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Abstract: Background: As technology becomes more sophisticated, more accessible methods of
interpretating Big Data become essential. We have continued to develop Complexity and Entropy in
Physiological Signals (CEPS) as an open access MATLAB® GUI (graphical user interface) providing
multiple methods for the modification and analysis of physiological data. Methods: To demonstrate
the functionality of the software, data were collected from 44 healthy adults for a study investigating
the effects on vagal tone of breathing paced at five different rates, as well as self-paced and un-
paced. Five-minute 15-s recordings were used. Results were also compared with those from shorter
segments of the data. Electrocardiogram (ECG), electrodermal activity (EDA) and Respiration (RSP)
data were recorded. Particular attention was paid to COVID risk mitigation, and to parameter tuning
for the CEPS measures. For comparison, data were processed using Kubios HRV, RR-APET and
DynamicalSystems.jl software. We also compared findings for ECG RR interval (RRi) data resampled
at 4 Hz (4R) or 10 Hz (10R), and non-resampled (noR). In total, we used around 190–220 measures
from CEPS at various scales, depending on the analysis undertaken, with our investigation focused on
three families of measures: 22 fractal dimension (FD) measures, 40 heart rate asymmetries or measures
derived from Poincaré plots (HRA), and 8 measures based on permutation entropy (PE). Results:
FDs for the RRi data differentiated strongly between breathing rates, whether data were resampled
or not, increasing between 5 and 7 breaths per minute (BrPM). Largest effect sizes for RRi (4R and
noR) differentiation between breathing rates were found for the PE-based measures. Measures that
both differentiated well between breathing rates and were consistent across different RRi data lengths
(1–5 min) included five PE-based (noR) and three FDs (4R). Of the top 12 measures with short-data
values consistently within ± 5% of their values for the 5-min data, five were FDs, one was PE-based,
and none were HRAs. Effect sizes were usually greater for CEPS measures than for those implemented
in DynamicalSystems.jl. Conclusion: The updated CEPS software enables visualisation and analysis
of multichannel physiological data using a variety of established and recently introduced complexity
entropy measures. Although equal resampling is theoretically important for FD estimation, it appears
that FD measures may also be usefully applied to non-resampled data.

Keywords: fractal dimension; heart rate asymmetry; permutation entropy; parameter tuning; paced
breathing; resonant breathing; heart rate variability (HRV); complexity; software
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1. Introduction

Nonlinear measures of complexity and entropy are used increasingly in the analy-
sis of physiological signals [1–4]. For those researchers, particularly clinicians, who are
not primarily computer scientists but wish to apply such measures in their own field,
using a graphical user interface (GUI) package may be advantageous. CEPS (standing for
‘complexity and entropy in physiological signals’) is one such open-source GUI [4]. As
first published, CEPS included ten methods of estimating data complexity and 28 entropy
measures, using MATLAB as the programming language.

Another such open-source package, published more recently, not limited to MATLAB
or one-dimensional data, is EntropyHub, with no complexity measures and 18 ‘base’
entropy methods (extending to more than 40 when cross-, multiscale, multiscale cross-, and
bidimensional entropies are included) [5]. Earlier, such GUIs were reviewed elsewhere [4].
While preparing the current paper, we also encountered an ongoing review on fractal
dimension estimators [6] and an open-source software library for nonlinear dynamics,
DynamicalSystems.jl. [7] that includes estimators for fractal dimensions. We utilised some
fractal dimension and time series complexity estimators from this library for further analysis
and comparison.

In our first paper on CEPS [4], we demonstrated its use in the analysis of 5-min ECG
RR interval (RRi), blood flow (from photoplethysmography, PPG) and respiration (‘breath-
to-breath interval’, BBi or ‘PP’, for ‘peak-to-peak’) data collected during paced breathing
from nine participants. We found that most of the complexity and entropy measures tested
decreased significantly in response to breathing at 7 breaths per minute, when compared
to baseline, normal breathing, differentiating more clearly than conventional linear, time-
and frequency-domain measures between breathing states. In contrast, Higuchi fractal
dimension (FD_H) increased during paced breathing. As anticipated, for all three data
streams, complexity and entropy measures differentiated more clearly than conventional
linear, time- and frequency-domain measures, between spontaneous and paced breathing
at 7 BrPM (breaths per minute).

Here, as adumbrated in our earlier paper, we have extended this analysis in a second
repeated-measures study, comparing measures for baseline, self-paced breathing and
breathing paced at five different rates, not just one, and for a larger cohort (N = 44). We
have also analysed how measures change with data length, and which are appropriate
for data segments shorter than the five minute recordings usual in short-term heart rate
variability (HRV) studies. Instead of using PPG data, we also explored tonic (slowly
changing) electrodermal activity (EDA). In addition, after further literature review, there
are now many more measures available in CEPS than when it was first published (currently
more than 70 as against 10 complexity measures originally, and around 50 entropies). We
have applied several of them here, focusing on other fractal dimensions in addition to FD_H
(CEPS now includes some 22 FDs) and heart rate asymmetry (five ‘classical’ HRA measures
and 11 derived from Poincaré plots). In addition, five measures from DynamicalSystems.jl
are included in our analysis. As well as the introduction of many more measures, other
changes to CEPS since its first version include the ability to modify data (normalisation,
binarisation, interpolation, coarse-graining, addition of coloured and other noises, data
segmentation with or without overlapping windows, resampling and detrending), as well
as an analysis section for displaying plots and results from multidimensional or graphical
measures (currently only two [8,9]. Other measures also in course of implementation
include diffusion entropy [10,11], Emergence, Self-Organization and Complexity [12]. At
the end of the article, we have included a list of the more than 200 abbreviations used.

Objectives

Following on from those listed in our earlier paper, our objectives here are as follows:

1. To conduct brief literature reviews on fractal dimension (FD) and HRA measures, and
a more extensive review on resonance breathing.
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2. To use CEPS and DynamicalSystems.jl to analyse RRi, respiration and EDA data, and
to compare results.

3. To compare findings when using a variety of CEPS FD, HRA and measures based
on permutation entropy (among others) to investigate whether there are marked
differences between the effects of paced, self-paced and non-paced breathing on
such physiological data—for example, which measures are most/least responsive to
changes in breathing rate.

4. To examine changes and agreement in key measures between baseline or self-paced
breathing and optimal (or ‘resonance’) breathing, and explore questions such as ‘do
people breathe naturally at their ideal rate?’

5. To investigate the effects of parameter tuning on these measures in this context.
6. To update the online CEPS ‘Primer’ and Manual to take changes in CEPS into account.
7. To assess whether and which complexity and entropy measures applied to RRi and

respiration data may be more effective at differentiating between resonance breathing
and other breathing states than some of the more conventional HRV indices.

8. To examine briefly whether age, sex, perceived stress (‘Distress’ and its converse, ‘Cop-
ing’), ‘Mindful awareness’ and two dimensions of interoceptive awareness (‘Noticing’,
or awareness of body sensations, and ‘Attention regulation’, or the ability to sustain
and control attention to body sensation), as well as a third dimension, ‘Self-Regulation’,
may affect how CEPS measures reflect breathing state.

9. To explore correlations within ‘families’ of measures, and between individual mea-
sures when applied to different data types (RRi, respiration and EDA).

10. To investigate the effects of different data lengths on standard HRV and CEPS mea-
sures, with a view to determining the shortest data length that is feasible for use in
further research on self-training methods of stress management.

11. To explore how modifying the data in different ways (interpolation or deduplication,
resampling, detrending, normalisation, multi-scaling, addition of noise) affects HRV
and CEPS measures, and whether some of these methods may in fact compensate for
the effects of shortening data length.

12. In conclusion, to determine which measures are most useful for differentiating be-
tween resonance breathing and other breathing states, while also performing well for
short data.

2. Materials and Methods
2.1. Literature Reviews
2.1.1. Fractal Dimension (FD) and Heart Rate Asymmetry (HRA) Measures
Fractal Dimension

“ . . . estimating a fractal dimension is not an easy task. Focusing on only a single
number can mislead. The best practice we feel is to calculate several versions of ∆, from
different methods and with varying the parameters of each method (including the range of
ε) and produce, e.g., a median of the results.” (Datseris et al. 2021 [6])

Fractal dimension (FD) is a ratio measure of irregularity or complexity, and for a
curve can be thought of intuitively as an object too detailed to be one-dimensional, but
too simple to be two-dimensional [13], so in principle will be between 1 and 2 in value.
Background information on FD and some of the algorithms used in its estimation, as well
as on multifractality, can be found in the updated 244-page CEPS Primer on Complexity and
Entropy, downloadable as part of the CEPS 2 package on GitHub, the internet hosting service
for software development [https://github.com/harikalakandel/CEPSv2/tree/master]
(accessed on 20 January 2023).

Databases (PubMed, Google Scholar) were searched using “fractal dimension” AND
[measure originator’s Name], without further examination. Results are shown in Table 1.

https://github.com/harikalakandel/CEPSv2/tree/master
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Table 1. A literature review of fractal dimension measures. Columns show Name, Abbreviation
used for each measure, Selected references, numbers of studies located using PubMed and Google
Scholar, and date of the first publication located for each measure that included the terms “fractal
dimension” AND [Name]. These dates may not, however, indicate first publication of a particular FD
measure. Numbers of hits for “[Name OR Name’s] fractal dimension” are shown in parentheses. All
the measures listed, except those from Witold Kinsner, have been used in this paper. In this and the
following Tables, alternating rows have been given a coloured background simply to aid readability.

Name Abbrev. Selected References PubMed Google Scholar
N Date 1st N Date 1st

Higuchi FD_H Higuchi 1988 [14] 153 (116) 1994 5180 (1610) 1988
Katz FD_K Katz 1988 [15] 34 (16) 1994 6620 (436) 1985

Castiglioni FD_C Castiglioni 2010 [16] 3 (5) 2010 561 (13) 2010
Mandelbrot FD_M Castiglioni 2010 [16] 33 (42) 1975 46,400 (108) 1967

Petrosian FD_P Petrosian 1995 [17] 5 (8) 2010 876 (296) 1995
Sevcik FD_S Sevcik 1998 [18] 4 (4) 2009 534 (79) 1998

Box-count
[Moisy] FD_Box_M Moisy 2022 [19] 370 (40) 1990 34,410 (2029) c. 1985

Meerwijk/
van der Linden FD_Box_MvdL Meerwijk et al. 2015 [20] 2 (0) 2014 11 (0) 2015

Kalauzi

NLDwL
NLDwP
NLDiL
NLDiP

Kalauzi et al. 2009 [8] 7 (0) 2005 243 (0) 2009

Tamulevičius,
Kizlaitienė

FD_Amp
FD_Dist
FD_Sign
FD_LRI
FD_PRI

Kizlaitienė 2021 [21] 0 (0) n/a 1 (0) 2021

Maragos mFD_M
Maragos 1994; [22]

Zlatintsi and Maragos
2013 [23]

2 (0) 1999 829 (4) 1993

Kinsner Dβ

Dσ
Kinsner 2008 [24] 1 (1) 2001 691 (2) 1989

Over 5000 papers on ‘fractal dimension’ (FD) are indexed in PubMed, the first of these
dating back to 1975, with 547,000 hits for FD in Google Scholar, including 1360 review
papers since 2021. The most cited of these Wen and Cheong 2021 [25], 50 citations, is on
using FD for analysis of complex networks rather than time series data but does describe
several algorithms based on box-counting methods. The next most cited review (Henriques
et al. 2020 [26], 42 citations) concerns FD for heart-rate time series data, but only mentions
four algorithms: the usual ones by Katz and Higuchi, a variant of the box-counting method
by Barabási and Stanley [27], and correlation dimension (D2). The latter, although it does
provide a measure of FD, requires relatively long data samples for accurate estimation [28],
so will not be considered further in this paper. A third review [29] includes several
methods in addition to the box-count estimator, with code available in R [30]. A more
recent and useful review of (mostly box-count) FDs, with code in Julia, is that by Datseris
et al. (2021) [6], with the associated code available on GitHub [https://datseris.github.io/]
(accessed on 20 January 2023).

Given the paucity of FD reviews including more than a handful of measures, but the
large number of papers available on the topic, Google Scholar was used to search informally
for studies using MATLAB code, and then the authors contacted with an invitation to
provide code for CEPS. Of the 10 researchers contacted, three did not reply (their methods
are not listed in the above Table 1); one preeminent Canadian researcher (Witold Kinser)
hoped to be able to provide code for his Spectral and variance FD algorithms but was
unfortunately unable to do so in the time available. The remainder very kindly provided
code, and advice on its implementation.

https://datseris.github.io/
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Further information on the measures implemented—including basic algorithms—can
be found in their published papers and in the updated CEPS Primer on Complexity and
Entropy on the GitHub site under the directory ‘doc’ [https://github.com/harikalakandel/
CEPSv2/tree/master] (accessed on 20 January 2023).

Heart Rate Asymmetry (HRA)

“The accelerations and decelerations of heart rate are well-defined physiological pro-
cesses, even though the specific mechanisms that govern them are very complex. The
widespread belief that it is the parasympathetic branch of the autonomic system which is
responsible for decelerations and the sympathetic branch which is responsible for accelera-
tions is only a first approximation and in reality, these processes are much more complex”
(Mieszkowski et al. 2016 [31]).

Whereas time series data from linear systems generally exhibit ‘time reversibility’, in
that their statistical properties are invariant regardless of the direction of time, time irre-
versibility (where statistical properties vary with temporal direction) is a common signature
of nonlinear processes. It may occur, for example, in the EEG during epileptic seizures,
whereas between seizures the EEG dynamic is more of a reversible linear process [32]. HRA
is another example of time irreversibility.

HRA is a flourishing area of research and has been found even in neonates [33]. It is
usually considered or defined in terms of unevenness in the distribution of points above
and below the line of identity in the Poincaré plot, which indicates instantaneous changes
in the beat-to-beat heart rate [34].

Heart rate may accelerate or decelerate, and HRV has been found to differ in phases of
acceleration and deceleration. There are several measures of HRA, such as Porta’s, Guzik’s,
the Slope and Area indices, but until recently none could estimate such asymmetries in
heart rate variability. A further measure, the Asymmetric Spread Index (ASI), based on the
Poincaré plot, was created to remedy this shortcoming.

Three frequently used measures of HRA were developed first: Ehlers’ index (EI) [35],
Guzik’s index (GI) [36,37] and Porta’s index (PI) [38]. Karmakar et al. went on to develop
a Slope index (SI) [39] and an Area index (AI) [40]. They also proposed redefinitions
of EI, GI and PI to represent increasing patterns of increase or decrease in HR, not just
instantaneous changes [41]. More recently, Rohila and Sharma [42] published the ASI.
Another approach has been to use coarse graining (i.e., multi-scaling) of the data prior to
using asymmetry indices [43–45]. A multiscale asymmetric Detrended Fluctuation Analysis
(DFA) approach is also possible [31,46,47]. Further HRA measures have been based on
the Standard Deviations of the Poincaré Plot scattergram along its minor and major axes,
i.e., its short-term and long-term variance (SD1 and SD2, respectively), on the relative
contribution of accelerations and decelerations to such variance (C1a, C1d; C2a, C2d),
and on the Standard deviation of the interbeat intervals of normal sinus beats in the ECG
(SDNN) (see Table 2).

Table 2. A literature review of heart rate asymmetry measures. Columns show Name, Abbreviation
used for each measure, Selected references, numbers of studies located using PubMed and Google
Scholar, and date of the first publication located for each measure that included the terms “heart rate
asymmetry” AND [Name]. These dates may not indicate the first publication of a particular measure.
Numbers of hits for “Name OR Name’s Index” are shown in parentheses. All the measures listed
have been used in this paper.

Name Abbrev. Selected References PubMed Google Scholar
N Date 1st N Date 1st

Ehlers’ Index EI Ehlers et al. 1998 [35] 4 (4) 2009 59 (37) 2006
Guzik’s Index GI Guzik et al. 2006 [36] 24 (9) 2006 1 (63) 2008
Porta’s Index PI Porta et al. 2006 [38] 15 (11) 2012 188 (123 a) 2006

Slope Index (Karmakar) SI Karmakar et al. 2012 [39] 4 (4) 2015 28 (b) 2012

https://github.com/harikalakandel/CEPSv2/tree/master
https://github.com/harikalakandel/CEPSv2/tree/master
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Table 2. Cont.

Name Abbrev. Selected References PubMed Google Scholar
N Date 1st N Date 1st

Area Index (Karmakar) AI Yan et al. 2017 [40] 3 (2 b) 2017 17 (b) 2017
Asymmetric Spread Index

(Rohila) ASI Rohila and Sharma 2020 [42] 0 n/a 2 2020

Deceleration contributions SD1up, SD2up Guzik et al. 2006 2006 [36] 1 2007 8, 0
(69, 12 b) 2006

Acceleration contributions SD1down,
SD2down

c Guzik et al. 2006 2006 [36] 0 n/a 0, 0
(23, 12 b) n/a

SD1up
2/SD12,

SD2up
2/SD22 C1a, C2a

Guzik et al. 2006 2006 [36]
(adapted by Rohila)d 1 2022 5 2021

SD1dn
2/SD12,

SD2dn
2/SD22 C1d, C2d

Guzik et al. 2006 2006 [36]
(adapted by Rohila) 1 2022 5 2021

√
((SD1up

2 + SD2up
2)/2) SDNNup Piskorski and Guzik 2012 [48] 1 2022 17 2021√

((SD1down
2 + SD2down

2)/2) SDNNdown Piskorski and Guzik 2012 [48] 1 2022 17 2021

Notes. a. There were 164 hits for ‘Porta Index”, and 41 for “La Porta Index”; b. Terms such as “Slope Index”
and “Area Index” are used in many contexts, so that searching for them without some form of qualifier such as
author Name was not helpful; c. Some authors now use SD1low and SD2low instead of SD1down and SD2down [49];
d. Guzik et al. originally used Cup and Cdn for SD1up

2/SD12 and SD1dn
2/SD12. The corresponding indices for

SD2 were added in a later paper, along with the change to Ca and Cd [48]. We have used SDNNup and SDNNdown
rather than SDNNa and SDNNd. In this and the other Tables in this paper, alternating rows have been given a
coloured background simply to aid readability.

Databases (PubMed, Google Scholar) were searched using “heart rate asymmetry”
AND [Name, e.g., Porta, or “Slope Index”] without further examination. Results are shown
in Table 2.

2.1.2. Resonance Breathing and Vagally-Mediated Heart Rate Variability (vmHRV)

The distinct and unique mind-body relationship that exists via bi-directional com-
munication between the heart and the brain has long been recognised, dating back to
Darwin’s own experimentation in 1872 [50]. The importance of this relationship is coher-
ently demonstrated by a decrease in heart rate variability (HRV) that occurs in various
comorbid psychological diseases [51] and its association with central nervous function via
cardiac control.

The measurement of vagal influence on HRV, i.e., vagally mediated HRV (vmHRV),
has led to the acceptance of vmHRV as a trait indicator of cortico-cardiac control, psy-
chophysiological adaptability [52,53] and autonomic regulation, with increased vmHRV
leading to improvements in physiological health [54]. Vagally-mediated heart rate variabil-
ity biofeedback (vmHRVBF) has thus been developed to encourage slow smooth sinusoidal
breathing [55,56]. In turn, this results in large oscillations in heart rate. Such rhythmic
synchronisation of heartrate to the respiratory system in ‘respiratory sinus arrhythmia’
(RSA) causes changes to the baroreflex (via baroreceptors), resulting in what is known as
coherent or resonance breathing [57]. Resonance breathing has many psychological and
physiological health benefits in both clinical and non-clinical conditions. Conditions for
which resonance breathing may be helpful include but are not limited to asthma [58–60];
cardiac ill-health [61–63]; depression [64]; pain [64,65]; anxiety and stress [66]. As well as
psychological and physiological health benefits, vmHRVBF improves performance in sport
and in sporting and academic performance [65,67]. The benefits of vmHRVBF go beyond
the initial treatment and can persist for up to three months post-treatment [68].

Studies on vmHRVBF postulate that resonance at 0.1 Hz oscillations in various physi-
ological systems is achieved via breathing at a fixed rate of six breaths per minute [69,70].
It is argued that this frequency is instrumental in optimising both mental and physical
health. This is due to physiological pathways involved in HRV providing a physiological
feedback loop which is activated by breathing at this frequency, which may also enhance
interoceptive awareness [69]. However, individualised resonance frequency rates are also
used [71], and some experienced researchers recommend using several breathing rates to
evaluate individual resonance frequencies [57]. To determine the ideal individual reso-
nance frequency, the protocol developed by Lehrer et al. [58] recommends measuring adult
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breathing rates in decremental steps of 0.5 breaths per minute (BrPM), from 6.5 BrPM down
to 4.5 BrPM.

Breathing rate is not the only important factor here. Longer exhalation compared to
inhalation has been shown to result in higher RMSSD and HF-HRV than when either the
inhalation/exhalation ratio is the same or when inhalation is greater than exhalation [72]. To
aid relaxation, the inhalation/exhalation ratio may well be a vital factor in paced breathing
trials [73].

2.2. Study Protocol

In order to demonstrate the utility of CEPS, this paper presents a subset of data taken
from a larger on-going study and focuses on conventional and entropy measures of HRV
derived from electrocardiogram (ECG) and respiration data. Figure 1 provides an outline
schematic of the protocol.
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2.2.1. Resonant Breathing Rate Selection Using Paced Breathing

When conducting a resonant breathing assessment (RBA), a therapist will take into
consideration a number of subjective and objective measures, including the participant’s
comfort and compliance at a particular breading rate, as well as their ability to breath
at the slower rates without any hyperventilation symptoms, such as light-headedness,
dizziness or feeling that the heart is pounding. Lehrer et al. [58] have outlined the RBA
protocol developed in their clinic and Shaffer and Meehan [57] have also codified the RBA
protocol and recommend considering six HRV measures for the purpose of selecting the
resonance breathing rate (RBR). We have endeavoured to replicate the Shaffer and Mee-
han [57] protocol in the current study, using the following measures: (1) Low Frequency (LF,
(0.04–0.15 Hz) Absolute Band Power, in units of ms2 (LFBP); (2) power of the LF Spectral
peak, in units of ms2 (peak low frequency power, or PLFP); (3) normalised LF HRV, in
normalised units (nu); (4) peak-to-trough difference in heart rate (HR), or ‘HRMaxMin’
(in beats per minute); (5) Phase Relationship of HR to Respiration rate (in degrees); and



Entropy 2023, 25, 301 8 of 60

(6) comfort level. Shaffer and Meehan [57] also discussed how to select the RBR and how
to ‘Break Ties’ when different breathing rates score maximally on different measures. This
does, however, require a degree of clinical judgement.

Thus, in order to circumvent any issues with a subjective selection of the RBR, the
breathing rate with the highest LF Spectral peak was chosen for each person. This was
considered acceptable because participants were closely monitored for comfort and compli-
ance during the trials and people who failed to breathe at the paced rate or had a significant
number of artifacts were excluded from the data analysis (three people). When comparing
RBR selection based purely on the trial with the highest LF Spectral peak against the more
involved ‘clinical’ selection method outlined in the papers above, results differed for only
five people out of 44 (11%), with three participants having a trial 0.5 BrPM faster and two
0.5 BrPM slower for the ‘LF Spectral peak’ than for the clinical selection method.

Although in theory approximately 1 min of data are needed to assess the HF com-
ponents of HRV, and approximately 2 min for the LF component, it is generally accepted
that for accurate estimation of short-term HRV, five minutes of data are required, and
that frequency-domain measures should be preferred to time-domain measures [74]. We
followed these guidelines here. For some time-domain measures, however, such as SDNN
and RMSSD, even 10 s of data may be useful [75].

2.2.2. Ethics

Ethical approval was granted from the Open University’s Ethics Committee (Project
number: HREC/4117/Steffert/Banks). Participants gave written consent, and each gave
permission for their anonymised data to be stored on the Open University ‘Open Re-
search Data Online’ (ORDO) Open Access repository database (https://ordo.open.ac.uk/)
(accessed on 20 January 2023).

COVID Risk Mitigation

It was not possible for the data to be collected during this study without the use
of specialist equipment and measurements that necessitated proximal interaction with
participants. The study coincided with the COVID pandemic and as a result we were
required to mitigate the risk of exposure to the virus for both participants and researchers.
The protocols as laid out in this application conformed to both the UK Government and
the updated Open University (OU) Guidelines on face-to-face contact between individuals.
Students from the University Campus of Football Business (UCFB, Wembley) who were
participants in the early part of this study were divided into suitably sized bubbles which
remained separated from others during term time and during the whole time that the
experiments were run. UCFB required their students to undergo a polymerase chain
reaction (PCR) test at the start of term and thereafter twice weekly lateral flow tests. Each
of the venues (UCFB, Wembley or OU Laboratories) had ample hand sanitising gel and
handwashing facilities to limit surface contamination.

A maximum of two researchers at any one time operated in separate laboratories,
underwent lateral flow tests twice weekly and only proceeded if the tests were negative.
Each of them was required to have been doubly vaccinated, wear face masks throughout the
procedures and, unless placing electronic sensors on the participants, kept a safe distance
of two metres. In all cases the researchers and participants stated at the start of each
session that neither they nor any member of their households (a) were considered clinically
extremely vulnerable to COVID; (b) had not recently acquired any new COVID symptoms;
(c) had not encountered anyone who had tested positive for COVID in the previous 10 days.
Each venue had a named individual who was responsible for monitoring adherence to the
health risk assessment and COVID transmission risk control measures. We appreciated
that the virus had brought with it health and safety risks, and additional concerns such
as personal stress and anxiety. Information about COVID and the support systems for
personal stress and anxiety at UCFB, Wembley or OU was in place for all staff and students
to alleviate these concerns.

https://ordo.open.ac.uk/
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The physiological recording equipment was of clinical grade and as such conformed
to the necessary Health and Safety requirements for human experiments. Disposable
electrodes were used, and the chest straps used to measure respiration were placed over
the clothes and did not come into contact with the skin of participants. The research team
had a contingency plan should COVID incidence increase very significantly over the course
of the research necessitating reassessment of the project risks. This included the verification
of COVID status of researchers using the COVID.status app developed by International
Health Codes Ltd. (London, UK) (https://internationalhealthcodes.com/) (accessed on 20
January 2023) that recorded lateral flow COVID tests on a mobile phone. COVID status
could be verified and shared using quick response (QR) codes.

2.2.3. Participants

Participants (N = 44, Female = 18) were recruited by e-mail or word of mouth from the
students and staff of University College Football Business (UCFB, n = 21) and via snowball
sampling from other venues. Participants were sent a study participant information sheet.
Participants selected their relevant age from seven age bands (Table 3).

Table 3. Number of participants in each Age and Sex band.

Age Female Male All
18–24 2 4 6
25–34 3 6 9
35–44 6 4 10
45–54 3 5 8
55–64 3 3 6
65–74 0 3 3
75–84 1 1 2
Total 18 26 44

On arrival for their single study session at UCFB and other approved venues, the
exclusion/inclusion criteria were verified. Participants who had a pacemaker or other
cardiac issues, breathing-related difficulties (e.g., COPD (Chronic Obstructive Pulmonary
Disease), Emphysema or asthma), Raynaud’s disease, post-traumatic stress disorder (PTSD),
or were on Beta blockers were excluded, as these can affect the heart rate variability.
Participants were reminded of the purpose of the study and its ethical framework, including
their right to withdraw from the study at any time. Strict adherence to Governmental and
institutional COVID 19 protocol was maintained throughout.

2.2.4. Data Collection

Participants completed three questionnaires including the ten-item Perceived Stress
Scale (PSS) [76], with its Coping and Distress subscales, and the Mindful Attention Aware-
ness Scale (MAAS) [77], abridged from fifteen items to five [78]. They also completed
the Multidimensional Assessment of Interoceptive Awareness (MAIA) [79], consisting of
fifteen items taken from three subscales: Noticing (four items), Attention Regulation (seven
items), Self-Regulation (four items), omitting those subscales not relevant to the study.
Given the purpose of the current paper, the questionnaire findings will be reported in a
follow-up study.

Participants were instructed to sit comfortably and try not to move or talk during
seven 5 min 15 s recordings. During the first baseline trial they were instructed to breathe
normally with their eyes open and to avoid meditation, deliberate slow breathing, or
falling asleep. Next, a self-paced slow breathing trial was conducted, in which participants
were instructed to “breathe in a slow and comfortable manner, whatever is best for you;
don’t try too hard but do try to maintain the slow and comfortable breathing for the full
5-min recording”.

Five slow paced breathing trials were then presented in ‘block random’ order (ran-
domised using the ‘getRandList’ function from the ‘randomizeR’ package in RStudio).

https://internationalhealthcodes.com/
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Participants were instructed to look at an onscreen display and follow ether the “pacer”
line or the bar graph (see Figure 2), by breathing in as the line or bar went up and breathing
out as they went down. Breathing was paced at 7, 6.5, 6, 5.5 or 5 breaths per minute.
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Figure 2. Example of the participants’ pacer display for a slow-paced breathing trial. The blue line
on the left and the bar graph on the right rise and fall at a rate of 6 BrPM, i.e., 10 s per cycle with an
inhalation/exhalation ratio of 40/60, or 4 s in and 6 s out, with no pause in breathing.

A Nexus-10 physiological acquisition amplifier and BioTrace+ software (MindMedia,
Herten, The Netherlands) was used to collect physiological data on a dual screen laptop.
ECG data were sampled at 256 Hz, PPG data at 128 Hz, and EDA and Respiration data
at 32 Hz, and saved for export at 256 Hz. The participants were seated comfortably in
front of a second external monitor, which displayed the onscreen respiration pacer. Three
self-adhesive electrodes were attached to their wrists to collect their ECG signal. A PPG
pulse sensor and two electrodermal activity (EDA) electrodes were fitted to the fingers of
the non-dominant hand (usually the left) and an abdominal respiration belt was fitted over
the clothes at the level of the umbilicus (‘belly button’). A small consumer-grade ‘KYTO’
Bluetooth PPG sensor (KYTO Fitness Technology, Dongguan, China) was also positioned
on an ear lobe (results not presented in this paper).

Participants were told to use slow diaphragmatic or “belly” breathing, avoid inflating
their chest or holding their breath. The breathing pacers were set at a 40/60 inhalation to
exhalation ratio, meaning the inhalation was shorter than the exhalation. They were told,
“you should not try too hard, just take normal but slow breaths in through your nose and
out through your mouth. If you get dizzy or uncomfortable, this is a sign of breathing too
deeply or shallowly, so just breathe normally. We can stop at any time if you need to”.

Some participants found it difficult to concentrate on the pacer for 5 min and several
started to fall asleep. In such instances the researchers gently prompted the participant to
stay on task.

After each trial, participants were asked to rate on a scale from zero to 10: “How
easy or difficult was it to breath at that rate?” (“Very Difficult” = 0 and “Very Easy” = 10).
Further questions were: “How comfortable did you find that breathing rate?” (“Very
Uncomfortable” = 0 and “Very Comfortable” = 10); “How accurately do you think you did
that breathing rate?” (“Very Inaccurate” = 0 and “Very Accurate” = 10); and “Did you have
any discomfort or dizziness?” (“None” = 0 and “Very dizzy/uncomfortable” = 10).

After their session, each participant received a personalised report of the data used to
identify their resonance breathing rate and indicating which was their ideal resonance rate.
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2.2.5. Software and Data Processing
Updating CEPS for This Project

In our first study [4], we compared values of FD_H, multiscale permutation entropy
(mPE) and conventional HRV measures LF and HF relative (%) power, for both ‘normal’
breathing and breathing paced at 7 BrPM. Here, we wished to broaden our analysis and
consider three ‘families’ of measures in addition to those from conventional HRV: fractal
dimensions more generally, further measures based on permutation entropy, and heart
rate asymmetry metrics (see above, Section 2.1.1). As listed in Table 4, we have also
implemented, or are still in the process of implementing, a number of other measures in
CEPS. The Table also includes a selection of other measures we plan to include in the future
if circumstances permit.

Table 4. Other measures newly implemented in CEPS 2, or in course of implementation (asterisked).
Measures planned for future inclusion are listed in parentheses (for measures already included in
CEPS, see [4]). Measures are listed in alphabetical order, showing original references, names of code
providers, code type and institutions of originators. Please note that, although every effort has been
made to implement these measures correctly in CEPS, time has not always allowed us to validate the
results obtained when using CEPS with those researchers who provided us with code. As with all
Creative Commons licensing, CEPS is provided freely and without warranty, on condition that this
paper is referenced in any outputs that result from using the software.

Measure Original Author/s Provider Source Code Institution
AttnEn Yang et al. 2020 [80] EntropyHub MATLAB Xi’an

AvgApEnP Udhayakumar et al. 2017 [81] Karmakar MATLAB Melbourne
AvgSampEnP Udhayakumar et al. 2018 [82] Karmakar MATLAB Melbourne

(B_ApEn) Manis and Sassi 2021 [83] Published paper Python Ioannina/
Milano

(B_SampEn) Manis and Sassi 2021 [83] Published paper Python Ioannina/
Milano

(C0) Shen et al. 2005 [84] (Panday) tbc Fudan

CAFE Girault and Humeau-Heurtier 2018
[85] Girault MATLAB Angers

CI * Costa et al. 2008 [86] Panday MATLAB Harvard
(CID) Batista et al. 2013 [87] Published paper MATLAB California (Riverside)
CmSE Wu et al. 2013 [88] Published paper MATLAB Taipei
CoSEn Lake 2011 [89] Liu MATLAB Virginia (Charlottesville)

CoSiEn Chanwimalueang and Mandic 2017
[90] EntropyHub MATLAB Imperial (London)

CPEI Olofsen et al. 2008 [91] Published paper MATLAB Leiden/ Auckland
DE * Grigolini et al. 2001 [10] Culbreth MATLAB North Texas (Denton)

DFA Alpha Kugiumtzis and Tsimpiris 2010 [92] Published paper MATLAB Thessaloniki
DiffEn * Shi et al. 2013 [93] (Panday) MATLAB Shanghai

(EE) Giannakopoulos and Pikrakis [94] Mathworks MATLAB Agia Paraskevi
EPE Huo et al. 2019 [95] Huo MATLAB Lincoln

ESCHA * Fernández et al. 2014 [96] Santamaría Bonfil R CONACYT-INEEL,
Cuernavaca

FastLomb * Scargle 1982 [97] Mathworks MATLAB California (Berkeley)
FFT * Cooley and Tukey 1965 [98] Mathworks MATLAB IBM, New York
GPP * Platiša et al. 2022 [9] Kalauzi MATLAB Belgrade

GridEn Yan et al. 2019 [99] EntropyHub MATLAB Shandong
IncrEn Liu et al. 2016 [100] EntropyHub MATLAB Changzhou

Jitter_Jitt Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Jitter_Jitta Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Jitter_ppq5 Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Jitter_RAP Teixeira et al. 2013 [101] Teixeira MATLAB Bragança

L_ApEn * Manis and Sassi 2021 [83] Published paper Python Ioannina/
Milano

L_SampEn * Manis and Sassi 2021 [83] Published paper Python Ioannina/
Milano

LZPC * Zozor et al. 2014 [102] GitHub C Grenoble/ Córdoba
MESA * Burg 1975 [103] Dowse MATLAB Stanford

mFmDFA * Castiglioni and Faini 2019 [104] Castiglioni MATLAB Milano
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Table 4. Cont.

Measure Original Author/s Provider Source Code Institution
MmSE Wu et al. 2013 [105] Published paper MATLAB Taipei
mPhEn Panday n.p. Panday MATLAB Hertfordshire

PJSC Zunino et al. 2012 [106] Zunino MATLAB La Plata
PLZC * Bai et al. 2015 [107] Published paper MATLAB Yanshan
QSE * Lake 2011 [108] (Panday) MATLAB Virginia (Charlottesville)

(RPDE) Little et al. 2007 [109] GitHub: hctsa MATLAB Oxford
RPE Jauregui et al. 2018 [110] Zunino MATLAB Maringá
SEx Lad et al. 2015 [111] Sanfilippo/Panday MATLAB Canterbury, NZ/Palermo

Shimmer_Shim Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Shimmer_ShdB Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Shimmer_apq3 Teixeira et al. 2013 [101] Teixeira MATLAB Bragança
Shimmer_apq5 Teixeira et al. 2013 [101] Teixeira MATLAB Bragança

SpEn Inouye et al. 1991 [112] Mathworks MATLAB Osaka
SQA * Girault 2015 [113] Girault MATLAB Angers

SymDyn * Various (see Primer) (Panday) MATLAB Various
(Tangle) Moulder et al. 2022 [114] GitHub R Virginia (Charlottesville)

TPE Zunino et al. 2008 [115] Zunino MATLAB La Plata

VM * Bernaola-
Galván et al. 2017 [116]

Bernaola-
Galván/ Panday Fortran Málaga

(WE) Rosso et al. 2001 [117] Mathworks MATLAB Buenos Aires

As before, codes for measures to be included in CEPS were requested from those who
wrote them or obtained from the academic papers in which they were published. The code
for Ehlers’ Index was written by Deepak Panday, and for the other HRA measures was
generously provided by Ashish Rohila [https://www.linkedin.com/in/dr-ashish-rohila-
87739255/] (accessed on 20 January 2023).

Further information on the HRA measures implemented can be found in the published
papers referenced above and in the CEPS Primer on Complexity and Entropy, which is
downloadable as part of the CEPS 2 package [https://github.com/harikalakandel/CEPSv2
/tree/master] (accessed on 29 January 2023).

Following implementation in CEPS, a test dataset and results were then sent to the
code’s originators so that the codes as implemented could be verified. Not all who were
contacted responded to our requests, so some measures could not be implemented, and
others could not be verified.

Comparison with Estimators from DynamicalSystems.jl

DynamicalSystems.jl [7] is a general-purpose software library for nonlinear dynamics
and nonlinear timeseries analysis. It does not offer a GUI interface like CEPS. Rather,
it is a formally a package for the Julia programming language, that can be loaded in a
scripting environment. Once loaded, it provides several hundred algorithms for calculating
quantities typically relevant in nonlinear dynamics, e.g., estimators for fractal dimensions
or other complexity measures such as permutation entropy. Recently in has been used in
an extensive review of fractal dimension estimators [6].

Here we used ∆ and ∆2, fractal dimension estimators from DynamicalSystems.jl
and two timeseries complexity estimators. The fractal dimension ∆ is fundamentally
different from the time series FDs considered so far in this paper. Instead of quantifying the
‘roughness’ of the graph of a function (like the Higuchi estimator), ∆ quantifies the effective
dimensionality of the underlying dynamics. Specifically, we first analyse each time series
using the approach of [118] to estimate an optimal delay embedding that most accurately
represents the underlying dynamical attractor representing the dynamics generating the
data. Once that is estimated, we reconstruct the attractors by delay embedding the time
series. On this higher-dimensional object we use the well-established Grassberger-Procaccia
algorithm [119] to estimate a fractal dimension as the scaling of the correlation sum versus
a size parameter. Notice that while typically the reconstructed attractor would be higher
than 2-dimensional, here we purposefully only embed up to two dimensions, to force the
fractal dimension into the interval (1, 2), as used for the Higuchi dimension (to enable a
simpler numerical comparison across the two methods). Unbounded values of ∆ were

https://www.linkedin.com/in/dr-ashish-rohila-87739255/
https://www.linkedin.com/in/dr-ashish-rohila-87739255/
https://github.com/harikalakandel/CEPSv2/tree/master
https://github.com/harikalakandel/CEPSv2/tree/master
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also computed, and two optimal delay times, tau and tau2. In DynamicalSystems.jl,
the Higuchi dimension was computed using values of k from 2 to 256, exponentially
spaced, and the resulting values averaged. The other two complexity measures we used
from DynamicalSystems.jl are wavelet entropy (‘wavent’) [117] and permutation entropy
(‘perment’, or PE, with order m = 3 or 4 and lag as either 1 or the least mutual similarity time
of the timeseries) [120]. Both measures were chosen because they are suitable quantifiers
of complexity of timeseries and useful in classification tasks (such as the ones we attempt
here), but also because they have been shown to be effective even with very short or
non-stationary time series lengths (which we also have here). FD_H was also computed.

Results from DynamicalSystems.jl and CEPS were compared, for both FD_H and
for PE with m = 4 and lag = 1. Many other entropic time series methods are included in
DynamicalSystems.jl, but not in CEPS. A partial list can be found in [7], with a fuller list in
the software documentation.

Other Software Used

Data were exported from BioTrace+ and then pre-processed in RStudio. The raw ECG
were analysed using Kubios HRV Premium 3.1.0. (Kubios Oy, Kuopio, Finland). As in our
previous study, respiration intervals were extracted from raw data using ProcessSignals, a
package still in development [121]. For both the RRi and respiration data, artefacts were
removed using a mix of manual and automatic methods.

Because Kubios HRV does not offer a batch processing option, Meg McConnell kindly
agreed to process the segmented and interpolated RR interval data, using her Python
package RR-APET, which has been evaluated against Kubios HRV [122].

The Kubios and CEPS outputs were analysed statistically using IBM SPSS Statistics
v26 and RStudio (2022.7.1.554) [123]. Several subsidiary R packages were also used, in par-
ticular the ‘durbinAllPairsTest’ from the PMCMRplus package (1.9.3) [124] and ggstatsplot
(0.9.1) [125]. Further analysis was carried out in Microsoft® Excel® 2019.

2.2.6. Data Processing

In our analysis, 31 files were excluded because of excessively noisy data (mostly at-
tributable to slippage of the respiration sensor belt), or where breathing peaks and troughs
were otherwise difficult to identify (two participants were already excluded because of
recording difficulties and data loss). After excluding noisy data, and with further process-
ing and artefact removal, 308 files remained. Using the Panday-Kandel ‘ProcessSignals’
package, as in our first study, inbreath [End(n)_to_peak(n + 1)] and outbreath [Peak(n)_to
end(n)] durations were calculated, as well as their ratio [Out(n)_to_In(n + 1) ratio] and
peak-to-peak durations [peak(n)_to_peak(n + 1)] (Figure 3).

2.2.7. Data Pre-Processing and Modification

The following data pre-processing and modification methods now available in CEPS 2
were used:

Detrending

Over the course of each 5–minute trial, EDA tended to decrease. This would render
measures of FD meaningless [126] (p. 82), so data were both deduplicated and detrended
before further analysis using nonlinear measures from CEPS or dynamicalsystems.jl (ECG
data were detrended in Kubios HRV, and RSP data were not detrended).

Data Segmentation (‘Cut Files’)

In addition, 5-minute recordings were segmented in two different ways:(a) divided
into 1-min, 2-min, 3-min and 4-min slots, all starting at the same time point, in order to
analyse the effects of data length, and (b) dividing the data into five equal segments in
order to investigate changes over time during each trial. These two methods were used on
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both the RR interval (RRi) data, extracted from the Kubios HRV output files after artefacts
were removed, and on the deduplicated and detrended EDA data.

Adding Noise (‘Add Noise’)

Adding white or coloured noise to a weak signal can sometimes, paradoxically, in-
crease its detectability through the process of stochastic resonance [127]. It can also be
used as an up-sampling method of data augmentation to enhance classification in machine
learning [128]. Different coloured and white noises can now be added to signals in CEPS,
or used as stand-alone data to test how noises affect the different measures.

Interpolation

Short data were interpolated using one of two methods—linear or ‘nearest-neighbour’—and
a recursive ‘finegrid’ method [129], with 1, 2 or 3 finegrid points for 1-min data, 1 or 2 points for
2-min data, and 1 point for 3-min data (4-min data were not interpolated).

Equal Resampling, Using ‘Shape-Preserving Piecewise Cubic Spline Interpolation’

“We think we measure [Time] out with clocks, but in fact . . . it measures us out by
events” (Sybil Marshall [130], p. 110)

When used on time series data, the algorithms in DynamicalSystems.jl will only
produce correct results if the data are sampled with a constant sampling rate [14,126]
(p. 93). By definition, ‘interval’ data such as RRi, are defined by physiology, not by the
clock, and are not necessarily uniformly resampled, although they may need to be to give
correct results for some CEPS measures. Here we used the ‘resample’ function from the
MATLAB Signal Processing Toolbox [131] with 4 Hz and 10 Hz as resampling rates for the
RRi data, comparing results for RRi data that were not resampled.

(Deduplication of up-sampled EDA and respiration data was carried out separately
in MATLAB.)
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2.2.8. Parameter Selection

Parameter selection was conducted in CEPS to fine-tune results. This was found to be
crucially important.

Parameter tuning is not necessarily a precise and rigorous process. The optimal
parameter for one application (e.g., determining the maximum value of a measure) may
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not coincide with the best parameter for a different situation, as here, where parameters
were selected to maximise differences in value between breathing trials. Taking distribution
entropy (DistEn) as an example, a measure which is purportedly rather independent of
embedding dimension (m) [132], at baseline the value of m that provided the maximum
value of DistEn was 2 for 20 of the 44 study participants and 3 for 17 others, whereas during
resonant breathing (RBR), the maximum value of DistEn occurred for 33 participants with
m = 2. and for only seven with m = 3. In contrast, the maximum difference in DistEn
between baseline and RBR occurred for 25 participants with m = 1, but only for one
participant when m = 2, and for two with m = 3. The parameters for optimising values and
maximising differences are clearly divergent.

In our first study [4], we selected the parameter kmax for FD_H based on a very small
sample (N = 9) and found that the measure differentiated reasonably well between normal
and paced breathing with kmax = 5, or for kmax between 9 and 14. Here, we went on to use
several strategies to tune parameters:

(1) Initially, from a larger, convenience sample of 70 recordings from two study partici-
pants, we determined optimum parameters using a method based on the robust coefficient
of variation (RoCV) of the data, Unfortunately, for FD_H, this resulted in a value of kmax
that no longer showed a significant difference between the Baseline and RBR Trials, as
would have been expected from our previous study.

Therefore, other strategies were then explored:
(2) Setting the parameters that provided the greatest RoCV in FD_H for the whole

group (N = 44).
(3) Selecting the parameters that provided the greatest difference between the median

values of FD_H at baseline and during resonance breathing for the whole group.
(4) Tuning parameters according to the median of the differences in FD_H at baseline

and during resonance breathing across all participants.
(5) Determining the parameter according to the number of maximal differences be-

tween baseline and RBR for a range of parameters, again for the whole group.
A final decision on the parameter setting to use was then arrived at, on the basis of

results using all the above four methods (2–5). Of course, if they agreed, that was a simple
matter. However, they did not always do so (Supplementary Materials SM1.1) (a link to
these online materials is provided below). If they did not, a further method was used;
counting the number of positive and negative differences between Baseline and RBR or
5 BrPM and taking their ratio. The method for which this was farthest from 1.0 was also
taken into account. When these five methods still did not provide an unequivocal answer,
the plot of the measure against the parameters concerned was taken as the final arbiter.

This entire process was very time-consuming, and it also soon became clear, especially
from method (5), that parameters could not be selected unequivocally for all participants,
that any selection would be group-specific and not necessarily generalisable to other cohorts,
and that parameters that could be selected to maximise one result (here, the difference
between baseline and RBR) might not be relevant for other comparisons (e.g., between
baseline and breathing at 5 BrPM). For many measures, therefore, determining the most
appropriate parameter/s to use was a matter of compromise. Ideally, an automated method
of parameter tuning could be developed for use in different contexts, in order to speed up
the process. This is currently beyond the scope of CEPS but is a future possibility.

2.2.9. Statistical Analysis
Data Distribution

Data distribution was explored using the Shapiro-Wilk test.

Analysis of Variance 1. Welch’s ANOVA

In an initial exploration of the data (N = 7), Welch’s ANOVA (analysis of variance) was
used as a robust test of equality of means, together with post-hoc Bonferroni (Dunn) tests,
to assess differences in CEPS measures with the various breathing rates and the effects of
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different interpolation methods (type of interpolation and number of interpolated data
points) on these measures. A significance threshold of 0.01 was taken for the post-hoc ad-
justed p-values, with p-values of 0.01 or above being taken as not significant. Bootstrapping
was not used.

Analysis of Variance 2. Friedman Tests, Kendall’s W and Conover Tests

As Welch’s ANOVA requires normality of distribution, from this point on Friedman
tests were carried out for nonparametric one-way repeated measures analysis of variance
by ranks, with Bonferroni post hoc tests, and using Kendall’s W (coefficient of concordance)
as a measure of effect size (ES), for which 0.1 is considered small, 0.3 medium, and greater
than 0.5 as strong [133,134]. To reduce numbers of false positive findings, a significance
threshold of 0.001 was taken for the Friedman tests (i.e., p < 0.001), with post-hoc adjusted
p-values of ≤0.001 considered significant. This approach was taken in preference to the
more accepting Benjamini-Hochberg procedure used in our previous paper [4]. However,
using Kendall’s W does not guarantee that all pairwise comparisons are significant; some
may be highly significant and others much less so [135]. To further refine results, the
Conover test, another post-hoc test for non-parametric data in a within-subjects study
design [136], was also used, and the results ‘top-sliced’ so that only those measures for
which the standardised value of the Conover statistic was ≥ 0.8 were considered further.

In addition, counts were made of the numbers of participants for whom each measure
increased or decreased between the Baseline and RBR trials. If the ratio of increases to
decreases was greater than 0.795 or less than 0.205 (i.e., with 35 or more increases, or 9 or
fewer increases in our study group of 44 participants), we took this to indicate that the
measure changed in the same direction for most of the group. (The Binomial test would
allocate a p-value of < 10–3 to a ratio of 0.795.)

Assessing Agreement. Intraclass Correlation Coefficients (ICCs) and Simple Correlations

Intraclass correlation coefficients (ICCs) were calculated in SPSS (Statistical Package
for Social Science) to assess agreement between the values of each measure for segmented
data of different durations (1 to 5 min). Lack of agreement could indicate non-stationarity
of data [6], or that short segments did not provide sufficient information to permit accurate
calculation of the measure. A two-way mixed model was used, aiming for consistency
rather than absolute agreement, and the ‘ANOVA with Friedman’s Test’ option was se-
lected. In addition, Spearman’s rho was computed for correlations between the value of
each measure for five minutes of data and its values at shorter durations, and also for
correlations between measures in difference trials (baseline or self-paced vs. 5 BrPM or
RBR) or computed for different data types (RRi, respiration intervals and EDA). Data
were not analysed for outliers, homoscedasticity (homogeneity of variances) or normal
distribution of residuals [137], so a formal (linear) regression analysis was not undertaken.
As for the Conover statistic, results were ‘top-sliced’ so that only those measures for which
the standardised value of the ICC was ≥ 0.8 were included in further analysis.

Combining the Results of Conover Tests and ICCs

Based on the two previous steps, those measures that were found to best differentiate
between the trials, as well as those that best showed agreement across durations, were
tabulated, and plotted.

This was done for the following datasets:

• CEPS and RR-APET measures for non-resampled RRi data;
• CEPS and DynamicalSystems.jl measures for RRi data resampled at 4 Hz;
• CEPS measures for RRi data resampled at 10 Hz;
• CEPS and DynamicalSystems.jl measures for detrended and deduplicated EDA data.

The raw respiration and breathing interval data were analysed only using Conover
tests, not ICCs.
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Effects of Age, Sex, Perceived Stress and Other Trait and State Measures

The effects of age, perceived stress, ‘Mindful awareness’ and the two dimensions of
interoceptive awareness on how CEPS measures reflect breathing state were assessed. Meth-
ods and Results for this Section are presented in the Supplementary Materials
(Section SM3).

Correlations within ‘Families’ of Measures, and between Individual Measures

Spearman’s rho rather than Pearson’s r was also used to explore correlations within
‘families’ of measures, and between individual measures when applied to different data
types (RRi, respiration and EDA). Methods and Results for this Section are again presented
in the Supplementary Materials (Section SM5).

3. Results
3.1. Normality of Data

Data for over 40% of the Kubios HRV measures were not normally distributed, with
around 36% of the CEPS ECG RRi measures also not normally distributed. Almost 68%
of the CEPS EDA measures were not normally distributed, while none of CEPS measures
for the raw respiration data and only 18% of those for the breathing interval data were
normally distributed.

3.2. Data Resampling and Modification
3.2.1. The Effects of Data Resampling on CEPS Measures

For some (but not all) trial pair comparisons, resampling RRi data at 4 Hz marginally
increased the numbers of the Conover statistic above the 95th percentile when compared
with the non-resampled data, as shown in the Figure 4 below (a comparison with results
for data resampled at 10 Hz is not shown, for reasons explained below).

For the 5-min RRi data, the 95th percentile of the Conover statistic was calculated
for the following grouped types of measures: (1) 22 fractal dimensions (FDs); (2) 40 heart
rate asymmetries and those derived from Poincaré plots (HRA); (3) 8 measures based on
permutation entropy (PE); (4) 19 measures based on recurrence quantification analysis
(RQA); (5) 51 other complexity measures (OC); and (6) 54 other entropies (OE). Numbers of
the PE and RQA measures varied slightly between the noR and 4R groupings, and for the
OC and OE measures between the 10R and other groupings (Table 5).

Table 5. The 95th percentile of the Conover statistic for six groups of measures (5-min RRi data).

Data Type 95%/N FD HRA PE RQA OC OE ALL

noR
95th % 11.348 9.927 11.908 5.223 6.761 7.178 8.838

N 22 40 8 17 51 54 192

RRi 4R
95th % 9.697 8.848 9.971 5.864 5.267 8.831 9.038

N 22 40 10 19 51 54 196

RRi 10R
95th % 8.288 9.566 9.384 6.229 9.414 9.262 9.089

N 22 40 8 19 48 51 188

Note that the 95th percentile was greater for the non-resampled RRi data than for the
data resampled at 4 Hz, for all except the RQA and OE types, and that while resampling at
10 Hz improved results for the RQA, OC and OIE measures, it did not do so for the others.
Given that increasing the resampling rate to 10 Hz did not change the finding in Figure 4 at
all, and that it was far more computationally demanding than resampling at 4 Hz, it was
not investigated further in this study in any depth.
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Figure 4. (a) RRi data: Numbers of Baseline to 5 BrPM (Ba_50) and Baseline to RBR (Ba_RBR) trial
pairs with > 3 values of the Conover S statistic above the 95th percentile for all pairs, for all durations
of data (1 to 5 min), for non-resampled (noR) and resampled (4R) data. The threshold of ‘> 3 values’
of S was selected because, for most comparisons, counts were very low (0 or 1), so that their upper
quartile (75th percentile) was 4; (b) numbers of the five trial pairs with most values of the Conover S
statistic above the 95th percentile for all pairs, for 5-min data only (no Baseline to 7 BrPM trial pairs
met this criterion, nor did any Self-paced to externally paced trial pairs).
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3.2.2. The Effects of Data Modification—Mitigating for the Effects of Data
Segmentation (Shortening)

Initial use of Welch’s ANOVA on a pilot sample of RRi data (N = 7) provided a
provisional indication of which CEPS measures are most/least likely to be sensitive to
data interpolation, and which most often showed significant differences with breathing
rate for the interpolation methods used; mPE5, mLZC7 and PJSC with default parameters
appeared most useful; CCM, RCmDE3 and Kurtosis the least useful.

For the full dataset (308 trial recordings, 44 participants), several measures, including
DistEn, Edge PE (EPE) and FD_C, showed significant differences in RBR (‘best’) vs. the
other breathing rates (‘rest’), with p < 0.05 (using the Mann-Whitney test). Of these, DistEn
and FD_C showed effect sizes (Z/

√
N) for the interpolated 3-min data that were in fact

marginally better than those for the full 5-min data (0.256 vs. 0.233, and 0.302 vs. 0.275,
respectively). However, improvements over results with the non-interpolated data were in
general minimal and inconsistent over the different data lengths, and effect sizes remained
small. Out of 17 measures investigated, the strongest effect size was for FD_C.

Comparing the interpolation methods tested for the 17 CEPS measures and three data
lengths (1-, 2- and 3-min), ‘L1′ (the linear method using a single point) most commonly
gives the highest ES (23 occurrences), followed by L2 (7 occurrences), and finally N1
(‘nearest-neighbour’ method using 1 point) (4 occurrences), with no occurrences for N2.
For the interpolated measures with p < 0.001, 19 were for linear interpolation (median ES
0.235), and only eight for the nearest-neighbour interpolation method (median ES 0.228).
Interpolations of 2 points or more were not as useful for classifying ‘best’ vs. ‘rest’ as
interpolations of 1 point; 14 ‘L’ (0.237 vs. 0.226 for 1 vs. 2 points interpolated); 8 ‘N’ (0.229
vs. 0.226 for 1 vs. 2 points interpolated). Thus, if interpolation is to be used to increase data
length, it might be appropriate to use 1-point linear interpolation, but there is no guarantee
that this will improve classification. Indeed, overall, and for several measures such as
FD_H, mPE1, mPM_E, RPE and TPE, the effect of interpolation appeared to be to reduce
effect size, not increase it.

In general, for the CEPS measures tested (a mix of FDs, Poincaré-derived measures,
permutation, and other entropies), 1-point linear interpolation provided the best differ-
entiation between breathing trials, and linear interpolation better than nearest-neighbour
interpolation. However, for FD_P and FD_M the number of points interpolated appears to
be less of an issue, and for FD_C and AttnEn, the interpolation method may not materially
affect results either, indeed, for CoSiEn, results may be better using nearest-neighbour than
linear interpolation (details available on request).

The effects of interpolation on standard HRV measures were also assessed when
comparing the RBR with other breathing rates, using results generated by Meg McConnell’s
Python-based software package, RR-APET [122] and Mann-Whitney tests, as for the CEPS
measures. Here, marked improvements were found for the 3-min LF percentage power
based on the Lomb-Scargle periodogram, using both ‘L1′ and ‘N1′ as interpolation methods
(ES = 0.307 and 0.309, respectively); ES for the original 5-min data was only 0.234), For LF
peak frequency (based on the Welch periodogram), improvement was from ES = 0.244 (for
the original 5-min data) to 0.380 (for L1 interpolated 3-min data).

The effects of adding coloured noises to short data on the differentiation of RBR
and the other breathing trials using Mann-Whitney tests were not encouraging. Nor was
binarising the data (using Petrosian’s first three methods [17]). Resulting effect sizes were
all <0.230.

3.3. Parameter Tuning

Results for the CEPS measures used can be found in the Supplementary Materials
(SM1.1. Parameter Tuning).
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3.4. CEPS, DynamicalSystems.jl and Other Analysis of RRi, Respiration and EDA Data

For the RRi data, results from DynamicalSystems.jl and CEPS were identical for PE
with m = 4 and lag = 1. FD_H results differed for the RRi data tested, for two reasons: (1) In
DynamicalSystems.jl, values of k to compute the Higuchi lengths L(k) were selected using
logarithmically spaced values from 2 to about 27, based on time series length. In CEPS,
on the other hand, k values were from k = 1 to kmax = 2 to 15 (i.e., linear spaced values up
to a varied kmax, choosing the kmax with best discriminatory power for our application);
(2) different line-fitting functions were used in DynamicalSystems.jl (fitting a slope to an
identified linear scaling region as described in Datseris et al. 2021 [6]) and CEPS (standard
MATLAB ‘polyfit’ polynomial curve fitting).

3.4.1. Five-Minute ECG RRi Data—CEPS, DynamicalSystems.jl and Kubios HRV Analysis

Differences with BrPM were analysed for the various families of measures described
above (FD, HRA, PE, RQA, OC and OE). Friedman’s χ2 and Kendall’s W were used, as
described in Section 2.2.9). Medians are shown in Table 6, with interquartile ranges (IQRs)
in parentheses.

Table 6. 5-min RRi data: median values of Friedman’s χ2 and Kendall’s W for six groups of CEPS
measures, with interquartile ranges (IQRs) in parentheses.

Data Type χ2/W FD HRA PE RQA OC OE ALL

noR
χ2 96.597 106.888 139.596 28.953 55.626 50.863 62.795
W 0.310 0.350 0.448 0.093 0.178 0.163 0.202

RRi 4R
χ2 78.813 92.505 114.482 33.286 103.706 86.055 78.813
W 0.253 0.297 0.367 0.103 0.333 0.276 0.253

RRi 10R
χ2 63.412 113.907 108.155 38.291 102.892 103.603 95.832
W 0.203 0.365 0.347 0.123 0.330 0.332 0.307

Values of χ2 and W were greater for the permutation entropy family of measures than
for the others, except for the RRi data resampled at 10 Hz, for which χ2 and W were greatest
for the HRA family of measures.

For the 5-min RRI data resampled at 4 Hz, Kendall’s W was also computed for the
additional measures from DynamicalSystems.jl but was only > 0.3 for wavelet entropy
(‘wavent’); W was very small indeed (~0.02) for both ∆ and ∆2, if slightly greater for
the former.

Those measures from each family which performed best (i.e., with values of χ2 > 150)
are shown in Table 7, with results for the best-performing 4R measures from Kubios HRV
provided as a comparison (see [138] for details).

Of the CEPS measures, the FDs were most useful, for all data types, and outperformed
all the Kubios HRV measures except PLFP (peak low frequency power), itself one of the
measures used to define RBR, as explained above. In particular, FD_H performed well,
as in our previous study [4]. The Kubios HRV frequency-domain measures based on the
autoregressive (AR) method provided better differentiation between paced breathing rates
than those based on the Lomb-Scargle periodogram (which, however, does not require
equal resampling of the RRi data).

In addition to analysing RR interval results for those ‘top’ measures which performed
best, they were also analysed for the CEPS and Kubios HRV measures that did not appear
to be greatly affected by BrPM (i.e., with Friedman’s χ2 < 10). For the RRi data resampled
at both 4 Hz and10 Hz, these were FD_Moisy_Box (FD), LZC (OC), SlopeEn (OE), and two
RQA measures (RTmax and Lmax); for the data resampled at 4 Hz, they also included SI
(HRA) and AAPE (PE), with GridEn (OE) for the data resampled at 10 Hz. For the un-
resampled data, measures were EPP SD2_6 (HRA), CAFE (OE) and three RQA measures
(including Lmax once again). Of the Kubios HRV measures, HFpwr (AR) also appeared to
be little affected by respiration rate.
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As illustrated in Figures 5 and 6, the ‘top’ measures showed noticeably clear differences
in measures with breathing frequency and RBR (PLFP), with two patterns predominating:
(a) Increasing from Baseline to 5 BrPM, decreasing with higher BrPM, and finally increasing
again at RBR (which was in any case 5 BrPM for most participants); (b) Decreasing from
Baseline to 5 BrPM, increasing with higher BrPM, and finally decreasing again at RBR. In
other words, compared with free breathing, fixed breathing rates (and ratios) increase the
pattern ‘a’ measures, but decrease the pattern ‘b’ measures.

Table 7. Results for the best-performing RRi measures (values of χ2 > 150), with measures from
Kubios HRV provided as a comparison in the lower part of the Table.

Data Type
Measures

and χ2

Range
FD HRA PE RQA OC OE Best

noR
Measures

mFD_M
FD_PRI

NLDw_mL
NLDw_mP

FD_C
FD_Dist

EPP SD1
(4–7)

CPEI
mPM_E

PJSC
n/a n/a T_E_Ent mFD_M

χ2 range
161.208–
200.023

151.920–
178.916

150.519–
161.949 173.660 200.023

RRi 4R
Measures

FD_PRI
FD_H

mFD_M
n/a n/a n/a LLE32–36

FE
MmSE2,
MmSE5

AE

FD_PRI

χ2 167.676–
197.728

156.084–
170.126

150.084–
158.552 197.728

RRi 10R
Measures FD_PRI n/a n/a n/a n/a BE FD_PRI

χ2 198.906 158.334 198.906

Kubios
HRV General HRA Time

domain Freq domain OC OE Best

RRi 4R
Measures PLFP SD2

SD2/SD1 SDNN

LFpwr
(AR/LS)
Totpwr

(AR/LS)

DFA alpha1 SampEnApEn PLFP
[AR LFpwr]

χ2 201.714 164.605–
165.441 155.624 154.964–

181.803 167.895 155.865–
157.280

201.714
[181.803]

Post-Hoc Analysis

Conover tests were conducted and intraclass correlations computed for both non-
resampled RRi data and for the same data resampled at 4 Hz.

More significant differences in pairs of trials were found with Baseline than with
Self-paced breathing, with most such differences occurring between 5.0 or 5.5 and the other
BrPM. Fewest significant differences were found between 7.0 and the other BrPM.

For the 5-min non-resampled (noR) data, 15 of the 153 CEPS measures analysed
decreased between Baseline and RBR with standardised values of the Conover statistic
≥ 0.8 (including six PE-based, seven FDs, one Poincaré-derived), and seven increased
(including one PE-related and six Poincaré-derived or HRA). For the resampled (4R) data,
eight of the 159 CEPS measures decreased (including five FDs and two Poincaré-derived
or HRA), but only two measures increased (including one Poincaré-derived). None of
the six DynamicalSystems.jl (DS) measures tested showed values of the Conover statistic
≥ 0.8, although for DS wavelet entropy, the value was 11.787 (standardised value 0.762),
increasing in 43 participants, and for DS FD_H it was again 11.787 (standardised value
0.762), increasing in 8 participants.

Four CEPS measures decreased between Baseline and RBR for both the noR and 4R
RRi data. They were all FDs: FD_C, FD_H, mFD_M and FD_PRI. Only one measure
(SDNNdown) increased for both the noR and 4R RRi data. Results were not dissimilar
for the 10 R RRi data (Table 8), although Bubble entropy (BE) and MmSE at scale 10 also
decreased significantly, and Robust CV (RoCV) increased (not shown in Table 8).
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family, with values of Friedman’s χ2: (a) EPP SD1_4 to SD1_7 (HRA); (b) LLE32-36 (OC); (c) HRV
frequency domain measures, from Kubios HRV. Note that values have been standardised to the range
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Table 8. CEPS measures for the 5-min RRi data with standardised values of Conover S for the
Baseline-RBR pair ≥ 0.8 are shown below, with non-standardised values of Conover S in parentheses.
In bold, values of Conover S for those measures with standardised ICC also ≥0.8. RRi 10R measures
with numbers of increases or decreases < 35 are not included. ‘↑’ indicates measure increased between
baseline and RBR, and ‘↓’ that it decreased, for the number of participants included in parentheses.

5-min RRi Measures noR 4R 10R

Baseline-RBR ↑

SDNNdown
SD2down

PJSC
T_E_ENT

EPP SD1_3
EPP SD1_4
EPP SD1_5
EPP SD1_6
EPP SD1_7
EPP SD2_5

AE

0.809 (12.829) (43 ↑)

0.879 (13.934) (44 ↑)
0.914 (14.483) (43 ↑)
0.868 (13.758) (43 ↑)
0.913 (14.470) (43 ↑)
0.915 (14.502) (43 ↑)
0.956 (15.151) (43 ↑)
0.966 (15.310) (43 ↑)

0.824 (12.733) (43 ↑)
0.830 (12.828) (43 ↑)

0.801 (12.392) (43 ↑)
0.955 (14.084) (42 ↑)

0.806 (12.624) (43 ↑)
0.806 (12.624) (43 ↑)

(6.796) (35 ↑)
(7.899) (39 ↑)
(11.964) (43 ↑)
(9.074) (39 ↑)
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Table 8. Cont.

5-min RRi Measures noR 4R 10R

Baseline-RBR ↓

FD_C
FD_H

mFD_M
FD_PRI
EPP R6
CPEI
EPE

ImPE
mPE1

mPM_E
TPE
FE

MmSE2

0.893 (15.151) (44 ↓)
1.000 (15.841) (44 ↓)
0.904 (14.327) (43 ↓)
0.933 (14.790) (44 ↓)
0.847 (13.423) (43 ↓)
0.845 (13.387) (44 ↓)
0.811 (12.859) (43 ↓)
0.811 (12.859) (43 ↓)
0.812 (12.877) (43 ↓)
0.856 (13.562) (43 ↓)
0.809 (12.826) (43 ↓)

0.851 (13.151) (44 ↓)
0.994 (15.356) (44 ↓)
1.000 (15.453) (44 ↓)
1.000 (15.392) (44 ↓)

0.800 (12.364) (44 ↓)
0.821 (12.693) (43 ↓)

(7.534) (37 ↓)
(10.150) (43 ↓)
(12.106) (44 ↓)

1.000 (15.541) (44 ↓)
(8.641) (40 ↓)

(10.304) (41 ↓)
(9.903) (42 ↓)
(9.903) (42 ↓)
(10.301) (43 ↓)
(8.820) (40 ↓)
(10.59) (42 ↓)
(4.380) (35 ↓)
(9.609) (41 ↓)Entropy 2023, 25, x FOR PEER REVIEW 26 of 68 
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(c) Some other entropies (OE). Note that values have been standardised to the range (1,2), for ease
of comparison, and that PJSC, a complexity rather than an entropy measure, decreases as breathing
frequency increases.

Somewhat more CEPS measures showed standardised ICC (Intraclass Correlation
Coefficients) than Conover S values ≥ 0.8 (87 of 153 noR measures; 74 of 159 4R measures).

3.4.2. Respiration Data—CEPS Analysis Only

Unsurprisingly, many more measures differentiated between breathing rates for the
respiration (RSP) data than for the RRi data. Numbers of measures for which Friedman’s
χ2 > 150 are shown in Table 9. Note that maximal χ2 values are lower than for the RRi data.

Table 9. Numbers of RSP data measures for which Friedman’s χ2 > 150.

Data Type
Measures

and χ2

Range
FD HRA PE RQA OC OE Best

INbreath
Measures 3 n/a 7 n/a 18 18 MmSE13

χ2 range
155.115–
166.382

154.082–
187.089

150.490–
190.092

159.045–
192.043 192.043

OUTbreath
Measures 3 7 7 1 17 19 MmSE13

χ2 157.528–
159.289

151.338–
167.358

160.749–
188.632 167.753 151.639–

188.884
150.950–
195.610 195.610

Peak-Peak
(PP)

Measures 1 8 7 n/a 17 22 ImPE

χ2 168.048 177.494–
184.878

171.671–
191.663

150.569–
191.249

152.381–
190.565 191.663

Raw RSP
Measures FD_PRI n/a n/a n/a n/a n/a FD_PRI

χ2 154.064 154.064

The ‘top’ measures showed noticeably clear differences in measures with breathing
frequency and RBR (PLFP). Figure 7 shows the ‘Top’ measures, by family, with values of
Friedman’s χ2. The measure MmSE13 is not included in this Figure, as although it was
highest at baseline it remained unchanged for all paced breathing rates.

The ‘top’ FDs, PE-based measures, ESCHA_d and other entropies were all highest
at Baseline and increased with respiration frequency. The opposite pattern was found
for the EPP SD2 (HRA) measures, while CCM (OUT) neither increased nor decreased
monotonically with breathing frequency. FD_PRI (Raw RSP) decreased less from Baseline
during Self-paced breathing than the other FD measures (IN, OUT or PP).

Respiration data were only analysed using the Friedman and Conover test, not the ICC
method. For the raw respiration data, FD_PRI was the only measure out of 102 analysed
that resulted in a standardised value of Conover S ≥ 0.8 (better differentiation between
baseline and RBR). For the respiration interval data, 20 of 196 INbreath measures, 23 of
196 OUTbreath measures and 36 of 195 breath peak-to-peak measures resulted in standard-
ised S ≥ 0.8. Non-standardised values of S were more often maximal for the peak-to-peak
(17 measures) than for those taken from the INbreath (4) or OUTbreath data (3). For all
three data types, the measure that resulted in the highest value of S was MmSE at scale 13,
followed by LLE at various iterations.

3.4.3. EDA Data—CEPS and DynamicalSystems.jl Analysis

No measures differentiated between breathing rates for the EDA data with Fried-
man’s χ2 > 150. For the following measures, Friedman’s χ2 was greater than 28: RMSSD
(χ2 = 29.035), EPP SD1_1 to SD1_-7 excluding SD1_6 (χ2 = 28.303–28.824), and FD_K
(χ2 = 28.767).

In contrast to the RRi and respiration data, no measures increased or decreased
consistently for 35 or more participants between baseline and the aggregate trial (RBR).
Non-standardised values of Conover S were thus consistently low (Median 1.732, IQR 0.905
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to 2.613). Measures with standardised values ≥ 0.8 for both Conover S and ICC were only
SD1, SD1_1 to SD1_7 and RMSSD, which all showed 30 or more increases between baseline
and RBR.

EDA in the first 23 cases (161 trials) examined tended to decrease during each five-
minute recording. For the whole cohort, CEPS measures of Robust slope (RoSlope) were
thus predominantly negative as would be expected when sitting quietly. This was the
case for 35 or more participants when breathing at 5 or 6.5 BrPM, and for 37 participants
during RBR.

3.4.4. Summary of Results for RRi, Respiration and EDA Data

Tables 10 and 11 summarise the top Friedman test results for differences in CEPS and
DynamicalSystems.jl measures between all eight trials, for the RRi, RSP and EDA data,
with corresponding results for the Kubios HRV measures.

Note that, for the same data, χ2 and W are lower for the top two DynamicalSystems.jl
measures than for the corresponding CEPS measures. Only wavelet entropy (Wavent)
shows a reasonable effect size (Kendall’s W > 0.4). Patterns of change with breathing
frequency differ from those observed for the corresponding CEPS measures (compare
Figures 5–7 above with Figure 8 below).

The following Tables 12–14 present a summary of which measures resulted in the ‘top
five’ non-standardised values of Conover S for the different data types, for all 28 pairs of
trials rather than the Baseline-5 BrPM pair only.
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Table 10. Top two Friedman test results for differences in CEPS measures among all eight trials, for
the RRi, RSP and EDA data, with corresponding results for the Kubios HRV measures.

Data Type Measures Friedman’s χ2 Kendall’s W

RRi (noR) mFD_M
FD_H

200.023
195.703

0.642
0.628

RRi (4R) FD_PRI
LLE34

197.728
170.126

0.633
0.546

RRi (10R) FD_PRI
BE

198.906
158.334

0.637
0.508

RSP (IN) LLE42
EoD

190.092
188.255

0.251
0.600

RSP (OUT) LLE43
TPE

188.884
188.642

0.250
0.605

RSP (PP) ImPE
ESCHA_d

191.663
191.249

0.613
0.612

RSP (Raw) FD_PRI
FD_LRI

154.064
122.040

0.493
0.389

EDA RMSSD
EPP SD1_1

29.035
28.824

0.093
0.924

Kubios HRV PLFP
LFpwr (AR)

201.714
181.803

0.647
0.583

Note: MmSE13 for RSP (IN, OUT) was not included in this summary (see above).
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Table 11. Top two Friedman test results for differences in DynamicalSystems.jl measures among all
eight trials, for the RRi (4R), deduplicated Raw RSP and deduplicated detrended EDA data.

Data Type Measures Friedman’s χ2 Kendall’s W

RRi (4R) Wavent
Perment4

135.429
118.979

0.440
0.386

RSP (Raw) Wavent
Perment4

66.910
51.835

0.217
0.168

EDA Wavent
Delta2

16.609
15.214

0.054
0.049

Table 12. ‘Top five’ non-standardised values of Conover S for the ECG RRi data, for all 28 pairs of trials.

4R 5-min Pair S 10R 5-min Pair S NoR 5-min All Base_5
FD_PRI Base_5 19.013 FD_PRI Base_5 19.508 mFD_M 19.334
FD_PRI Base_5.5 15.826 FD_PRI Base_5.5 15.614 FD_PRI 19.163
mFD_M Base_RBR 15.453 FD_PRI Base_RBR 15.541 FD_H 18.672
FD_PRI Base_RBR 15.392 MmSE11 Base_5 13.933 NLDwL_m 16.566
FD_H Base_RBR 15.356 MmSE10 Base_5 13.888 NLDwP_m 16.521

Medians 15.453 15.541 18.672
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Table 13. ‘Top five’ non-standardised values of Conover S for the breathing interval data, for all 28
pairs of trials.

IN 5-min All Base_5 OUT 5-min All Base_5 PP 5-min All Base_5
IncrEn 18.037 ImPE 17.907 ImPE 18.302

EoD 17.898 Discrete_CS 17.873 Discrete_CS 18.224
KLD 17.898 IncrEn 17.867 EoD 18.096
ImPE 17.849 TPE 17.833 KLD 18.096

Discrete_CS 17.713 mPM_E 17.794 mPM_E 18.057
Medians 17.898 17.867 18.096

Table 14. ‘Top five’ non-standardised values of Conover S for the raw respiration (RSP) and EDA
data, for all 28 pairs of trials.

RSP 5-min Pair S EDA 5-min Pair S
FD_PRI Base_5 14.349 GridEn Base_6 5.250
FD_PRI Base_RBR 12.08 Jitta Base_5 4.829
FD_PRI Base_5.5 11.620 RMSSD Base_5 4.730
FD_PRI 7_5 9.627 EPP SD1_1 Base_5 4.728
FD_LRI Base_5 11.091 EPP SD1_2 Base_5 4.728

Medians 11.620 4.730

Note that the highest median values occur for the non-resampled RRi data, followed
by the INbreath interval data. Lowest values occur for the EDA data.

At the other end of the spectrum. no differences in Conover S were observed for a
number of measures and paired Trials, for each of the various data types.

For RRi data, for example, measures which appeared less affected by respiration
rate included some of the RQA, Jitter (frequency variation from cycle to cycle [101]), LLE,
EPP r measures and LZC. For the other data types, different groupings of measures were
unresponsive to respiration rate, but there was no obvious pattern to these.

3.4.5. Some Findings on Heart Rate Asymmetry (HRA)

As mentioned above (Section 2.1.1), measures of heart rate asymmetry (HRA) have
been used to quantify differences between phases of acceleration and deceleration in heart
rate data. Given the intimate relationship between HRV and respiratory sinus arrhythmia
(RSA) [73], we expected to find that an individual’s RBR would be reflected in their HRA.

The five ‘classical’ HRA measures and 11 derived from Poincaré plots behaved in
interesting ways. Whereas the median values of Ehlers’ Index (a linear measure) were
maximal at 6 BrPM and minimal during Self-paced breathing, the other classical HRA
measures and Rohila’s ASI demonstrated a variety of changes with respiration frequency
(Figure 9).

Figure 9 demonstrates that the HRA measures, in general, differed between Baseline,
Paced and RBR trials.

Post-hoc analysis for the paired RRi noR data Baseline-RBR trials using Conover’s S
indicated that SDNNup and SDNNdown performed best (both with S > 12), followed by
SD2up (S = 11.982). Values of S > 10 were also obtained for PI, GI and SD1down. By way
of comparison, FD measures such as mFD_M, FD_PRI and FD_H all resulted in values of
S > 14. For 10 out of the 16 HRA measures analysed here, Conover’s S was lower for the
RRi data resampled at 4 Hz.

Correlations between HRA Indices and HRV Measures

In our literature review on HRA (Section 2.1.1), we cited one study questioning “the
widespread belief that it is the parasympathetic branch of the autonomic system which is
responsible for decelerations and the sympathetic branch which is responsible for accelera-
tions” [31]. We therefore explored correlations between the 16 HRA indices (and the Complex
Correlation Measure, CCM [34]) and 13 of the standard Kubios HRV measures that have
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sometimes been considered to reflect parasympathetic or sympathetic activation [139,140]. To
keep the analysis manageable, we considered only ‘strong’ correlations, with Spearman’s
|rho| > 0.9.

With minor variations, there was a clear pattern of results that was very similar across
all seven trials, as well as the composite RBR trial. Strong correlations occurred between
only five or six of the HRA indices (SD1up/down, SD2up/down and SDNNup/down),
and seven or eight of the HRV measures (SDNN, RMSSD, HF or LF power or log power,
Total power and the Kubios ‘PNS’ measure). Negative correlations with the HRA indices
were all with Baevsky’s ‘Stress index’ of sympathetic activation [141]. Positive correlations
between the HRA indices and HF power or log power occurred in all trials, but with LF
power or log power only in the externally paced trials. Strong correlations occurred slightly
more often with the HRA indices calculated for the RRi data resampled at 4 Hz than for the
non-resampled data, but values of |rho| were not consistently larger for either data type
across all trials. Overall, excluding the composite RBR trial, most strong correlations were
found for the HRA indices SDNNdown (39) and SD1down (37), and for the HRV measures
SDNN (39) and Total power (35). For correlations between the PNS measure and the six
HRA indices, rho was consistently > 0.6 in all trials, for both the ‘up’ and ‘down’ version
of these indices. Correlations were weaker for the classical or normalised HRA indices,
ASI and CCM. However tantalising these findings, there was thus no obvious pattern that
would indicate an association between parasympathetic or sympathetic activation and any
particular HRA measure.
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and the Asymmetric Spread Index (ASI); (b) Guzik’s subsidiary descriptors; (c) normalised HRA
measures. Ehlers’ Index (Friedman’s χ2 = 92.926) is not shown.

A corresponding analysis of noR and 4R RRi data was carried out for the families of
22 FD measures and eight PE-based measures. There were no strong correlations, either
positive or negative, between the PE-based and HRV measures.

For the fractal dimensions, Spearman’ |rho| was > 0.9 mostly for FD_K (14 negative
correlations, 97 positive). Correlations were again negative for Baevsky’s Stress index
(for both non-resampled data and data resampled at 4 Hz). For both data types, positive
correlations were with Kubios HRV’s PNS index, LF and HF power and log power, Total
power, SDNN and RMSSD. The correlation between FD_K and PNS for the 4R data was
slightly less strong than the others (rho = 0.835). There were also three strong correlations
for FD_H (two negative, with DFA alpha1, one positive, with HF relative power), one
negative for mFD_M (with DFA alpha1), and two for NLDw mean variants, again with HF
relative power.

One possible interpretation could be that FD_K, FD_H and the NLDw variants are
more associated with parasympathetic than sympathetic activation.

Results for the HRA and FD measures were then compared. Excluding the composite
RBR trial, 3332 correlations between HRA indices and HRV measures were analysed for
the remaining seven trials. Of these, rho was <−0.9 for 53 (1.59%), and >0.9 for 344 (10.32%).
For the FDs, there were 4312 correlations in total, for 15 (0.35%) of which rho was <−0.9,
while for 85 (1.97%) rho was >0.9. However, median values of rho for the correlations with
rho < −0.9 or >0.9 were larger for the FD than HRA measures: −0.936 and 0.961 for the
FDs (IQRs –0.944 to –0.928 and 0.929 to 0.973, respectively), but only –0.931 and 0.934 for
the HRAs (IQRs –0.948 to –0.918 and 0.915 to 0.968, respectively). Thus, although there
were numerically more strong correlations with HRV measures for the HRA indices than
for the FDs, these correlations were not necessarily stronger.

Respiration and Asymmetry

For the 284 respiration recordings, the median Outbreath-to-Inbreath ratio (RespR)
was 1.424 (IQR 1.239 to 1.650). Further results are reported in the Supplementary Materials
(Section SM4).

3.4.6. Difference and Agreement between Baseline or Self-Paced Breathing and Optimal (or
‘Resonance’) Breathing or Breathing at 5 BrPM: Do Measure Values during Slow Self-Paced
Breathing Predict Those of RBR?

As described above (Section 2.2.1), resonance breathing can be defined in a number of
different ways. In this paper, we used the latter definition of RBR as peak low frequency
power (PLFP).

For PLFP, 5 BrPM was found to be the RBR for 15 participants (34%), 5.5 BrPM for
12 participants (27%), 6 BrPM for 9 (20%), and 6.5 BrPM for 6 participants (14%) and no one
at 7 BrPM. For the remaining two participants, PLFP was lower during externally paced
than during slow self-paced breathing, with rates of 4 and 8 BrPM. Similar results were
obtained for RBR defined as LFBP. No participants showed an RBR of 7 BrPM, with either
definition. For 39 participants, the two definitions resulted in the same RBR.

Table 15 below shows median values of Conover’s S for differences between Self-paced
breathing and RBR, between Baseline and RBR, between Self-paced breathing and 5 BrPM,
and between Baseline and 5 BrPM, for all measures tested, for the various data types.
Numbers in parentheses indicate the total number of measures analysed for each data type.

The post-hoc analysis of variance thus indicates, for these four comparisons, that
for the RRi data, there was least difference between self-paced breathing and breathing
at 5 BrPM, whereas for the EDA and respiration data (whether raw of interval), least
differences were between self-paced breathing and RBR (lowest median values for each
data type in bold).
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Table 15. Median values of Conover S for four pairs of trials, with lowest values in each row indicated
by bold type.

Conover S Self to RBR Base to RBR Self to 5 BrPM Base to 5 BrPM
RRi (4R) (225) 4.601 7.386 4.091 7.129
RRi (10R) (209) 5.267 8.536 5.007 8.538
RRi (noR) (219) 3.673 6.105 3.182 6.084

RSP raw (99) 2.549 3.307 3.069 3.277
RSP_IN (196) 2.770 7.507 4.270 8.723

RSP_OUT (197) 4.250 8.070 4.676 9.094
RSP_PP (197) 4.180 7.794 5.389 9.548

EDA (89) 0.812 1.732 0.892 1.865

Spearman’s rho was computed for 324 comparisons of RBR Slots (using the PLFP
definition) with baseline, and for 324 comparisons of RBR Slots with Self-paced breathing.
Of these, 98 showed p < 0.001. These were all for RR interval data; none of the correlations
calculated for the Respiration data (whether IN, OUT, OUT/IN Ratio or Peak-to-Peak)
achieved that level of significance.

HRV measures which predicted RBR for RRi data with p < 0.001 and rho > 0.6 were
tabulated (45 measures at Baseline and 36 during Self-paced breathing). NO frequency
domain measures showed rho > 0.8, and of the usual HRV measures only Mean RRi and
Mean HR showed rho > 0.9.

Early analysis suggested no correlation between Baseline or Self-paced breathing rates
and RBR, with neither appearing to predict RBR.

However, for the respiration data, several CEPS respiration measures predicted RBR
with p < 0.01 (but ≥ 0.001), 0.396 < rho < 0.508, particularly for INbreath and OUT/IN Ratio
data. For the former, FD_K, FD_M, EPE, CCM and two HRA indices (SI and AI) appeared
useful; for the latter, FD_S, T_E Tone and 6 measures derived from the Poincaré Plot.

Note that for the respiration data, Self-paced breathing results provided better pre-
dictions than Baseline breathing, whereas results were similar for both for the RRi data
(slightly more predictions using the Baseline data). Correlations between measures in the
same paired trials for which Spearman’s rho > 0.7 for all four comparisons were then exam-
ined. Results can be found in the Supplementary Materials (section SM5, Some Findings
on Correlation).

3.4.7. Results for Correlations within ‘Families’ of Measures, and between Individual
Measures When Applied to Different Data Types (RRi, Respiration and EDA) Are
Described in the Supplementary Materials (Section SM5.1)
3.5. The Effects of Time
3.5.1. Data Length and Its Effect on Different Measures

Whereas linear measures such as the median or (robust) coefficient of variation can be
calculated using very few data points, most nonlinear measures require much longer data
for their estimation. In an initial test, we found that some, such as EPE, may be calculated
for as few as 10 points (RR intervals), and that PJSC, RPE and TPE (Tsallis Permutation
Entropy) can be calculated for 15 data points, with relatively stable values (CVs) over longer
segments, but it was still not clear how meaningful results would be for such short data.
On the other hand, DistEn is known to provide acceptable results for as few as 50 data
points [142].

Strictly speaking, there will be complete agreement between values of the same
measure computed for different data lengths only if the data exhibits at least ‘weak-sense’
stationarity (see [4] and the online CEPS ‘Primer’ [https://github.com/harikalakandel/
CEPSv2/tree/master/doc] (accessed on 20 January 2023) for a list of measures which
require this, and for further information). Three simple tests for non-stationarity by Etienne
Cheynet are implemented in CEPS [https://github.com/harikalakandel/CEPSv2/tree/
master/] (accessed on 20 January 2023). Here we used the reverse arrangement test for 1-,
2-, 3-, 4- and 5-min non-resampled RRi data segments from 326 recordings (all five starting

https://github.com/harikalakandel/CEPSv2/tree/master/doc
https://github.com/harikalakandel/CEPSv2/tree/master/doc
https://github.com/harikalakandel/CEPSv2/tree/master/
https://github.com/harikalakandel/CEPSv2/tree/master/
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at the same point in time). For these recordings, only 28 showed no non-stationarity for
any of the five data segments, while 70 were non-stationary for one segment, reducing to
41 being nonstationary for all five data lengths. Non-stationarity for all five segments was
lowest at Baseline, and highest for the composite RBR trial.

Caution should thus be observed when interpretating results for measures which—at
least in theory—require stationarity of data, or which have not been thoroughly tested on
short data.

Data Length and Differences in Measures between Breathing Rates

Having conducted Friedman and Conover tests to explore differences between trials
for the various data types used, we then examined how RR interval data length affected
Friedman test results when differentiating between several FD measures for the different
paced breathing rates. Using 1-, 2-, 3-, 4- and 5-min data segments of non-resampled
data for instance, we noted that differences between trials for the Katz, Mandebrot or
Sevcik FD measures were not significant (p < 0.001) even for the full 5-min recordings we
used (although FD_M and FD_S results were significant for 1-min data), whereas others,
such as the box-counting algorithm of Meerwijk and van der Linden, provided significant
results for 3- and 5-min data, but not 4-min data. Only Castiglioni and Higuchi FD, and
Maragos’ multiscale FD, showed significant results for all five data lengths, with the latter
providing the largest values for Friedman’s χ2 and Kendall’s W at 5 min, but FD_C and
FD_H providing more consistently similar values across all data lengths (median W 0.371,
IQR 0.354 to 0.720, and median W 0.632, IQR 0.599 to 0.633, respectively).

Three data types were analysed for the effects of data length: non-resampled RRi,
RRi resampled at 4 Hz, and EDA. As a comparison, the HRV measures in RR-APET were
also analysed, median values of χ2, Kendall’s W and the Conover statistic for the Baseline
to RBR differences were calculated for each measure in the three main families (FDs,
HRAs and PE-based measures). Measures were considered if they showed standardised
median values of Friedman’s χ2 and Kendall’s W > 0.8, or of the Conover statistic S for
differences between Baseline and the composite RBR trial. Numerically, these thresholds
were approximately 150, 0.480 and 12, respectively, for the non-resampled RRi data, 145,
0.466 and 10.5 for the data resampled at 4 Hz, and 20, 0.070 and 3.3 for the EDA data. The
corresponding thresholds for RR-APET were 100, 0.319 and 9.4. The EDA thresholds were
low, unlikely to be useful in practice, so were not examined further here, nor were any
measures with values lower than any one of these thresholds for one or more of the 2-,
3-, 4- or 5-min data segments. This draconian limitation reduced the number of measures
that might be serviceable for analysis of short data and for differentiation between trials
to something manageable, although excluding many measures that might otherwise have
been useful for one or the other, particularly for the RRi (4R) data. Results are shown in
Table 16.

Conducting Friedman tests and comparing medians are of course sensible strategies to
use to determine group effects. However, were all differences in a measure between trials
(e.g., Baseline to RBR) in the same direction for all study participants and all durations?
(In a preliminary examination of the data, for example, it was found that one measure,
multifractal FD (mFD_M), differentiated well between paced breathing at 7 BrPM and the
other paced breathing rates for all data lengths, but that the sign of the difference flipped
between the two shorter and three longer lengths.)

Negative and positive differences in 220 CEPS measures between Baseline and the
composite RBR trial were counted, for 1-, 2-, 3-, 4- and 5-min data, for both the noR and 4R
data, and also for 22 HRV measures output by RR-APET (excluding those for ‘ultra-low
frequency’). Differences were calculated case by case, not between group medians.

For none of these measures were there 220 positive or negative differences for all
five durations (220 = number of durations * number of participants), mostly because of
zero differences between Baseline and RBR for some participants. If the 1-min data were
excluded from the analysis, still no measure exhibited 176 (4 × 44) differences in the same
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direction. The ‘top 13′ measures for each RRi data type (i.e., with most differences of the
same sign across the 1-, 2-, 3-, 4- and 5-min data, or excluding the 1-min data) are listed in
Table 17, together with the ‘top 4′ HRV indices.

Table 16. Measures with standardised median values of χ2, Kendall’s W and the Baseline-RBR
Conover statistic S > 0.8, for two RRi data types and RR-APET. Measures with values lower than
any one of these thresholds for one or more of the 2-, 3-, 4- or 5-min data segments are not included.
Values within each cell are in order (top to bottom) χ2, W and S. Total numbers of measures analysed
for each data type are shown in parentheses.

RRi (noR) (219) RRi (4R) (224) RR-APET (25)

mFD_M
194.4
0.624

13.327
SD2down

185.6
0.595

12.828
SD2

139.7
0.448

12.319

FD_H
187.8
0.602

15.239
mFD_M

156.8
0.503

13.562
SDNN

136.7
0.439

12.132

FD_PRI
187.7
0.601

14.790
Alpha1

132.8
0.426

10.251

EPP SD1_7
176.2
0.565

14.691

NLDwL_m
172.1
0.552

14.435

NLDwP_m
171.8
0.551

14.541

EPP SD1_6
170.7
0.548

15.300

FD_C
161.8
0.519

13.508

CPEI
157.0
0.504

13.043

Table 17. ‘Top 13′ measures for each RRi data type, with most differences of the same sign across
the 1-, 2-, 3-, 4- and 5-min data, together with the ‘top 4′ HRV indices. Counts are of increases (↑) or
decreases (↓) between Baseline and RBR. Counts excluding the 1-min data are shown in parentheses.
Measures for which ICC > 0.9 are in bold type, and total numbers of measures analysed for each data
type are shown in parentheses.

RRi (noR) (220) RRi (4R) (220) RR-APET (24)
PJSC (↑) 199 (162) FD_C (↓) 191 (157) SD2 (↑) 215 (172)
RoCV (↑) 191 (154) mFD_M (↓) 191 (155) SDNN (↑) 214 (172)

EPP SD1_6 (↑) 188 (150) AE (↑) 191 (154) Alpha1 (↑) 213 (171)
ACR5 (↓) 187 (151) RCmDE7 (↓) 190 (156) LFpwr (↑) 211 (170)

EPP SD1_5 (↑) 187 (149) a Q3 (↑) 188 (153)
mPE (↓) 186 (153) FD_H (↓) 187 (152)

EPP r5 (↓) 186 (150) LLE32 (↑) 187 (150)
EPE (↓) 185 (152) LLE33 (↑) 187 (149)

ImPE (↓) 185 (152) RoCV (↑) 185 (149)
AE (↑) 185 (149) a LLE31 (↑) 183 (146)

EoD (↓) 184 (151) RCmDE6 (↓) 182 (151)
KLD (↓) 184 (151) SD2down and SDNNdown (↑) 182 (146)

MPM_E (↓) 184 (149) LLE30 (↑) 182 (145)
a. EPP SD1_5 and AE were not in the ‘top 13′ of counts excluding the 1-min data.
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A more formal reliability analysis was then conducted, using the ‘intraclass correlation
coefficients’ (ICC) method as described above, with ICC values standardised between 0
and 1. Measures for which standardised ICC were >0.9 are in bold type in Table 17. In
total, numbers of measures with ICC > 0.9 for the different data types were as follows: 26
(28.6%) for EDA, 53 (34.9%) for the non-resampled RRi data, 92 (25.2%) for the RRi data
resampled at 4 Hz, and 6 (27.3%) of the RR-APET measures. The ICC method thus appears
to be less stringent than the less formal top-slicing method. Incidentally, there were no
obvious patterns for those ‘contrarian’ participants where differences were in the opposite
direction to everyone else’s, whether in terms of questionnaire scores, age, sex or the usual
Kubios HRV measures.

Note that five of the ‘top 13′ measures for the non-resampled data in the above Table
are permutation-entropy based, while three of those for the resampled data are FDs, four
are largest Lyapunov exponents at different scales, and two are for RCmDE at different
scales. RoCV is the only measure that occurs for both noR and 4R RRi data. Highest counts
were for the RR-APET measures, though for only one of these, the arguably nonlinear
measure SD2, was the ICC > 0.9.

Agreements between Measures for Different Data Lengths

Findings using Spearman’s rho, the ICC and percentage differences between mea-
sures for the segmented and 5-min data were then compared. Some results are shown
here for the Baseline and RBR Slots. Only the 38 measures included in Tables 16 and 17
were considered—21 for the RRi noR data, 13 for the RRi 4R data, and 4 HRV measures
from RR-APET.

Figure 10 shows how correlations increase, as expected, with segment duration, for all
three sets of measures. Note that the patterns of correlation are different for the three sets,
with lowest values of rho during Self-paced breathing for the RRi (4R) measures, but when
breathing at 5 BrPM for the RRi (noR) and RR-APET measures.
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Figure 10. Left: Correlations (Spearman’s rho) between measures for 1-min, 2-min, 3-min or 4-min
data with the same measures for 5-min data: (a) RRi noR data; (b) RRi (4R) data; (c) RRi (10R) data.
Median and IQR of the ICCs for each of the three sets of measures are shown below each Figure part.

Percentage differences between median values of the measures for the segmented and
5-min data were also revealing (Figure 11).
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Figure 11. Percentage differences between median values of the measures for 1-min, 2-min, 3-min or
4-min data and the same measures for 5-min data. Top row (a,b): Two FD measures, for RRi (noR)
and RRi (4R) data; Middle row (c,d): Average entropy (AE) and FD_C, for RRi (noR) and RRi (4R)
data; Bottom row (e,f): Permutation-based CPEI and FD_PRI for non-resampled data, with RR-APET
measures LF power and SDNN. Note that y-axes are all at different scales.

As shown in the top row of Figure 11, differences between AE and FD_H for short-
duration and 5-min data were greater for the RRi (4R data than for the RRi (noR) data. In
the middle row, it appears that patterns of percentage difference were quite different at
Baseline and during breathing at 5 BrPM. Insets show coefficients of variation (CVs) for
the different measures, and in the bottom row, FD_PRI and CPEI showed less variation
at Baseline than both the RR-APET measures, although this was no longer the case for
FD_PRI during the composite RBR trial.

The three methods used here (ICCs, Spearman correlations and percentage differences
between measures from the 5-min and shorter data) provide complementary information,
and all appear to be useful. As might be expected, median CVs for all 38 measures and
all 8 trials taken together (i.e., including the RBR trial) were strongly (and negatively)
correlated with the number of times values of the measures for the 1-, 2-, 3- and 4-min data
were within ± 5% of their values for the 5-min data (Pearson’s R = 0.952). In contrast, those
counts were not significantly correlated with the ICCs.
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Measures with short-data values consistently within± 5% of their values for the 5-min
data, for 31 or 32 of all the 32 duration * trial combinations are listed in Table 18, together
with the five measures with short-data values least often within ± 5% of their values for
the 5-min data.

Table 18. Measures with short-data values consistently within ± 5% of their values for the 5-min
data, with those measures least often within ± 5% of their values for the 5-min data.

Top 12 Measures ICC Median CV Count
FD_H (NoR) 0.947 0.003 32

NLDwL_m (NoR) 0.944 0.001 32
NLDwP_m (NoR) 0.944 0.001 32

Q3 (4R) 0.910 0.008 32
CPEI (NoR) 0.897 0.008 32

mFD_M (4R) 0.894 0.016 32
mFD_M (NoR) 0.889 0.003 32

LLE33 (4R) 0.767 0.011 32
LLE32 (4R) 0.747 0.011 32

Alpha1 0.823 0.018 31
LLE30 (4R) 0.737 0.012 31
LLE31 (4R) 0.730 0.014 31

Bottom five measures ICC Median CV Count
PJSC (NoR) 0.786 0.038 15
EoD (NoR) 0.849 0.069 11
KLD (NoR) 0.849 0.069 11

ACR5 (NoR) 0.864 0.124 2
EPP R5 (NoR) 0.862 0.138 2

Five of the top 12 measures are FDs and 1 is PE-based; none are HRAs.
Figure 12 summarises results for the measures considered so far, based on standardised

values of Conover S and ICCs. Points on the diagonal lines represent measures with
equivalent performance in both tests (Conover and ICC); those above the line correspond
to measures with higher ICC, and those to the right of the line to measures with higher
S. Points within the rectangular boxes at the top right of each scatter plot show measures
which performed best in both analyses.

Note that S and ICC were >0.9 for eight RRi (noR) measures, including three FDs, with
S and ICC > 0.8 for a further 10 measures. Highest S (>0.999) was for FD_H, and highest
ICC (>0.99) for EPP SD1_3. In contrast, no RR-APET HRV measures resulted in S and ICC
> 0.9, although this was the case for one of the RRi (4R) measures (AE), and for three based
on EDA data (RMSSD, and EPP SD1 at lags 1 and 2). However, S and ICC were >0.8 for
SD2 (RR-APET), and for a further five RRi (4R) measures (FD_H, mFD_M, EPP SD2_5,
SD2down and SDNNdown), with wavelet entropy providing the best ICC (0.991) of the RRi
(4R) measures, although a low S (0.762), and FD_PRI providing a high S (0.966) but a low
ICC (0.599). For the EDA data, ICC was >0.999 for ‘Jitta’ and 0.966 for FD_K, although S
was not > 0.8 for either of these measures.

3.5.2. Do Nonlinear Measures Indicate RBR More Accurately than Standard HRV
Measures, Especially for Short Data?

Changes with data length at Baseline and during the composite RBR trial are shown for
selected nonlinear (FD, PE-based and OE) measures and for two linear RR-APET measures
above, in Figure 11. Here, using the effect sizes (Z/

√
n) from Mann-Whitney tests with

significant results (p < 0.001) for four or more of the 1- to 5-min durations, we focus on
those FD, PE-based and HRA measures which best differentiated between RBR and other
Paced breathing rates. Results were different for the RRi (noR) and RRi (4R) data.
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Figure 12. Scatter plots of standardised values of ICC and Conover S, for measures based on: (a) RRi
(noR) measures; (b) RRi (4R) measures; (c) EDA measures, and (d) HRV measures from RR-APET.
In parts (a–c), data points are in red for FDs, in blue for HRAs (in blue) and in green for PE-based
measures. In part (d), points in red are for time-domain measures, points in blue for frequency-
domain measures, in green for nonlinear complexity measures, and in yellow for the nonlinear
RQA measures.

For the RRi (noR) data, only FD_C, FD_H, NLDwL_m and NLDwP_m out of eight
FD measures showed effect size > 0.3 for any durations, although effect size for seven of
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these was consistently >0.25 for at least four of the durations. mFD_M, the remaining FD
measure, was >0.2 for all durations. Of seven PE-based measures, all except RPE achieved
an effect size > 0.25 for four durations, with effect size for EPE and ImPE being > 0.3 for the
4- and 5-min data. No effect sizes for any HRA measures even approached 0.25, although
both PI and C1a achieved effect sizes > 0.2.

For the RRi (4R) data, only FD_C and FD_PRI showed effect size > 0.3 for any durations,
with only mFD_M of the other FD measures having an effect size > 0.25 for three durations.
Of the seven PE-based measures, only CPEI achieved an effect size > 0.25 and mPE_M an
effect size > 0.2, both for four durations; for no measure was effect size > 0.3, and for all
PE-based measures, effect size was consistently lower for the RRi (4R) than for the RRi
(noR) data. Of the HRA measures, both PI and C1a achieved effect sizes > 0.2, as for the
RRi (noR) data.

Of the RR-APET HRV measures, only the nonlinear measure DFA Alpha2 achieved
an effect size > 0.3, while that for Alpha1 did not reach 0.25. The most stable measures
over the five durations were SDNN and LF peak frequency, but effect sizes for these did
not even reach 0.15. Effect sizes for the nonlinear RQA measures DET and Lmax were
sometimes >0.25, but were also very variable over the different durations, while for LF
power the effect size only exceeded 0.25 for the 5-min data.

Some of these findings are illustrated in Figure 13, together with maximum and
median effect sizes, interquartile ranges and CVs for the best-performing measures for the
different data types. Clearly, whether data is resampled or not is an important issue in
this context.
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Figure 13. Changes in Mann-Whitney effect sizes (RBR vs. ‘rest’) with data length (1- to 5-min):
(a,b) fractal dimensions; (c,d) PE-based measures; (e,f) some HRA indices; (g) RR-APET HRV mea-
sures (the Welch periodogram method was used for the frequency domain measures). Note that
y-axes are not all to the same scale.

It can be seen that RRi (noR) effect size (ES) is rather constant for FD_H and FD_P
from 2–5 min. but that for FD_C it increases with data length and is around 0.3 (0.296 or
greater) from 3 min and upwards. FD_PRI varies greatly with duration for both the RRi
(noR) and (4R) data.

Of the RR-APET measures, only DFA Alpha2 attains an ES of 0.3. ES for LF peak
frequency varies less with data length than that for LF power, but lower CVs were obtained
for the three FDs, especially FD-H.

In summary (and taking Table 18 into account), it would appear that FD_H, the
NLDwL_m and NLDwP_m measures and FD_PRI offer good stability over durations of
3 min or longer as well as reasonable effect sizes for differentiating between RBR and
the other breathing rates (including Baseline and Self-paced) when using RRi (noR) data.
EPE and ImPE may also be useful for the non-resampled data. For data resampled at
4 Hz, FD_PRI and FD_C may be useful, with slightly greater effect size but marginally less
stability than for the RRi (noR) data; the PE-based and HRA measures are less useful.

4. Discussion

Challenges and difficulties.
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4.1. General Points

CEPS is a continuously evolving project. One of the primary objectives here was to
compare findings when using a variety of CEPS fractal dimensions, Heart Rate Asymmetry
measures, and others based on permutation entropy (see list of objectives). We investigated
whether there were marked differences between the effects of paced, self-paced and non-
paced breathing on a variety of physiological data (as in our first published CEPS paper), for
example, which measures are most/least responsive to changes in breathing rate. We also
wanted to compare our results using CEPS with those obtained using DynamicalSystems.jl,
especially for FDs.

It has been particularly challenging when working with multiple datasets and mea-
sures to know how best to steer a clear course across the resulting ocean of results. There is
always a risk of becoming either too restrictive (in essence barely extending or even merely
repeating what has been done before) in order to maintain scientific credibility, or, at the
other extreme, trying to include too much and losing one’s way. As authors, we all had
different objectives for this paper, but hoped that by reporting only our main findings in
the paper itself, and relegating subsidiary and subgroup analyses to the Supplementary
Material(s), we have managed to keep the main message clear while also presenting a
number of other potentially useful or important findings without too much self-indulgence
or wasting our limited human and machine time resources.

After some initial exploration, we focused our attention on three families of measures—
fractal dimensions (FDs), heart rate asymmetry measures (HRAs) and those based on
permutation entropy (PE). Counts were made of how many times the abbreviation for each
CEPS measure appears in this paper (usually with significant or otherwise meaningful
findings). Those measures that appear most often in the paper are indeed, and inevitably,
from those families—FDs 71, HRAs 70, PE-based 40 (with all OC and RQA measures
occurring 14 times each, and OE measures only 11 times), Individual measures that ap-
peared more than 10 times were mostly FDs—FD_H (40 occurrences), FD_PRI (37), mFD_M,
and the various NLD subtypes (both 24) and FD_C (18). Of the HRA or Poincaré-based
measures, EPP at various lags occurs 27 times, and of the OC family members, LLE at
various lags appears 20 times. From the PE-based family, CPEI is present 14 times, and
mPM_E 12 times. Only one member of the OE family occurs more than 10 times—MmSE, a
variant of SampEn suited to short data. Other conditional entropies (e.g., ApEn, FE and
SampEn itself) generally require longer data and occur only infrequently. Correlations
with HRV measures could not be easily interpreted in terms of autonomic activation. A
subsidiary challenge has been in managing both the large amounts of data collected and
also the codebase itself. We have certainly experienced problems with code that does not
do what it is supposed to, seems to break over time and is ‘buggy’ [143]. To help avoid such
problems, users of CEPS are encouraged to report the problems they encounter. Another
challenge: after working in relative academic isolation for several months during lockdown,
we had to deal with rigorous questions from George Datseris, our new co-author, on the
appropriateness of applying FD measures willy-nilly to non-equally sampled data. As
a result, we had to rethink our whole approach. This has made, we hope, for a stronger
paper, but also made for a lot of unanticipated work. For DynamicalSystems.jl measures, in
particular FD_H, equal resampling is generally considered necessary. On the other hand,
we discovered that none of the six DynamicalSystems.jl (DS) measures tested showed
values of the Conover statistic ≥ 0.8, and indeed, overall CEPS resulted in larger values of
S for Conover tests than did DynamicalSystems.jl, for the data and comparisons we used.
With CEPS, we found that pragmatically useful results can be obtained even for data that
are not equally sampled, although results for equally and non-equally sampled data will be
different. In particular, resampling was found to make a considerable difference to numbers
of significant correlations between measures, and thus it is important to consider carefully
whether or not to resample data prior to using CEPS. Another issue is the non-stationarity
of data. In theory, measures such as PE and wavent are suitable for use with non-stationary
data, whereas many others are not. As an example, not all researchers agree that FD_H is
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appropriate to this situation [144]. Here, however, we found that FD_H, as well as other
FDs and PE-based measures, provided useful results despite data non-stationarity.

As a small research group with other professional responsibilities and limited expertise
in some areas, developing CEPS in addition to our other commitments has at times been
very demanding. A major challenge, and one that still delays implementation in CEPS of
several measures, has been the translation of code into MATLAB from other programming
languages, particularly when language-specific libraries are involved (sometimes known
as ‘dependency hell’). However, the ideal mix of skills within the research group meant
that these restrictions, and others, were eventually overcome.

4.2. Our Basic Approach

There is a problem with our approach in that in a sense it involves a circular argument:
If RBR is defined with reference to standard HRV measures such as PLFP, how can any
other measures, whether nonlinear or not, be considered as providing better differentiation
of PLFP (or LFBP, for that matter) from Baseline or Self-paced breathing? We believe that
the answer to that lies in the statistical methods used: If Friedman tests (χ2, with Kendall’s
W as a measure of effect size) and Conover tests show more significant differences for the
nonlinear than the standard HRV measures, and if these differences also hold for shortened
data, then further use of carefully selected nonlinear measures from those available in
CEPS can be justified. However, caution should still be exercised when interpreting results
from the Conover tests for non-resampled data, in that variance may be greater than when
data have not been equally resampled. Pragmatically, we have found FD_H to be a useful
measure for differentiating the effects of breathing rate on non-resampled RRi data. On the
other hand, FD_H, as well as several other FD measures, did not result in useful values
of Friedman’s χ2 for either 5-min or shorter RRi (4R) data, whereas they did for the non-
resampled RRi data, and the clear differences for the two data types in Figure 13 reinforce
the importance of careful selection of the type of data to use and careful interpretation of
results. For RRi data, for example, measures which appeared less affected by respiration
rate included some of the RQA, Jitter (frequency variation from cycle to cycle [101]), LLE,
EPP r measures and LZC. For the other data types, different groupings of measures were
unresponsive to respiration rate, but there was no obvious pattern to these.

4.3. The Anxieties of Data Collection and Collaboration

Data were gathered in 2021–22, during the COVID-19 pandemic, at a time of great
collective anxiety including maintaining strict adherence to Governmental and institutional
COVID-19 protocols. This may have impacted the state of mind of both participants and
researchers. It certainly led to challenges in scheduling sessions and in requirements for
conducting them safely. We also found how difficult it can be to work together in sporadic
online collaboration and meetings. Our solution was to have more regular meetings
using a centralised approach to meeting management, data recording, data sharing and
a cooperative approach to data analysis and writing. Our ability to engage with research
participants during the pandemic relied on persuading the ethics review board to accept
our COVID-19 mitigation procedures based on risk vs benefit of the experiments which
included addressing the possibility of increased risks if the pandemic was to get any worse.

4.4. Including EDA Results

EDA in the first 23 cases (161 trials) examined tended to decrease overall during
each five-minute recording and for the whole cohort, CEPS measures of Robust Slope
(RoSlope) were predominantly negative as would be expected when sitting quietly. EDA
data from participants demonstrating frequent increases over time, or with greater EDA
reactivity (to unexpected noises, for instance), could be explored for associations with age,
sex or questionnaire characteristics, as well as with HRV, PRV and respiration measures
and their changes. EDA is conventionally interpreted as an indication of psychological or
physiological arousal and is known to reflect sympathetic activation. It would be of interest
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to investigate whether smoother descents indicate greater ability to be mindful or relax,
and whether more erratic descents suggest greater stress.

Correlation analysis indicated that agreement for the RRi and EDA measures was less
between Self-paced and RBR breathing than between the other paired trials analysed, but
that agreement between some of the raw Respiration and RSP interval measures was indeed
greater for the self-paced/RBR pair than for the other trial pairs. However, counts of pairs
with numbers of measures having rho > 0.7 did not support the hypothesis that self-paced
breathing predicts RBR, for the EDA data particularly.

4.5. An Explanation of HRA Results

The correlations of HRA with HRV measures for the RRi data could not be easily
interpreted in terms of parasympathetic or sympathetic nervous activation. Reluctantly,
we were forced to conclude, with [31], that Procrustean binary thinking cannot possibly
do justice to the complexity of any associations that do exist between the divisions of the
autonomic nervous system activation and heart rate accelerations or decelerations. It is,
however, always tempting to associate particular measures with autonomic nervous system
activation, whether these are HRAs or FDs. For correlations between the PNS measure
and the six HRA indices, rho was consistently >0.6 in all trials, for both the ‘up’ and
‘down’ version of these indices. Correlations were weaker for the classical or normalised
HRA indices and, however tantalising these findings, there was thus no obvious pattern
that would indicate an association between autonomic NS activation and any particular
HRA measure.

4.6. Limitations

We did not explore using very short data (<1-min), as we only became aware of the 2015
paper by Munoz et al. [75] on the validity of (ultra-)short recordings for HRV measurements
when analysis of our own data was already well under way. Given that so many variables
are involved, it might have been preferable to use a multivariate version of the Friedman
test, such as the Friedman-Rafsky test [145]. A more formal regression analysis could
have been used to assess whether and how well measures at Baseline or during Self-paced
breathing predict RBR. Further limitations include the lack of easily useable frequency
domain measures, the analysis and classifications sections of CEPS are not yet functioning,
and the software is only useable with 1D data. In this respect EntropyHub has an advantage
over CEPS at least for the latter limitation. CEPS is restricted in its repertoire of imported
files, currently only accepting .txt, .mat, .csv and .xlsx. Although this appears to be a
limitation, most data can be converted into one of the compatible import formats.

4.7. Advantages

Occasional feedback from users suggests that CEPS is reasonable easy to use. Using
MATLAB App Designer, two new tabs have been introduced, for pre-processing and data
modification. The first of these includes filtering, detrending and outlier removal options,
and the second includes Normalisation (three methods), Increase (Interpolation), Reduce
(i.e., coarse-graining), Add Noise (both noise and data-plus-noise files can be saved), Cut
files (with or without overlap, etc.), Binarisation (three methods) and equal resampling
(various methods available). The most significant advantage of CEPS is that it includes
innovative complexity and an entropy measure mostly re-engineered from published
literature or from personal communication with the authors. Experimental data shared
between many of the external contributors ensured quality control over the analysis and
inclusion of new measures.

In CEPS 2, as in CEPS 1, one useful feature is the ability to test the effect of parameter
variation on the different measures and to visualise how multi-scaling may affect them.
Another is an easy comparison of changes in different CEPS measures for the same or
parallel physiological data streams. CEPS can thus be used to investigate the effects of
paced breathing on ECG, PPG and RSP variability.
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5. Conclusions and Future Directions
5.1. Conclusions

We have developed CEPS software as a physiological data visualiser enabling integra-
tion of state-of-the-art techniques. However, we are aware that CEPS is not unique, and
that some biomedical scientists, in particular physiologists and clinicians, may find other
packages more suited to their needs. We have designed the interface for clinical research
with a structure designed for integrating new tools where users can switch seamlessly
between tasks. For this project the aim was to strengthen collaboration between clinicians
and the biomedical community, as demonstrated here by using CEPS 2 to analyse various
physiological responses to paced breathing.

We observed that, while equal resampling is theoretically important for FD estimation,
FDs provided pragmatically useful results even for data that was non-stationary and
not equally sampled (although results for equally and non-equally sampled data were
different). Given the number of times LLE and MmSE appear in this paper—despite
not being members of the three main ’families’ of measures on which we focused—more
attention should be paid to them in future research on resonance breathing.

CEPS 2 has a broad appeal as it is a cross-platform (Windows, Mac or Linux) MATLAB
GUI which has proven to be more intuitive than command-line or menu-driven interfaces
that rely on programming skills, as well as having a plethora of new tools. The program
allows direct manipulation of graphical icons such as buttons, scroll bars, windows, tabs,
menus, and cursors and allows the exchange of data between different software applications
or data sets. Finding the correct measure is essential, however, and complexity and
entropy changes often show more significant changes than conventional linear measures,
particularly during paced compared to spontaneous breathing. As a conclusion, in its
present form CEPS 2 is ideally placed to analyse respiratory-related data.

5.2. Future Directions

Measures newly implemented in CEPS 2, or in course of implementation, are asterisked
in Table 4. Those measures planned for future inclusion are listed in parentheses (for
measures already included in CEPS, see [4]). Please note that, although every effort has
been made to implement these measures correctly in CEPS, time has not always allowed us
to validate the results obtained when using CEPS with those researchers who provided us
with code.

Future developments of CEPS will include a ‘plug-in’ facility to allow other researchers
to add measures not already included in the list available, and Classification will be added
as a further item in the Application Mode drop-down list, providing alternative methods of
classifying results from using CEPS or from other sources. These are still planned. Ideally,
an automated method of parameter tuning could be developed for use in different contexts,
in order to speed up the process. This is currently beyond the scope of CEPS but is a
future possibility.

Another avenue for future exploration would be to reduce data length even further
than we did and average the values of appropriately selected CEPS measures over several
ultra-short data segments—maybe even 10 or 20 s [75], rather than the 1-min minimum
used in this study.

A further major extension to CEPS, as suggested by one of our reviewers, would be to
include bi- or multivariate measures of complexity in the package, in order to permit fuller
analysis of multichannel physiological recordings. Realistically, this may be beyond what
our small research team can achieve, but we are always open to collaboration with others
who have skills that may complement our own.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e25020301/s1 [mdpi to complete]: SM1. Parameter Tuning, SM2. Changes in CEPS measures
over time, SM3. Effects of age, sex, perceived stress and other trait and state measures on CEPS and
Kubios HRV measures, SM4. Respiration and Asymmetry, SM5. Some findings on correlation. CEPS
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itself, together with A primer on Complexity and Entropy and a User Manual, are available online at
https://github.com/harikalakandel/CEPSv2/tree/master (accessed on 20 January 2023).
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Abbreviations

4R, 10R Data resampled at 4 Hz or 10 Hz
AAPE Amplitude-aware Permutation Entropy
ACR5 Autocorrelation at lag 5
AE Average entropy
AI Area Index
Alpha1 See DFA Alpha1
Alpha2 See DFA Alpha2
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ApEn Approximate entropy
AR Autoregressive
ASI Asymmetric Spread Index
AttnEn Attention entropy
AvgApEnP Average Approximate entropy based on profiling
AvgSampEnP Average Sample entropy based on profiling
B_ApEn Bucket-assisted Approximate entropy
B_SampEn Bucket-assisted Sample entropy
BBi Breath-to-Breath interval
BE Bubble Entropy
BrPM Breaths Per Minute
C0 C0 complexity, a representation of sequence randomness
C1a Relative contribution of accelerations to short-term variance in HRA
C1d Relative contribution of decelerations to short-term variance in HRA
C2a Relative contribution of accelerations to long-term variance in HRA
C2d Relative contribution of decelerations to long-term variance in HRA
CAFE Centred and averaged fuzzy entropy
CCM Complex Correlation Measure
CEPS Complexity and Entropy in Physiological Signals
χ2 “Chi-square” statistic from the non-parametric Friedman test
CI Complexity index
CID Complexity-invariant distance
CmSE Composite multiscale entropy
COPD Chronic Obstructive Pulmonary Disease
CoSEn Coefficient of Sample entropy
CoSiEn Cosine Similarity Entropy
CPEI Composite permutation entropy index
CV Coefficient of Variation
CVs Coefficients of Variation
D2 Correlation Dimension
DE Diffusion entropy
Dedup Deduplicated
∆ and ∆2 Fractal dimension estimators in DynamicalSystems.jl
DFA Detrended Fluctuation Analysis
DFA Alpha 1 Detrended Fluctuation Analysis short-term scaling exponent
DFA Alpha 2 Detrended Fluctuation Analysis long-term scaling exponent
DiffEn Differential entropy
DistEn Distribution Entropy
DS DynamicalSystems.jl
Dβ Spectral dimension
Dσ Variance dimension
ECG Electrocardiogram
ECG IBI ECG Interbeat interval
EDA Electrodermal activity
EE Energy entropy
EI Ehlers’ Index
EoD Entropy of difference
EPE Edge Permutation Entropy
EPP Extended Poincaré Plot
EPP r1 Pearson’s r at lag 1 in the Extended Poincaré Plot
EPP SD1_2 SD1 at lag 2 in the Extended Poincaré Plot
ES Effect size
ESCHA Emergence, Self-organization, Complexity, Homeostasis and Autopoiesis

(here, only Complexity has been used)
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ESCHA_c ESCHA for continuous data
ESCHA_d ESCHA for discrete data
FD Fractal Dimension
FD_Amp Amplitude fractal dimension
FD_Box_Moisy Box-counting fractal dimension, using Moisy’s implementation
FD_Box_MvdL Box-counting fractal dimension, according to Meerwijk and van der Linden
FD_C Castiglioni fractal dimension
FD_Dist Distance fractal dimension
FD_H Higuchi fractal dimension (for which we used ‘HFD’ in our earlier paper [4])
FD_K Katz fractal dimension
FD_LRI Fractal dimension based on linear regression intersection
FD_M Mandelbrot fractal dimension
FD_P Petrosian fractal dimension
FD_PRI Fractal dimension based on polynomial regression intersection
FD_S Sevcik fractal dimension
FD_Sign Sign fractal dimension
FFT Fast Fourier transform
GI Guzik’s index
GPP Generalised Poincaré Plot
GridEn Grid Entropy (or Gridded Distribution entropy)
GUI Graphical user interface
HF High frequency
HFpwr (Lomb-Scargle) High frequency power, based on the Lomb-

Scargle periodogram
HFpwr (Welch) High frequency power, based on the Welch periodogram
HR Heart rate
HRA Heart Rate Asymmetry
HRMaxMin Peak-to-trough difference in heart rate
HRV Heart Rate Variability
Hz Hertz (unit of frequency)
ICC Intraclass Correlation Coefficient
ImPE Improved multiscale Permutation Entropy
INbreath Inbreath data
IncrEn Increment entropy
IQR interquartile range
Jitter_Jitt Local jitter, or average absolute difference in length between two

consecutive periods, divided by average period
Jitter_Jitta Absolute jitter, or average absolute difference in length between two

consecutive periods
Jitter_ppq5 Average absolute difference between a period and the average of it and

the two previous and two subsequent periods, divided by the average period
Jitter-RAP Relative Absolute Perturbation, or average absolute difference between

a period and the average of it and its two neighbours, divided by the
average period

KLD Kullbach-Leibler Divergence
kmax Maximum interval time used in calculation of FD_H
L_ApEn Lightweight Approximate entropy
L_SampEn Lightweight Sample entropy
LF Low frequency
LFBP Low frequency band power
LFpwr Low frequency power
LLE32 Largest Lyapunov exponent, iteration 32
LS Lomb-Scargle
LZC Lempel-Ziv complexity
LZPC Lempel Ziv Permutation Complexity
m Order, or embedding dimension
MAAS Mindful Attention Awareness Scale
MAIA Multidimensional Assessment of Interoceptive Awareness
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MESA Maximum Entropy Spectral Analysis
mFD_M multiscale fractal dimension, according to Maragos
mFmDFA multifractal multiscale detrended fluctuation analysis
mLZC7 multiscale Lempel-Ziv complexity, at Scale 7
MmSE Modified multiscale Sample Entropy, at Scale indicated by number

following abbreviation
mPE Multiscale Permutation entropy, at Scale indicated by number

following abbreviation
mPE1 multiscale Permutation entropy 1
mPhEn multiscale Phase entropy
mPM_E multiscale Permutation Min-entropy
n or N Number
n.p. Not published
NLD Normalised Length Density (fractal dimension according to Kalauzi)
NLDiL_m NLD based on normalisation of amplitudes for whole signal (mean,

using Log model)
NLDiL_sd NLD based on normalisation of amplitudes for whole signal (standard

deviation, using Log model)
NLDiP_m NLD fractal dimension based on normalisation of amplitudes for whole

signal (mean, using Power model)
NLDiP_sd NLD based on normalisation of amplitudes for whole signal (standard

deviation, using Power model)
NLDwL_m NLD based on normalisation of moving window amplitudes (mean,

using Log model)
NLDwL_sd NLD based on normalisation of moving window amplitudes (standard

deviation, using Log model)
NLDwP_m NLD based on normalisation of moving window amplitudes (mean,

using Power model)
NLDwP_sd NLD based on normalisation of moving window amplitudes (standard

deviation, using Power model)
noR Non-resampled
nu Normalised units
OC Family of ‘Other Complexity’ measures
OE Family of ‘Other Entropy’ measures
ORDO Open Research Data Online (Open University Repository)
OU Open University
OUTbreath Outbreath data
PCR Polymerase chain reaction
PE Family of measures based on ‘Permutation entropy’
PI Porta’s index
PJSC Permutation Jensen-Shannon complexity
PLFP Peak low frequency power
PLZC Permutation Lempel Ziv Complexity
pNN50 percentage of absolute differences in successive ECG NN values > 50 ms
PNS Parasympathetic nervous system index, from Kubios HRV
PP Peak-to-peak
PPG Photoplethysmography
PSS Perceived Stress Scale
PTSD post-traumatic stress disorder
QR Quick response
QSE Quadratic Sample entropy
r1 and r2 See EPP r1 and EPP r2
RBA Resonant breathing assessment
RBR Resonance breathing rate
RCmDE3 Refined Composite multiscale Dispersion Entropy at lag 3
RE Rényi entropy
RespR median Outbreath-to-Inbreath ratio
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rest Breathing trials other than RBR
RMSSD Root mean square of successive differences between normal heartbeats
RoCV Robust Coefficient of Variation
RoSlope Robust Slope
RPDE Recurrence period density entropy
RPE Rényi Permutation Entropy
RQA Family of measures based on recurrence quantification analysis
RQA DET Recurrence Quantification Analysis: Determinism
RQA Lmax Recurrence Quantification Analysis: Max diagonal line length
RQA Lmean Recurrence Quantification Analysis: Mean diagonal line length
RQA RTmax Recurrence Quantification Analysis: Max recurrence time
RQA Vmax Recurrence Quantification Analysis: Max vertical line length
RQA Vmean Recurrence Quantification Analysis: Mean vertical line length
RR-APET Python-based Heart rate variability analysis software
RRi ECG RR interval
RSA Respiratory sinus arrhythmia
RSP Respiration
SampEn Sample entropy
SD Standard Deviation
SD1 Standard Deviation of Poincaré Plot scattergram (minor axis)
SD1_2 See EPP SD1_2
SD1down SD1 for the number of points below the Poincaré Plot line of identity
SD1up SD1 for the number of points above the Poincaré Plot line of identity
SD2 Standard Deviation of Poincaré Plot scattergram (major axis)
SD2down SD2 for the number of points below the Poincaré Plot line of identity
SD2up SD2 for the number of points above the Poincaré Plot line of identity
SDNN Standard deviation of the interbeat intervals of normal sinus beats
SDNNdown Deceleration-related part of HRV measure SDNN (Standard Deviation

of interbeat interval of normal sinus beats)
SDNNup Acceleration-related part of HRV measure SDNN (Standard Deviation

of interbeat interval of normal sinus beats)
Shimmer_apq3 Average absolute difference between amplitude of a period and the

mean amplitudes of its two neighbours, divided by the average amplitude
Shimmer_apq5 Average absolute difference between amplitude of a period and the

mean amplitudes of it and its four nearest neighbours, divided by the
average amplitude

Shimmer_ShdB Average absolute difference of base 10 logarithm of the amplitude
difference between two consecutive periods

Shimmer_Shim Average absolute difference between amplitudes of two consecutive
periods, divided by the average amplitude

SI Slope index
SlopeEn Slope entropy
SNS Sympathetic nervous system index, from Kubios HRV
SpEn Spectral entropy
SPSS Statistical Package for Social Science
SQA Symmetry Quantification Analysis
SymDyn Symbolic Dynamics
Tangle Temporal complexity metric
TE Tsallis entropy
T_E Tone_entropy (either T_E Tone or T_E Entropy)
Totpwr Total power
TPE Tsallis Permutation Entropy
UCFB University Campus of Football Business
VM Volatility Method
vmHRV Vagally mediated HRV
vmHRVBF Vagally-mediated heart rate variability biofeedback
W Kendall’s coefficient of concordance
wavent (or WE) Wavelet entropy
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