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Abstract  

Understanding hierarchical structures and behaviours of polymeric nanocomposites (PNCs) is 

essential to achieve optimum improvement in the properties of PNCs for a wide range of 

applications. To control the process of material synthesis, it is vital to employ computational 

strategies that can accurately predict the properties of candidate materials. Therefore, this 

chapter reviews the computational approaches to predicting the behaviours of PNCs. A general 

approach to modelling the physical and mechanical properties of PNCs in terms of analytical 

and numerical techniques is first presented, with a view to understand modelling approaches at 

different levels of complexities, lengths, and time scales, such as molecular, microscale, 

mesoscale, and macroscale. Then, specific attention is given to multiscale hierarchical 

modelling of PNCs to highlight techniques to bridge the gap between numerical and analytical 

models at different scales. This chapter further considers various aspects of emerging 

applications of single scale and multiscale numerical techniques to nanostructure systems. 

Lastly, it discusses current challenges encountered in the application of computational methods 

to improve the performance of polymeric nanomaterials in line with future prospects, prior to 

the concluding remarks. 

Keywords: Polymeric nanocomposites (PNCs), computational approaches, physical 

properties, mechanical properties, multiscale modelling.  

Nomenclature 

BD Brownian dynamics 

CM continuum mechanics 

CNT carbon nanotube 
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5.0 Introduction 

The emergence of nanocomposites as a new class of materials has triggered interest in their 

development and applications in the last few decades. The unique properties of nanoparticles 

when introduced into continuous polymer matrix have resulted into new phenomena and 

exceptional properties with promising applications in engineering industries, such as 

automotive, packaging, and medical devices. For specific applications, prediction of properties 

is necessary for efficient design and synthesis of new materials. However, the poor 

understanding of fundamental issues bordering on prediction of nanoparticle structure 

(specifically, the effects of nanofiller size and architecture on the nanocomposite morphology), 

dynamics (that is, the effect of nanofillers on the rheological characteristics of the melt), solid-

DFT density functional theory 

DPD dissipative particle dynamics 

EC Equivalent continuum 

EMA effective medium approximation/approach 

FEM finite element method 

HT Halpin-Tsai 

LB lattice Boltzmann 

MC Monte Carlo 

MD molecular dynamics 

MM molecular mechanics  

MMT montmorillonite 

MR material region 

MSFEM multiscale finite element method 

MT Mori-Tanaka 

PDF Probability distribution function 

PEO poly (ethylene oxide) 

PNCs polymeric nanocomposites 

ROM rule of mixtures 

RVE representative volume element 

SERVE statistically equivalent representative volume element 

SVE statistical volume element 

SWCNT single-walled carbon nanotube 



state properties, and processing methods and conditions constitute challenges hindering further 

developments in the field of nanocomposites.  

To a large extent, the quality of dispersion of nanoscale fillers in the polymer matrix 

significantly affects the final properties of polymeric nanocomposites (PNCs), yet it is 

challenging to achieve optimal dispersion of nanoparticles owing to their tendency to form 

nanoparticle aggregates and platelet stacks or due to uncertainties in the properties of 

nanoparticles and dissimilarity between the chemical properties of matrix and nanofillers [1].  

In light of these observations, the experimental approach creates some challenges, which limit 

the ability to characterise the structure and control the process of fabricating PNCs. Therefore, 

for efficient design of polymeric nanocomposite (PNC) materials, predictive tools which can 

sufficiently capture these nanoscale phenomena must be employed to guide material synthesis. 

Fundamentally, predictive models address issues, including thermodynamics and kinetics 

formation of PNCs; the effect of nanoparticles on the polymer rheological behaviour; 

hierarchical features of the structure and dynamics of PNCs from the molecular scale to the 

macroscale; and the reinforcement mechanisms of nanoparticles in PNCs [2]. Furthermore, 

modelling of nanocomposite properties is essential to eliminate the need to synthesise each and 

every composite to determine their properties. Practically, predictive models use realistic 

assumptions that are capable of accurately and efficiently simulating experimental observations 

in the nanoscale to generate information needed for design purposes in the macroscale. From 

the multiscale perspective, computational approach to modelling PNCs involves three 

procedures depending on the structural level [2]: 

▪ Molecular scale methods: These refer to modelling and simulation methods which 

employ atoms, molecules, or their clusters as the basic unit of the simulation cell. Popular 

methods in this category include Monte Carlo (MC) and Molecular dynamics (MD) 

methods. 

▪ Microscale methods: These represent modelling methods which combine the merits of 

molecular and continuum methods to investigate the microscopic structure and phase 

separation of PNCs. Examples in this context include dissipative particle dynamics 

(DPD), dynamic density functional theory (DDFT), lattice Boltzmann (LB), Brownian 

dynamics (BD), and time-dependent Ginzburg-Lanau method. 

▪ Mesoscale and macroscale methods: These are methods which rely on the fundamental 

laws of equilibrium together with the laws of conservation of energy, mass, moment, and 



entropy to describe the mesoscale and macroscopic behaviours of PNC structure 

represented by an equivalent continuum material. Examples include micromechanics, 

finite element method, equivalent-continuum, and self-similar approaches. 

These methods are generally classified into analytical and numerical methods and are 

applicable at different length and time scales and at different levels of complexity. 

 
 

5.1 Analytical methods 

For some simplified structures, analytical models give satisfactory outcomes in terms of 

accuracy, computational efficiency, and predictive capacity. Analytical methods rely on 

micromechanical approach by using a representative volume element (RVE) to statistically 

describe the local continuum properties [1]. In this context, the properties of the nanocomposite 

can be determined based on the properties of the constituents and their volume fractions or 

geometry of the reinforcements and their dispersion characteristics in the matrix. Some 

examples of micromechanical analytical models include the Einstein [3], rule of mixtures, cox 

(shear-lag), Halpin-Tsai, Nielson as well as Mori-Tanaka models [1]. For didactic purpose, this 

chapter will focus on analytical methods for the prediction of mechanical and thermal 

properties of PNCs.  

 

5.1.1 Mechanical Properties 

5.1.1.1 Rule of Mixtures 

Rule of mixtures (ROM) is the simplest approach to predict the properties of composites. The 

basic assumption in this approach is that the properties of composites are dependent on the 

volume fraction of the constituent phases in the composite. Essentially, the properties of the 

filler and matrix constituents are used to estimate the macroscopic properties of composites 

[1]. 

In line with the Voigt’s isostrain assumption, specifically the strain parallel to continuous 

parallel fibre must be equal in both filler and matrix components of the fibre, the longitudinal 

modulus, 𝐸11 of a composite with aligned continuous fillers is expressed as Equation (5.1) [4]. 

𝐸11 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚     (5.1) 



where 𝐸𝑓 and 𝐸𝑚 represent the moduli of fibre and matrix respectively, while 𝑉𝑓 and 𝑉𝑚 denote 

the volume fractions of fibre and matrix respectively. Conversely, the transverse modulus, 𝐸22 

is determined according to Reuss’s assumption in which transverse stress in the filler and the 

matrix is considered to be equal, leading to Equation (5.2) [4]. 

    
1

𝐸22
=

𝑉𝑓

𝐸𝑓
+

𝑉𝑚

𝐸𝑚
      (5.2) 

Similarly, the in-plane shear modulus, 𝐺12 can be derived according to the equal stress 

assumption, that is:  

    
1

𝐺12
=

𝑉𝑓

𝐺𝑓
+

𝑉𝑚

𝐺𝑚
      (5.3) 

where 𝐺𝑓 and 𝐺𝑚 are shear moduli of the fibre and matrix, respectively. In case the matrix is 

filled with randomly distributed fillers, the elastic and shear moduli of the nanocomposite are 

approximated as Equations (5.4) and (5.5), respectively [4]. 

𝐸𝑐 =
3

8
𝐸11 +

5

8
𝐸22      (5.4) 

𝐺𝑐 =
1

8
𝐸11 +

1

4
𝐸22      (5.5) 

It is noted that other properties of the composite can be predicted by the ROM theory as 

summarised and presented in Table 5.1 [1]. 

 

Table 5.1: Rule of mixture formula for property prediction of composite materials 

Property Equation 

Density (𝜌) 𝜌 = 𝜌𝑓𝑉𝑓 + 𝜌𝑚𝑉𝑚 

Average stress (𝜎̅) 𝜎̅ = 𝜎̅𝑓𝑉𝑓 + 𝜎̅𝑚𝑉𝑚 

Average strain (𝜀)̅ 𝜀̅ = 𝜀𝑓̅𝑉𝑓 + 𝜀𝑚̅𝑉𝑚 

Poisson’s ratio (𝜐) 𝜐 = 𝜐𝑓𝑉𝑓 + 𝜐𝑚𝑉𝑚 

Thermal conductivity (𝜅) 𝜅 = 𝜅𝑓𝑉𝑓 + 𝜅𝑚𝑉𝑚 

Thermal expansion coefficient (𝛼) 𝛼 = 𝛼𝑓𝑉𝑓 + 𝛼𝑚𝑉𝑚 

Electrical conductivity (𝜇) 𝜇 = 𝜇𝑓𝑉𝑓 + 𝜇𝑚𝑉𝑚 

Gas diffusivity (𝐷) 𝐷 = 𝐷𝑓𝑉𝑓 + 𝐷𝑚𝑉𝑚 

The subscripts, 𝑓 and 𝑚 refer to filler (fibre) and matrix, respectively. Overbar terms refer to average values.   



 

Due to the isostrain condition, the fibres fail before the matrix reaches its tensile strength. Thus, 

the ROM model is inadequate to predict the strength of unidirectional composites [5]. In 

addition, ROM theory neglects the effect of the filler orientation and size in its estimate, leading 

to inaccuracies in the predictions. 

 

5.1.1.2 Halpin-Tsai Model  

The Halpin-Tsai (HT) model is a semi-empirical method that predicts the stiffness of 

unidirectional composites based on the geometry and the orientation of the filler and the elastic 

properties of filler and matrix. The general form of the longitudinal, 𝐸11 and transverse, 𝐸22 

moduli is expressed as Equation (5.6) [4, 6]. 

𝐸𝑖

𝐸𝑚
=

1+𝜂𝑖𝜉𝑖𝑉𝑓

1−𝜂𝑖𝑉𝑓
       (5.6) 

where 𝜂𝑖 is expressed as [4] 

𝜂𝑖 =
𝐸𝑓 𝐸𝑚⁄ −1

𝐸𝑓 𝐸𝑚⁄ +𝜉𝑖
   𝑖 = 11, 22   (5.7) 

The shear modulus, 𝐺12 can be determined as Equation (5.8) [4]. 

𝐺12

𝐺𝑚
=

1

1−𝜂12𝑉𝑓
       (5.8) 

where 𝜂12 is expressed as [4] 

𝜂12 =
𝐺𝑓 𝐺𝑚⁄ −1

𝐺𝑓 𝐺𝑚⁄
      (5.9) 

In Equations (5.6-5.9), 𝐸𝑓 and 𝐸𝑚 are the Young’s moduli of the filler and the matrix 

respectively, while 𝐺𝑓 and 𝐺𝑚 correspond to the shear moduli of the fibre and matrix, 

respectively. In addition, 𝑉𝑓 is the filler volume fraction and 𝜉 is a geometry parameter, that is 

a measure of reinforcement geometry, packing geometry and loading conditions, and is 

expressed for a rectangular-shaped (for example, platelets or lamellar-shaped) filler in the 

longitudinal and transverse directions, respectively, as: 

𝜉11 =
2𝑙

𝑡
       (5.10) 

𝜉22 =
2𝑤

𝑡
       (5.11) 



where 𝑙, 𝑤 and 𝑡 are the filler length, width, and diameter, respectively. In the case of 

cylindrical-shaped filler with diameter, 𝑑 = 𝑡 = 𝑤, the reinforcement parameters in the 

longitudinal and transverse directions become 𝜉11 =
2𝑙

𝑑
 and 𝜉22 = 2, respectively. The classical 

HT mathematical model is not suitable for composites reinforced with more than one scale of 

reinforcements, for example, composites reinforced with randomly oriented fibres. In this 

regard, the modified HT model for elastic modulus of composite with randomly oriented fibres, 

𝐸𝑐, takes the form of Equation (5.12) [4]. 

𝐸𝑐

𝐸𝑚
=

3

8
(

1+𝜂𝐿𝜉𝑉𝑓

1−𝜂𝐿𝑉𝑓
) +

5

8
(

1+2𝜂𝑇𝑉𝑓

1−𝜂𝑇𝑉𝑓
)    (5.12) 

where 𝜂𝐿 and 𝜂𝑇, respectively, are expressed as [4] 

𝜂𝐿 =
𝐸𝑓 𝐸𝑚⁄ −1

𝐸𝑓 𝐸𝑚⁄ +2𝑙 𝑑⁄
      (5.13) 

𝜂𝑇 =
𝐸𝑓 𝐸𝑚⁄ −1

𝐸𝑓 𝐸𝑚⁄ +2
       (5.14) 

 

5.1.1.3 Mori-Tanaka Model 

The Mori-Tanaka (MT) model is commonly used to model the behaviour of particle reinforced 

composites in which the elastic modulus and the Poisson’s ratio are expressed as Equations 

(5.15) and (5.16), respectively [4]. 

𝐸𝑐 =
9𝐾𝑐𝐺𝑐

3𝐾𝑐+𝐺𝑐
       (5.15) 

𝜈𝑐 =
3𝐾𝑐−2𝐺𝑐

6𝐾𝑐+2𝐺𝑐
       (5.16) 

where 𝐾𝑐 and 𝐺𝑐 are the bulk and shear moduli of the composites respectively, which are further 

expressed as Equations (5.17) and (5.18), respectively [4]. 

   𝐾𝑐 = 𝐾𝑚 +
𝑉𝑓(𝐾𝑓−𝐾𝑚)

1+(1−𝑉𝑓)[3(𝐾𝑓−𝐾𝑚)/(3𝐾𝑚+4𝐺𝑚)]
   (5.17) 

   𝐺𝑐 = 𝐺𝑚 +
𝑉𝑓(𝐺𝑓−𝐺𝑚)

1+(1−𝑉𝑓)[(𝐺𝑓−𝐺𝑚)/(𝐺𝑓+𝑓𝑚)]
    (5.18) 

in which 

𝐾𝑚 =
𝐸𝑚

3(1−2𝑣𝑚)
, 𝐾𝑓 =

𝐸𝑓

3(1−2𝑣𝑓)
, 𝐺𝑚 =

𝐸𝑚

2(1+𝑣𝑚)
, 𝐺𝑓 =

𝐸𝑓

2(1+𝑣𝑓)
,  𝑓𝑚 =

𝐺𝑚(9𝐾𝑚+8𝐺𝑚)

6(𝐾𝑚+2𝐺𝑚)
 



A common phenomenon in particle reinforced composites is the agglomeration of fillers to 

form inclusion-like constituents. In this regard, to predict an elastic field in and around a 

spherical inclusion in an isotropic matrix, a modified MT model which combines MT theory 

with the principle of Eshelby’s inclusion was proposed by Tandon and Weng [7], with 

analytical expression for the longitudinal and transverse moduli, given as Equations (5.19) and 

(5.20), respectively [4]. 

𝐸11

𝐸𝑚
=

𝐴0

𝐴0+𝑉𝑓(𝐴1+2𝑣𝑚𝐴2)
     (5.19) 

𝐸22

𝐸𝑚
=

2𝐴0

2𝐴0+𝑉𝑓[−2𝑣𝑚𝐴3+(1−𝑣𝑚)𝐴4+(1+𝑣𝑚)𝐴0𝐴5]
   (5.20) 

where 𝑣𝑚 represents the Poisson’s ratio of the matrix and the parameters, 𝐴0, … , 𝐴5, which 

depend on the Eshelby’s tensor as well as the properties of the filler and the matrix, are given 

in [7]. 

 

5.1.2 Thermal Properties  

For applications that involve thermal insulation of materials, polymer processing, smart 

coatings, or thermoelectric devices, modelling of thermal conductivity of PNCs is important, 

since the polymer composites may contain pores, metals, carbon materials, ceramics, and 

semiconductors [8]. In general, four approaches can be used to model the effective thermal 

conductivity of PNCs: (i) micromechanical analogy, (ii) effective medium approximation 

(EMA), (iii) numerical methods and (iv) statistical approach. This section focuses on EMA and 

micromechanical analogy since they are analytical-based.  

 

5.1.2.1 Micromechanical Approach 

In the micromechanical approach, thermal conductivity is considered analogous with elastic 

stiffness or elastic shear modulus such that the flux field disturbance becomes analogous to 

stress field disturbance by the dispersed filler. For highly conductive particles, such as carbon 

nanotubes (CNT), the thermal conductivities of the resulting PNC exhibit significant disparity 

with the prediction obtainable by ROM [9]. Reasons for such discrepancies could be 

misalignment of CNTs, waviness of CNT shapes, CNT/matrix interfacial thermal resistance, 

void formation in CNT-based nanocomposites or lattice defects in CNT structure [10]. To 

explore the effect of these factors, thermal conductivity models presented in this section focus 



on CNT-based nanocomposites, but the principle also applies to other highly conductive 

particles. 

Classically, to estimate the axial thermal conductivity of an aligned straight CNT-reinforced 

nanocomposite considering the CNT volume fraction, length, and diameter, micromechanical 

analogy of elastic stiffness is extended to thermal conductivity to produce semi-empirical HT 

formula [11]: 

𝜅 = 𝜅𝑚 (
1+𝛼𝛽𝑉CNT

1−𝛽𝜗𝑉CNT
)      (5.21) 

where the parameters 𝛼, 𝛽 and 𝜗 are expressed in Equations (5.22), (5.23) and (5.24) as: 

    𝛼 =
2𝑙

𝑑
       (5.22) 

    𝛽 =
𝜅CNT 𝐾m⁄ −1

𝜅CNT 𝐾m⁄ +𝛼
     (5.23) 

    𝜗 = 1 + 𝑉CNT (
1−𝜗𝑚

𝜗𝑚
2 )     (5.24) 

where 𝜅m and 𝜅CNT are the thermal conductivities of matrix and CNT, respectively. The terms 

𝑙, 𝑑 and 𝑉CNT denote length, diameter, and volume fraction of the CNT, respectively. It is noted 

that, CNT/polymer interface plays a key role in the prediction of thermal conductivities of 

CNT-based nanocomposite due to large surface area-to-volume ratio of CNTs. For a more 

realistic prediction of thermal conductivity of CNT-based PNC, CNT/polymer interfacial 

thermal resistance, random orientation, CNT alignment, CNT waviness should be accounted 

for, in addition to CNT volume fraction, length and diameter. For example, the effect of 

interfacial thermal resistance can be incorporated into Equation (5.21) by considering the 

effective CNT thermal conductivity, which assumes interfacial thermal barrier as an equivalent 

nanofibre based on the simple rule of mixture [11]: 

     𝜅CNT
eff =

𝜅CNT

1+2𝜅CNT𝑟𝑘 (𝜅m𝐿)⁄
, 𝑟𝑘 = 𝑅𝑘𝜅m  (5.25) 

where 𝑟𝑘 and 𝑅𝑘 are the Kapitza radius and resistance, respectively. In addition, factors for 

CNT alignment, waviness and random orientation can be included in the model through the 

expression [11]: 

    𝛽 =
𝛾𝛿𝜚𝜅CNT 𝜅m⁄ −1

𝛾𝛿𝜚𝜅CNT 𝜅m⁄ +𝛼
,  𝛿 = 1 −

𝐴

𝑊
   (5.26) 



where 𝛾 is the CNT alignment factor, 𝛿 is the waviness efficiency factor and 𝜚 is the orientation 

factor, whereas 𝐴 and 𝑊 are the amplitude and half wavelength of a wavy CNT, respectively. 

In some cases, an aggregated state for CNT into the polymer matrix may be observed, due to 

the PNC fabrication process. Therefore, an aggregation efficiency factor can further be 

included in Equation (5.27) [11]. 

    𝛽 =
𝛾𝛿𝜚𝜑𝜅CNT 𝜅m⁄ −1

𝛾𝛿𝜚𝜑𝜅CNT 𝜅m⁄ +𝛼
,  𝜑 = exp(−𝑉CNT

𝜀 )  (5.27) 

where 𝜀 relates to the CNT aggregation degree, which depends on the fabrication process of 

the CNT-based nanocomposites.  

In general, the choice of micromechanical model for good prediction of thermal conductivity 

depends on the degree of filler loading, nature of interface (specifically, interfacial resistance), 

shape and size of inclusions and filler distribution [10]. Therefore, for accurate thermal 

conductivity predictions, accurate input parameters must be supplied to the analytical models. 

One way to improve the accuracy of the predictions is the combination of numerical and 

analytical approaches. For example, in a study [9], atomistic MD simulations can be used to 

determine the interfacial thermal resistance between the nanoparticles and the polymer 

hydrocarbon chains, while analytical approach is adopted to estimate the thermal conductivity, 

using the calculated resistance from MD simulation. Other examples of analytical models 

which can be applied for specific conditions of filler qualities are presented in Table 5.2. 

Table 5.2: Micromechanical-based thermal models and their applications 

Micromechanical 

model 

Applications Equations  

Benveniste-Miloh 

[12] 

Composites with 

imperfect 

interfaces 

between 

constituents 

Composites with prolate inclusions 

𝜅𝑒,33

𝜅𝑚
= 1 + 𝑉𝑓 (1 +

𝜅𝑓

𝜅𝑚
𝐵1) ℎ(𝜉0) 

𝜅𝑒,11

𝜅𝑚
=

𝜅𝑒,22

𝜅𝑚
= 1 + 𝑉𝑓 (1 +

𝜅𝑓

𝜅𝑚
𝐷1) 𝑔(𝜉0) 

𝜅𝑒 =
2

3
𝜅𝑒,11 +

1

3
𝜅𝑒,33 

𝐵1, 𝐷1, 𝜉0, ℎ and 𝑔 are defined in [10]. 

Composites with spherical inclusions 



𝜅𝑒

𝜅𝑚

=

2𝜅𝑚(1 − 𝑉𝑓) + 𝑟𝛽 [1 + 2𝑉𝑓 +
2𝜅𝑚

𝜅𝑓
(1 − 𝑉𝑓)]

𝜅𝑚(2 + 𝑉𝑓) + 𝑟𝛽 [1 − 𝑉𝑓 +
𝜅𝑚

𝜅𝑓
(2 + 𝑉𝑓)]

 

𝛽 is the interfacial conductance. 

 

Hasselman-Johnson 

[13] 

Composites with 

uniform 

distribution and 

low loading of 

spherical 

inclusions 

𝜅𝑒

𝜅𝑚
=

2𝑉𝑓 (
𝜅𝑓

𝜅𝑚
−

𝜅𝑓

𝑟ℎ
− 1) +

𝜅𝑓

𝜅𝑚
+

2𝜅𝑓

𝑟ℎ
+ 2

𝑉𝑓 (1 −
𝜅𝑓

𝜅𝑚
+

𝜅𝑓

𝑟ℎ
) +

𝜅𝑓

𝜅𝑚
+

2𝜅𝑓

𝑟ℎ
+ 2

 

𝑟 is the radius of the sphere and ℎ is the 

interfacial conductance. 

 

5.1.2.2 Effective Medium Approach 

In the effective medium approach (EMA), thermal conductivity is methodologically similar to 

electrical conductivity in terms of physical transport property. Therefore, the effective thermal 

resistance of PNCs can be estimated analogously to electrical resistance in which series and 

parallel arrangement can be derived, as shown in Figure 5.1. Theoretical assumptions in the 

derivation of the series and parallel models involve: (i) perfect interface between two phases 

in contact and (ii) independent contribution of the phases to the overall thermal resistance and 

conductance.  

 

Figure 5.1: (a) Series and (b) parallel models [8]. 

 



In the case of series model, thermal resistance, 𝑅, is considered additive since the temperature 

drop along the heat flux direction is additive, that is [8]: 

    
1

𝜅𝑒
=

1

𝐿
∑ 𝑅𝑖𝑖 = ∑

𝑉𝑓𝑖

𝜅𝑖
𝑖   ,     (5.28) 

where 𝑅𝑖 =
𝐿𝑖

𝜅𝑖
 and 𝑉𝑓𝑖

=
𝐿𝑖

𝐿
, 𝜅𝑒 is the overall thermal conductivity and 𝐿 is the distance that 

the heat flux flows along. 𝑉𝑓𝑖
 is the volume fraction of nanofiller 𝑖. In case of parallel model, 

the effective thermal conductivity takes the form of Equation (5.29) [8]. 

    𝜅𝑒 = ∑ 𝑉𝑓𝑖
𝜅𝑖𝑖  .       (5.29) 

Although the series model is suitable for laminated composites along the stacking direction, it 

underestimates the thermal conductivity of particulate composites as it ignores interaction 

between the fillers. On the other hand, the parallel model applies readily well to continuous-

filled composites along the fibre direction but overestimates the prediction of thermal 

conductivity of other types of composites. Consequently, the series and parallel models 

represent, respectively, the lower bound and upper bound for effective thermal conductivity of 

polymer-based composites. For PNCs, a more realistic prediction of thermal conductivity 

should account for randomness of particulate inclusions, interfacial thermal resistance of the 

matrix-particle blend, nanocomposites with multiphase components, and inclusion shape 

effect. For this purpose, a summary of improved thermal conductivity models for PNCs within 

EMA framework is provided in Table 5.3.  

Table 5.3: EMA analytical models and their applications 

EMA 

Model 

Applications Expression 

Russel 

[14] 

Composites with 

discrete pores 

dispersed in the 

matrix. 

𝜅𝑒

𝜅𝑚
=

𝑉
𝑓

2
3⁄

+
𝜅𝑚

𝜅𝑓
(1 − 𝑉

𝑓

2
3⁄

)

𝑉
𝑓

2
3⁄

− 𝑉𝑓 +
𝜅𝑚

𝜅𝑓
(1 + 𝑉𝑓 − 𝑉

𝑓

2
3⁄

)
 

𝜅𝑚 is the thermal conductivity of continuous matrix 

phase. 

 

Tsao [15] Composites with 

particulate 

inclusions. 

1

𝜅𝑒
= ∫

d𝑓1

𝜅𝑚+(𝜅𝑓−𝜅𝑚) ∫
1

𝜎√2𝜋
𝑒−0.5(

𝑓1−𝜇

𝜎
)

2
d𝑓1

1
𝑓1

1

0
  

𝑓1 is the one-dimensional porosity, 𝜇 is the mean of 𝑓1 

and 𝜎 is the standard deviation. 

 



Cheng 

and 

Vachon 

[16] 

Composites with 

particulate 

inclusions. 

For 𝜅𝑓 > 𝜅𝑚 
1

𝜅𝑒
=

1

√𝐶(𝜅𝑓−𝜅𝑚)[𝜅𝑚+𝐵(𝜅𝑓−𝜅𝑚)]
ln

√𝜅𝑚+𝐵(𝜅𝑓−𝜅𝑚)+
𝐵

2
𝐶(𝜅𝑓−𝜅𝑚)

√𝜅𝑚+𝐵(𝜅𝑓−𝜅𝑚)−
𝐵

2
𝐶(𝜅𝑓−𝜅𝑚)

+

1−𝐵

𝜅𝑚
  

For 𝜅𝑓 < 𝜅𝑚 

1

𝜅𝑒
=

2

√−𝐶(𝜅𝑓−𝜅𝑚)[𝜅𝑚+𝐵(𝜅𝑓−𝜅𝑚)]
tan−1 √

−𝐶(𝜅𝑓−𝜅𝑚)

𝜅𝑚+𝐵(𝜅𝑓−𝜅𝑚)
+

1−𝐵

𝜅𝑚
  

𝐵 = (3𝑉𝑓 2⁄ )
1

2⁄
, 𝐶 = −4 𝐵⁄ . 

 

Maxwell 

[17] 

Composites with: (i) 

spherical inclusions, 

(ii) very low filler 

loading (𝑓), (iii), 

good dispersion, and 

(iv) no interfacial 

thermal resistance. 

 

𝜅𝑒

𝜅𝑚
= 1 + 3𝑉𝑓

𝜅𝑓 − 𝜅𝑚

2𝜅𝑚 + 𝜅𝑓 − 𝑓(𝜅𝑓 − 𝜅𝑚)
 

Fricke 

[18] 

Composites with: (i) 

arbitrarily shaped 

inclusions, (ii) very 

low filler loading 

(𝑓), (iii) good 

dispersion, and (iv) 

no interfacial 

thermal resistance. 

 

𝜅𝑒 = 𝜅𝑚 +
2𝑉𝑓

3(1 − 𝑉𝑓)
∑

𝜅𝑓 − 𝜅

2 − 𝑎𝑏𝑐𝐿𝑖 (1 −
𝜅𝑓

𝜅𝑚
)

𝑎,𝑏,𝑐

𝑖

 

where 𝐿𝑖 = ∫
d𝑡

(𝑖2+𝑡)√(𝑎2+𝑡)(𝑏2+𝑡)(𝑐2+𝑡)

∞

0
 

𝑎, 𝑏 and 𝑐 are the three major axes of an ellipsoidal 

inclusion. 

Hamilton-

Crosser 

[19] 

Multiphase 

composites. 𝜅𝑒

𝜅𝑚
=

1 + ∑
𝑉𝑓𝑖𝑖

(𝑛𝑖 − 1)(𝜅𝑖 − 𝜅𝑚)

𝜅𝑖 + (𝑛𝑖 − 1)𝜅𝑚

𝑚
𝑖=2

1 − ∑
𝑉𝑓𝑖𝑖

(𝜅𝑖 − 𝜅𝑚)

𝜅𝑖 + (𝑛𝑖 − 1)𝜅𝑚

𝑚
𝑖=2

 

where 𝑛 = 3/Ψ, Ψ being the sphericity defined as the 

ratio of the surface area of a sphere to the surface area 

of the particle. 𝑚 represents the number of phases in 

the composite. 

 



Hashin-

Lin-

Wong [8, 

20] 

Particulate 

composites. 
2 [2 + 𝑐′ +

𝜅𝑓

𝜅𝑚

(1 − 𝑐′)] (
𝜅𝑒

𝜅𝑚
)

2

− [2(1 + 2𝑐′) +
𝜅𝑓

𝜅𝑚

(1 − 4𝑐′)

+ 9 (
𝜅𝑓

𝜅𝑚
− 1) 𝑓]

𝜅𝑒

𝜅𝑚

− [2(1 − 𝑐′) +
𝜅𝑓

𝜅𝑚

(1 + 2𝑐′)] = 0 

where 𝑐′ =
𝑎3

(𝑎+𝑙𝑘)3, 𝑙𝑘 = 𝑅𝑘𝜅𝑚, 𝑅𝑘 being the 

interfacial resistance. 

 

 

5.2 Numerical Methods 

Due to significant scale difference between the components of nanocomposites, direct use of 

micromechanical analytical models may lead to loss of accuracy in the predictions. Numerical 

method provides accurate predictions of the properties of PNCs based on realistic physical 

assumptions of the system. Practically, the choice of numerical method to investigate 

thermodynamics and kinetic properties, mechanical properties and interfacial molecular 

structure of nanocomposites depends on the length and time scales of interest. For this reason, 

numerical modelling of PNCs will be discussed under three headings, namely: Molecular, 

microscale and mesoscale/macroscale (continuum) approaches. 

 

5.2.1 Molecular Scale Methods 

Molecular scale methods (Figure 5.2) deal with interactions of atoms, molecules, or their 

clusters as basic units. The most popular techniques in this framework include molecular 

dynamics (MD), Monte Carlo (MC) and molecular mechanics (MM). In general, predicting the 

behaviour of PNC at this scale relies on thermodynamics and kinetics of the formation, 

molecular structure, and interactions.  



 

Figure 5.2: Molecular scale methods [2]. 

5.2.1.1 Molecular Dynamics  

Molecular dynamics (MD) is suitable to investigate the effect of fillers on polymer structures 

and the effect of polymer-filler interactions on the materials properties of polymer composites. 

In this context, MD is used to predict the physical properties and time evolution of system of 

interacting particles, such as atoms and molecules [21,22]. Such information as atomic 

positions, velocities and forces are easily generated by MD, leading to derivation of 

macroscopic properties, such as heat capacities, pressure, and energy. Classical MD simulation 

is realised based on three components. Firstly, the initial positions and velocities of particles in 

a volume are defined. Secondly, the intermolecular or interatomic potential energy functions 

are defined. Finally, the evolution of the system in time is determined by solving Newton’s 

equation of motion, given by Equation (5.30) [23]. 

     ∑ 𝐹⃗𝑖𝑗
𝑛
𝑖 = 𝑚𝑗

d𝑟𝑗

d𝑡2,    (5.30) 

where 𝐹⃗𝑖𝑗 is the force exerted on the 𝑗th particle by the 𝑖th neighbouring particle at time 𝑡, while 

𝑚𝑗 and 𝑟𝑗 are the mass and position of 𝑗th particle respectively, and 𝑛 is the number of 

neighbouring particles. To complete an MD simulation, proper consideration must be given to 



the choice of interatomic potentials, periodic boundary conditions, numerical integration 

scheme as well as pressure and temperature control to idealise meaningful thermodynamic set 

up [2]. The interactive forces between particles are calculated from interatomic potential energy 

function, which depends on the particle position, 𝑟. Examples of methods that are used to 

determine the interactive force field include quantum method, empirical or quantum-empirical 

method. Typically, for an isolated system with 𝑛 particles, the total energy, 𝐸 can be expressed 

as the Hamiltonian Equation (5.31) [23]. 

E = 𝐻 = ∑
𝑝⃗𝑖

2

2𝑚𝑖

𝑛
𝑖 + 𝑈.    (5.31) 

The first term in Equation (5.31) is the kinetic energy of the particles, where 𝑝⃗𝑖 represents the 

momentum of particle, 𝑖, whereas 𝑈 is the potential energy, due to interatomic interactions. 

The interatomic potential, 𝑈 depends on the nature of bonding among atoms. In this regard, 

different functions have been developed to characterise these bonds. Common examples of 

potential energy functions include: 

▪ Lennard-Jones Potential [23]: 

𝑈(𝑟) = 𝜅𝜀 [(
𝜎

𝑟
)

𝑛
− (

𝜎

𝑟
)

𝑚
],    (5.32) 

where 𝜅 =
𝑛

𝑛−𝑚
(

𝑛

𝑚
)

𝑚

𝑛−𝑚
, 𝜀 and 𝜎 are positive constants, while 𝑚 and 𝑛 are positive integers. 

 

▪ Moorse Potential [23]: 

𝑈(𝑟) = Φ(𝑟) = 𝐷[𝑒−2𝛼(𝑟−𝑟0) − 2𝑒−𝛼(𝑟−𝑟0)], (5.33) 

where 𝐷 and 𝛼 are constants and 𝑟0is the equilibrium distance between two atoms. 

 

▪ Embedded Atom Potential [23] 

 𝑈tot = ∑ 𝐸𝑒(𝜌𝑖)𝑖 +
1

2
∑ 𝜙𝑖𝑗(𝑟)𝑖,𝑗(𝑖≠𝑗) ,  (5.34) 

in which 𝜌𝑖 is the electron density of atom 𝑖, 𝐸𝑒 is the embedding function, and 𝜙𝑖𝑗 is the pair 

potential between particles 𝑖 and 𝑗. 

The force is related to the energy function through Equation (5.35) [23]. 

     𝐹⃗𝑗 = 𝑚𝑗𝑎𝑗 = −
dE

d𝑟𝑗
= −

d𝑈

d𝑟𝑗
.   (5.35) 



in which 𝑎𝑗 =
d𝑟𝑗

d𝑡2.  

In a case where molecular interaction is involved, a pair potential is not sufficient to capture 

the particle interaction, since molecules are characterised by covalent bonds [2]. In this case, 

apart from energy change due to change of bond length (Ebond), force field contributions arising 

from energy changes associated with a change in the bond angle (Eangle), molecular rotations 

(Etorsion), out-of-plane interactions between molecules (Eoop), other types of interaction energies 

(Enonbond) or cross terms between other interaction terms (Ecross) may be significant. Therefore, 

the total energy of a molecule is expressed as Equation (5.36) [2]. 

   E = Ebond + Eangle + Etorsion + Eoop + Enonbond + Ecross (5.36) 

In relation to Equation (5.35), the velocities are calculated from the accelerations while the 

positions are calculated from the velocities, using: 

     𝑎𝑗 =
d𝑣𝑗

d𝑡
     (5.37) 

     𝑣𝑗 =
d𝑟𝑗

d𝑡
     (5.38) 

 

5.2.1.1.1 Time Integration 

In MD simulations, the motion of a particle is evaluated over a large number of time-steps. 

Therefore, a robust integration scheme which minimises accumulated error during the 

simulation is required to solve the system of differential equations. Examples of techniques 

commonly employed include Verlet algorithm, Leap-frog algorithm, Velocity verlet, Beeman’s 

algorithm, Symplectic reversible integrators and Gear predictor-corrector method [23, 24]. The 

general criteria for choosing an algorithm include [24]: 

▪ Computational efficiency. 

▪ Accuracy for long time step integration. 

▪ Conservation of energy and momentum. 

▪ Time-reversibility, that is, the system should go back to the original state, when 𝛿𝑡 →

−𝛿𝑡. 

The Gear method [23] is explained here, due to its versatility. The Gear method uses prediction, 

evaluation, and correction steps to determine the particle position.  

 



▪ Prediction Step 

The particle position and its derivatives at time, 𝑡 + ∆𝑡 are predicted using a truncated 

Taylor series in reference to the values of the position and its derivatives at time, 𝑡. The 

predicted position and its time-derivative are mathematically expressed as Equations 

(5.39)-(5.42) [23]: 

𝑟𝑗
𝑝(𝑡 + ∆𝑡) = 𝑟𝑗(𝑡) + 𝑟̇𝑗(𝑡)∆𝑡 + 𝑟̈𝑗(𝑡)

(∆𝑡)2

2!
+ 𝑟𝑗(𝑡)

(∆𝑡)3

3!
   (5.39) 

𝑟̇𝑗
𝑝(𝑡 + ∆𝑡) = 𝑟̇𝑗(𝑡) + 𝑟̈𝑗(𝑡)∆𝑡 + 𝑟𝑗(𝑡)

(∆𝑡)2

2!
     (5.40) 

   𝑟̈𝑗
𝑝(𝑡 + ∆𝑡) = 𝑟̈𝑗(𝑡) + 𝑟𝑗(𝑡)∆𝑡                 (5.41) 

   𝑟𝑗
𝑝(𝑡 + ∆𝑡) = 𝑟𝑗(𝑡)       (5.42) 

The superimposed dot in Equations (5.39)-(5.42) represents temporal derivatives of the 

position of the corresponding order, while the superscript, 𝑝 stands for the predicted value. 

 

▪ Evaluation Step 

The interatomic force at time, 𝑡 + ∆𝑡 is calculated, using the predicted value of the position, 

𝑟𝑗
𝑝
 [23]: 

     𝐹⃗𝑗 = 𝑚𝑗𝑎𝑗 = −
d𝑈(𝑟𝑗

𝑝
)

d𝑟𝑗
𝑝       (5.43) 

 

▪ Correction Step 

The discrepancy between the predicted value of the acceleration, 𝑟̈𝑗
𝑝

 and the evaluated value 

according to Equation (5.43), ∆𝑟̈𝑗, is used to correct the predicted values of the position and 

its derivatives, as shown in Equation (5.44) [23]. 

   ∆𝑟̈𝑗 = [𝑟̈𝑗(𝑡 + ∆𝑡) − 𝑟̈𝑗
𝑝(𝑡 + ∆𝑡)]      (5.44) 

where 𝑟̈𝑗(𝑡 + ∆𝑡) is the acceleration obtained from Equation (5.43). The corrected position 

and its derivatives are then expressed as follows [23]: 

 𝑟𝑗
𝑐(𝑡 + ∆𝑡) = 𝑟𝑗

𝑝(𝑡 + ∆𝑡) +
3

32
∆𝑟̈𝑗(∆𝑡)2      (5.45) 



𝑟̇𝑗
𝑐(𝑡 + ∆𝑡) = 𝑟̇𝑗

𝑝(𝑡 + ∆𝑡) +
251

720
∆𝑟̈𝑗(∆𝑡)2      (5.46) 

𝑟̈𝑗
𝑐(𝑡 + ∆𝑡) = 𝑟̈𝑗

𝑝(𝑡 + ∆𝑡) + ∆𝑟̈𝑗                  (5.47) 

𝑟𝑗
𝑐(𝑡 + ∆𝑡) = 𝑟𝑗

𝑝(𝑡 + ∆𝑡) +
11

6

∆𝑟̈𝑗

∆𝑡
                  (5.48) 

Temperature and pressure control scheme is required in MD simulation, therefore 

appropriate thermostat algorithm is typically included to re-scale the velocities of the 

particles such that unrealistic fluctuations of the kinetic energy are suppressed. The 

Berendsen thermostat [24] is a popular scheme that roughly yields correct canonical 

ensemble for large systems.  

 

5.2.1.2 Monte Carlo 

Monte Carlo (MC) is a stochastic method, which relies on random sampling to compute the 

properties of a system. In the context of PNCs, MC techniques are suitable to investigate 

molecular response of nanoparticles under the influence of various factors. These factors 

include, but are not limited to, number of variables bounded to different constraints, accuracy 

of input parameters and constraints [2]. Unlike deterministic models including MD, MC 

models take into account risks associated with variation of input parameters. Typically, a 

statistical distribution is used as the source for each of the input parameters, followed by 

drawing random samples from each distribution to serve as the input variables. Then, output 

parameters corresponding to different input parameters are collected from a number of runs for 

statistical analysis and decision making. Summarily, to model a physical process, MC 

technique uses four steps [25]:  

▪ Static model generation – a deterministic model characterising the real scenario is 

developed, using the most likely value of the input parameters. 

▪ Input distribution identification – the deterministic model is translated into analogous 

statistical model based on stochastic nature of the input variables. Precisely, historical 

data of the input variables is used to identify the underlying distributions.  

▪ Random variable generation – in this step, the statistical model generated from different 

input distributions is solved by numerical stochastic sampling experiment. 

▪ Analysis and decision making – the sample of output variables collected from the 

simulation is statistically analysed to provide information for decision making.  



 

Considering a canonical (NVT)a ensemble with 𝑁 atoms at temperature  𝑇, a new configuration 

for an atom is formed by arbitrarily translating the atom position from point 𝑖 to 𝑗, in which the 

change in Hamiltonian, 𝐻 is computed as Equation (5.49) [2]. 

∆𝐻 = 𝐻𝑗 − 𝐻𝑖                (5.49) 

where 𝐻𝑖 and 𝐻𝑗 are Hamiltonian corresponding to positions 𝑖 and 𝑗, respectively. The new 

atomic configuration is accepted, depending on the direction of ∆𝐻, which reduces the energy 

of the system. Typically, the new configuration is accepted if: 

     {
∆𝐻 < 0                                                 
∆𝐻 ≥ 0   subject to probability 𝑝 

              (5.50) 

in which 𝑝 is given by Equation (5.51) [2]. 

     𝑝 ∝ exp (−
∆𝐻

𝑘𝐵𝑇
)               (5.51) 

where 𝑘𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature of the particle.  

According to [1], the new configuration may be accepted subject to: 

     𝜍 ≤ exp (−
∆𝐻

𝑘𝐵𝑇
)              (5.52) 

where 𝜍 is a random number between 0 and 1, that is, 0 < 𝜍 < 1. In case Equation (5.52) is not 

satisfied, the new configuration is rejected, and the original position is retained. The process is 

then repeated for other arbitrarily selected atoms until equilibrium is attained. 

Notea: NVT ensemble is a system whose internal states are controlled by thermodynamic variable (for example, 

absolute temperature, 𝑇) and mechanical variables (for example, number of particles, 𝑁 and volume of system, 

𝑉). 

 

5.2.2 Microscale Methods 

Microscale techniques are aimed at combining the merits of molecular scale and macroscale 

(continuum) methods, while avoiding their disadvantages. Therefore, microscale method is 

suitable to study the microscopic structure and phase separation of PNCs. In these methods, 

the polymer is characterised with a field representing microscopic particles in which molecular 

details are implicitly embedded. This approach is computationally beneficial given that the 



behaviour of nanoparticles can be simulated on length and time scales, which is inaccessible 

by molecular scale methods. 

5.2.2.1 Lattice Boltzmann Method 

Lattice Boltzmann (LB) method is popular for efficient simulation of fluid flow, and it has been 

adopted for investigating phase separation of binary fluids in the presence of solid particles. 

One of the major advantages of LB method is the convenience to incorporate microscopic 

physical interactions of the fluid particles into the numerical model [2]. Therefore, it is possible 

to couple LB method with molecular scale method, such as MD. The main disadvantage of LB 

method is the numerical instability of the simulation, which may be associated with high 

interparticle interaction strength or high forcing rate. 

LB technique involves a collection of fictitious particles, residing on the nodes of regular shape 

lattices, interacting according to simple rules. To describe a particle occupation in LB method, 

a distribution function of particle velocity along 𝑖 direction, 𝑛𝑖(𝑥, 𝑡)(𝑖 = 1, … , 𝑁) is defined, 

where 𝑁 denotes the number of directions of the particle velocities at each node, and the 

evolution rule for updating lattice site occupation by the particles in a given time step is defined 

based on the discrete velocity model for a multicomponent (𝑐 = 1, … , 𝑀) flow [24]: 

 𝑓𝑖
𝑐(𝑥 + 𝑒𝑖𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓𝑖

𝑐(𝑥, 𝑡) + Ω𝑖(𝑓𝑖
𝑐(𝑥, 𝑡))   𝑖 = 1, … , 𝑁,                   (5.53) 

where 𝑡 is the time, 𝑒𝑖 is the discrete velocity vector in 𝑖 direction, and Ω𝑖 is the collision 

operator in 𝑖 direction representing changes, due to pairwise collisions. In LB method, at each 

time step, particles at each lattice points move to the nearest nodal points in the lattice in 

accordance with the direction of velocity (a process called streaming). Then, interaction of 

particles occurs, leading to change in the velocity directions of the particles (a process called 

collision or redistribution). A typical lattice structure is defined by the problem dimension, d 

and the number of lattice vectors, 𝑛𝑣 and is compactly represented as DdQ𝑛𝑣. For example, 

Figure 5.3 depicts the discretised 2D with nine velocity vectors. 



 

Figure 5.3: Nine velocity vectors of D2Q9 lattice [23]. 

 

To characterise the pairwise collision, the collision operator can be expressed in different ways. 

For example, a simple operator in the form of linear Bhatnagar-Gross-Krook, which uses single 

relaxation time is expressed as Equation (5.54) [24]. 

Ω𝑖 = −
1

𝜏𝑐 (𝑓𝑖
𝑐 − 𝑓𝑖

𝑐,𝑒𝑞
)                          (5.54) 

where 𝑓𝑖
𝑐,𝑒𝑞

 corresponds to local equilibrium distribution function of 𝑓𝑖
𝑐 and 𝜏𝑐 is the viscosity-

related dimensionless collision relaxation time of component 𝑐 of the fluid (polymer). The 

relaxation parameter is related to the fluid kinematic viscosity of fluid component 𝑐, 𝑣𝑐, 

through Equation (5.55) [24]. 

𝜏𝑐 =
𝑣𝑐

𝑠2 +
1

2
                            (5.55) 

where 𝑠 = 1 √3⁄  is the lattice speed for unit spacing lattice structure.  

In some applications, where stability issues are encountered due to fixed Prandtl number 

associated with single-relaxation collision operator, the multiple-relaxation collision operator 

is preferred. Multiple-relaxation collision technique is suitable for varying kinematic and bulk 

viscosities and incorporates mechanisms for improved stability of the simulation. 



5.2.2.2 Brownian Dynamics 

Brownian dynamics (BD) technique allows simulation of particles on the microsecond 

timescale, whereas MD technique permits particle simulation up to a few nanoseconds. Unlike 

in MD where there is explicit description of solvent molecules, in BD an implicit description 

of solvent particles is applied in a continuum sense while ignoring internal motions of the 

molecules. The objective of the BD technique is achieved by accounting for the effect of 

solvent molecules on the polymer through dissipative and random force terms so that the 

governing equation of motion becomes Equation (5.56) [2]. 

    𝐹𝑖(𝑡) = ∑ 𝐹𝑖𝑗 − 𝛼𝜇𝑖 + 𝛽𝜏𝑖(𝑡)𝑛
𝑖≠𝑗 ,             (5.56) 

Equation (5.56) is the Langevin equation, where 𝐹𝑖𝑗 is the force applied by particle, 𝑗 on particle 

𝑖, 𝛼 and 𝛽 are system-dependent constants, 𝜇𝑖 is the momentum of particle, 𝑖, and 𝜏𝑖 is a 

Gaussian random noise term. The approximation in Equation (5.56) leads to fluctuating forces 

such that energy and momentum are no longer conserved. Since Equation (5.56) does not obey 

the Navier-Stokes equations, BD method is only suitable to simulate the diffusion properties 

but cannot reproduce the hydrodynamic flow properties of the system.  

 

5.2.2.3 Dissipative Particle Dynamics 

Dissipative particle dynamics (DPD) is a particle-based method, such as MD and BD 

techniques and is suitable for both Newtonian and non-Newtonian fluids on microscopic length 

and time scales. The basic unit of DPD is a molecular assembly (representing a particle) which 

is characterised by its mass, 𝑚𝑖, position, 𝑟𝑖 and momentum, 𝜇𝑖. The force describing the 

interactions between two DPD particles may be expressed as a sum of the conservative, 𝐹𝑖𝑗
𝐶, 

dissipative, 𝐹𝑖𝑗
𝐷 and random, 𝐹𝑖𝑗

𝑅 forces given in Equation (5.58) as [2]: 

    𝐹𝑖𝑗 = 𝐹𝑖𝑗
𝐶 + 𝐹𝑖𝑗

𝐷 + 𝐹𝑖𝑗
𝑅,               (5.57) 

The total force, 𝐹𝑖 acting on a particle, 𝑖 at time, 𝑡 is given in Equation (5.58) [2]. 

    𝐹𝑖 = ∑ 𝐹𝑖𝑗
𝐶 + 𝐹𝑖𝑗

𝐷 + 𝐹𝑖𝑗
𝑅

𝑗≠𝑖 ,            (5.58) 

According to Equation (5.58), the macroscopic behaviour of DPD particles incorporates 

Navier-Stokes hydrodynamics, due to conservation of momentum. In comparison with MD, 

larger time steps are allowed in DPD simulation and hydrodynamic equilibrium is attained in 

DPD system with far fewer particles.   



5.2.3 Mesoscale and Macroscopic Methods 

Notwithstanding the importance of molecular scale and microscale modelling, molecular 

properties of PNCs can be homogenised macroscopically according to different scales. As a 

result, in the macroscopic scale, the discrete atomic and molecular structure is ignored while 

continuity of material distributed throughout the control volume is adopted. The basis of 

macroscopic scale methods lies in the compliance with fundamental laws of continuity, 

equilibrium, momentum, conservation of energy and conservation of entropy [2]. By 

employing appropriate constitutive relations and equation of state, the macroscale method 

measures the deformation of a continuum as a result of external forces by the resulting internal 

stresses and strains.  

 

5.2.3.1 Micromechanics Approach 

Micromechanics approach relies on the development of RVE to characterise local continuum 

properties, since the uniformity of continuum may not hold at the macroscopic scale (Figure 

5.4). The RVE is periodically arranged in consistent with the smallest constituent that 

significantly affects the macroscopic behaviour. Therefore, micromechanics approach can 

assess discontinuities and interfacial profile of different constituents in a continuum. In 

addition, micromechanics approach allows for coupling between mechanical and non-

mechanical properties. In the context of PNCs, micromechanics methods tend to satisfy the 

following basic assumptions [2]: 

▪ Linear elasticity of fillers and polymer matrix: This assumption suggests that a linear 

relationship exists between the total stress, 𝝈 and the infinitesimal strain tensors, 𝜺 for 

the matrix and nanophase constituents, using: 

𝝈𝑓 = 𝑪𝑓𝜺𝑓                      (5.59) 

𝝈𝑚 = 𝑪𝑚𝜺𝑚                      (5.60) 

where 𝑪𝑚 and 𝑪𝑓 are the stiffness tensors for the matrix and fillers, respectively. 

 

▪ Axisymmetric shape of fillers that are defined by aspect ratio: Since the local stress and 

strains are non-uniform throughout the PNC continuum, volume average stress and 

strain resultants are defined over the representative averaging volume, 𝑉, as: 

𝝈̅ =
1

𝑉
∫ 𝝈(𝑥)d𝑉

𝑉
                    (5.61) 



𝜺̅ =
1

𝑉
∫ 𝜺(𝑥)d𝑉

𝑉
                                  (5.62) 

The equivalent average stress and strain tensors of the fillers and matrix are expressed 

as: 

𝝈̅𝑐 =
1

𝑉𝑐 ∫ 𝝈(𝑥)d𝑉
𝑉𝑐                      (5.63) 

𝜺̅𝑐 =
1

𝑉𝑐 ∫ 𝜺(𝑥)d𝑉
𝑉𝑐                      (5.64) 

where 𝑐 denotes the filler, 𝑓 or polymer matrix, 𝑚 component. On this basis, the total 

average stress and strain are related to the filler and matrix averages according to 

𝝈̅ = 𝑣𝑓𝝈̅𝑓 + 𝑣𝑚𝝈̅𝑚                                (5.65) 

𝜺̅ = 𝑣𝑓𝜺̅𝑓 + 𝑣𝑚𝜺̅𝑚                                   (5.66) 

 

▪ Perfect bond between fillers and polymer matrix: The average properties of composite 

stiffness, 𝑪 relate the average stress to the average strain tensors according to 

𝝈̅ = 𝑪𝜺̅                      (5.67) 

 in which 𝑪 is related to the filler and matrix stiffness tensors according to 

    𝑪 = 𝑪𝑚 + 𝑣𝑓(𝑪𝑓 − 𝑪𝑚)𝑨. 

where 𝑨 is the strain concentration tensor, defined as the ratio between the average filler 

strain 𝜺̅𝑓 and the average strain 𝜺̅, is given as 

𝜺̅𝑓 = 𝑨𝜺̅                                     (5.68) 

 

5.2.3.2 Equivalent-Continuum Approach 

Classical micromechanics approach lacks the capacity to simulate the behaviours of nanotube-

reinforced composites, due to significant scale difference. The equivalent-continuum (EC) 

approach, proposed in [26], is a multiscale approach, which incorporates molecular, 

microscopic and continuum scales to model nanotube-reinforced composites, such as single-

walled carbon nanotube (SWCNT) composites.   

In the first stage of EC simulation, the equilibrium structure of the polymer composite is 

generated with MD technique in which the potential energy of the SWCNT-polymer composite 

system is defined according to MD principles. Then, an equivalent-truss model is used to 



construct the RVE, where each truss element represents an atomic interaction and each pin-

joint of the truss corresponds to an atom in the molecular model (Figure 5.4).  

 

Figure 5.4: Representative volume elements of computational model at different length scale 

[2]. 

 

Therefore, the equivalent-truss model represents the intermediate link between MD and EC 

systems. By equating the potential energy of the effective fibre, 𝑈𝑓 with the potential energies 

of MD and equivalent-truss models, 𝑈𝑀𝐷 and 𝑈𝑡, respectively, the relationship between the 

elastic stiffness tensor of the effective fibre and the force constants of the MD system can be 

established as Equation (5.69) [2]. 

𝑈𝑓 = 𝑈𝑀𝐷 = 𝑈𝑡      (5.69) 

By applying a set of loading conditions to Equation (5.69), the components of the elastic 

stiffness tensor of the effective fibre can be determined. Then, based on the mechanical 

properties of the effective fibre and the bulk polymer, the general constitutive properties of the 

SWCNT-based PNC can be determined, using appropriate micromechanics model, such as MT 

and HT models [2].  



5.2.3.3 Finite Element Method 

Finite element method (FEM) is a numerical method developed to approximate solution of 

differential equations. FEM relies on the generation of mesh to idealise a structure and capture 

the response under complex loading, material, and geometric conditions. The procedure for the 

implementation of FEM starts with the replacement of the continuum with finite elements 

constituting subdomains of the continuum. Finite elements are defined by shape functions, 

which is used to transform the element topology and approximate state variables at the element 

nodes. Appropriate constitutive laws are then selected to define the relationship between strain 

and stress fields, followed by application of the variational principle to describe the strain 

energy of the problem over each finite element. The total elastic energy in the continuum 

model, neglecting traction and body forces, is given by the sum of potential and kinetic energies 

[2]: 

     𝑈 = 𝑈𝑝 + 𝑈𝑘     (5.70) 

where 𝑈𝑝 denotes the potential energy expressed in the sample volume of the continuum and 

is given by Equation (5.71). 

     𝑈𝑝 =
1

2
∫ 𝜺T𝑪𝜺dV,    (5.71) 

in which 𝜺 represents the strain tensor, while 𝑪 is the elastic stiffness tensor. The kinetic energy 

in the sample volume is denoted as 𝑈𝑘 and is expressed as: 

     𝑈𝑘 = ∫ 𝜌
𝜕2𝒖

𝜕𝑡2 dV    (5.72) 

By replacing the continuum state variables in Equations (5.71) and (5.72) with discrete 

variables defined by set of shape functions, system of elemental equations is formed and 

subsequently assembled to form the global system of equations. The global system is 

numerically solved to determine the unknown state variables, which are consequently used to 

compute the stresses and strains of the PNC structure.  

 

5.2.4 Multiscale Modelling 

One of the main goals of simulation of PNCs is the accurate prediction of their hierarchical 

structures and properties. Towards enhancing the properties of PNCs for high-technology 

applications, structural characterisation, and precise manipulation of the fabrication of the 

nanostructured materials must be achieved. This implies that the nanocomposite structure as 



well as physical and chemical processes at the nanoscale level significantly influence the final 

properties of PNCs. Therefore, an adaptable modelling strategy is required to explore the 

design of PNC materials for optimised performance.  

Prediction of PNC behaviour based on application of analytical and numerical models at 

different independent scales is challenging considering length scales up to six orders of 

magnitudes or time scales spanning a dozen orders of magnitude (Figure 5.5), thus impeding 

the simulation efficiency [8]. Given this reality, it is impracticable for a single model to explore 

these length and time scales. Multiscale modelling is a practical way to bridge different length 

and time scales via combined computational methods that can simulate fundamental molecular 

processes and seamlessly transfer numerical parameters efficiently across wide scales to 

satisfactorily predict macroscale properties. In this context, two multiscale approaches that 

span from molecular to macroscopic levels are known as sequential and concurrent methods, 

as subsequently elucidated: 

▪ Sequential Multiscale Method: This involves linking of hierarchical computational 

methods in a manner that allows the computation of operative parameters of a model on 

large scale from the calculated quantities obtained at a lower scale of the model [2]. 

Example of simulation tools designed to perform sequential multiscale modelling is OCTA 

developed by Doi [27]. OCTA relies on multiple simulation engines to facilitate modelling 

of polymers from molecular scale up to the mesoscale. 

▪ Concurrent Approach: This uses a combination of several computational methods linked 

together to bridge different scales of material behaviour concurrently [2]. Although this 

approach is computationally promising, considering the potential for seamless interaction 

between different scales of material behaviour, the method is in its early stage of 

development and thus, it has a limited application. 



 

Figure 5.5: Hierarchical settings of PNC structure in time and length dimensions [2]. 

 

Over the years, varieties of computational methods have been developed to efficiently capture 

phenomena at each length and time scale. For example, Quantum mechanics methods are 

available to simulate systems containing atoms, while MD or MC methods are suitable for 

capturing material properties at atomic level. At the mesoscale level, BD or DPD approaches 

are examples of methods relevant to investigate mesoscale properties of polymer-based 

materials, while FEM possesses excellent potential to capture macroscopic properties of the 

system. The goal of multiscale modelling is to exploit the individual capacities of these 

methods, beginning from the quantum scale all the way to the process scale to predict the 

macroscopic properties of an engineering system of interest. Fundamentally, the key 

ingredients to construct a successful multiscale modelling are: (i) information about the basic 

processes that control the system at the lower scales and (ii) reliable strategies to link the 

degrees of freedom from the lower scale to the coarser scale [8]. 

In the context of polymer-based nanocomposites, the coarsening process at the lower scale, for 

example from QM to MD, is based on fundamental principles and can be generalised. However, 

the larger range of length and time scales that define the macromolecules constitutes specific 

challenges that complicate coarsening process at higher scales. As a result, scale integration in 

the specific context of PNCs can be achieved in different ways. At the lower scale, scale 



integration is based on force field application that retrieves information from the quantum 

chemistry to the atomistic model. At the mesoscale level, essential features of the atomistic 

systems must be preserved structurally or thermodynamically, or both [28]. Finally, the most 

challenging aspect toward practical design application of material is linking to the mesoscale 

in which the microstructural features of PNCs are described to predict the property at the 

macroscopic level.  

As an example of hierarchical multiscale computational process, montmorillonite (MMT)/poly 

(ethylene oxide) (PEO) - based PNC was investigated [29] to determine the effect of PEO 

molecular weight and the presence of water molecules on the interactions between polymer 

and clay platelets. Firstly, atomistic MD simulation of PEO-based PNC was carried out in a 

solvated environment to retrieve energetical (binding energy) and structural (interaction energy 

and chain conformation) information at the molecular level [30]. Then, the mesoscale property 

prediction was achieved by adopting the DPD approach in which the data gathered at the 

atomistic scale were projected to the corresponding energetical and structural information 

required to set up a coarse-grained mesoscale simulation. The mesoscale simulation produced 

information on the morphologies and density distribution of the system, which served as basic 

inputs to finite element simulation that was used to predict the property of the system at the 

macroscale level. 

 

5.2.4.1 Stochastic Multiscale Approach  

The random dispersion of reinforcing phases in PNCs significantly affects the microstructural 

properties which in turn influence the macroscopic behaviours. Other issues affecting the 

microstructural behaviours of PNCs include the size, orientation, and shape of the nanophases. 

Given these challenges, there is limited control in the manufacturing of tailored PNC materials, 

leading to uncertainties in the actual mechanical properties of the PNC constituents. In the 

context of modelling, critical experimental information may be omitted in the assumptions and 

approximations used to develop the PNC model. Besides, in the case of mixing phases that 

span multiple structural length scale, the load transfer mechanisms between the polymer matrix 

and nanophases are multiscale in nature. Consequently, the mechanical properties of PNCs are 

uncertain and substantial disparities may occur between experimentally measured mechanical 

properties and predictions by analytical or numerical calculations [31, 32]. To incorporate the 

spatial randomness induced by the nonuniform distribution of constituent phases in polymers, 

multiscale stochastic finite element method (MSFEM) has been proposed [33]. In MSFEM, the 



PNC is assumed to constitute a random heterogeneous media, due to random behaviours and 

uncertainties in the overall material behaviours. On this basis, a multiscale micromechanical 

approach is used to homogenise the system to obtain the estimates of local mechanical 

properties. This step is followed by Monte Carlo finite element scheme, which uses the local 

properties as inputs to compute the bulk properties of the PNC. 

The procedure required to implement MSFEM can be summarised into four steps [33]: 

▪ Definition of material region: A RVE that structurally captures the whole mixture on 

average and encapsulates sufficient number of inclusions is firstly defined. Other types of 

representative material regions include statistical volume element (SVE) [34] or 

statistically equivalent RVE (SERVE) [35], which incorporate separation of scale, have 

been proposed. According to [35], SERVE is suitable to compute local mechanical 

properties, as dictated by the actual randomness induced by the non-uniform dispersion of 

nanophase constituents in the PNC microstructure.  

▪ Identification of spatial randomness: To capture heterogeneities, which induce 

randomness in the PNC structure, MSFEM statistically quantifies the variations of the 

volume fractions of nanophase constituents. The relative concentration of the nanophase 

constituents in the material region are assumed to be equivalent to the total amount of 

nanofillers in the PNC. According to Figure 5.6, variations observed in the volume fraction 

values of SWCNT are captured at the grid of material points in the material region through 

creation of a random field based on probability distribution functions [33]. 

 

Figure 5.6: (a) Material region (MR), (b) material points with random CNT volume 

fraction (c) discretised random field for variation of SWCNT in polymers [33]. 

 



▪ Homogenisation of multiscale properties: MSFEM determines the local properties of the 

PNC at the sub-element level of the material region (Figure 5.7). In MSFEM, 

homogenisation process is performed in two stages based on MT method to determine the 

stiffness tensor of homogenised spherical inclusions (IN) and the modified matrix (MM) 

in each FE in the material region. A two-phase media, which comprises a modified matrix 

and spherical inclusions, is adopted [36] to determine the effect of SWCNT dispersion and 

agglomeration on the mechanical properties of CNT-based PNC.  

 

 

Figure 5.7: (a) Sub-element material structure in a finite element and (b) RVE 

homogenisation procedure [33]. 

 

▪ Monte Carlo finite element model: MSFEM determines the overall mechanical properties 

of the PNC system by numerically solving elasticity problem in line with conventional FE 

principles, except that the constitutive parameters are random values obtained according 

to Monte Carlo method.  

 

5.3. Computational Approach to PNC Property Predictions 

5.3.1 Stiffness and Strength 

The analytical and numerical models describe above can be used to predict mechanical 

properties, such as strength and stiffness (elastic modulus), which are significantly influenced 

by the PNC filler size and polymer configuration [1]. In this context, extended 

micromechanical models have been adopted to predict the properties of PNCs [37,38]. For 

example, micromechanical-based MT model has been combined with the probability 

distribution function (PDF) of the Doi-Hess hydrodynamic theory to predict the effective 

elastic properties of stationary and flow-induced nanorod-based PNC [37]. Considering a 



perfect bonding arrangement between inclusions and matrix, an effective stiffness tensor which 

is valid for any volume fraction was derived according to the MT theory. The symmetry 

regarding the orientational distributions of the effective stiffness tensor of nano-rod composites 

are inherited from probability distribution functions (PDFs). The volume fraction dependent 

effective moduli can be consequently determined by implementing the MT formula using 

numerical databases for the PDFs [37]. 

Micromechanical models have also been used to predict the mechanical properties of nanotube-

based PNC containing complex inclusions, where the Eshelby’s equivalent tensor is combined 

with MT type model having two aspect ratios to evaluate the longitudinal and shear moduli 

[38]. Given the constitutive equations for inclusion and matrix materials (see Equations 5.59-

5.66), the volume-average stresses and strains were determined through integration of non-

uniform local quantities over a large volume of the material filled with inclusions. The effective 

moduli of the PNC are eventually evaluated in terms of the average stresses and strains [38]. 

Moreover, to predict the interfacial strength of SWCNT-based PNC, a modified Kelly-Tyson 

approach (continuum-based method) has been proposed under the assumption of uniform 

interfacial shear and axial normal stresses [39]. The continuum mechanics approach, often 

combined with suitable micromechanical method, is another strategy to predict the mechanical 

properties of PNCs.  

In the aspect of numerical methods, Mokashi et al. [40] proposed a procedure based on 

molecular mechanics approach to obtain the tensile properties (specifically both elastic 

modulus and strength) of PNC, in which the atomic structure of the polymer matrix is first 

generated in the simulation cell using computer algorithm, and relaxed to an equilibrium 

configuration whose parameters are recorded [40]. Then, the atomic structure of the nanofillers 

(for example, SWCNT) are generated and the coordinates merged with the polymer structure. 

Tensile boundary and loading conditions, similar to mechanical testing, are applied to the atoms 

at the boundaries of the simulation cell of the nanocomposite system. In each step of the 

incremental longitudinal displacement, the system is relaxed to an energetically stable state and 

this process is repeated until the polymer chains fracture. The tensile strength is determined 

from the total force, along the direction of the incremental displacement, acting on the 

boundary atoms per unit area of the cross-section.  

A multiscale strategy comprising FEM approach and micromechanical method (for example, 

MT method) has been extensively explored to predict the elastic properties of wavy or 



randomly oriented nanotube-based PNCs and silica nanoparticle-based PNC [41-43]. To 

investigate the effect of characteristic waviness of nanotubes embedded in polymers on the 

effective stiffness of nanotube-reinforced polymers, a 3D FEM model was used to numerically 

compute dilute strain concentration tensor. Thereafter, the concentration tensor was used to 

predict the effective modulus of the PNC with aligned or randomly oriented inclusions based 

on MT theory [42]. It is noted that for accurate prediction with this approach, especially in the 

case of high particle loading, it is important to account for the properties of the interface 

between matrix and the particles. In terms of accuracy of the FEM-micromechanical approach, 

fibre volume fraction is a significant factor to be considered when predicting stiffness 

properties of PNCs. For PNC with low fibre volume fraction, MT method can accurately 

predict the stiffness of PNC [44]. Above a critical volume fraction, FEM-based models possess 

superior accuracy over MT micromechanical models, especially when handling complex fibre-

polymer interactions.  

 

5.3.2 Stress Transfer 

The mechanical properties of PNC with high disparity in the modulus of its constituents 

(polymer and nanoparticles) are strongly influenced by stress-transfer mechanism. This is the 

case for clay/polymer nanocomposites, where clay nanoparticles exhibit much higher modulus 

than the polymer matrices, and there is presence of large interfacial area between the thin 

nanoclay platelets and the polymer. Therefore, due to the dominant role of the interfacial 

properties, stress transfer mechanism between rigid nanoparticles and the polymer plays 

significant role in the modulus and strength properties [45].  

Characterising the interfacial properties of PNCs is an effective way to determine the level of 

stress or load transfer (interfacial adhesion). This can be achieved using MD [46], molecular 

mechanics (MM) [47], continuum mechanics (CM) [48], or analytical approach [45]. 

Essentially, the interfacial shear stress is calculated based on the conditions of perfect or 

imperfect bonding, which determine the reinforcing efficiency of the fillers. Perfect bonding is 

a simple assumption that can lead to over-prediction of the mechanical properties, since the 

aspect ratio and volume fraction may be overestimated. Nonetheless, for certain PNCs, such as 

nanoclay-based types, complete adhesion can be achieved at low concentration of clay platelets 

and a perfect bonding assumption can be justified. Under imperfect bonding condition, which 

applies for many PNCs, there is incomplete stress transfer at the polymer-filler interface, 

necessitating the estimation of effective parameters for the calculation of mechanical 



parameters. For example, to determine the modulus of PNC under imperfect bonding condition, 

the effective aspect ratio and effective volume fraction must be calculated to enhance the 

accuracy of the prediction [45]. 

MD simulation has proved effective for estimating the shear strength and critical length 

required to enhance the load transfer capacity of nanotube-based composite [46]. The model 

system comprises a SWCNT embedded into a crystalline or amorphous matrix and subjected 

to a periodic boundary condition. In addition, the intramolecular interactions in the nanotube, 

polymer chains and cross-links are characterised by many-body potential function which 

allows the formation of chemical bonds between the nanotube and polymer matrix. The non-

bonded interactions are captured by Lennard-Jones potentials. The polymer-nanotube system 

was equilibrated using MD simulation to create zero initial stress state. In the next step, further 

MD simulation was carried out with a uniform one-body force added to the atoms that comprise 

the nanotubes to determine the minimum shear strength required to pull the nanotube through 

the polymer matrices (i.e., crystalline, and amorphous). The shear strength, 𝜏𝑐, is estimated as 

the total force at which the centre mass of the nanotube began to move freely independent of 

the matrix. Finally, the critical length of nanotube that guarantees strong load transfer is 

estimated from 𝜏𝑐 as [46]: 

     𝑙𝑐 =
𝜎𝑓d𝑓

𝜏𝑐
     (5.73) 

where 𝜎𝑓 represents the fibre tensile strength and d𝑓 denotes the fibre diameter. 

 

5.3.3 Fatigue and fracture 

Studies have demonstrated that, without compromising the stiffness, nanoparticles have the 

ability to improve the fatigue resistance of polymer nanocomposites through crack-bridging 

and a frictional pull-out mechanism [1]. To determine the fatigue response of PNC, a good 

model should capture different mechanisms responsible for fatigue resistance, which include 

crack pinning, fibre bridging, crack tip deflection and particle debonding (fibre pull-out). The 

dominating mechanism depends on the nature of polymer-nanofiller mix. Fibre pull-out is the 

main mechanism of fatigue failure in CNT-based nanocomposites. A fracture mechanics model 

was proposed in [49] to determine the effective stress intensity factor amplitude to propagate 

crack in CNT-based PNC, under the assumption that the crack-opening displacement at a 

distance behind the crack tip equals the pull-out length, leading to Equation (5.74), 



∆𝐾1
eff = √∆𝐾1

2 −
2𝐺𝜌𝑤𝑐

(1−𝑣)𝛽
,    (5.74) 

where ∆𝐾1 is the stress intensity factor amplitude in the absence of bridging, 𝑤𝑐 is the work 

required to pull out a single nanotube, 𝜌 is the number density of CNT penetrating the plane of 

the crack and 𝛽 (𝛽 > 1) is a parameter accounting for the number of fibres contributing to 

toughening, since not all fibres penetrating crack plane participate in the bridging process. 

 

Modelling of fracture in PNC is motivated by the fact that cracking is accompanied by bridging 

action of nanofillers, such as CNT [50]. Basically, in the idealisation of crack bridging, it is 

assumed that embedded nanotubes in a polymer matrix align perpendicular to the crack front 

in the matrix to provide resistance to crack propagation (Figure 5.8). In this context, the 

objective of fracture modelling in PNC is to relate the fracture energy of PNC to the nanoscale 

mechanical properties of the nanotube and the nanotube-polymer interface. Analytically, 

cohesive zone model is an effective approach to characterise the fracture properties of 

nanotube-polymer interface, as applied in [50], where a shear opening model was derived based 

on cohesive zone potential leading to Equation (5.75). 

    𝐹max =
4𝜋

√2𝑒
𝑅𝐿

Γ𝐼

𝛿𝑐𝑟
      (5.75) 

where 𝐹max represents the maximum force at which shear opening occurs at the interface, 𝑅 

and 𝐿 are the nanotube outer radius and embedded length, respectively, Γ𝐼 is the intrinsic 

fracture energy of the interface, and 𝛿𝑐𝑟 is the critical crack opening displacement of the 

interface. According to [50], a good model for fracture energy should be able to correctly 

quantify the contribution of interfacial adhesion between the nanotube and polymer, and at 

high velocities of nanotube pull-out, viscous dissipation of the polymer up to the time of pull-

out must be accounted for, as the pull-out force is dependent on the velocity.  

 



  

Figure 5.8: Schematic of crack bridging mechanism of carbon nanotube [50]. 

 

In general, to describe yielding or fracture behaviour of nanocomposites, detail atomistic 

observations involving chemical bond breaking must be accounted for [51]. Therefore, 

application of macroscopic or continuum modelling is limited in this context. For 

nanocomposites with hollow or filled nanotubes or nanowires, whose shapes resemble 

macroscopic thin-walled hollow columns or tubes, failure criteria can be described analogously 

to macroscopic conditions. As such, a multiscale approach may be an effective means to 

characterise fracture in these nanocomposites, considering the computational efficiency of 

macroscale methods and accuracy of atomistic modelling. An example of multiscale method, 

which combined continuum mechanics with molecular dynamics to describe atomistic 

prediction of failure in CNT-based nanocomposites has been presented in [51].   

A CNT system under biaxial tensile-torsional loads was modelled using MD technique in 

which short covalent interactions are characterised with the aid of many-body and reactive 

empirical bond-order (REBO) potentials. Moreover, long range van der Waals interactions are 

captured in the form of Lennard-Jones potential. The CNT system, which is fixed at one end 

and subjected to applied biaxial tension-torsion at the other end, is subjected to incremental 

load to obtain the load paths (Figure 5.9). The stresses experienced by the CNTs were 

calculated by continuum mechanics approach which considers the CNTs as geometrically 

equivalent to macroscopic thin-walled columns or tubes. The calculated stresses are finally 

transformed to the principal stresses to determine the failure criteria. 



 

 

 

 

 

 

 

Figure 5.9: Loading paths for MD simulations of CNT under biaxial tension-torsion for 

different combinations of tension/torsion ratio (R𝐿) [51]. 

 

In particle-filled nanocomposites, depending on the nature of load, fracture may occur inter-

grain in the embedding matrix. In such case, a method that provides quantum mechanical 

description of the interactions is suggested to study the onset of fracture accurately, as 

demonstrated in [52], where tight-binding MD method was used to investigate the fracture 

properties of tetrahedral amorphous carbon and nanodiamond-filled composites. 

 

5.3.4 Creep  

Modelling creep behaviour of materials is important, because creep failure occurs at a stress 

lower than the yielding stress of the material. Since creep is a time-dependent plastic 

deformation over a long period of loading (Figure 5.10), viscoelasticity of the polymer matrix 

plays an important role and hence must be considered. Classically, the viscoelastic creep model 

known as Burgers model (or four-element model) and empirical model named Findley model 

have been widely applied to PNCs [53]. However, these models are limited in application, 

considering the effect of elastic properties of nanocomposite constituents. Based on the 

principle of elastic-viscoelastic correspondence, an empirical formula for the creep strain of 

nanocomposites was proposed in [54] as 

   𝜀nc(𝑡, 𝜎̅, 𝑇) =
𝜎̅

f(𝐸𝑓,(𝑆mexp
(𝑡,𝜎̅,𝑇)(

𝑆mexp(𝑡0,𝜎̅,𝑇)

𝑆mexp(𝑡,𝜎̅,𝑇)
)

(𝑉𝑓𝑘𝑐)

),𝑉𝑓,𝑟𝑒)

  (5.76) 



where 𝑆mexp
 represents the time-varying creep stiffness of the pure matrix, 𝜎̅ is applied stress 

and 𝑇 is the temperature. In addition, 𝑟𝑒 is the exfoliation ratio, 𝐸𝑓 is the elastic modulus of the 

nanofiller, while 𝑘𝑐 represents the constraint factor which accounts for constraints imposed by 

the nanofillers on the movement of long chains and the molecule of the polymer.   

In terms of micromechanical approach, a realistic prediction of the creep performance of 

nanotube-based composites must consider the elastic properties of the nanotube, the 

viscoelastic attributes of the interface and the state of dispersion of the nanotubes in the 

polymer matrix [55]. In some cases, due to fabrication processes of the nanocomposites, it is 

essential to incorporate CNT agglomeration phenomena, such that the representative 

nanocomposite system is constituted by two fields: (i) pure matrix without CNT and (ii) 

spherical inclusions containing CNT and rest of the matrix material (Figure 5.11). In this way, 

the elastic stiffness of the randomly dispersed CNT-reinforced polymer nanocomposite can be 

described by the Eshelby principle [55]. Subsequently, the nanocomposite creep function is 

related to the CNT-polymer nanocomposite elastic stiffness tensor in the transform domain 

based on simplified unit cell model.   

 

Figure 5.10: Creep mechanism in PNC [54]. 



 

Figure 5.11: Representative system for CNT-based nanocomposites [54]. 

 

5.4 Challenges and Future Prospects 

Simulating the behaviours of polymeric nanocomposites is a complex task which requires good 

understanding of nanoparticle structure (specifically, the effects of nanofiller size and 

architecture on the nanocomposite morphology), dynamics (that is, the effect of nanofiller on 

the rheological characteristics of the melt), solid-state properties, and processing methods and 

conditions. In addition, achieving optimal dispersion of nanoparticles in PNC is challenging 

owing to the tendency of nanophase constituents to form nanoparticle aggregates and platelet 

stacks or due to uncertainties in the properties of nanoparticles and dissimilarity between the 

chemical properties of matrix and nanofillers. In this context, theoretical models for PNC need 

to capture different phenomena based on realistic assumption to generate accurate predictions. 

Considering the structure of a PNC system with length scales up to six orders of magnitudes 

or time scales spanning a dozen orders of magnitude, application of analytical and numerical 

models at different independent scales is limited. This limitation is due to the impracticability 

of a single model to explore the wide length scales and time scales structurally and efficiently. 

As a result, modelling of PNCs demands bridging of different length and time scales through 

combined computational methods that can simulate fundamental molecular processes and 

seamlessly transfer numerical parameters efficiently across wide scales to satisfactorily predict 

bulk properties of PNC structures. 

It is important to elucidate that availability, reliability and accuracy of experimental data are 

challenges that significantly influence the performance of theoretical models for prediction of 

PNC behaviours. These challenges increase with the advent of more innovative PNCs through 



introduction of new bio-nanofillers and/or nanoparticles, especially from agricultural wastes. 

Therefore, robust computational schemes, with capabilities for design, optimisation, and 

characterisation, are required to adequately explore the merits of PNC materials for enhanced 

engineering applications. As the challenges in the field of PNCs evolve rapidly within the 

thriving field of composite science and technology, especially in the next decade, 

computational modelling of PNCs will remain one of the most active fields in the nearest 

future. 

 

5.5 Concluding Remarks 

Various theoretical models and methods/approaches have been extensively described with 

respect to the computational approaches to PNCs within this comprehensive chapter. It is 

evident that nanoparticles improve both properties and applications of several PNCs. From the 

multiscale perspective, computational modelling of PNCs involves three approaches, 

depending on the structural levels: molecular, micro and meso/macroscale. These approaches 

are generally classified into analytical and numerical methods. In addition, these approaches 

are applicable at different length, time scales and levels of complexity. Towards enhancing the 

properties of PNCs for high-technology applications, structural characterisation, and precise 

manipulation of the fabrication of the nanostructured materials must be achieved. This implies 

that the nanocomposite structure as well as physical and chemical processes at the nanoscale 

level must be correctly characterised to control the final properties of PNCs. In this context, 

adaptable modelling strategies (using analytical and numerical computational tools) combined 

with advanced experimental techniques are required to effectively explore the design of PNC 

structures for optimised performances. 
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