
Citation: Uyulan, Ç.; Mayor, D.;

Steffert, T.; Watson, T.; Banks, D.

Classification of the Central Effects of

Transcutaneous Electroacupuncture

Stimulation (TEAS) at Different

Frequencies: A Deep Learning

Approach Using Wavelet Packet

Decomposition with an Entropy

Estimator. Appl. Sci. 2023, 13, 2703.

https://doi.org/10.3390/app13042703

Academic Editors: Melvin

M. Vopson and Jaewoo Joo

Received: 29 December 2022

Revised: 9 February 2023

Accepted: 15 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Classification of the Central Effects of Transcutaneous
Electroacupuncture Stimulation (TEAS) at Different
Frequencies: A Deep Learning Approach Using Wavelet Packet
Decomposition with an Entropy Estimator
Çağlar Uyulan 1,* , David Mayor 2,* , Tony Steffert 3,4, Tim Watson 2 and Duncan Banks 4,5

1 Department of Mechanical Engineering, İzmir Kâtip Çelebi Üniversitesi, İzmir 35620, Turkey
2 School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK
3 MindSpire, Napier House, 14‑16 Mount Ephraim Rd., Tunbridge Wells TN1 1EE, UK
4 School of Life, Health and Chemical Sciences, Walton Hall, The Open University,

Milton Keynes MK7 6AA, UK
5 Department of Physiology, Busitema University, Mbale P.O. Box 1966, Uganda
* Correspondence: caglar.uyulan@ikcu.edu.tr (Ç.U.); davidmayor@welwynacupuncture.co.uk (D.M.)

Abstract: The field of signal processing using machine and deep learning algorithms has undergone
significant growth in the last few years, with a wide scope of practical applications for electroen‑
cephalography (EEG). Transcutaneous electroacupuncture stimulation (TEAS) is a well‑established
variant of the traditional method of acupuncture that is also receiving increasing research attention.
This paper presents the results of using deep learning algorithms on EEG data to investigate the
effects on the brain of different frequencies of TEAS when applied to the hands in 66 participants,
before, during and immediately after 20 min of stimulation. Wavelet packet decomposition (WPD)
and a hybrid Convolutional Neural Network Long Short‑Term Memory (CNN‑LSTM) model were
used to examine the central effects of this peripheral stimulation. The classification results were
analysed using confusion matrices, with kappa as a metric. Contrary to expectation, the greatest dif‑
ferences in EEG from baseline occurred during TEAS at 80 pulses per second (pps) or in the ‘sham’
(160 pps, zero amplitude), while the smallest differences occurred during 2.5 or 10 pps stimulation
(mean kappa 0.414). The mean and CV for kappa were considerably higher for the CNN‑LSTM than
for the Multilayer Perceptron Neural Network (MLP‑NN) model. As far as we are aware, from the
published literature, no prior artificial intelligence (AI) research appears to have been conducted into
the effects on EEG of different frequencies of electroacupuncture‑type stimulation (whether EA or
TEAS). This ground‑breaking study thus offers a significant contribution to the literature. However,
as with all (unsupervised) DL methods, a particular challenge is that the results are not easy to inter‑
pret, due to the complexity of the algorithms and the lack of a clear understanding of the underlying
mechanisms. There is therefore scope for further research that explores the effects of the frequency
of TEAS on EEG using AI methods, with the most obvious place to start being a hybrid CNN‑LSTM
model. This would allow for better extraction of information to understand the central effects of
peripheral stimulation.

Keywords: transcutaneous electroacupuncture; sham stimulation; EEG; wavelet packet decomposition;
machine learning; deep learning; CNN‑LSTM; confusion matrix; AI

1. Introduction
‘Signals due to rhythmic stimulation... appear to reach parts of the central nervous

systemwhich are inaccessible to impulses set up by non‑rhythmic stimuli, however intense’
(William Grey Walter) [1].

Transcutaneous electroacupuncture stimulation (TEAS), a non‑invasive variant of the
ancientmethod of acupuncture that has been used since the 1990s. It is increasingly used in
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clinical practice, most commonly for pain management and in a range of musculoskeletal
presentations, predominantly in China [2]. TEAS has also been shown, for example, to
be effective in the treatment of stroke [3], post‑operative nausea and vomiting [4], and for
improving symptoms of insomnia and anxiety in opioid use disorder [5].

In contrast to classical acupuncture, TEAS does not involve any puncture of the skin
or the use of any needles. It is therefore potentially advantageous for any patient who has
a fear of needles (so‑called needle phobia) or for whom skin puncture might be considered
an unacceptable clinical risk. Ulett et al. (1998) [6] identified that the effects of classic
electroacupuncture (via needles) are stronger andmore profound than those achievedwith
manual acupuncture (employing a needle butwith no electrical stimulation). Furthermore,
electroacupuncture with surface electrodes was demonstrated to be as effective as needle‑
based electroacupuncture.

In functionalmagnetic resonance imaging (fMRI) studies, electroacupuncture has been
shown to generate more widespread cerebral and sub‑cortical changes than manual
acupuncture [7,8], and thus, the use of TEAS may have real physiological advantages over
classical manual acupuncture.

The safety concerns associatedwith acupuncture [9], although largely theoretical, can
be ameliorated through the use of a surface electrode stimulating system (i.e., TEAS).

The potential for home‑based, patient‑delivered acupuncture may have significant
advantages (reduced cost, and a lower clinical burden for both the patient and the clinician).
TEAS makes a home‑based delivery system a realistic proposition [10].

Based on a series of several small pilot studies conducted between 2011 and 2015,
in 2016–2017, a larger study was conducted (N = 66) with the same primary objective,
namely, to ascertain if electroacupuncture stimulation—whether applied using needles
or transcutaneously—has frequency‑specific effects on electroencephalography (EEG) and
other physiological signals. In the current study, we also expect to see differences in the
effects depending on participant age, gender, personality and mood, as well as in the sub‑
jectively reported intensity of stimulation. Our objective in this first neuroimaging report
is to determine if there is a difference between the EEG at baseline (before stimulation),
during transcutaneous electroacupuncture stimulation (TEAS) and after stimulation, and
whether these differences vary with stimulation frequency.

To try to answer our research question, we decided to use deep learning (DL), a
twenty‑first‑centurymethod of data analysis that has evolved frommachine learning (ML).
The application of both of these artificial intelligence (AI)methods of data analysis has been
increasing exponentially over the past decade, whereas research on acupuncture‑related
stimulation methods has grown steadily and more or less linearly over the same period
(Figure 1).

1.1. A Brief Overview of AI: Machine Learning (ML) and Deep Learning (DL) in EEG Analysis
As an experiment in learning, a series of nested literature reviews were conducted

on or around the 5 December 2021. In the first of these, 2118 papers were located on
PubMed.gov by using the search string ‘EEG AND (“machine learning” OR “deep learn‑
ing”)’. Of the 2118 hits, almost a quarter (473, or 22.3%) included the terms ‘epilepsy OR
seizure*’. 138 (6.5%) of this subset of papers were reviewed, and 47 of these (34.1%, or
more than a third) were on epilepsy or seizures.
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In contrast, only one of the 2118 papers found was on acupuncture [11], and none
were on transcutaneous electrical nerve stimulation (TENS), although onewas located that
mentioned transcutaneous vagal stimulation [12]. Widening the search strategy to locate
acupuncture or TENS studies usingML or DLmethods, but not necessarily applying them
primarily to EEG, a further useful review paper on acupuncture, ML and neuroimaging
(including EEG) was located on PubMed [13]. Only one paper on electroacupuncture (EA)
and ML was located [14], but ML was used here as a method of predicting clinical out‑
comes, not in the analysis of physiological signals. For bibliometric comparison, compa‑
rable searches were also made using SCOPUS, Elsevier’s citation database [15] and the re‑
sources of CNKI (China National Knowledge Infrastructure, 中国知网) (https://cnki.net/)
(accessed on 17 February 2023), although the results of the latter appeared somewhat vari‑
able, depending on when the searches were conducted.

Based on the literature located using PubMed and other online sources, a brief overview
ofMLandDLmethods used for EEGdata analysis is provided in the online Supplementary
Materials, Section SM1. It is not exhaustive and is intended simply to provide enough
background information for those unfamiliar with the language of AI to understand the
methods and results of our analysis.

1.2. Literature Review and Resulting Proposed Strategy
Combinations and comparisons of ML and DL algorithms were located in PubMed‑

indexed papers using the search terms ‘EEG AND [ML A] AND [DL A],’ where [ML A]
and [DL A] are the standard acronyms for the DL and ML algorithms, respectively. The
exceptions were PCA (Principal Component Analysis) and RF (Random Forest), which
were searched using their full names. The results of the searches conducted on 5 December
2021 are shown in Table 1.

https://cnki.net/
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Table 1. Combinations and comparisons of ML and DL algorithms (A) located in PubMed‑indexed
papers using the search terms ‘EEGAND [MLA]AND [DLA].’ Combination and comparison counts
were taken from study abstracts. Where this classification was not obvious, counts are included
in the ‘Other/Unclear’ column. Abbreviations used: CNN: Convolutional Neural Network; DNN:
Deep Neural Network; LDA: Linear Discriminant Analysis; LR: Logistic Regression; LSTM: Long
Short‑Term Memory; PCA: Principal Component Analysis; RNN: Recurrent Neural Network; SVM:
Support Vector Machine. These terms are explained in more detail in the online Supplementary
Materials (SM1).

DL
Algorithm

ML
Algorithm Counts (All) Combinations Comparisons Other/Unclear

CNN

SVM 29 9 20 0
RF 17 4 10 3
LDA 7 0 0 0
LR 5 1 0 1

Clustering 10 3 0 6
PCA 1 0 0 0

Sum 69 17 30 10

LSTM

SVM 15 5 10 0
RF 7 1 6 0
LDA 3 1 2 0
LR 0 0 0 0

Clustering 2 n/a n/a 2
PCA 2 1 1 0

Sum 29 8 19 2

RNN

SVM 6 1 3 2
RF 5 1 3 1
LDA 1 0 1 0
LR 0 0 0 0

Clustering 1 n/a n/a 1
PCA 0 0 0 0

Sum 14 2 7 4

DNN

SVM 6 4 2 0
RF 2 1 1 0
LDA 2 1 1 0
LR 0 0 0 0

Clustering 2 2 0 0
PCA 0 0 0 0

Sum 11 8 4 0
SVM 56 19 35 2
RF 31 7 20 4
LDA 13 2 11 0
LR 5 1 3 1

Clustering 15 5 1 9
PCA 3 1 2 0

Note: Clustering (or obvious synonyms) did not appear in some papers located in PubMedwhen using the search
term ‘cluster*,’ while in some papers that did include clustering, it did not appear to be used as an ML method.
For Logistic Regression (LR), one study did not provide results for either the combination or comparison of
methods [16] NB: Not all (non‑feature‑based) DL methods outperformed (feature‑based) MLmethods (see some
of the Support Vector Machine vs. Convolutional Neural Network (SVM vs. CNN) studies, for example).

Table 2 shows the results of the PubMed searches for combinations or comparisons of
the two DL algorithms, carried out on 5 December 2021.
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Table 2. Results of PubMed searches for combinations or comparisons of two DL algorithms (for
abbreviations, see caption of previous table).

DL Algorithm ML Algorithm Counts (All) Combinations Comparisons/Other

CNN

[CNN]
LSTM 44 14 30
RNN 13 4 9
DNN 11 0 11

Sum 68 18 50

LSTM

CNN 44 2 42
[LSTM]
RNN 17 4 13
DNN 7 0 7

Sum 68 6 62

RNN

CNN 13 0 13
LSTM 17 1 16
[RNN]
DNN 1 1 0

Sum 31 2 29

DNN

CNN
LSTM 11 0 11
RNN 7 0 7
[DNN] 1 1 0

Sum 19 1 18

CNN‑LSTMmodels are thus relatively common hybrids and are more common than
LSTM‑CNN, the inverse combination. CNN‑RNN and LSTM‑RNN are the next most com‑
mon hybrid models. This was confirmed for DL algorithms in general (i.e., not restricted
to EEG studies), using Google Scholar instead of PubMed (the abbreviations are defined in
the caption of Table 1, and explained in the online Supplementary Materials, SM1). CNN‑
LSTM thus appears to be an appropriate hybrid model for the current study. For those
unfamiliar with CNN and LSTM, a description is provided in the online Supplementary
Materials (SM2.1 and SM2.2).

1.3. Literature Review of AI, Acupuncture and EEG
A brief review was conducted of studies indexed in three major online databases—

PubMed, SCOPUSandCNKI—onmachine learning (ML), SupportVectorMachines (SVM),
deep learning (DL) or Convolutional Neural Networks (CNN) and electroencephalogra‑
phy (EEG), acupuncture (Acup) or electroacupuncture (EA). SVM and CNNwere selected
as frequently used exemplars ofML andDL, respectively. The results are shown in Table 3.

Table 3. Numbers of studies located on 5 December 2021 in PubMed, SCOPUS and CNKI on ma‑
chine learning (ML), Support Vector Machines (SVM), deep learning (DL) or Convolutional Neural
Networks (CNN) and electroencephalography (EEG), acupuncture (Ac) or electroacupuncture (EA).

PubMed SCOPUS CNKI
ALL EEG Ac EA ALL EEG Ac EA ALL EEG Ac EA

Machine learning
机器学习

60,085 1711 30 1 315,567 3957 38 3 290,855 1516 34 2

Support Vector Machine
支持向量机

18,367 1277 15 0 145,475 4617 37 2 114,018 583 14 2

Deep learning深度学习 25,456 627 5 0 165,435 1982 2 1 213,990 786 28 7
Convolutional Neural
Network卷积神经网络 13,580 480 4 0 102,937 1659 5 2 125,390 676 8 0

Acupuncture针刺 34,611 309 50,417 288 194,603 463
Electroacupuncture电针 6350 69 9267 62 44,088 122
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The percentage of all ML studies that mention SVM was thus lowest in PubMed
(30.57%) and highest in SCOPUS (46.10%). Similarly, the percentage of all DL studies that
mention CNN was lowest in PubMed (53.35%) and highest in SCOPUS (62.22%). In both
PubMed and SCOPUS, a greater percentage of EEG studies mentioned SVM than CNN,
but this was reversed in CNKI, suggesting geographical bias.

1.3.1. Neuroimaging and the Neurochemical Model of EA, TEAS and Acupuncture
The effects of EA, TEAS (and, indeed, acupuncture) are usually explained using neu‑

rochemical models, in which different regions of the brain play key roles [17,18]. In par‑
ticular, stimulation at low, medium and high frequencies, or low or high amplitudes, may
activate different pathways in the spinal cord and brain [18]. In brief, low‑frequency stim‑
ulation (at 2–4 Hz) activates both large‑ and small‑diameter afferents, and thus, has both
segmental and supraspinal effects, with the release of enkephalin and beta‑endorphin in
the brain (less so in the spinal cord). These central effects may mean that any resulting
analgesia has a slow onset and outlasts the stimulation itself. In contrast, high‑frequency
stimulation (at 50–200 Hz) activates predominantly the large‑diameter afferents, so that
the effects are segmental (associated with the release of dynorphin in the spinal cord), not
supraspinal. Analgesia thus has a rapid onset but does not last long. Stimulation frequen‑
cies of 10–20 Hzmay activate bothmechanisms [19]. Numerous functional magnetic imag‑
ing (fMRI) studies have been conducted to explore these connections, but far less research
has investigated the effects of acupuncture, EA or TEAS on EEG (315, 69 and 2 studies
are currently indexed in PubMed, respectively), despite the advantages of EEG over other
forms of neuroimaging, such as fMRI and magnetoencephalography (MEG) in terms of
cost, portability and/or temporal resolution and usefulness for frequency analysis.

1.3.2. EEG Studies on Acupuncture and Related Modalities
Using the search string ‘EEG AND (acupuncture OR transcutaneous) NOT (“vagal

stimulation”OR “vagus nerve stimulation”),’ about 500 studieswere identified in PubMed.
Of these, around 147, published between 1986 and 2022, were easily retrieved and could be
examined in depth. Here, we consider those on steady‑state EEG rather than evoked poten‑
tials. Of these, 56 (around 38%) were from China, 15 from Korea, 13 from the US, 11 from
Japan and 10 fromTaiwan. Other countrieswere represented by fewer than 10 studies each.
Of the Chinese studies, 25 (more than 44%), or almost half, were from Hebei University of
Technology (Tianjin University).

Most of these EEG studies were on manual acupuncture, and it should be remem‑
bered that ‘TEAS is different from insertive electroacupuncture in many ways, and the
results from these studies may not apply to acupuncture’ [20]. In the acupuncture‑related
studies, the points most commonly used—as noted in a 2018 systematic review of 19 EEG
acupuncture studies [21]—were ST36 (zusanli,足三里, Zúsānlĭ), on the leg below the knee
and lateral to the anterior crest of the tibia; LI4 (hegu,合谷, Hégŭ), located in the area cov‑
ered by the superficial branch of the radial nerve, and close to the radial artery or first dorsal
metacarpal artery, i.e., on the back of the hand between the first and second metacarpals;
and P6 (neiguan, 内关, Nèiguān), on the anterior surface of the forearm, proximal to the
wrist crease between the palmaris longus and flexor carpi radialis tendons.

Methods of analysing changes in EEG were varied. Measures based on EEG power
occurred in similar numbers of studies published before and after 2013, the median year
of publication for the 147 studies located, as did nonlinear entropy and complexity mea‑
sures. Only one study on cordance was located. Functional connectivity measures based
on a graph or network theory—i.e., quantifying relationships between EEG at different
electrodes [22]—were found in only one study before 2013, but in 13 of the 72 studies pub‑
lished since then.

Of the Tianjin studies located, 14 were on manual acupuncture, 10 on non‑invasive
magnetic stimulation (TMS—transcranial magnetic stimulation), one on moxibustion and
one on 100 Hz microcurrent TEAS. Half the Tianjin acupuncture studies, published be‑
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tween 2010 and 2021, investigated the effects of different frequencies of needle‑twirling
at ST36 in EEG. Participants were lying down with their eyes closed in a darkened room.
Three different frequencies were used in the same session, with between 4 and 10min rests
between them, depending on the study. In contrast, only one upper limb TENS study, a
BSc thesis from Holland, investigated the effects of stimulation frequency on EEG and did
not use low‑frequency stimulation.

As yet, there are only two studies in PubMed on artificial intelligence (whether ma‑
chine learning or deep learning), EEG and acupuncture or transcutaneous stimulation
(TENS or TEAS), with one of these being from Tianjin, as mentioned above [11]. Seven
studies were also located in a separate PubMed search for ‘acupuncture’ AND ‘wavelet’
AND ‘EEG’. Of these, four were on wavelet packet decomposition (WPD). Three of them
were from Tianjin [23–25], and one from Shenyang [26]. A further study investigating
the effects of 20–100 Hz transcutaneous brachial stimulation on EEG wavelet entropy was
noted [27], but it did not involve AI or explore the effects of different stimulation frequen‑
cies. Thus, no prior AI research appears to have been conducted on the effects of different frequencies
of stimulation (whether EA or TEAS) on EEG.

2. Materials and Methods
2.1. The Experiment

Ethics approval for the study was granted by the Health and Human Sciences Ethics
Committeewith theDelegatedAuthority of theUniversity ofHertfordshire (UH)—Protocol
number HSK/SF/UH/00124.

Sixty‑six participants were recruited as a convenience sample from among healthy
staff and students at the University, local complementary health practitioners and other
contacts. After the completion of some online questionnaires and an explanation of the
procedures to be followed, participants attended their first session. They attended four
sessions in all, a week or more apart (except for four participants who dropped out after
only one session, and another who only completed three sessions). All sessions were con‑
ducted in the University Physiotherapy Laboratory, although despite our best efforts, this
could not be completely soundproofed, or temperature controlled.

Participantswere seated upright in a comfortable chair, with both forearms supported.
Informed consentwas obtained, further paper questionnaireswere completed, and the par‑
ticipants were then prepared for the session. This preparation, which took around 15 min,
involved fitting an EEG cap with headmovement sensors attached, and affixing electrocar‑
diogram (ECG) electrodes to the forearms, as well as other sensors to the fingers of both
hands. The EEG cap, ECG electrodes and other sensors were worn for the remainder of
the session (usually around 60 to 90 min).

Following an initial 5 min Baseline recording (‘time slot 1’), TEAS was applied for
20 min to each hand, with a short pause halfway through to allow for further question‑
naires to be completed and participants to rest briefly (Figure 2). Otherwise, during the
whole procedure, participants were asked to keep their eyes open and focus gently on
an object in front of them (to reduce eye movement artefacts). EEG recording continued
during stimulation (Stim1–Stim4, or ‘time slots 2–5’), which was between the acupuncture
point LI4 (hegu), located on the dorsum of the hand between the 1st and 2nd metacarpal
bones, and the ulnar border of the same hand. In other words, the current only passed be‑
tween the electrodes on each hand, and did not flow through the arms and torso, so that,
in principle, it should not affect the heart—or brain—directly.

After stimulation (and the completion of other questionnaires), the recordingwas con‑
tinued for a further 15 min (Post1–Post3, or ‘slots 6–8’) to assess post‑stimulation changes
(Figure 2). The electrodes and sensorswere then removed, and further questionnaireswere
filled out before the participant left. After the laboratory experiment, 47 of the 66 participants
completed further online questionnaires on several personality traits.
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A charge‑balanced Equinox E‑T388 stimulator was used in all four sessions (Figure 3),
and in each session, was set at one of four different frequencies—2.5 alternating monopha‑
sic pulses per second (pps), 10 pps, 80 pps or 160 pps (the frequency or number of cycles of
stimulation per second, in Hertz, was at half these values). For the three lower frequencies,
the output amplitude was set to provide a ‘strong but comfortable’ sensation for the par‑
ticipant. In contrast, 160 pps was applied as a ‘sham’ treatment, with the device switched
on (and a flashing light visible), but the output amplitude remaining at zero throughout—
although a pretence was made of turning up the amplitude, out of sight of the participants.
Nonetheless, the stimulation (at 80 and 160 pps) was visible as an interference pattern
(envelope) on one of the screens, showing the recorded ECG (although hidden from partic‑
ipants’ view so as not to distract them), and some participants were aware of a sensation
in their hands at some moments during their sham session. The different stimulation fre‑
quencies for each participant were applied in a semi‑randomised balanced order.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 31 
 

 

Figure 3. TEAS—stimulation details. (a) The Equinox stimulator and its output. (b) Sensors and 

electrodes in place, showing fingertip PPG sensor, one ECG electrode on right forearm, and TENS 

(transcutaneous electrical nerve stimulation) electrodes at LI4 and on the ulnar border of the hands. 

ECG electrodes on the left forearm are not visible (the thermistor on left middle finger is hidden by 

the PPG sensor). 

2.2. Data Collection 

EEG data were collected for forty minutes (8 × 5-min ‘slots’) in each session. The 10/20 

system of electrode location was used (19 electrodes with linked ears as reference and 

ground anterior to Fz). The data collection followed standard EEG procedures using Elec-

tro Cap International (ECI) caps (size selected individually for maximum comfort, accord-

ing to participants’ head dimensions), a Mitsar EEG-202 amplifier and WinEEG software 

(v2.91.54) (Mitsar Ltd., St Petersburg, Russia). The sampling rate was 500 Hz. 

2.3. Data Analysis 

2.3.1. Data Pre-Processing 

Data were recorded initially in WinEEG (‘.eeg’) format (one file per session) and 

saved in ‘.edf’ format, and then, each separate session file was cut into eight separate ‘.mat’ 

files (one for each 5 min ‘slot’). 

Data were first filtered between 0.5 and 45 Hz using Matlab 2nd order Butterworth 

filters (‘butter’ and ‘filtfilt’ functions). Mains power in the UK is supplied at 50 Hz, so for 

higher-frequency signals, a second-order 50 Hz Butterworth notch filter was also used 

(49–51 Hz). Independent Component Analysis (ICA) was then conducted using the ex-

tended Infomax algorithm [28] to reject non-neural artifacts, together with the multiple 

artifact rejection algorithm (MARA) [29]. Components were labelled and artefactual com-

ponents removed in conjunction with ICLabel [30], an EEGLab plug-in [31]. Subsequently, 

the Trimoutlier EEGLab plug-in [32] was used to remove epochs exceeding an individual 

amplitude threshold defined as +/− 3 SD (standard deviation) above the mean amplitude 

across all channels. Finally, data were re-montaged with the CSD Toolbox (ExtractMon-

tage.m function) [33], using the Laplacian form of local average reference. 

At this stage, data from several participants were excluded, either because of inad-

vertent differences in sampling rate (for four participants, in four sessions), missing or 

poor-quality data or because recordings were cut short for one reason or another (e.g., 

discomfort from wearing the cap or having to take a trip to the bathroom). Files for 48 

participants remained—192 for each ‘slot’, in .mat format—resulting in 1536 files in total. 

Figure 4 shows the data collection and pre-processing pipeline. 

Figure 3. TEAS—stimulation details. (a) The Equinox stimulator and its output. (b) Sensors and
electrodes in place, showing fingertip PPG sensor, one ECG electrode on right forearm, and TENS
(transcutaneous electrical nerve stimulation) electrodes at LI4 and on the ulnar border of the hands.
ECG electrodes on the left forearm are not visible (the thermistor on left middle finger is hidden by
the PPG sensor).

2.2. Data Collection
EEG data were collected for forty minutes (8 × 5‑min ‘slots’) in each session. The

10/20 system of electrode location was used (19 electrodes with linked ears as reference
and ground anterior to Fz). The data collection followed standard EEG procedures us‑
ing Electro Cap International (ECI) caps (size selected individually for maximum comfort,
according to participants’ head dimensions), aMitsar EEG‑202 amplifier andWinEEG soft‑
ware (v2.91.54) (Mitsar Ltd., St. Petersburg, Russia). The sampling rate was 500 Hz.
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2.3. Data Analysis
2.3.1. Data Pre‑Processing

Datawere recorded initially inWinEEG (‘.eeg’) format (one file per session) and saved
in ‘.edf’ format, and then, each separate session file was cut into eight separate ‘.mat’ files
(one for each 5 min ‘slot’).

Data were first filtered between 0.5 and 45 Hz using Matlab 2nd order Butterworth
filters (‘butter’ and ‘filtfilt’ functions). Mains power in the UK is supplied at 50 Hz, so
for higher‑frequency signals, a second‑order 50 Hz Butterworth notch filter was also used
(49–51 Hz). Independent Component Analysis (ICA) was then conducted using the ex‑
tended Infomax algorithm [28] to reject non‑neural artifacts, together with the multiple
artifact rejection algorithm (MARA) [29]. Components were labelled and artefactual com‑
ponents removed in conjunction with ICLabel [30], an EEGLab plug‑in [31]. Subsequently,
the Trimoutlier EEGLab plug‑in [32] was used to remove epochs exceeding an individual
amplitude threshold defined as +/− 3 SD (standard deviation) above the mean amplitude
across all channels. Finally, data were re‑montaged with the CSD Toolbox (ExtractMon‑
tage.m function) [33], using the Laplacian form of local average reference.

At this stage, data from several participants were excluded, either because of inadver‑
tent differences in sampling rate (for four participants, in four sessions), missing or poor‑
quality data or because recordingswere cut short for one reason or another (e.g., discomfort
from wearing the cap or having to take a trip to the bathroom). Files for 48 participants
remained—192 for each ‘slot’, in .mat format—resulting in 1536 files in total. Figure 4
shows the data collection and pre‑processing pipeline.
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2.3.2. AI Analysis
The analysis was divided into two parts.
In Part A, wavelet packet decomposition (WPD), i.e., frequency decomposition of the

wavelet packet transform (WPT) [34], was used to break down the EEG signal into eight
(non‑standard) bands, and the wavelet entropy features were extracted.

In Part B, the analysis was more exploratory. DL algorithms—CNN‑LSTM in Phases
1, 2 and 4, and MLP‑NN in Phase 3—were applied with the features from Part A as inputs.
The algorithms used were determined by the objective for each phase: to explore changes
over time (either baseline to stimulation slots, or baseline/stimulation/post‑stimulation) or
differences among the standard EEG bands (delta, theta, alpha, beta, and gamma).

In general terms, the study used the Python‑based ‘TensorFlow’ framework, which is
popular and widely used for the training and inference of Deep Neural Networks. This
framework provides an optimised environment for executing large‑scale computations
and can handle the complexities of training DL models.

The choice of hardware is dependent on the computational requirements of the deep
learning models being studied and the resources available. Here, we used either a high‑
performance GPU (Graphical Processing Unit) or a TPU (Tensor Processing Unit). GPUs
have been shown to significantly speed up the training time of deep learning algorithms
compared to traditionalCPUs (Central ProcessingUnits). TPUs are custom‑built byGoogle
for deep learning and provide even faster training times compared to GPUs.

2.3.3. Methodology: Part A
Fast Fourier transform (FFT) is traditionally used to convert a time‑domain signal

(time series)—such as EEG—into a frequency domain signal. However, as is well known,
FFT is not suitable for the analysis of non‑stationary, non‑Gaussian and nonlinear signals
such as EEG. WPD, although less frequently used in ML EEG studies, is one of several
methods that are more appropriate for such data [35], and is capable of dealing with both
low‑ and high‑frequency signal components (unlike the wavelet transform itself, which
has good temporal resolution but poor frequency resolution at high frequencies, and good
frequency but poor time resolution at low frequencies [36]). UsingWPD, the EEG signal is
decomposed into a pre‑selected number of frequency bands using multiple mirror filters
in a binary tree structure. Different algorithms are possible when implementing WPD. In
all four phases of our analysis, we chose to use a cost function based on ‘energy entropy’
to quantify the error between predicted values and expected values in the algorithm.

Wavelet packet transform was applied for each group of data, adopting a MATLAB
(Matrix Laboratory) multisignal WPD feature extraction code developed by Khushaba
et al. [37–39]. Since the acquired EEG signals were sampled at 500 Hz, the number of
samples selected per window to extract features was 500, and the spacing of the windows
(the increments between them) was chosen to be 25. The decomposition level used was
7 [40]. For a full tree topology at this level, for each of the 19 EEG electrodes, 255 fea‑
tures were extracted in total using a high–low bandpass filter bank [41], resulting in a
WPT feature matrix (n, (255 × 19)). Wavelet entropies were then evaluated from the WPT
feature matrix to reduce the size of the data and obtain a strong biomarker for classifica‑
tion. At this stage, the feature matrix was separated into fractions, with 255 samples for
each of the 19 electrodes. The size of each of the 19 resulting submatrices was thus [n,255].
The parameter‑free wavelet entropy code used here is based on that developed by Rosso
et al. [42]. The wavelet filter selected was ‘Coiflet‑4’, and the decomposition level was 7,
based on results from our previous study on discrete wavelet transform (DWT), in which
we found that Coiflet performance was better when compared to that of other wavelet
families [43]. When the wavelet entropy algorithmwas applied to these matrices, (255*19)‑
sized feature matrices, containing the entropy values, were acquired for every two classes.
Finally, these feature matrices were fed into a 1D CNN‑LSTM hybrid classifier to generate
the classification model (Phases 1, 2 and 4).
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In our EEG study, four different frequencies of peripheral electrical stimulation were
used: a ‘sham’ at 160 Hz but a very low amplitude (‘0’), and 2.5 Hz, 10 Hz and 80 Hz at
above the sensory threshold. For the wavelet packet decomposition of signals for the four
types of stimulation frequency (SF), 100 non‑overlapping samples were extracted from the
EEG data for each type of SF, with each sample containing 5000 data points (recordings for
each class were cropped and data sizes balanced). One sample for each type of SF was pro‑
cessed with WPD, using the Daubechies 2 (DB2) wavelet basis function [44]. Each sample
was decomposed into eight frequency bands (FB), from FB1 to FB8. Finally, these feature
matrices were fed into a Multilayer Perceptron Neural Network (MLP‑NN) classifier to
generate the classification model in Phase 3.

2.3.4. Methodology: Part B
We divided our exploratory DL analysis into four phases, each designed with a par‑

ticular objective in mind:
1. To determine whether EEG during TEAS differed from EEG at baseline, and whether

such differences were dependent on stimulation frequency;
2. To investigate how EEG differed before, during and following TEAS, and whether

such differences were dependent on stimulation frequency;
3. To determine whether differences among the EEG bands vary with both time (base‑

line, stimulation or post‑stimulation) and stimulation frequency;
4. The objective here was the same as in Phase 3, but with the addition of comparing

how the MLP‑NN and CNN‑LSTM models performed.

Methodology: Part B, Phase 1
For our analyses, here, we only processed data recorded at 500 Hz, although this did

include some quite noisy recordings, resulting in 1806 or 1807 files for each filtered EEG
band (delta to gamma). In this phase, the data from all five EEG bands were considered to‑
gether rather than separately. The data were then standardised using the StandardScaler()
command in the Python scikit‑learn library [45]. Our objective was to determine whether
EEG during TEAS differed from EEG at baseline, and whether such differences were de‑
pendent on stimulation frequency.

The initial analysis was conducted using a Sequential Application Programming In‑
terface (API) in the ‘Keras’ DL framework [46], and a hybrid CNN‑LSTMmodel similar to
that illustrated in Figure S5 in the online Supplementary Materials, as shown in Table 4.

The outputs were evaluated using standard confusion matrix metrics, of which sen‑
sitivity and specificity are probably the best known. Here, we focused on accuracy, kappa
and the area under the ‘receiver operating characteristic’ curve’ (ROC curve), known as
the AUC or ROC‑AUC [47]. If the mean overall accuracy was <0.33, the results were con‑
sidered non‑significant.

Sixteenmodelswere created, to examine changes over time (Slots 2, 3, 4 and 5) relative
to the baseline (Slot 1), for each of the four stimulation frequencies.

Methodology: Part B, Phase 2
The feature extraction methodology utilised here is based on a combination of the

methods used in our previously published papers [41,48,49], with data standardised us‑
ing the StandardScaler() command in the Python scikit‑learn library. Standardising the
input data can help to reduce the effect of outliers or extreme values and improve the
performance of the machine learning model. Some algorithms are particularly sensitive
to the scale of the input data (see Supplementary Materials), and thus, may perform bet‑
ter when the data are standardised. Our objective was to investigate how EEG differed
before, during and following TEAS, and whether such differences were dependent on
stimulation frequency.
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Table 4. Model summary for Phase 1, including two 1‑dimensional convolutional layers and two
stacked LSTM layers, two Dropout layers and a final Dense layer. Terms are explained in the on‑
line Supplementary Materials. The Output Shape defines the size of the output matrix. ‘None’ is a
placeholder for the size of the dataset so that it is not fixed but can be varied; the following numbers
within parentheses indicate the batch size and time steps used. The number of parameters required
for each layer is also shown.

Test–Train Data Shape
Train Data Shape [10,800, 25/50, 19]
Test Data Shape [1200, 25/50, 19]
Train Label Shape [10,800, 2]
Test Label Shape [1200, 2]

Model Architecture
Model: “sequential”

Layer (type) Output Shape Parameters
Conv1d_1 (None, 17, 32) 2464
Dropout_1 (None, 17, 32) 0
Conv1d_2 (None, 14, 16) 2064
Dropout_2 (None, 14, 16) 0
LSTM_1 (None, 14, 25) 4200
LSTM_2 (None, 5) 620
Dense (None, 2) 12

Total parameters: 9360
Trainable parameters: 9360

Non‑trainable parameters: 0
Model Specifications

Conv1d activation: relu, padding: valid, l2
regularization: 0.001

LSTM activation: tanh, recurrent_activation: tanh,
dropout: 0.2, recurrent_dropout: 0.2

Dense activation: sigmoid

Compiler number of epochs: 100, batch_size: 32, loss:
binary_crossentropy, optimizer: adam

As in Phase 1, the analysis was conducted using a Sequential API in Keras and a hy‑
brid CNN‑LSTM model, but this time, omitting the Dropout layers and adding a further
LSTM layer (Table 5). Omitting the Dropout layers and adding a further LSTM layer can
potentially improve a model’s performance on the training data (but can also lead to over‑
fitting if the model is not properly regularised). It is generally considered good practice to
try a variety of different model architectures and regularisation techniques to find the best
balance between model complexity and generalisation to new data.

Twentymodels were created, to examine changes over time (baseline (Slot 1), stimula‑
tion (Slots 2–5) and Post‑stimulation (Slots 6–8)) in each of the five EEG bands (delta, theta,
alpha, beta and gamma) for the four stimulation frequencies.

Methodology: Part B, Phase 3
Here, wedid not useKeras and theDLhybridCNN‑LSTMalgorithm, but a (relatively)

shallow learning method based on Multilayer Perceptron (MLP), a scaled conjugate back‑
propagation MLP Neural Network (NN) with 10 hidden layers, available as standard in
the MATLAB Deep Learning toolbox [50]. Inputs were taken from the 19 electrodes, and
the output was provided as a 5 × 5 confusion matrix for the five EEG bands. Our objec‑
tive here was to determine whether differences among the EEG bands vary with both time
(baseline, stimulation or post‑stimulation) and stimulation frequency.



Appl. Sci. 2023, 13, 2703 13 of 30

Table 5. Model summary for Phase 2. Note that 3‑fold cross‑validation was used, and SoftMax was
used rather than the Sigmoid activation function in Phase 1, with a far greater number of parameters
for each layer than before (these terms are explained in the online Supplementary Materials).

Model Architecture
Model: “sequential”

Layer (type) Output Shape Parameters
Conv1d_1 (None, 125, 128) 9856
Conv1d_2 (None, 122, 64) 32,832
Conv1d_3 (None, 119, 32) 8224
LSTM_1 (None, 119, 250) 283,000
LSTM_2 (None, 119, 100) 140,400
LSTM_3 (None, 50) 30,200
Dense (None, 3) 153

Total parameters: 504,665
Trainable parameters: 504,665

Non‑trainable parameters: 0
Model Specifications

Conv1d activation: relu, padding: valid, l2
regularization: 0.001

LSTM activation: tanh, recurrent_activation: tanh,
dropout: 0.2, recurrent_dropout: 0.2

Dense activation: softmax

Compiler
number of epochs: 50, batch_size: 128, loss:
categorical_crossentropy, optimizer: adam,

3‑fold cross‑validated

Figure 5 shows the model architecture for Phase 3. Features extracted from WPD
and wavelet entropy analysis were selected as inputs. ‘W’ and ‘b’ are learnable parame‑
ters; ‘W’ corresponds to the weights of the Neural Network, and ‘b’ to the bias values [51].
The data were randomly divided into training, validation and test sets using the MATLAB
‘dividerand’ function. The Scaled Conjugate Gradient training method was applied (using
theMATLAB ‘trainscg’ function), and cross‑entropywas used to evaluate performance. In‑
formationwas also provided on algorithmperformance: the number of iterations required,
processing time, performance, gradient, and the maximum number of validation checks
to be conducted (held at 6, the default). If the gradient was <10′5, or the number of checks
reached 6, training was stopped.
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Methodology: Part B, Phase 4
In our final experiment, we reverted to using the CNN‑LSTM model in Keras, as in

Phase 1, but this time, replacing the Dropout layers with max pooling (downsampling)
layers, with three LSTM layers (as in Phase 2) and 5‑fold rather than 3‑fold cross‑validation
(see the online Supplementary Materials for an explanation of these terms). The objective
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was the same as in Phase 3, but we also wished to compare how the MLP‑NN and CNN‑
LSTM models performed.

Different DL models were developed for each phase to accommodate the different
numbers of classes in the models, which were used for different purposes in each phase.
Our overall aim was to produce useful solutions to problems rather than developing mod‑
els and making comparisons.

3. Results
3.1. Results: Part A

The feature extraction results from Part Awere provided as inputs to the CNN‑LSTM
hybrid classifier (Part B, Phases 1,2 and 4) and to the MLP‑NN algorithm (Part B, Phase 3).
These results are therefore not reported separately.

3.2. Results: Part B
3.2.1. Part B, Phase 1

As a summary metric, the values of kappa were calculated based on the binary con‑
fusion matrix results obtained. The results are shown in Table 6. These were based on a
multi‑class evaluation [52], considering each class as a separate binary classification prob‑
lem, and then, combining the results to give an overall evaluation of the classifier’s perfor‑
mance on the multi‑class task. Thus, the results differ from those obtained using Vanetti’s
online calculator.

Table 6. Confusion matrix results (kappa) for the 16 models in Phase 1. Values in bold are in the
upper quartile of all 16 values, and those in red in the lower quartile.

Change from
Slot 1 Sham 10 pps 2.5 pps 80 pps

Slot 2 0.439 (Model 1) 0.413 (Model 2) 0.409 (Model 3) 0.462 (Model 4)
Slot 3 0.480 (Model 5) 0.327 (Model 6) 0.367 (Model 7) 0.478 (Model 8)
Slot 4 0.465 (Model 9) 0.339 (Model 10) 0.332 (Model 11) 0.437 (Model 12)
Slot 5 0.485 (Model 13) 0.360 (Model 14) 0.464 (Model 15) 0.440 (Model 16)

The CV (Coefficient of Variation) (i.e., SD/mean) for kappa is 0.134, and the mean 0.419
(SD 0.056). Thus, disregarding any effects on the individual EEG bands, both the greatest
and smallest differences from baseline occurred in Slots 3, 4 and 5; the greatest differences
occurred during 80 pps or sham stimulation, and the smallest differences during 2.5 or 10
pps. According to the guidelines suggested by Landis and Koch [53], values of kappa be‑
tween 0.21 and 0.40 could be considered as ‘fair’, those between 0.41 and 0.60 as ‘moderate’,
those between 0.61 and 0.80 as ‘substantial’, and those between 0.81 and 1.00 as ‘perfect’.
Here, more than half could be considered as ‘moderate,’ but none as ‘substantial.’ In other
words, themodel performs reasonablywell, although it does not provide detailed informa‑
tion about the EEG changes that occur. The processing time for Phase 1was approximately
5 h.

3.2.2. Part B, Phase 2
As a summarymetric, the values of kappawere calculated based on the 3× 3 confusion

matrix results obtained (Slot1/Slots 2–5/Slots 6–8) for each of the 20 (5 band× 4 stimulation
frequency) models. The results are shown in Table 7.

The CV (Coefficient of Variation) for kappa is 0.467, and the mean 0.506 (SD 0.236).
Thus, when taking the EEG bands into account, the greatest differences among Slot 1/Slots
2–5/Slots 6–8 occurred for 2.5 pps in the Theta, Alpha and Gamma bands, and 80 pps in
Alpha. The smallest differences occurred for the sham in theDelta, Beta andGammabands,
for 10 pps in the Alpha, Beta and Gamma bands, and for 80 pps in Delta. Here, five values
of kappa could be considered moderate, three as substantial, and two as very good indeed
(‘perfect’). The processing time for Phase 2 was approximately 8 h.
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Table 7. Confusion matrix results (kappa) for the 20 models in Phase 2. Values in bold are in the
upper quartile of all 16 values, and those in red in the lower quartile (‘ns’ indicates mean overall
accuracy < 0.33).

Band Sham 10 pps 2.5 pps 80 pps
Alpha 0.563 (Model 1) 0.165 (Model 2) 0.763 (Model 3) 0.906 (Model 4)
Beta 0.180 (Model 5) 0.281 (Model 6) 0.474 (Model 7) 0.496 (Model 8)
Delta ns (Model 9) 0.352 (Model 10) 0.316 (Model 11) 0.296 (Model 12)

Gamma ns (Model 13) ns (Model 14) 0.803 (Model 15) ns (Model 16)
Theta 0.457 (Model 17) 0.748 (Model 18) 0.789 (Model 19) 0.508 (Model 20)

3.2.3. Part B, Phase 3
As a summarymetric, the values of kappawere calculated based on the 5× 5 confusion

matrix results obtained (Alpha, Beta, Delta, Gamma and Theta) for each of the 12 (3 time
(Slot 1/Slots 2–5/Slots 6–8) × 4 stimulation frequency) models. The results are shown in
Table 8.

Table 8. Confusion matrix results (kappa) for the 12 models in Phase 3. Values in bold are in the
upper quartile of all 16 values, and those in red in the lower quartile.

Time Sham 2.5 pps 10 pps 80 pps
Baseline (Slot 1) 0.698 (Model 1) 0.680 (Model 2) 0.679 (Model 3) 0.658 (Model 4)
Stim (Slots 2–5) 0.667 (Model 5) 0.642 (Model 6) 0.639 (Model 7) 0.666 (Model 8)
Post (Slots 6–8) 0.666 (Model 9) 0.718 (Model 10) 0.634 (Model 11) 0.577 (Model 12)

The CV for kappa is 0.054, and the mean 0.660 (SD 0.036). Differences among the EEG
bands are marginally greater for 2.5 pps at baseline and post‑stimulation, as well as the
sham at baseline, and marginally less for 10 pps during and post‑stimulation, as well as
for 80 pps post‑stimulation. According to the guidelines of Landis and Koch [52], these
differences are all ‘substantial’, apart from those for 80 pps post‑stimulation, which are
‘moderate’. The processing time for Phase 3 is estimated to be around 5 h.

3.2.4. Part B, Phase 4
As a summarymetric, the values of kappawere calculated based on the 5× 5 confusion

matrix results obtained (Alpha, Beta, Delta, Gamma and Theta) for each of the 12 (3 time
(Slot1/Slots 2–5/Slots 6–8) × 4 stimulation frequency) models. The results are shown in
Table 9.

Table 9. Confusion matrix results (kappa) for the 12 models in Phase 4. Values in bold are in the
upper quartile of all 16 values, and those in red in the lower quartile.

Time Sham 2.5 pps 10 pps 80 pps
Baseline (Slot 1) 0.868 (Model 1) 0.969 (Model 2) 0.847 (Model 3) 0.912 (Model 4)
Stim (Slots 2–5) 0.765 (Model 5) 0.739 (Model 6) 0.990 (Model 7) 0.945 (Model 8)
Post (Slots 6–8) 0.862 (Model 9) 0.683 (Model 10) 0.650 (Model 11) 0.968 (Model 12)

The CV for kappa is 0.137, and the mean 0.850 (SD 0.116). Using this approach rather
than the MLP‑NN algorithm, differences among the EEG bands are again greater for 2.5
pps at baseline and less for 10 pps post‑stimulation, but otherwise, there is little agreement
between the twomethods. Kappa is greatest for the sham and 2.5 pps at baseline, for 10 pps
during stimulation, and for 80 pps post‑stimulation. According to the guidelines of Landis
and Koch [53], 8 of the differences are ‘perfect’ (>0.81) and the remainder ‘substantial’. The
processing time for Phase 1 is again estimated to be around 5 h.

Figures 6–9 provide examples of outputs (train and test accuracy or ROC plots, and
confusion matrices) for the models in each phase with the highest value of kappa. Graphs
of model accuracy and loss are shown over 100 epochs, where each epoch represents a
full pass through the training dataset. Test loss is a measure of how well the model can
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make predictions on data it has not seen before (i.e., the test set). Ideally, the test loss will
decrease over time, and the accuracy will increase, indicating that the model is learning
and improving.
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and (b) loss over 100 epochs, with (c) the associated confusion matrix and (d) the receiver operating
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under the ROC curve (AUC) = 0.75 and F‑measure (harmonic mean of ‘precision’ and ‘recall’) = 0.488.
Here, macro‑ and micro‑average AUC are the same (the former computes the metric independently
for each class, and then, takes the overall average, while the latter aggregates contributions from
all classes).
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this model, the train‑to‑test ratio was again 9:1, with kappa = 0.906, area under the ROC curve (AUC)
= 0.943 and F‑measure = 0.938.
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Figure 9. Phase 4—Model 7 of 12 models: 10 pps, stimulation (Slots 2–5), comparing five classes
(EEG Delta, Theta, Alpha, Beta and Gamma bands). For this model, the train‑to‑test ratio was 4:1,
with kappa = 0.990, area under the ROC curve (AUC) = 0.998 and F‑measure = 0.992.
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Each confusion matrix evaluates the performance of a classification algorithm, with
each row representing instances in a predicted class, and each column instances in an actual
class. The entry in the top‑left corner represents the number of instances thatwere correctly
predicted to be in the first class, and so forth.

The receiver operating characteristic (ROC) curves show the performance of binary
classifiers as their discrimination thresholds are varied. The ROC curve plots the true‑
positive rate (also called sensitivity or recall) on the y‑axis and the false‑positive rate (1—
specificity) on the x‑axis. A classifier with a higher true‑positive rate and a lower false‑
positive rate will be higher and further to the left on the curve. The area under the curve
(AUC) is a measure of the classifier’s performance (the AUC ranges in value from 0 to 1,
with a higher value indicating a better classifier).

4. Discussion
Deep learning (DL) methods have been widely used in various fields, including medi‑

cal research. In recent years, DL has been applied to acupuncture‑related research, provid‑
ing new insights and understanding into the effects of acupuncture on the human body.
The application of DL to acupuncture‑related research presents several unique challenges,
such as the limited availability of high‑quality data, the complex and nonlinear relation‑
ships between acupuncture points and physiological responses, and the need to consider
the potential biases and confounding factors in the data.

Despite these challenges, the application of DL to acupuncture‑related research has
the potential to greatly advance our understanding of themechanisms and effects of acupunc‑
ture, as well as its clinical applications. By leveraging the power of DL algorithms, re‑
searchers can analyse and model large, complex datasets, identify patterns and relation‑
ships in the data that are not easily apparent through traditional statistical methods, and
make predictions about the effects of acupuncture on various physiological responses.

Based on a literature review, the authors of this study provide background informa‑
tion on artificial intelligence as used in EEG analysis, with an introduction to machine
learning and deep learning methods for those—especially clinicians such as acupunctur‑
ists and physiotherapists—who may be unfamiliar with them. Summaries of the advan‑
tages and disadvantages of both ML and DL approaches are included, and also of some
of their more commonly used algorithms. In addition, a literature review of EEG studies
on acupuncture and related modalities was conducted. Based on these reviews, which,
in themselves, provide a useful contribution to the literature, the authors used a combi‑
nation of CNN (Convolutional Neural Network) and LSTM (Long Short‑Term Memory)
algorithms, as well as WPD (wavelet packet decomposition) for feature extraction.

The experimental set‑upwas described, including TEAS, EEG data collection and pre‑
processing. We analysed the EEG data collected in four different ways (Phases 1 to 4):

Phase 1. Sixteen hybridCNN‑LSTMmodelswere created inKeras, to examine changes
over time during stimulation (Slots 2, 3, 4 and 5) relative to the baseline (Slot 1), for each of
the four stimulation frequencies, but without examining the filtered EEG bands separately.
This resulted in 2 × 2 confusion matrices.

Phase 2. Twenty hybridCNN‑LSTMmodelswere created inKeras, to examine changes
over time (baseline (Slot 1), stimulation (Slots 2–5) and post‑stimulation (Slots 6–8)) in each
of the five EEG frequency bands (delta, theta, alpha, beta and gamma) for the four stimu‑
lation frequencies. This resulted in 3 × 3 confusion matrices.

Phase 3. Twelve scaled conjugate backpropagation MLP‑NN models with 10 hidden
layers were created using MATLAB, to examine differences between the EEG bands at
baseline, and during and following stimulation, for the four stimulation frequencies. This
resulted in 5 × 5 confusion matrices.

Phase 4. Here, we reverted to using the CNN‑LSTM model in Keras, rather as in
Phase 1, but with more LSTM layers. The objective was to examine the same differences as
in Phase 3, so that the two very different methods could be compared. Again, this resulted
in 5*5 confusion matrices.
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As with all (unsupervised) DL methods, however useful they may be in identifying
and classifying differences, the results are not easy to interpret due to the complexity of the
algorithms and the lack of a clear understanding of underlying mechanisms. This can be
a major challenge in any study. Another potential challenge is that models may be prone
to bias if the training data reflect biased patterns. A third challenge is in determining how
to achieve computational efficiency.

The Phase 1 analysis appears to show that the greatest differences from the baseline
occurred during 80 pps or sham stimulation, and the smallest differences during 2.5 or
10 pps stimulation. These results are plausible, if diametrically opposed to those thatmight
be expected from the literature [17–19].

The phase 2 analysis suggests that differences between baseline, stimulation and post‑
stimulation EEG are greatest for 80 pps TEAS in the alpha band, and for 2.5 pps TEAS in
the gamma band, with the smallest effect for 10 pps in alpha. The values of kappa showed
greatest variance in Phase 2 analysis. Without knowing whether (and at which electrodes)
these differences indicate increases or decreases in band power, or some other associated
feature, these findings are hard to interpret. Would 2.5 pps TEAS be experienced as more
stressful than 80 pps, for example, so that gamma powermight increasewith 2.5 pps stimu‑
lation, but alpha power with 80 pps? Further research is required to disentangle questions
such as this.

The results of the Phase 3 analysis do not indicate major differences between any of
the models, with the greatest differences among EEG bands at baseline for the sham and
2.5 pps TEAS, as well as for 2.5 pps post‑stimulation. The Phase 4 results are quite differ‑
ent, with greatest differences among EEG bands, again, at baseline for 2.5 Hz TEAS, during
stimulation for 10 pps and post‑stimulation for 80 pps. However, differences among bands
are to be expected, are not necessarily the result of stimulation and could be explained in
many ways. None of the results from Phases 3 or 4 shed any light on the effects of stimula‑
tion frequency. It is of interest, though, that the mean and CV for kappawere considerably
higher for the CNN‑LSTM than for the MLP‑NN model.

This assemblage of results provides a further useful contribution to the literature.
However, in a world of limited resources that are increasingly under stress onmany levels,
an important general question is whether greater accuracy and precision should be priori‑
tised over the energy‑information costs incurred (solving a problem with a shallow struc‑
tured network is always more advantageous in terms of computational burden if it can
be solved). In what circumstances is a slightly fuzzy classification ‘good enough’? Here,
the two models give different results, so perhaps, regardless of cost, those from the more
computationally demandingmodel (CNN‑LSTM) should be adopted, althoughwhich rep‑
resents ‘ground truth’ is still a moot point. This may not always be the appropriate deci‑
sion, and some may consider that the outcomes of this study do not justify the amount of
energy and time it has taken to complete (almost 24 h in computation time for the AI al‑
gorithms alone, with another 12 h, approximately, for additional computation conducted
using Google Colab in the cloud network). In conclusion, the software and hardware plat‑
forms used in deep learning operation are critical. Here, they were carefully selected to
ensure accurate and reliable results. The inevitable human ‘wear‑and‑tear’ toll taken by
intensive, collaborative research work should also be considered.

Some Limitations
Thedatawere recorded in imperfect circumstances, in a laboratory thatwas not sound‑

proofed or temperature‑controlled. Nonetheless, external noise was minimised as far as
possible, and an attempt was made to keep the space at a comfortable temperature over
the course of the year during which data were collected.

Our ‘sham’ (160 pps) TEAS was not completely without physiological effect, which
may have biased our results. In retrospect, although various sham stimulation methods
have been explored over the years by different researchers, some subthreshold and some
suprathreshold [54–56], we should have amended our own experimental set‑up to ensure
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no current whatsoever reached the participants. Unfortunately, we made a false assump‑
tion based on initial pilot experiments in which sham stimulation was, indeed, subthresh‑
old for the test participants. This was not so for all those who took part in our final study.
Nonetheless, the output was set to ‘zero’ on the Equinox device, so considerably lower
during this imperfect sham stimulation than during the ‘active’ stimulations.

Only 66 participants took part in this study—a small dataset for a DL study. How‑
ever, the use of training, validation and test sets, and of 5‑fold validation, should have
compensated for this.

In this paper, we did not tackle the question of whether our findings were the result
of neural or volume conduction, or whether they indicated a central frequency‑following
response to peripheral stimulation. Moreover, our analysis did not investigate the EEG
electrode‑specific effects of TEAS, nor, indeed, the effects over different scalp regions. In
addition, we did not explore how EEGmight change during and following TEAS at differ‑
ent frequencies.

Unsupervised DL methods suffer from the problem of interpretability. This was ex‑
acerbated in the present study by communication difficulties between the clinicians and
computer scientists involved, whom all had very different skills, mindsets, interests and
languages. This project provided us all with a challenging and immersive learning experi‑
ence. We hope not too many misinterpretations remain.

5. Conclusions
The application of DL to acupuncture‑related research is a step change in the field and

has the potential to greatly advance our understanding of the mechanisms and effects of
acupuncture, as well as its clinical applications. By leveraging the power of DL algorithms,
researchers can analyse and model large, complex datasets, identify patterns and relation‑
ships in the data that are not easily apparent through traditional statistical methods, and
make predictions about the effects of acupuncture on various physiological responses.

This study is the first of its kind to use artificial intelligence to explore the effects of
TEAS frequencies on EEG. From the published literature, no AI research appears to have
been conducted into the effects on EEG of different frequencies of electroacupuncture‑type
stimulation (whether EA or TEAS), although there are several studies on the effects ofman‑
ual needle rotation frequency from Tianjin University. Additionally, from the published
literature, both WPD and the hybrid CNN‑LSTM model appear to be appropriate meth‑
ods of examining the central (EEG) effects of peripheral stimulation (TEAS). Using these
methods, we found—contrary to expectation—that the greatest differences in EEG from
baseline occurred during 80 pps or the ‘sham’ (160 pps) TEAS applied to the hands), with
a mean kappa of 0.454 and 0.467, respectively, while the smallest differences occurred dur‑
ing 2.5 or 10 pps stimulation (mean kappa: 0.393 and 0.360). On the other hand, when
taking the EEG bands into account, the greatest differences among Slot 1 (baseline)/Slots
2–5 (stimulation)/Slots 6–8 (post‑stimulation) occurred for 2.5 pps TEAS in the Theta, Al‑
pha and Gamma bands, and for 80 pps TEAS in Alpha (mean kappa 0.506). Even higher
values of kappa were obtained from differences among the EEG bands before, during and
after TEAS at different frequencies, but this result was difficult to interpret and explain,
and warrants further exploration in future studies.

Future Directions
There are many potential avenues for further research based on the findings of this

paper. Possible approaches could include conducting additional experiments to confirmor
refute the findings of this study, as well as using different algorithms, different frequencies
of TEAS, or different subject populations. Further research is planned using conventional
methods of EEG analysis, different frequency bands (e.g., narrow bands centred on the
stimulation frequencies), aswell asMLmethods based on careful feature selection, in order
to see if the results obtained here can be replicated or improved—or, indeed, explained.
Such features will include several connectivity (or graph theoretical) measures, including
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those of a source localisationmethod such as sLORETA (standardised low‑resolution brain
electromagnetic tomography), to investigate whether findings are due to neural or volume
conduction, or, indeed, both. Changes over time both during and after stimulation should
also be investigated for different TEAS frequencies. Changes due to volume conduction
effects would only occur during, not after stimulation.

Because of the potentially large number of features that could be examined, auto‑
mated feature selection is an option for use in this further investigation. EEG cordance and
some topological measures have been computed for the current dataset. Although these
results remain unpublished as yet, they may also be useful in guiding feature studies.

Furthermore, particular attention could be paid to entropy measures, whether in the
time, frequency or spatial domain, as well as wavelet‑based entropy using different en‑
tropy estimators, such as discrete wavelet entropy or permutation entropy. These entropy
measures could potentially provide useful insights into the effects of different frequencies
of TEAS on the brain, by quantifying the changes in the degree of disorder or uncertainty
in the EEG signal.

Furthermore, future research protocols (1) could use EEG with a greater numbers of
electrodes, (2) should ensure that ‘sham’ treatment is genuinely sham, and (3) could make
use of furthermethods of data augmentation to strengthen effects. There is therefore scope
for new research, such as that published here, that explores the effects of the frequency of
TEAS on EEG using AI methods, with the most obvious place to start being a hybrid CNN‑
LSTM model. WPD also appears potentially suitable as a feature extraction method that
could be used in conjunction with this type of DL model, if required (although, of course,
one of the advantages of CNN is that feature extraction is performed by the algorithm itself,
without prior handcrafting of features).
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AACP Acupuncture Association of Chartered Physiotherapists
Ac or Acup Acupuncture
Adam Adaptive momentum estimation
AE Auto‑encoder
AI Artificial intelligence
ANN Artificial Neural Network
API Application Programming Interface
AUC Area under the curve
b Bias parameter in a Neural Network
C Complexity
CNN Convolutional Neural Network
CNN‑LSTM Hybrid model
Conv1D 1‑dimensional convolution layer
CPU Central Processing Unit
DA Data augmentation
DBN Deep Belief Network
DL Deep learning
DNN Deep Neural Network
DT Decision tree
DWT Discrete wavelet transform
EA Electroacupuncture
EEG Electroencephalography
FB Frequency band
FCN Fully convolutional network
FFNN Feed‑Forward Neural Network
FFT Fast Fourier transform
GAN Generative adversarial network
GD Gradient descent
GPU Graphics Processing Unit
HBI Human brain indices
ICA Independent Component Analysis
Keras An Application Programming Interface (API)
LDA Linear Discriminant Analysis
LORETA Low‑resolution brain electromagnetic tomography
LR Logistic Regression
LSTM Long Short‑Term Memory
MARA Multiple artifact rejection algorithm
MCC Matthews Correlation Coefficient
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MFNN Multi‑Model Fusion Neural Network
ML Machine Learning
MLP Multilayer Perceptron
MLP‑NN Multilayer Perceptron Neural Network
MR Manual artifact removal
Nadam Nesterov‑accelerated adaptive moment estimation
NN Neural Network
PCA Principal Component Analysis
PPG Photoplethysmography
pps Pulses per second
PSD Power spectral density
RBM Restricted Boltzmann machine
RE Regular entropy
ReLU Rectified linear activation
RF Random forest
RMSprop Root mean square propagation
RNN Recurrent Neural Network
ROC Receiver operating characteristic
SAE Stacked auto‑encoder
SF Stimulation frequency
sLORETA Standardised low‑resolution brain electromagnetic tomography
SMOTE Synthetic minority oversampling technique
SVM Support Vector Machine
SW Sliding window
Tanh Hyperbolic tangent
TEAS Transcutaneous electroacupuncture stimulation
TENS Transcutaneous electrical nerve stimulation
TMS Transcranial magnetic stimulation
TPU Tensor Processing Unit
W Weight parameter in a Neural Network
Wh Recurrent weighting parameter in LSTM
Wx Recurrent weighting parameter in LSTM
WPD Wavelet packet decomposition
WPT Wavelet packet transform
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