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Abstract: In this paper, I review our understanding of how jet feedback works in star-forming galaxies.
There are some interesting differences to radiative feedback from Active Galactic Nuclei (AGN). Jets
act on galaxy haloes as well as on dense gas, for example in regularly rotating discs, where they can
suppress star formation (particularly in the centre, negative feedback), but also enhance it (positive
feedback). Jet feedback may produce turbulent, multi-phase gas structures where shocks contribute to
the ionisation and is observed in connection with galactic outflows. The exact driving mechanism of
these outflows is still unclear, but may be a combination of effects linked to star formation, jet-induced
turbulence and radiative AGN feedback. Supermassive black holes in any galaxy can produce jets.
Preferential radio detections in more massive galaxies can be explained with different conditions in
the circumgalactic medium and, correspondingly, different jet–environment interactions.
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1. Introduction

Understanding the effect of feedback via Active Galactic Nuclei (AGN) on the evolu-
tion of galaxies is a major challenge in astrophysics. Arguments for an important role of
the central supermassive black hole (SMBH) include the correlation between the SMBH
mass M and the mass and velocity dispersion σ of the spheroidal component of the host
galaxy [1–9], which can be interpreted as the outbursts of black holes of a certain size
only being able to quench star formation in a given galaxy [10,11]. Recent simulations
explore this in much detail, also finding ways of co-evolution of black holes and galaxies
that do not involve AGN feedback [12], but typically do require AGN feedback, at least
for massive galaxies &1010M�, e.g., [13–15]. Another argument is the need for additional
feedback beyond the one from star formation to limit galaxy growth to observed masses
in cosmological models [16–22]. AGN, including radio AGN, while rare among the entire
population of galaxies, are found frequently enough with sufficient power to make the
scenario of AGN feedback energetically plausible [23–27]. This evidence includes radio
AGN in dwarf galaxies [28]. Evidence for the effect of radio jets on hot gas around galaxies
has been seen directly with X-ray imaging [29–31] and is implied from the formation of fat
radio lobes e.g., [32,33].

AGN feedback via jets, sometimes called radio mode feedback, has some important
physical differences compared to the quasar mode, which is linked to the radiative output
of the AGN. In the quasar mode, relatively dense gas around the AGN is accelerated via
radiation pressure e.g., [34–39], subject to instabilities [40–45], gravity and interaction with
the environment e.g., [46,47]. The radiation force acts mainly in the ionisation cones and
declines away from the SMBH as r−2. It is hence strongest in the centre of the galaxy.
Jets can interact directly with dense gas in a galaxy to a varying degree, depending on
their inclination. After breakout from any dense interstellar medium (ISM) they can then
channel the feedback energy far away from the AGN, so that it can interact for example
with circumgalactic gas, or, if the galaxy is a member of a cluster, the intracluster medium,
with indirect effects on the host, and potentially other galaxies [48]. The physics of jet
feedback is thus different from the one of radiative AGN.

Galaxies 2023, 11, 29. https://doi.org/10.3390/galaxies11010029 https://www.mdpi.com/journal/galaxies

https://doi.org/10.3390/galaxies11010029
https://doi.org/10.3390/galaxies11010029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com
https://orcid.org/0000-0002-9610-5629
https://doi.org/10.3390/galaxies11010029
https://www.mdpi.com/journal/galaxies
https://www.mdpi.com/article/10.3390/galaxies11010029?type=check_update&version=2


Galaxies 2023, 11, 29 2 of 15

This review is structured from small to large scales. After a general introduction to
jet physics and the physics of the jet–environment interaction (Section 2), I first review jet
feedback in the central kpc of a galaxy (Section 3), and then discuss the scale of an entire
galaxy including jet-induced star formation (Section 4). Section 5 covers emission line
lobes and the alignment effect, which have been connected to outflows and jet-induced star
formation outside the host galaxies. Another feature of high-redshift radio galaxies are
associated absorption line systems, which have been interpreted as halo shock waves from
starburst winds preceding the jet event (Section 6). The contribution of jets to the heating of
galactic gas halos and thus prevention of gas cooling and condensation in the host galaxy
is discussed in Section 7.

2. Jet–Environment Interaction in General

A jet channels energy away from an AGN and transfers it to gas phases of interest
when and where it interacts with them. Evidence for this jet–environment interaction is seen
directly in the hotspots of extragalactic radio sources e.g., [49–51]. There is good evidence
that AGN jets are generally relativistic on parsec scales [52–57], hence supersonic with
respect to their ambient medium. Jets are likely initially accelerated as well as collimated
by magnetic fields e.g., [58,59]. Hydrodynamic interaction with the ambient medium
takes over the collimation at some radius, possibly even on the parsec scale [60,61]. The
ambient gas pressure then drives a recollimation shock into the beam, which leads to a
stable, cylindrical jet, if the opening angle from the magnetic collimation phase was not too
large [62,63]. Unless there is significant entrainment, which would result in the jet slowing
down, becoming unstable and disrupt [64,65], the jet velocity will remain essentially
constant up to the hotspot. Hotspots are therefore best interpreted as shocks where the
high bulk velocities are isotropised and electrons are accelerated to high Lorentz factors,
such that they become observable via synchrotron radiation e.g., [66,67]. Hotspots are
high-pressure regions that will expand and inflate the radio lobes, whenever the jet density
is significantly below the ambient density [68,69]. All three components, jets, hotspots
and lobes, are clearly visible on radio images of a large number of extragalactic radio
sources, for a review see [31]. Radio lobes are initially strongly overpressured and drive
a fairly spherical shock wave into the ambient medium around the radio source [33,70].
The shock’s structure then elongates as the sideways Mach number drops [71]. Many
observed radio galaxies are close to pressure equilibrium sideways and have very weak
shocks around them, except near the hotspots [72,73]. An overview sketch can be found in
Figure 1. Jets interact with different components of the host galaxy ISM in different ways,
which I address in turn in the following.

Figure 1. Schematic of features expected in connection with radio-mode feedback in star-forming
galaxies. Jets are produced from supermassive black holes (SMBH). The ISM in star-forming galaxies



Galaxies 2023, 11, 29 3 of 15

contains dense clumps and molecular clouds. Jet interaction with clouds is stochastic, hence the two
jets emerge at different times from the ISM with, in general, a length asymmetry. The interaction in
the centre may launch an outflow of the central ISM. Hotspots form at the current jet–environment
working surfaces. These high-pressure regions expand, forming the radio lobes which can still be
overpressured with respect to the environment. Radio lobes can compress the host galaxy’s ISM, thus
enhancing star formation. Stellar feedback may also launch outflows of dense gas into the radio lobes,
which can then turbulently entrain them and move them by buoyancy to larger distances from the
galaxy, especially when the radio source turns off. As long as the radio lobes are overpressured, they
drive a bow shock into the surrounding gas which helps keep the latter hot. Turbulence in the lobes
drives weak shocks into the gas around the lobes, which might also dissipate heat into this gas.

3. The Central Kiloparsec

The ISM in the central parts of galaxies can be complex, for example shaped by bars,
if present e.g., [74]. The gas dynamics can lead to suppressed star formation in regions of
low gas density or shear, or strong star formation in regions of gas accumulation. In the
Milky Way, an example for a barred galaxy, the gas density is approximately constant with
radius down to the bar end at a few kpc, then dips by a factor of approximately two and
then peaks up strongly in the central kpc, the so-called central molecular zone [75]. This
region probably undergoes a cyclic behaviour with periods of re-filling with gas channeled
down by the bar, and repeated starbursts [76].

The central kpc is of particular significance for the jet–environment interaction in
galaxies, because the size is comparable to the scale height of the neutral ISM, typically a
few hundred parsecs [77–80]. Jets are expected to interact strongly with the clumpy ISM
in galaxies while contained in it. This is well-studied in nearby jetted Seyfert galaxies.
MRK 78 is an excellent example [81], where the knotty structure in radio continuum as well
as optical emission lines suggest strong and localised interaction between the jets and the
clumpy ISM. Other examples include NGC 4151 [82,83] and NGC 5929 [84,85]. Sources of
these sizes in general are well-known from radio observations as peaked spectrum sources
and compact symmetric objects, with common spectral features that can be well-explained
by absorption from a dense ISM [86,87].

Jets interacting with the clumpy media likely present in the centres of many star-
forming galaxies have been modelled in hydrodynamic simulations e.g., [88–94]. The
strong interaction with clumps is also seen in such simulations. In general, the relativistic
jet plasma is efficiently isotropised by jet–cloud interactions. The shocked high-pressure
plasma drives a shock wave through the ISM. The result is a complex combination of cloud
acceleration, ablation and compression, both triggering and suppressing star formation.
If the jet is directed into the disc of a star-forming galaxy, the interaction will lead to a
general expansion of the ISM with strong kinematic perturbations of the gas, and this is
in good agreement with observations of line kinematics in at least the well-studied case
of IC 5063 [95]. The energy transfer from the jet to cloud kinetic energy is of the order of
20–30 per cent in this phase [89,94]. The momentum transfer for any given direction exceeds
unity, because the pressure of the shock-heated jet and ambient plasma produces additional
momentum compare also [96], the mechanical advantage. The different directions cancel,
of course, if one takes the sum, to conserve momentum overall. This phase takes about
105–106 yrs for jets with typical energy fluxes (1043−46 erg/s), possibly longer, if the jet is
oriented in the disc plane [94,95]. After the jet has broken out of the dense ISM of a galaxy,
the centre is predicted to have a significantly reduced gas density e.g., [97], perhaps with
the exception of very central and dense components. A shock is driven from the centre
into the outer parts of the ISM that may enhance star formation, and some gas is set up
with enhanced kinematics to form an outflow, possibly observable in optical emission lines.
The latter has nicely been demonstrated in 3D simulations by Meenakshi et al. (2022) [94].
Because the interaction with the clumpy interstellar medium is stochastic, the jets will
in general have acquired a substantial asymmetry, with one jet likely being significantly
longer than the counterjet [98].
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On much smaller scales of the order of the scale height of the dense molecular gas
≈50 pc, e.g., [99], radio lobes could drive star-forming shock waves that may even produce
high-velocity stars [100].

This general picture is consistent with the rapid decline of star formation inferred
in the centre of some post-starburst galaxies e.g., [101,102]. The general quenching of
galaxies may, however, not be strongly influenced by jet feedback, at least at low redshift,
because radio AGNs appear typically only about 1.5 Gyr after the peak of a star formation
episode [103,104].

4. Small Radio Galaxies and Jet-Induced Star Formation

This section is about radio galaxies with radio sizes comparable to the diameters
of gaseous galactic discs (tens of kpc). Once the jets have left the dense ISM of the host
galaxies they are expected to form some kind of radio lobe. How prominent they are and
how well they are observable differs with generally more prominent lobes in more massive
galaxies [105]. Synchrotron emission increases with both magnetic and relativistic electron
pressure. Denser environments will generally provide more resistance and thus lead to
higher pressure, and hence more radio emission. While the intracluster medium in galaxy
clusters can reach >10−2 cm−3, the circumgalactic gas around the Milky Way, with a stellar
mass M∗ ≈ 6 × 1010M� [106,107], is already at n ≈ 10−4 cm−3 [108]. For smaller galaxies,
the virial temperature of the halo, which is the expected temperature scale for the gas,
drops below 106 K. The volumetric cooling rate is proportional to Λn2, with the cooling
function Λ being a function of the temperature and, in general, also metallicity. Hence,
any hydrostatic halo would have to be much more tenuous to prevent pressure loss from
cooling for details [105]. Such halos are easily pushed to inflow or outflow states.

Radio lobes in the circumgalactic medium are nevertheless known. A likely example
is the ≈8 kpc sized pairs of the Fermi bubbles in the Milky Way e.g., [109–112], though the
radio emission was actually not observed in this case, probably due to our special location.
The nearby Circinus galaxy seems to be a similar case [113], with lobe sizes of the order of
one kpc. Similar detections in X-rays and gamma rays include M31 [114], NGC 891 [115],
and NGC 3079 [116]. More radio detections can be expected with the SKA [117]. The
luminous infrared galaxy IC 2497 (Hanny’s Voorwerp) at redshift of z = 0.05 is one of a
few spiral galaxies, with likely jet-related radio emission in the circumstellar gas tens of
kpc from the nucleus, [118], where the radio emission is only seen on the side of the galaxy
that seems to contain the denser gas structures. Nesvadba et al. (2021) [119] presented
an analysis of the nearby massive spiral galaxy J2345-0449, which is also associated with
radio lobes of 1.6 Mpc diameter. The galaxy features a massive molecular gas ring that is
obviously kinematically impacted by the jet at two opposite interaction points.

Nesvadba et al. (2021) [119] reported an unusually low star formation rate and
suggested the jet impact to stir the molecular gas ring and thus prevent star formation.
The width of the observed ring of 24 kpc makes this appear difficult with the so far
discussed mechanisms, but the authors also explain the difficulties with other, non-jet
related mechanisms that might suppress star formation in this molecular ring. Many galaxy-
sized radio sources are known, for example, from the 3CRR and LOFAR surveys [26], and
also at high redshift z & 2, e.g., [120].

When the radio source expands into the galactic halo, a radio lobe may form, if the
circumgalactic gas is denser than the jet e.g., [63,68,70]. The point of highest pressure in the
radio lobe is the hotspot at its tip. Therefore, there is generally a backflow in the radio lobes
towards the galaxy. Gaibler et al. (2012) [121] found, in 3D hydrodynamical simulations of
powerful jets developing lobes in the ISM, that the pressure of the lobes compressed the
clumpy ISM in the simulated galaxy (compare Figure 2). They concluded that this likely
led to star formation enhanced by a factor of a few propagating outwards from the galactic
centre, as the radio lobes grow. Follow-up studies found that this phase of enhanced star
formation may last for much longer than the active time of the radio source, and thus lead
to more rapid gas exhaustion [122].
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Figure 2. Hydrodynamic simulation of jet–induced star formation in a gas–rich galaxy, adopted
from [121]. All panels show the evolution 12 Myr after the onset of the jet (22 Myr after start of the
simulation), except the bottom left panel, which is 1 Myr after jet onset. (Top left): Logarithmic
density volume rendering. Blue colours show the dense ISM in the modelled galaxy from the centre
of which bipolar, very light jets emerge vertically upwards and downwards. Gas cooling is prevented
below 104 K, which sets the approximate disk temperature. The radio lobes (red and yellow) surround
and compress the disc. (Top right): Map of stars formed during the simulation. Red: stars that
formed before the jet was active; green, stars formed since the jet was active, except the ones shown in
blue, which are stars formed within the last Myr. The centre of the galaxy is cleared of gas, and a ring
of enhanced star formation is driven outwards. Overall, the enhancement of the star formation rate
peaked at a factor of a few during the simulation. About 10 percent of the gas mass was estimated
to be converted to stars during one duty cycle. (Bottom): Pressure maps (midplane slices) 1 Myr
(left) and 12 Myr (right) after jet onset. Shown is the logarithm of the ratio of the local pressure
over the initial ambient pressure. In both bottom panels, the jet points upwards and downwards.
Initially, jets and lobes are several orders of magnitude above the disc pressure. The overpressure is
still appreciable after 12 Myr. Values in real systems will vary with jet power and halo properties.

Isolated gas clouds in the circumgalactic gas that are overrun by the jet’s bow shock
will experience compression, and plausibly form stars [123]. If they are also overrun by the
radio lobes, they will also experience shear, be torn apart, and mix with the lobe material,
thus suppressing star formation [124,125]. Regions of well-developed turbulence in the
radio lobes can also enhance drop-out of cold gas, and thus, star formation [126]. As shown
in 3D high-resolution zoom simulations by Krause (2008) [127], it depends sensitively on
the initial conditions, such as on the initial mass loading of the radio lobes, if the cold
gas mass increases or decreases. This source also derives a power estimate for emission
lines that cold gas emits in a multiphase turbulence situation, such as in a radio lobe due
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to shock heating and mixing. The simulations gave a cooling power of dense gas as a
proxy for emission line luminosity of roughly 1 erg/s for every 1012 erg of turbulent kinetic
energy. Meenakshi et al. (2022) [94] used a more sophisticated emission model to predict
the emission for, specifically, the O III luminosity in a region of clumpy ISM impacted by a
jet, and found 1043 erg/s peak flux for simulations with about 100 times more powerful
jets. With a simulation time of ≈1 Myr and conversion of about 10 percent of their energy
flux into kinetic energy of dense gas, this translates to a peak efficiency of 1 erg/s in O III
luminosity for 1014 erg of kinetic energy in dense gas. Since much of the emission may be
from other lines, particularly hydrogen, the order of magnitude comparison seems to be in
reasonable agreement. Multiphase turbulence in radio lobes can thus sustain a certain level
of dense emission line clouds, possibly leading to the alignment effect, which is discussed
in the next section.

5. Emission Line Lobes and Alignment Effect

The combination of optical and radio observations that constitute the alignment effect
has been reviewed, for example, in the Refs. [126,128,129]. Good examples are found in
the Refs. [130–132]. Optical, nebular emission, is aligned with, and in many well-resolved
cases “inside”, that is close to the host galaxy on the same axis or co-spatial with the
radio lobes (compare Figure 3). The observational characteristics of these sources are
well-explored. Smaller radio sources (.100 kpc) have more prominent emission line lobes
with large bulk outflow speeds, comparable to the escape velocity of the host galaxy, and
velocity widths often in excess of 1000 km/s [133]. Their emission line ratios are more
consistent with shock ionisation rather than photo-ionisation by a hidden quasar (as is
the case for the larger sources). The picture is consistent with a turbulent outflow, where
the emission line gas might be stirred up by strong interaction of the jets with the ISM
in the very early phases [97] and interaction of the turbulent backflow in the radio lobes
in young (.100 kpc) sources [96]. Turbulence would then have decayed in the larger
scale sources, which would also lower the emission line power due to shock ionisation
(compare above), such that photoionisation dominates. Another important effect is the
detachment of the radio lobes due to buoyancy. In small sources, the lobes likely extend
back to the host galaxy and join there, which, due to synchrotrons ageing backwards from
the hotspots, can only be observed at low frequencies [134]. This can also, for example,
be seen from the low-frequency radio images and associated X-ray cavities in the nearby
radio galaxy Cygnus A [135,136], where the gas content and star formation rate of about
10 M�/yr [137] is probably too low, given the high mass of the eliptical galaxy, to produce
prominent emission line lobes. At around 100 kpc, powerful radio sources are expected
to come into a pressure equilibrium and the lobes detach from the host galaxy, moving
outwards along the radio axis [72]. The entrained gas is expected to be carried along
with the radio lobes, especially later, when the source is switched off and the lobes keep
buoyantly rising away from the host galaxy [138]. The surrounding hot atmosphere then
flows back in where the radio lobes have left. Such dense gas is a major obstacle for galactic
scale gas outflows [139–141]. It is hence very possible that emission line lobes constitute
one distinct episode of a gaseous outflow in a massive galaxy: whatever mechanism ejects
the dense ISM does so when the low-density radio lobes surround the galaxy. Then the
radio lobes take this gas with them, when they rise away from the galaxy. This can be a
major gas ejection mechanism, with derived outflowing gas masses of up to the order of
1010M� [130].

In this picture, it is probably not surprising that stars may form in such emission line
lobes, when the turbulence in the lobes settles down, for example, when the lobes grow and
elongate in later phases, or when the driving power of the jet declines, perhaps temporarily,
for some reason. A young stellar population has been observed unambiguously with
spectral features including typical absorption lines in the redshift z = 3.8 radio galaxy
4C41.17 [142,143].
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Generally similar physics seems to be at play for lower power jet events [144], and the
emission line region in the X-ray cavities of the nearby radio galaxy 3CR 196.1 could also
be a similar phenomenon [145].

Figure 3. The radio galaxy (1.4 GHz continuum contours, except top right) MRC0406–244 at redshift
z = 2.42 as an example for the alignment effect between radio emission and optical emission. Colours
show the O III line emission (total emission: top left and right, bulk velocities: bottom left, line widths:
bottom right). Contours in the top right panel show the optical continuum, which is also extended
in the direction of the radio lobes. Credit: Nesvadba et al., A&A, 491, 407, 2008, reproduced with
permission ©ESO [130].

6. Associated Absorption Line Systems

At the higher redshifts (z & 2), emission line halos become well-observable in Ly α. A
typical feature of small (.50 kpc) radio galaxies is that one or more narrower absorption
lines are seen against the Ly α emission [120,146]. The absorption occurs much more fre-
quently than expected from the Ly α forest. Some absorbers were confirmed at high spectral
resolution [147], and integral field spectroscopy demonstrated a coherent absorption system
across the Ly α-emitting regions of several galaxies [148–150].

Different ideas for the physical interpretation of these absorption systems have been
reviewed by Krause (2005) [151]. Their small velocity width suggests that they are probably
thin shells around the host galaxies, rather than extended parts of the halo. The absorbers
are probably partially photoionised [152,153] and their low emission suggests that the
power of the process driving them into the halo is probably equally low. This makes
models that use the jet as a driver of the shell [154] more difficult. A consistent scenario
was developed and supported by hydrodynamic simulations in Ref. [151]. In the halos
around massive high-redshift galaxies, one expects tenuous gas with a lower temperature
and cooling time than in the intracluster or intragroup medium at a lower redshift, where
many sources that have been observed in some detail are found. Bow shocks driven by any
star-formation-related galactic wind will hence efficiently cool and sweep up the halo gas
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similar to the well-known snow-plough phase for stellar winds. When a jet then hits this
galactic wind shell, it is stopped for some time until the radio lobes fill the space inside the
wind shell. The enhanced pressure then accelerates the wind shell, which subsequently
fragments via the Rayleigh–Taylor instability. The shell gas mixes turbulently into the radio
lobes while falling into the galaxy. Radio sources that are greater than the wind shells will
thus experience no more associated absorption. The model is further corroborated by the
discovery of similar absorption systems around high-redshift galaxies with no jets [155–158].
Such shells could also form a significant amount of stars, probably in massive clusters [154].

7. Indirect Feedback via Halo Heating

A hydrostatic, though probably tenuous gas halo may be expected in galaxies with
stellar masses above ≈109M� [105,159]. Once the jet escapes the dense interstellar medium
of the host galaxy, it may heat the halo gas and thus prevent it from cooling and subsequent
condensation in the given galaxy where it could then have formed stars. Strong, close
to isotropic shocks will heat a small, inner part of the halo gas, before the shock strength
declines e.g., [70,72]. Changing jet direction, perhaps due to mergers of supermassive black
holes after galaxy mergers, may plausibly help heating halos of gas-poor (elliptical) galaxies
or the intracluster medium [160–162]. In a star-forming and therefore gas-rich galaxy, much
of the jet duty cycle compare, e.g., [26,163] might be spent interacting with the ISM, rather
than with the halo, if the jet axis is substantially misaligned with the minor axis of the
galaxy. However, once a jet escapes the dense interstellar medium of the host galaxy, it
may contribute to heating gaseous halos around star-forming galaxies in a similar way
as known from the intracluster medium, including via rising bubbles and sound waves
triggered by the dynamics inside radio lobes e.g., [164–166]. Taking into account the impact
of jets on the surrounding gas, Rouf et al. (2017) [167] are able to explain the mass and
radio luminosity functions of massive galaxies in a semi-analytical cosmological model.

Extended gas halos have been detected in Lyα around high-redshift radio galaxies
beyond the radio structures [168,169]. The gas halos show quiescent kinematics with a
rotating component. They have been interpreted in terms of clumps of cold gas possibly
ionised by a hidden quasar in such radio galaxies. Lyman α emission is, however, also
expected from hydrostatic halo gas at somewhat lower temperatures than the X-ray clusters
known from lower redshifts. High-redshift radio galaxies are massive galaxies that often
go through episodes of strong star formation [170,171]. It is at least plausible that cooling
of halo gas strongly contributes to fuelling their star formation. The extended radio sources
seen in these galaxies are evidence that halo heating is taking place in these galaxies, likely
cutting off their gas supplies to at least some degree.

8. Summary

The interaction of jets with the ISM in their host galaxies is rich in interesting processes.
Informed by a host of new, excellent observations and significant simulation efforts, the
last few decades have seen a consistent gain in our understanding of jet feedback. We
now start to be in a position where we can put together the pieces of the jigsaw and tell a
coherent story. I summarise the scenario developed in this review below and in the sketch
in Figure 4.

Jet feedback in star-forming galaxies produces interesting effects on all scales. This
is because the jet plasma is efficiently shocked and isotropised by its interaction with
molecular and other clouds. Dense gas on scales of tens of parsecs around a supermassive
black hole may be compressed and accelerated, such that high-velocity stars are formed
(Section 3). Complex interaction in the central kiloparsec leads to triggered star formation
and outflows from this central zone (Section 3). Inclined radio sources can, of course, have
more impact. The combination of central pressure and radio lobes surrounding the galaxy
should then enhance star formation in the rest of the galaxy. Enhanced stellar feedback and
the removal of dense halo gas may enhance gaseous outflows from those outer parts of the
galaxy, such that eventually, most of the ISM takes part in the outflow. Emission line lobes
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around smaller radio galaxies could be the observational manifestation of this. (Section 5).
Even more emission line gases would be produced if galactic wind shells produced by a
snow plough effect in a gaseous halo with the right conditions is overrun and turbulently
entrained by the radio lobes (Section 6). The latter seems to happen frequently for massive
high-redshift radio galaxies, but the general process is also found at a lower redshift for
weaker radio sources. Eventually, radio lobes detach from the host galaxy, taking their
load of metal-enriched gas with them to further spread it into the intergalactic medium.
Approximately hydrostatic gas halos are probably present around galaxies above some
mass. The hot halo has been clearly detected in the Milky Way. Jets likely contribute to
heating these halos, and thus reduce the amount of fuel for star formation in the host galaxy.

Figure 4. Sketch of the scenario of how jet feedback might work developed in this article. See
Section 8 for more details.
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