 0.2222 (34/0.05) 0.7001 (20) 0.5185 (5) 0.5185 (4/2.2) 

NMI 0.7627 (9/0.3) 0.7505 (15/0.07) - 0.6735 (5) 0.7201 (39/0.2) 0.6863 (7) 0.762 (1) 1 (2/2.5) 

Acc 0.875 (9/0.3) 0.7505 (15/0.07) - 0.5986 (5) 1 (35/0.35) 0.72 (14) 0.8889 (1) 1 (1/4.4) 

Leaf ARI - - - - 0.0925 (20/0) 0.1352 (32) 0.0031 (1) 0.1295 (2/1.8) 

FM - - - - 0.0135 (20/0) 0.3117 (2) 0.1948 (1) 0.3294 (2/3.9) 

NMI - - - - 0.4516 (19/0.35) 0.506 (2) 0.6945 (1) 0.8158 (1/1.4) 

Acc - - - - 0.3333 (20/0) 0.3147 (2) 0.4257 (1) 0.5889 (1/1.4) 

Leuk ARI 0.8741 (6/2.42) - 0.8809 (13) 0.8437 (8) 0.8459 (23/0.35) 0.5613 (3) 0.8809 (3) 0.9186 (2/2.3) 

FM 0.9578 (6/2.42) - 0.9568 (13) 0.942 (8) 0.1959 (23/0.35) 0.7916 (3) 0.9568 (3) 0.9714 (4/1.4) 

NMI 0.942 (5/2.28) - 0.9337 (7) 0.9392 (2) 0.8078 (23/0.35) 0.6358 (3) 0.8684 (2) 1 (1/1.4) 

Acc 0.9844 (5/2.28) - 0.9818 (7) 0.9833 (2) 0.9444 (23/0.35) 0.7917 (3) 0.9583 (3) 1 (1/1.4) 

Libras ARI - - - 0.106 (2) 0.0795 (29/0.5) 0.1565 (2) 0.2422 (2) 0.2673 (2/1.2) 

FM - - - 0.2825 (2) 0.013 (38/0.15) 0.316 (1) 0.3689 (2) 0.3806 (2/2.7) 

NMI - - - 0.4404 (2) 0.3536 (31/0.4) 0.4248 (2) 0.8053 (1) 0.7238 (1/1) 

Acc - - - 0.3089 (2) 0.5455 (36/0.35) 0.3222 (1) 0.6364 (1) 0.5833 (1/1) 

Liver ARI 0.0397 (5/0.59) 0.0369 (7/0.12) 0.0282 (19) 0.0364 (7) 0.0327 (176/0.05) 0.0327 (2) 0.0327 (3) 0.0339 (3/1.3) 

FM 0.5399 (2/0.99) 0.4105 (7/0.12) 0.5274 (49) 0.5321 (49) 0.1099 (176/0.05) 0.5399 (2) 0.5399 (3) 0.5399 (3/1.2) 

NMI 0.3456 (2/0.14) 0.0166 (2/0.16) 0.0066 (20) 0.0066 (20) 0.0057 (176/0.05) 0.0057 (2) 0.0361 (2) 1 (1/1.4) 

Acc 0.75 (2/0.14) 0.0166 (2/0.16) 0.636 (49) 0.6431 (5) 0.7788 (176/0.05) 0.7564 (1) 0.6667 (1) 1 (1/1.4) 

Parkinsons ARI 0.0545 (5/1.1) - 0.1157 (7) 0.0434 (4) -0.0197 (73/0.1) 0.178 (98) 0.0977 (4) 0.1762 (5/1.2) 

FM 0.4723 (4/1.13) - 0.568 (7) 0.5118 (4) 0.2832 (73/0.1) 0.6917 (98) 0.5377 (4) 0.5582 (4/1.5) 

NMI 1 (2/0.78) - 0.1894 (7) 0.0434 (4) 0.0255 (61/0.05) 0.2322 (73) 0.2943 (1) 1 (1/3.9) 

Acc 1 (2/0.78) - 0.8168 (7) 0.7579 (4) 0.5 (54/0) 0.7436 (1) 0.7692 (4) 1 (1/1.7) 

Seeds ARI 0.3019 (5/0.43) - - - 0.0147 (34/0.05) 0.6228 (53) 0.4235 (3) 0.4924 (3/2.7) 

FM 0.4877 (5/0.43) - - - 0.1027 (34/0.05) 0.8594 (52) 0.7076 (3) 0.8568 (8/1.1) 

NMI 0.7612 (2/0.17) - - - 0.098 (34/0.05) 0.6079 (52) 0.821 (1) 1 (1/1.5) 

Acc 0.7522 (12/0.49) - - - 0.3665 (34/0.05) 0.8571 (52) 0.9333 (1) 1 (1/1.5) 

Soya ARI 1 (2/3.89) - 0.934 (7) 0.9598 (4) 1 (22/0) 0.6794 (14) 1 (3) 1 (2/1.9) 

FM 1 (2/3.89) - 0.9793 (7) 0.9722 (4) 0.3333 (22/0) 0.811 (10) 1 (3) 1 (2/1.4) 

NMI 1 (2/3.89) - 1 (5) 1 (3) 1 (22/0) 0.7243 (14) 1 (2) 1 (1/1.4) 

Acc 1 (2/3.64) - 1 (5) 1 (3) 0.5 (22/0) 0.8298 (14) 1 (2) 1 (1/1.4) 

TeachingA. ARI 0.0431 (9/2.46) - - 0.016 (6) 0.0026 (31/0) 0.0147 (3) 0.0252 (5) 0.0435 (3/5) 

FM 0.2976 (19/2.58) - - 0.2736 (6) 0.1574 (29/0.4) 0.3989 (2) 0.408 (5) 0.4687 (9/1.1) 

NMI 1 (2/1.63) - - 0.0937 (6) 0.0512 (31/0) 0.0354 (3) 0.1228 (1) 1 (1/1.7) 

Acc 1 (2/1.63) - - 0.4 (6) 0.5455 (29/0.4) 0.4305 (3) 0.5 (2) 1 (1/1.7) 

Wine ARI 0.2088 (4/0.81) - 0.3968 (8) - -0.0013 (39/0.1) 0.4367 (3) 0.0959 (2) 0.4334 (3/2.2) 

FM 0.369 (4/0.81) - 0.7423 (8) - 0.2104 (53/0.1) 0.639 (2) 0.3494 (3) 0.6792 (2/4.1) 

NMI 0.7612 (2/0.56) - 0.7473 (8) - 0.0365 (53/0.1) 0.5787 (3) 0.7515 (1) 1 (1/1.9) 

Acc 0.7368 (5/0.72) - 0.9016 (8) - 0.3829 (47/0.1) 0.6517 (2) 0.6923 (1) 1 (1/1.9) 

Zoo ARI 0.8702 (2/1.55) - - - 0.7829 (28/0.3) 0.6095 (1) 0.401 (2) 0.9224 (2/1.9) 

FM 0.7389 (2/1.55) - - - 0.0756 (28/0.3) 0.5937 (3) 0.463 (2) 0.764 (3/2.5) 

NMI 0.9508 (2/1.55) - - - 0.8321 (28/0.3) 0.7147 (1) 0.7025 (1) 0.9175 (3/1.2) 

Acc 0.9551 (2/1.55) - - - 0.5 (14/0.5) 0.6634 (1) 0.5743 (2) 0.9109 (3/2.5) 
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iven a good set of parameters (for details see Section 5 ). Hence, 

here are 10 × 4 = 40 results. Under these conditions W-DBSCANR 

eached the highest overall scores in 30 of the 40 cases with a 

ighest ARI and FM in 7, and highest NMI and Acc in 8 of the 10

ata sets. In the only data sets it did not (D31 and R15) the differ-

nce in ARI was negligible. We should note that both DBSCANR 

nd DBSCAN have the second best overall score of 22 and 20 

respectively 

In Table 5 , we present our experiments on 15 original real- 

orld data sets using 4 evaluation metrics, leading to 15 × 4 = 60 
12 
esults. In this set of experiments W-DBSCANR presented the high- 

st score in 42 cases of the 60, under the same conditions of 

ur previous experiment. W-DBSCANR outperforms all other algo- 

ithms under experiment in 11 data sets with respect to ARI, NMI 

nd FM, and in 9 of the 15 data sets when FM is used. The two ex-

eptions were the Ecoli and the Zoo data sets where W-DBSCANR 

alls behind in all 4 evaluation measures. DBSCAN and DBSCANR 

id reach the second best possible overall score, the latter using 

nly a single parameter. 
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Table 10 

The results of our experiments on the real-world data sets with 100% added noise features. We measure cluster recovery using the Adjusted Rand index (ARI), F-Measure 

(FM), Normalised Mutual Information (NMI) and Accuracy (Acc). 

Data set CVI DBSCAN OPTICS ISDBSCAN RNN-DBSCAN ADBSCAN DPC-DBFN DBSCANR W-DBSCANR 

(k/ε) (k/m cr ) (k ) (k ) (k/p) (k ) (k ) (k/β) 

Banknote ARI 0.0192 (14/0.39) 0.008 (3/0.14) 0.0105 (9) 0.0032 (8) 0.0107 (73/0.5) 0.0443 (2) 0.0069 (4) 0.0079 (2/1.4) 

FM 0.376 (11/0.43) - 0.363 (11) 0.3557 (8) 0 (71/0.45) 0.6037 (2) 0.3974 (4) 0.9585 (14/1.1) 

NMI 1 (3/0.16) - 0.027 (11) 0.0234 (8) 0.0193 (80/0.35) 0.0523 (2) 0.1028 (2) 1 (11/1.1) 

Acc 1 (3/0.16) - 0.5701 (9) 0.5551 (8) 1 (92/0) 0.6071 (2) 0.6 (1) 1 (1/4.8) 

BreastC. ARI 0.8576 (5/0.9) - 0.8524 (47) - 0.8497 (97/0.5) 0.7973 (234) 0.8661 (15) 0.8606 (17/1.1) 

FM 0.6414 (22/1.16) - 0.9558 (49) - 0.1704 (115/0.05) 0.9414 (234) 0.9622 (15) 0.961 (6/1.3) 

NMI 0.5523 (8/1.05) - 0.8454 (11) - 0.7501 (97/0.5) 0.6828 (234) 1 (1) 1 (1/2) 

Acc 0.9897 (6/0.73) - 0.9789 (11) - 0.9634 (97/0.5) 0.9471 (230) 1 (1) 1 (1/1.7) 

BreastT. ARI 0.1091 (2/0.91) - 0.0657 (5) - 0.1963 (26/0) 0.1773 (41) 0.0561 (2) 0.2586 (2/2.2) 

FM 0.1665 (2/0.91) - 0.2868 (4) - 0.0815 (25/0.45) 0.4335 (2) 0.2068 (2) 0.2672 (2/1.8) 

NMI 0.4529 (2/0.6) - 0.4526 (4) - 0.3334 (26/0) 0.3306 (6) 0.4179 (1) 0.7443 (1/1.2) 

Acc 0.4286 (2/0.6) - 0.5111 (4) - 0.75 (25/0.45) 0.4623 (2) 0.4167 (1) 0.7895 (1/1.2) 

Ecoli ARI -0.0156 (2/0.41) - 0.0661 (6) - 0.1919 (37/0.45) 0.118 (2) 0.0072 (3) 0.2011 (2/1.4) 

FM 0.058 (4/0.55) - 0.162 (6) - 0.0087 (37/0.45) 0.3059 (2) 0.2212 (3) 0.315 (3/3) 

NMI 0.6648 (2/0.41) - 0.279 (6) - 0.2908 (37/0.35) 0.2303 (2) 0.1846 (3) 0.6475 (1/1.3) 

Acc 0.4706 (2/0.41) - 0.4601 (6) - 0.5419 (37/0.35) 0.4494 (2) 0.4107 (3) 0.5588 (1/1.3) 

Iris ARI 0.5084 (3/0.49) 0.5543 (6/0.07) 0.3628 (8) 0.4868 (4) 0.5312 (53/0.2) 0.5596 (7) 0.5341 (4) 0.5715 (4/1.8) 

FM 0.6097 (7/0.49) 0.5568 (6/0.09) 0.472 (8) 0.5305 (4) 0.6027 (42/0.1) 0.8059 (3) 0.7591 (4) 0.7591 (4/4.5) 

NMI 0.821 (12/0.51) 0.7584 (8/0.09) 0.6685 (8) 0.7036 (4) 0.6964 (53/0.2) 0.6867 (5) 0.7085 (1) 0.7999 (2/1.2) 

Acc 0.9375 (12/0.51) 0.6757 (6/0.09) 0.584 (8) 0.6408 (4) 0.5 (51/0.2) 0.8067 (3) 0.8667 (1) 0.8182 (1/3.9) 

Leaf ARI - - - - 0.018 (18/0.4) 0.0936 (29) 0.0024 (1) 0.1368 (4/1) 

FM - - - - 0.0104 (18/0.4) 0.2147 (23) 0.1789 (1) 0.2896 (4/1) 

NMI - - - - 0.3637 (18/0.4) 0.432 (23) 0.6801 (1) 0.6888 (1/2.4) 

Acc - - - - 0.1667 (18/0.4) 0.2559 (23) 0.42 (1) 0.4444 (1/1.1) 

Leuk ARI 0.679 (9/2.96) - 0.2866 (5) 0.7929 (2) 0.6123 (29/0.4) 0.7131 (3) 0.8809 (3) 0.8809 (3/1.4) 

FM 0.7879 (2/2.77) - 0.4256 (5) 0.908 (2) 0.1704 (29/0.4) 0.9044 (3) 0.9568 (3) 0.9714 (4/1.1) 

NMI 1 (2/2.37) - 0.7873 (5) 0.9389 (3) 0.589 (29/0.4) 0.7066 (3) 1 (1) 1 (1/1.3) 

Acc 1 (2/2.37) - 0.7941 (5) 0.9831 (3) 0.9091 (29/0.4) 0.9028 (3) 1 (1) 1 (1/1.3) 

Libras ARI 0.0248 (3/3.63) - - - 0.0346 (44/0) 0.1345 (2) 0.0838 (2) 0.0976 (2/1.3) 

FM 0.1599 (3/3.63) - - - 0.0094 (44/0) 0.2697 (16) 0.3051 (2) 0.3219 (2/1.3) 

NMI 0.5557 (3/3.63) - - - 0.3117 (44/0) 0.4076 (2) 0.6427 (1) 0.8434 (1/1.1) 

Acc 0.3435 (3/3.63) - - - 0.75 (44/0) 0.3028 (2) 0.4833 (1) 0.6863 (1/4.5) 

Liver ARI 0.0418 (16/0.84) - 0.0502 (13) 0.0299 (12) 0.0283 (145/0.5) 0.0181 (14) 0.0327 (3) 0.0327 (3/1.3) 

FM 0.539 (66/1.09) - 0.5345 (50) 0.533 (28) 0.1311 (132/0.4) 0.5036 (284) 0.5399 (3) 0.5399 (3/1.1) 

NMI 0.0166 (7/0.73) - 0.0114 (13) 0.0069 (6) 0.0145 (145/0.5) 0.0248 (37) 0.274 (1) 1 (1/1.6) 

Acc 0.7483 (23/0.8) - 0.6508 (13) 0.6425 (6) 0.0086 (132/0.5) 0.753 (1) 0.6667 (1) 1 (1/1.6) 

Parkinsons ARI 0.0325 (5/1.61) - 0.0405 (7) -0.0407 (3) 0.0478 (39/0.5) 0.1009 (98) 0.0407 (1) 0.1043 (3/1.3) 

FM 0.4684 (2/1.64) - 0.4532 (7) 0.4139 (3) 0.2126 (42/0.4) 0.6367 (98) 0.4109 (3) 0.7013 (4/1.1) 

NMI 0.1341 (4/1.64) - 0.1487 (7) 0.0293 (3) 0.0117 (39/0.5) 0.114 (98) 1 (1) 0.3163 (1/3.8) 

Acc 0.7712 (5/1.61) - 0.7778 (7) 0.7249 (3) 0.765 (39/0.5) 0.7282 (2) 1 (1) 0.8205 (8/1.1) 

Seeds ARI 0.0804 (12/0.78) - 0.0337 (6) - 0.0308 (30/0.35) 0.3905 (101) 0.0227 (2) 0.242 (3/1.3) 

FM 0.3825 (22/0.86) - 0.3269 (6) - 0 (25/0.4) 0.7091 (54) 0.2569 (2) 0.8581 (6/1.2) 

NMI 0.8656 (6/0.65) - 0.1174 (6) - 0.1123 (30/0.35) 0.4102 (76) 0.4773 (1) 0.8572 (1/4.2) 

Acc 0.9474 (6/0.65) - 0.4792 (6) - 1 (28/0) 0.7048 (54) 0.6364 (1) 0.9 (1/4.2) 

Soya ARI 0.9598 (2/4.52) - 1 (8) 0.9131 (4) 0.3809 (10/0) 0.7207 (3) 1 (3) 1 (2/1.1) 

FM 0.9722 (2/4.52) - 1 (8) 0.9646 (4) 0.0985 (9/0.25) 0.875 (7) 1 (3) 1 (2/1.1) 

NMI 1 (2/4.11) - 1 (6) 1 (3) 0.6298 (9/0.25) 0.8303 (3) 1 (3) 1 (1/1.6) 

Acc 1 (2/4.11) - 1 (6) 1 (3) 1 (10/0) 0.8723 (7) 1 (3) 1 (1/1.6) 

TeachingA. ARI 0.0101 (17/3.26) - - - 0.0032 (31/0) 0.053 (61) 0.0146 (2) 0.0508 (3/4) 

FM 0.261 (5/3.12) - - - 0.1234 (30/0.2) 0.4552 (51) 0.345 (4) 0.428 (6/1.1) 

NMI 0.7403 (2/2.61) - - - 0.0599 (28/0.4) 0.0572 (61) 0.2192 (1) 0.677 (1/2.9) 

Acc 0.8333 (2/2.61) - - - 0.5833 (27/0.5) 0.457 (45) 0.4444 (1) 0.6667 (1/1.7) 

Wine ARI 0.0969 (7/1.18) - - - 0.0109 (54/0) 0.2755 (1) 0.2744 (3) 0.3044 (3/2.1) 

FM 0.4144 (7/1.18) - - - 0 (39/0.3) 0.5487 (79) 0.625 (3) 0.6664 (2/4.4) 

NMI 1 (2/0.83) - - - 0.0753 (54/0) 0.3292 (1) 0.3606 (3) 0.8626 (1/4.9) 

Acc 1 (2/0.83) - - - 0.4035 (54/0) 0.5843 (2) 0.6461 (3) 0.9333 (1/2.2) 

Zoo ARI 0.8077 (2/1.91) - 0.2707 (4) - 0.7558 (21/0) 0.8291 (2) 0.6785 (2) 0.9606 (2/4.2) 

FM 0.6954 (2/1.91) - 0.4045 (4) - 0.085 (21/0) 0.6591 (2) 0.7016 (2) 0.77 (3/2.9) 

NMI 0.9533 (2/1.75) - 0.738 (4) - 0.8051 (21/0) 0.7882 (2) 0.8261 (2) 0.9162 (1/3.2) 

Acc 0.9429 (2/1.75) - 0.6441 (4) - 0.8929 (18/0.3) 0.8218 (2) 0.7327 (2) 0.901 (3/2.9) 
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The results we present in this section support our claim 

hat density-based algorithms can benefit from feature weight- 

ng. Let us analyse the case of a particular data set a bit further. 

igure 3 presents the feature weights obtained by our method, av- 

raged over the three clusters there are in the Iris data set. We 

an see a higher weight in features 3 and 4 (petal length and petal

idth) than features 1 and 2 (sepal length and sepal width). These 

esults are very much supported by the literature in partitional 

lustering algorithms (see for instance [26] ). 
13 
Given popular density-based algorithms tend to degenerate 

n higher dimensional space [31] , we experiment further with 

ata sets with a much higher number of features than points. 

able 6 presents the results on 10 well-known high-dimensional 

ata sets, again under four clustering evaluation indices. W- 

BSCANR has the best performance in 21 cases, while DPC- 

BFN (the algorithm in second place) has the best results in 

 cases. 
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Fig. 4. Clustering using true labels shown on the plane of the first two principal components (a) Aggregation original data set. (b) Aggregation data set with one noise 

feature. (c) Aggregation data set with two noise features. 

Fig. 5. Clustering using true labels shown on the plane of the first two principal components (a) D31 original data set. (b) D31 data set with one noise feature. (c) D31 data 

set with two noise features. 
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.2. Experiments on data sets with added noise features 

In this section, we present the results of our experiments with 

he data sets to which we added noise features. We find this 

et of experiments rather important because we can be certain 

hese data sets have irrelevant features. Hence, we are interested 

n the behaviour of density-based clustering algorithms in this sce- 

ario. More specifically, we show the superiority of W-DBSCANR 

in terms of cluster recovery) over the other algorithms we ex- 

eriment with. First, we show the catastrophic effect noise fea- 

ures can have on data sets. Figures 4 and 5 show plots over the

rst and second principal components of the Aggregation and D31 

ata sets, respectively. In these, it is quite clear that the orig- 

nal data sets (those with no added noise features) have clear 

lusters. However, as the number of added noise features in- 

reases these clusters become less and less clear. This has a di- 

ect effect on cluster recovery as our experiments in this section 

emonstrate. 

Tables 7 and 8 present the results of our experiments on the 

ynthetic data sets adding 1 ( V × 0 . 5 ) or 2 ( V × 1 ) noise features

espectively, since these data sets are two dimensional. In this set 

f experiments, W-DBSCANR reached the highest expected ARI in 

 + 5 = 14 data sets (9 when adding one noise feature, and 5 when

dding two noise features), and DBSCAN reached the highest ARI 

n 2 + 2 = 4 data sets. Given the presence of noise features in the

riginal data set, unsurprisingly, ISDBSCAN and RNN-DBSCAN could 

ot reach the highest ARI for any of the data sets, and could not 

ecover the true number of clusters for most artificial data sets 

ith noise feature under experiment (hence the dashes). We were, 

f course, happy to see that our W-DBSCANR reached the highest 

ossible score of 1 in most data sets. Overall W-DBSCANR domi- 

ates with highest score in 35 + 32 = 67 of the 80 cases. DBSCANR

akes the second place with the highest score in 8 + 8 = 16 cases. 

Tables 9 and 10 present the results on the noise versions of 

he 15 real-world data sets we experiment with. We use the same 
14 
oise model of before, adding 50% and 100% noise features to each 

ata set (for details see Table 3 ). W-DBSCANR had results higher 

y about 0.15 in average (that is an increase of about 27%) when 

ompared to the second best performing algorithm, DBSCAN. W- 

BSCANR also reached the highest overall score in 42 + 35 = 77 of

he 60 + 60 = 120 cases. The result for DBSCAN (the second best 

lgorithm) was 15 + 16 = 31 . However, the total average cluster re- 

overy of DBSCAN across all 15 data sets and 4 measures is only 

% higher than the proposed DBSCANR. Given the latter has only 

ne parameter to be optimised (DBSCAN has two), we are tempted 

o claim DBSCANR is still rather competitive. Notice that the OP- 

ICS, ISDBSCAN and RNN-DBSCAN ceased to find the true number 

f clusters in some of the data sets and therefore we were forced 

o put dashes under score and parameters. 

. Conclusion and future work 

Feature selection has a long history in the machine learning 

ommunity. However, even among relevant features there may be 

ifferent degrees of relevance. With this in mind this paper in- 

roduces, perhaps for the first time, the use of feature weights to 

ensity-based clustering algorithms. Our method, W-DBSCANR, is 

apable of generating a set of weights modeling the degree of rel- 

vance of features. In fact, it goes a step further by allowing the in- 

uitive idea that a given feature may have different degrees of rel- 

vance at different clusters. Clearly, as a clustering method it does 

he above without requiring labelled samples. 

Our experiments clearly demonstrate that W-DBSCANR outper- 

orms other popular and new density-based clustering algorithms 

for details see Section 6 ). We have demonstrated this is the case 

n a number of data sets with and without added noise features, 

igh-dimensional or not, real-world and synthetic. Our evaluation 

ade use of four measures, these being the Adjusted Rand Index, 

-Measure, Normalised Mutual Information, and the usual classi- 

cation Accuracy. However, this is not to say our algorithm has 
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o limitations. For instance, W-DBSCANR has two parameters (the 

ame number DBSCAN and most others have). One of these, β , 

elps define how much higher the weight of a compact feature 

hould be in comparison to features that are less compact. That is, 

ith a high β the standard deviation of the weights of a particular 

eature within a cluster are lower than with a low β . Although β
eems somewhat stable (its optimal value is usually between 1.1 

nd 2.5) it would be better to have a method to estimate it. The 

ame can be said for the other parameter, that is k , the number of

earest neighbours. 

Another limitation with our algorithm (and with the vast major- 

ty of feature weighting algorithms in partitional clustering [7] ) is 

hat feature weights are calculated in isolation. This is problematic 

hen relevance is not found at a particular feature but instead in 

 group of features. We envisage that it should be possible to deal 

ith this problem by grouping features (rather than points) in the 

ata pre-processing stage. Of course, research is needed to find the 

xact way this should be done. The third main limitation of our 

lgorithm is that feature weights are always used in distance cal- 

ulations, even if the weight itself is negligible. It may be of benefit 

o perform some level of feature selection before applying our al- 

orithm, or any other feature weighting method. Our future work 

ill address the limitations above. 
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