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ABSTRACT

The Hubble Frontier Fields represent the opportunity to probe the high-redshift evolution of the main sequence of star-forming
galaxies to lower masses than possible in blank fields thanks to foreground lensing of massive galaxy clusters. We use the
BEAGLE SED-fitting code to derive stellar masses, M, = log(M /M), SFRs, ¥ = log(1/ /Mg yr~'), and redshifts from galaxies
within the ASTRODEEP catalogue. We fit a fully Bayesian hierarchical model of the main sequence over 1.25 < z < 6 of the form
U = ay7(2) + BM, — 9.7) + N(0, o) while explicitly modelling the outlier distribution. The redshift-dependent intercept at
M, = 9.7 is parametrized as a9 7(z) = log[N(1 + z)¥' ] 4+ 0.7. Our results agree with an increase in normalization of the main
sequence to high redshifts that follows the redshift-dependent rate of accretion of gas on to dark matter haloes with y = 2.40%01%.
We measure a slope and intrinsic scatter of 8 = 0.79700 and o = 0.267)03. We find that the sampling of the SED provided
by the combination of filters (Hubble + ground-based Ks-band + Spitzer 3.6 and 4.5 ;um) is insufficient to constrain M, and W
over the full dynamic range of the observed main sequence, even at the lowest redshifts studied. While this filter set represents
the best current sampling of high-redshift galaxy SEDs out to z > 3, measurements of the main sequence to low masses and
high redshifts still strongly depend on priors employed in SED fitting (as well as other fitting assumptions). Future data sets with
JWST should improve this.

Key words: methods: data analysis —methods: statistical — galaxies: evolution — galaxies: formation — galaxies: high-redshift—

galaxies: star formation.

1 INTRODUCTION

The relationship between star formation rate (SFR) and stellar mass
of ‘normal’ star-forming galaxies has been well-studied and is often
referred to as the ‘star-forming main sequence’ (originally labelled
as such by Noeske et al. 2007). For masses less than log(M /My) <
10.1, the main sequence is commonly parametrized as a straight line
while at higher masses there is evidence for a redshift-dependent
turn-over (Whitaker et al. 2014; Lee et al. 2015; Schreiber et al.
2015; Tasca et al. 2015; Tomczak et al. 2016; Leslie et al. 2020;
Leja et al. 2021). ALMA observations suggest that the resolved
main sequence is a by-product of two more physically connected
relations; that between stellar mass and molecular gas densities, and
that between the molecular gas and SFR densities (Lin et al. 2019;
Baker et al. 2022). However, direct measurements of the molecular
gas reservoir are unfeasible for large samples at high redshifts, and
measurements of the main sequence remain relevant as we move into
the James Webb Space Telescope (JWST) era.

* E-mail: 1s861 @cam.ac.uk
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Speagle et al. (2014) provide a thorough review of a compilation of
25 studies of the star-forming main sequence. They show that many of
the discrepancies between measurements of slope and normalization
can be resolved once two primary issues have been corrected for: the
method chosen to select star-forming galaxies and the method used
to calculate SFR (e.g. from emission lines, rest-frame ultra-violet
continuum, spectral-energy distribution fitting). Having calibrated
the results within the literature, Speagle et al. (2014) report that both
the slope (~0.4—0.8) and normalization (~2 orders of magnitude)
increase from redshift O to 4, whilst the intrinsic scatter remains
relatively constant (~0.2 dex).

In recent years, much work has been done to constrain the star-
forming main sequence at higher redshifts (Steinhardt et al. 2014;
Salmon et al. 2015; Santini et al. 2017; Pearson et al. 2018; Thorne
etal. 2021; Bhatawdekar & Conselice 2021). Steinhardt et al. (2014)
show that for massive galaxies (> 10'My) the main sequence
extends to at least z = 6. Salmon et al. (2015) use multiwavelength
photometry to determine an almost constant main-sequence relation,
though with mildly increasing normalization, between 3.5 < z < 6.5.
They study samples chosen at constant number density spanning the
redshift range to link progenitor galaxies, finding evidence for rising
star formation histories (SFHs) in these objects. Bhatawdekar &
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Conselice (2021) push the redshift boundary even further providing
evidence of a main sequence between 6 < z < 9.

There has also been significant efforts to constrain the lower mass
end of the main sequence. Tasca et al. (2015) analyse a sample
of star-forming galaxies from the VIMOS (VIsible Multi-Object
Spectrograph) Ultra-Deep Survey (VUDS; Le Fevre et al. 2015)
with confirmed spectroscopic redshifts ranging from 0 < z < 6.
Their results confirm that the main sequence extends to masses as
low as 10’ M, for 0.0 < z < 0.7. Boogaard et al. (2018) use the
deepest MUSE (Multi Unit Spectroscopic Explorer) observations
of the Hubble Ultra Deep Field and the Hubble Deep Field South
to similarly constrain the low mass end of the main sequence
for redshifts 0.11 < z < 0.91. Santini et al. (2017) exploit the
gravitational lensing of large foreground clusters to probe the main
sequence to masses as low as 107> Mg, for z < 4 and 108° M, for 4
<z<6.

The specific SFR (sSFR) is defined as SFR divided by stellar mass
and gives a measure of the current star formation activity compared to
the integrated past history. At a fixed mass, sSFR is analogous to the
normalization of the main sequence. If the SFR closely follows the
evolution of the mass accretion rate on to parent haloes, the sSFR will
be expected to vary with redshift as o (1 4+ z)>?> (Birnboim, Dekel &
Neistein 2007; Neistein & Dekel 2008; Dekel et al. 2009; Fakhouri,
Ma & Boylan-Kolchin 2010). The semi-analytic model of Dutton,
van den Bosch & Dekel (2010) predicts such evolution in sSFR, as
do hydrodynamical simulations (Furlong et al. 2015; Donnari et al.
2019a). For z 2 3, observational studies appear to agree with the
predictions (Koprowski et al. 2014, 2016; Marmol-Queralté et al.
2016; Santini et al. 2017).

The recent work of Leja et al. (2021) provides a new framework
to derive the main sequence from the density of objects in the mass-
SFER plane. They fit to objects in the 3D-HST (Skelton et al. 2014)
and COSMOS-2015 (Laigle et al. 2016) catalogues with a non-
parametric star formation history (Leja et al. 2019a), finding lower
normalization of the main sequence by ~0.2—0.5 dex over 0.2 < z <
3. This lower normalization resolves a tension between observations
and cosmological simulations such as EAGLE (Furlong et al. 2015)
and Illustris-TNG (Donnari et al. 2019a).

Speagle et al. (2014) and Katsianis et al. (2020) have demonstrated
how sensitive the determination of the main sequence is to the
measurement of SFR, while Leja et al. (2021) demonstrates how
sensitive it can be to the chosen SFH. The latest SED fitting
codes (e.g. MAGPHYS, da Cunha, Charlot & Elbaz 2008; BEAGLE,
Chevallard & Charlot 2016; PROSPECTOR, Leja et al. 2017; Johnson
et al. 2021; CIGALE, Boquien et al. 2019; Yang et al. 2020; BAGPIPES,
Carnall et al. 2018; BAYESED, Han & Han 2012, 2014, 2019; Dense
Basis Iyer & Gawiser 2017; Iyer et al. 2019; PROSPECT, Robotham
etal. 2020)' are able to constrain a variety of physical parameters per
galaxy including SFHs, dust attenuation, metallicities, and nebular
emission, all of which can have a large impact on the derived masses
and SFRs. However, the level at which certain properties can be
constrained is sensitively dependent on the available data set, as
demonstrated in Curtis-Lake et al. (2021, hereafter CL21). They find
that the emission-line contribution to rest-frame optical broad-band
photometry at high redshifts (z ~ 5 in that study) leads to poorly
constrained, biased SFR and stellar mass estimates whereas medium-
band filters can significantly improve the constraints. Current data
sets probing high redshifts do not have access to medium-band filters

Isee http://www.sedfitting.org/Fitting.html for more codes, as well as Pacifici
et al. (in preparation).
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spanning the rest-frame optical. In fact, beyond z ~ 4, there are only
two main filters probing the rest-frame optical; the 3.6 and 4.5-pum
bands of the Spitzer space telescope.

One primary advantage of the latest SED fitting codes is the
derivation of robust uncertainties on the derived parameters. How-
ever, incorporating these complex, often co-varying uncertainties
in population-wide studies require methods beyond standard linear
regression which some studies have been addressing. Kurczynski
et al. (2016) perform sigma-clipping to determine what objects are
on the main sequence. They account for co-varying uncertainties by
modelling the mass-SFR constraints as single, bivariate Gaussians
while fitting to the main sequence in redshift bins. Boogaard et al.
(2018) fit a hyperplane in stellar mass, SFR and redshift, self-
consistently taking account of the uncertainties using the method
of Robotham & Obreschkow (2015), which models a Gaussian
scatter perpendicular to the main sequence. Their sample consists of
emission-line selected galaxies from a MUSE survey, so star-forming
galaxy selection is based on emission-line properties. Santini et al.
(2017) and Pearson et al. (2018) forward model the main sequence
before comparing to observations within redshift bins. Leja et al.
(2021) use an innovative normalizing flow to measure the density
in mass-SFR-redshift, defining the main sequence as the ridge in
this space in order to avoid parametrizing the main sequence and
outlier distributions separately. They sample from the individual
object posterior probability distributions to marginalize over the
uncertainties in mass and SFR.

CL21 suggest a Bayesian hierarchical method to model the main
sequence. With this work, we extend their approach to include
redshift dependence as well as an explicit model to account for
outliers. We re-visit the Hubble Frontier Fields, studied by Santini
et al. (2017), using the ASTRODEEP catalogues to probe to lower
masses and higher redshifts than achievable in blank fields, in order
to provide constraints on the low-mass end of the main sequence
over a wide redshift range from a consistent data set. We re-visit
this data set with self-consistent SFR and mass constraints derived
with BEAGLE and fit a fully Bayesian hierarchical, redshift-dependent
model of the low-mass, linear portion of the main sequence. We
investigate the limitations of this data set with respect to constraining
mass and SFR of individual galaxies with BEAGLE, demonstrating
how to determine when these constraints are robust and how poor
constraints can impact the measurements of the main sequence. This
data set represents the best achievable sampling of galaxy SEDs at
very high redshifts (z = 3) before we have data from JWST. In this
sense, it provides a representative view of the limitations of what we
can measure currently. This study will aid in the understanding of
any differing constraints derived with JWST at very high redshifts.

The layout of this paper is as follows: Section 2 describes the data
and our SED fitting method; Section 3 outlines our model of the
star-forming main sequence; in Section 4, we present our results;
Section 5 discusses the potential biases and limitations of the data
set for constraining the main sequence, as well as of our method and
in Section 6, we summarize our conclusions.

Throughout this work, we have assumed a Chabrier (2003) IMF
with an upper mass cutoff of 100 Mg. We employ a flat ACDM
cosmology with @, = 0.7, Qy = 0.3, and Hy = 70km s~ Mpc~!.
Magnitudes are in the AB system.

2 DATA AND SED FITTING

The ASTRODEEP catalogue (Merlin et al. 2016a; Castellano et al.
2016; Di Criscienzo et al. 2017) includes four of the six Frontier
Fields: Abell 2744, MACS0416, MACS0717, and MACS1149, as
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Figure 1. The black and grey lines show example spectra of mock galaxies at redshifts z = 1.5 and z = 6.5, respectively. Below the spectra, we show the
profiles of the 10 broad-band filters included in the ASTRODEEP catalogue (see legend). The profiles are plotted with arbitrary normalization and offset from the
spectra for clarity. We see that at z = 6.5 only the IRAC 3.6- and 4.5-pm filters sample the rest-frame optical.

well as their corresponding parallel fields. The HST Advanced Cam-
era for Surveys (ACS) provides optical imaging while HST Wide-
field Camera 3 (WFC3), ground-based HAWK-I (High Acuity Wide
field K-band Imager) and Spitzer IRAC (Infrared Array Camera)
provide imaging over the near-infrared. These provide a total of 10
filters that are displayed in Fig. 1.

Merlin et al. (2016a) and Di Criscienzo et al. (2017) describe
how the catalogues are produced but we summarize the main points
here. The F160W image is used for primary object detection and
provides the base of the catalogue. New objects detected in a stacked
IR image (F105W, F125W, F140W, and F160W-band) are added
to the catalogue. The total ASTRODEEP catalogue contains 29 373
objects. For the purpose of this work we only use the cluster
fields, containing 15379 objects. The HAWK-I Ks-band imaging
and Spitzer IRAC imaging has significantly poorer resolution than
the HST data. Therefore the ASTRODEEP team use a deconfusion
method, using the software TPHOT (Merlin et al. 2015, 2016b), to
perform photometry in these longer wavelength images, taking the
high-resolution HST detection image as a prior of the source shapes
and positions.

The catalogue includes quality flags that we use to run a first
pass selection of objects to analyse. We discarded all objects with
RELFLAG = 0? leaving 11 818 objects.

2.1 SED fitting

We wish to exploit the full form of the posterior distribution in
stellar mass, M, [=log(M/Mg)], SER, ¥ [=log(¥/Mg yrfl)],
and redshift, z to derive constraints on the main sequence and
its evolution. Although the ASTRODEEP team supplied photometric
redshifts and derived physical parameters, to achieve our goal, we re-
fit to the photometry using BEAGLE (BayEsian Analysis of GaLaxy
sEds), a Bayesian SED fitting code (Chevallard & Charlot 2016). A

This flag value implies unreliable photometry due to either a flagged error
from SEXTRACTOR (Bertin & Arnouts 1996), unpyhsical flux in the detection
band, less than five reliable HST measurements or close proximity in the
image to foreground clusters, stellar spikes or the frame edge.

Table 1. Parameters and associated priors set in BEAGLE for fitting to
the ASTRODEEP catalogue.

Parameter Prior

log(t/yr) N (8.0, 2.0%), truncated € [6.0, 10.0]

log(Tsew /yr) Uniform € [7.0, 10.5]
log(Mior /M) Uniform € [5.0, 12.0]
log(Z/Zo) Uniform € [— 2.1, 0.3]

z Uniform € [0.0, 15.0]

v exp(—1ty), for 7y € [0.0, 6.0]

log Us Dependent

&d Fixed 0.3

Md Fixed 0.4

Ay /em™ Fixed 100
(C/0)/(C/0)o Fixed to solar, where (C/O)p = 0.44
Mup/Mo Fixed 100

detailed description of the BEAGLE parameters which can be adjusted
is given in table 2 of Chevallard & Charlot (2016). We do not use the
full flexibility of BEAGLE and limit our exploration to the parameters
listed in Table 1, which we describe briefly in this section.

BEAGLE was written to incorporate physically consistent models
of nebular plus stellar emission. For this work, we model the stellar
emission using the version of the Bruzual & Charlot (2003) stellar
population synthesis models described in Vidal-Garcia et al. (2017,
see their paper for more details). For the nebular emission (line
and continuum), we adopt the ionization-bounded nebulae models
of Gutkin, Charlot & Bruzual (2016) that self-consistently trace the
production and transmission through the interstellar medium (ISM)
of the light from the youngest stars (< 10 Myr).

We characterize the nebular emission using galaxy-wide ionized
gas parameters: the interstellar metallicity Z5,, which we set equal
to the metallicity of the young ionizing stars Z; the typical ionization
parameter of a newly ionized H1I region, Us,> which characterizes

3Note that Us differs from the volume-averaged ionization parameter, (U)
according to (U) = 9/4 Us.

MNRAS 515, 2951-2969 (2022)
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the ratio of the photon density to hydrogen density at the inner edge
of the Stromgren sphere; and the mass fraction of interstellar metals
in the galaxy locked into dust grains &4. CL21 demonstrates that
log Us and &4 are poorly constrained from broad-band photometric
data and can bias main-sequence determinations. We, thus, fix &4
to 0.3, and impose a relation between log U and log(Z s\ /Z ))taken
from observations

log Us = —3.638 + 0.05510g(Z /Zo) + 0.6810g*(Z /Zs). @)

This relation is taken from the observational data presented in Carton
et al. (2017; private communication). Similarly to CL21, within the
H11 region, we fix the carbon to oxygen abundance ratio (C/O) to
the solar value of (C/O)p = 0.44, the hydrogen density to ny =
100cm™3, and model the intergalactic absorption as prescribed by
Inoue et al. (2014).

To maintain consistency with previous observational studies (e.g.
Kurczynski et al. 2016; Santini et al. 2017), we adopt a delayed ex-
ponentially declining (DE) SFH of the form v (¢) o< ¢ exp(—t/Tsex),
where /(7) is the SFR, ¢ is the time since the formation of the oldest
stars, and Tg is the time between the onset of star formation and
the peak of the SFH. This SFH allows for very low SFR at a given
stellar mass (not allowed by a constant SFH), while also describing
arising SFH when 7 < 74, which has been suggested to be suitable
for high redshifts (e.g. Salmon et al. 2015). The integral of the SFH
with respect to time gives the total amount of stellar mass formed,
My, and is the parameter sampled over within BEAGLE. M gives the
stellar mass in stars at a given time after accounting for the return
fraction to the ISM after stars die, and is the parameter used for our
measurements of the main sequence.

CL21 show that fitting to JWST broad-band fluxes of z ~ 5
simulated galaxies with a DE SFH results in poorly constrained
physical parameters which in turn biases the measurement of the
main sequence. This is due to the unknown contribution of emission
line fluxes to the broad-band filters, and the effects are mitigated
when medium-band filters are available. Our data set does not include
medium-band filters so where emission lines contribute a significant
fraction of the broad-band flux at high redshifts, we may still derive
biased stellar masses and SFRs. At lower redshifts, however, the line
equivalent widths are lower and hence the relative contribution of
emission lines compared to the stellar continuum is much smaller.
We investigate the effect of poor constraints on our derived main-
sequence parameters in Section 5.1.

We incorporate dust attenuation using the physically motivated
two-component model of Charlot & Fall (2000). The components of
this model are the diffuse dust distributed uniformly throughout a
galaxy’s ISM, and the dust within denser stellar birth clouds. Within
this model, stars older than 10 Myr only see the effects of diffuse dust
within the ISM, having a V-band optical depth equal to that of the
ISM, . The birth clouds enshrouding stars younger than 10 Myr
have an optical depth 3, giving a total optical depth to young stars
of &y = £ + £8¢. The fractional attenuation of stars residing in the
ISM compared to those residing in stellar birth clouds is given by

£1ISM

iy @)

£21ISM ~BC*
T, + 1Ty

Ma =

We use the updated treatment of dust in BEAGLE* which accounts
for the effects of dust within the Gutkin et al. (2016) nebular models
themselves, as described in CL21, Section 2.

4 Available from BEAGLE v0.27.1.
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We fit to 11818 objects within the four cluster fields, with six
free parameters: (log(t/yr), log(tse /Y1), Mo, Z, z, and ty). Table 1
shows the prior distributions configured within BEAGLE.

‘We do not include HAWK-I and Spizzer photometry in the fitting if
the ASTRODEEP COVMAX flag indicates that an object suffers severe
blending with another source during the TPHOT extraction process
(COVMAXj) > 1). The COVMAX flag is publicly available for the
Abell 2744, MACS0416, and their parallels while the ASTRODEEP
team provided the flags for MACS0717 and MACS1149 (private
communication).

When fitting to the observed photometry, we allow for a minimum
relative error which is added in quadrature to the measurement un-
certainties. This minimum error accounts for the possible calibration
differences from photometry derived with different telescopes, as
well as the uncertainties in the models. For the HST photometry,
we allow a minimum relative error of 0.04. This is higher than
previously suggested (e.g. Chevallard & Charlot 2016) after finding
that the brightest galaxies had poor-fitting x> values due to the
small measurement uncertainties. Values of 0.05 and 0.1 are applied
to the HAWK-I and IRAC photometry, respectively. HAWK-I and
IRAC images require deconfusion, and hence likely suffer systematic
uncertainties that are not accounted for in the supplied photometric
errors.

Fig. 2 is an example (Abell 2744 cluster, ID 331) of the BEAGLE
output available for each fitted object.

2.2 Photometric redshift analysis

The ASTRODEEP collaboration provide photometric redshift estimates
which are the median values taken from six independent methods as
described in Castellano et al. (2016; Abell 2744 and MACS0416)
and Di Criscienzo et al. (2017; MACS0717 and MACS1149).

Prior to analysing BEAGLE-derived photometric redshifts, we
discard objects with a F1I60W AB magnitude fainter than 27.5.
This cut was employed by Santini et al. (2017), and based on
simulations by Merlin et al. (2016a) designed to determine the
detection completeness of the images. The limit corresponds to 90—
95 per cent completeness for point-like sources and 50-80 per cent
for extended discs with a 0.2 arcsec half-light radius. In addition, we
reject objects with a poor fit by BEAGLE defined as having a minimum
x> > 13.28.° We also impose a lower mass cut as described in
Section 2.3.

In Fig. 3, we compare the BEAGLE-derived (posterior median)
photometric redshifts to those in the ASTRODEEP catalogue (see
Castellano et al. 2016, section 3). The plot shows objects from
the four cluster fields which satisfy the above criteria. Whilst the
majority of objects lie close to the identity relation, there are many
which BEAGLE has identified as z ~ 4 in contrast to an ASTRODEEP
redshift of z ~ 0.5. Photometric redshifts are primarily determined
by the detection of a break in the observed SED. In this scenario,
ASTRODEEP has assigned a Balmer break (at rest-frame 3646 A) to
the observed break while BEAGLE has assigned a Lyman break (at
rest-frame 1216 A).

For this filter-set, the Lyman break is not reliably bracketed by
two filters until z ~ 4.5. At redshifts lower than this, reliable
determination of Lyman versus Balmer break will be improved
with the Ks and IRAC bands sampling red-ward of the Balmer

SFits with a minimum 2 = 13.28 are consistent with our model 99 per cent
of the time, under the assumption of 10 available ASTRODEEP filters, with
BEAGLE fitting for six independent parameters.
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Figure 2. Abell 2744 cluster, ID 331. Bottom left-hand panels: The diagonal panels show the marginal probability distributions for each of the six fitted
parameters (log(Moi/Mo), z, log(t/yr), log(tsgr /yr), Ty, and log(Z/Zg)) as well as log(y¥ /Mg yr’] ). The other panels show the joint posterior distributions
for every pair of parameters. Top right-hand panel: Blue diamonds represent the observed SED. Orange violins show the predicted model fluxes as determined

by the posterior probability distributions of the fitted parameters.

break. The majority of objects with disagreement between BEAGLE
and ASTRODEEP lack robust IRAC photometry (as shown by blue
points on the plot), and therefore only show one observed break
in the SED. In this situation, for any given object and photometric
redshift code, there is some probability that the observed break is
incorrectly assigned. For different codes, this probability will vary
depending on template set and priors. Castellano et al. (2016) takes
the median value of multiple (six) codes, thus mitigating this issue
if at least 50 per cent of the codes choose the correct value. Since we
require rest-frame optical photometry for our M, constraints, those
objects with poor photometric redshift estimates would be rejected
at the next stage, even if BEAGLE had agreed with the ASTRODEEP
determinations.

By z ~ 4.5, the Balmer break falls red-wards of the Ks-band.
We therefore require objects above z > 3.5 to have at least one
robust photometric point from the three longest wavelength filters
(Ks, 3.6 um, 4.5 um), while above z > 4.5, we require at least one
IRAC flux point. Those objects that lack good IRAC/Ks photometry
at these redshifts tend to be due to significant confusion in the Spitzer
images. This is not dependent on the intrinsic properties of the
objects themselves, rather the projected distribution of sources on
the sky. We therefore do not expect this cut to significantly bias
our main sequence determination. Furthermore, we apply a lower
redshift limit of 1.25 as below this the F435W-band no longer
probes the rest-frame far ultra-violet required for secure SFR
determination.

MNRAS 515, 2951-2969 (2022)
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Figure 3. BEAGLE-derived photometric redshifts (posterior medians) plotted
against ASTRODEEP redshifts. All objects with RELFLAG = 1, F160W
magnitude < 27.5, BEAGLE-fitted minimum x2 < 13.28 and a redshift-
dependent lower mass cut applied prior to correcting for gravitational lensing
(see text and Fig. 4) are plotted. The red points mark the 1038 galaxies
chosen as our final subset (see text). Blue points show the objects which have
no reliable IRAC data and that do not make it into our sample. Grey points
have good IRAC photometry but do not make it into our sample.

We visually inspected the images and SEDs for all objects
with either a BEAGLE redshift (Zgpagz) Or an ASTRODEEP redshift
(zastropeep) Of greater than 3.5. We leverage the better accuracy of the
ASTRODEEP photometric redshifts by discarding remaining objects
(with both Zggagie and Zasrropeer < 3-5) if |Zppace — Zastropeee| > 1.

2.3 Sample selection for main-sequence analysis

For analysing the main sequence, we need a sample that is complete
in stellar mass. We therefore impose a redshift-dependent mass cut
in our samples. This mass limit was calculated using the JAGUAR
mock catalogue (Williams et al. 2018), which was produced with the
same stellar and nebular models, making the limits self-consistent
with the BEAGLE fits performed here. We calculate the mass limit, as
a function of redshift, at which the sample is 95-per cent complete in
stellar mass for F160W magnitude < 27.5. The limit is displayed as
the dashed black line in Fig. 4. The limit is a function of the position
of the main sequence in the M,—W plane, how well the F160W
limit approximates a stellar mass limit, and how the brightness
of the objects vary with redshift. At low redshifts, the F160W
cut approximates a stellar mass cut, whereas at high redshifts, it
approximates a cut in SFR, where the transition between these two
limits causes an increase in the lower mass limit between z ~ 2.5—4.
Where the mass limit is approximately flat, the change in position of
the objects in the M, —W plane must be compensating the reduction in
flux with increasing redshift. We apply the cuts based on M, estimates
prior to correcting them for the effects of gravitational lensing (as the
F160W is a limit of the image, not the intrinsic galactic properties).
These are shown as blue points in Fig. 4. The red points show the
masses after lensing is accounted for, demonstrating that we probe
below the M, limits of standard blank fields. We correct the BEAGLE-
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Figure 4. Shown in blue are the BEAGLE-derived posterior median stellar
mass and redshift estimates plotted against each other for our final sample of
1038 objects. The dashed black line shows the lower limit imposed upon the
BEAGLE-derived stellar masses based on 95-per cent mass completeness for
F160W magnitude < 27.5 (see text for details). The cuts are imposed prior
to correcting the derived properties for the effects of gravitational lensing.
Magnification-corrected stellar masses are shown in red. The solid black line
shows the redshift-dependent turnover mass as fitted by Tomczak et al. (2016),
fixed as a constant for z > 4. This upper limit is applied after magnification
corrections.

derived masses and SFRs using the magnification value supplied in
the ASTRODEEP catalogues (see Castellano et al. 2016, for details).

A redshift-dependent upper mass limit is also imposed on the
magnification-corrected values to ensure that we are not including
objects in the regime where the main sequence has been observed
to flatten. Between 0 < z < 4, we take the parametrization of the
turnover mass from Tomczak et al. (2016) and for z > 4, we choose a
fixed turnover mass of ~ 10'%8 M. This limit is shown as the thick
black line in Fig. 4.

In summary, the full set of selection criteria includes selecting
objects with reliable photometry identified by RELFLAG = 1 with
F160W magnitude <27.5 and BEAGLE fits with x2 < 13.28. We
require agreement with ASTRODEEP redshift within |[Az| < 1 for z
< 3.5 and visual inspection above z > 3.5. We ensure objects have
photometry sampling the rest-frame optical, enabling stellar mass
determination. Finally we apply the upper and lower mass limits
described here. Our final sample spans 1.25 < z < 6 and includes
1038 objects which are shown as red points in Figs 3 and 4.

3 MODELLING THE MAIN SEQUENCE

In this section, we detail the steps that we have taken to model the
star-forming main sequence spanning redshifts 1.25 < z < 6.

At a single redshift, ordinary linear regression applied to the star-
forming main sequence fails to fully account for heteroskedastic, co-
varying errors, and the non-uniform distribution of M,. Kelly (2007,
hereafter KO7) proposes a Bayesian hierarchical method to address
these concerns, which has been extended by CL21 to work with the
output joint posteriors of M, and W derived from SED fitting with
BEAGLE. This approach allows for the self-consistent propagation of
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measurement uncertainties on to the parameters which describe the
main-sequence relation: the slope, intercept, and intrinsic scatter.

Throughout this section, we refer to Bayesian terms such as
prior probability, likelihood, and posterior probability. It is therefore
informative to recap Bayes’ theorem, which states that the posterior
probability distribution of the model parameters, P(® | D, H), can
be expressed as

PO D, H)yxP(D| O, H)P(® | H), 3)

where P(D | ©, H) is the likelihood of the data D given a model (or
hypothesis), H, with associated parameters, ®. The prior probability,
P(® | H), describes the knowledge we have of the model before
analysis of the data.

CL21 apply their model to a mock photometric sample of main-
sequence galaxies at z ~ 5. They model the main sequence as a linear
relation with Gaussian scatter, which we re-write, subtly, to find the
normalization of the relation at log(M /Mg) = 9.7

U =97+ (M, — 9.7) + N(0, o?), )

a97 is the normalization of the main sequence at a stellar mass
of log(M/Mg)=19.7, B is the slope, and N(0,c?) denotes a
Gaussian distribution centred on zero with a variance of o2 and
describes the intrinsic scatter about the relation. Throughout this
paper, when describing SFR and stellar mass in log space, we use W
[= log(¥ /Mg yr")] and M, [= log(M /Mg)].

The three levels of the KO7 Bayesian hierarchical model are: the
distribution of stellar masses, which is not assumed to be uniform;
the distribution of W given M, (equation 4); and the lowest level
describes data given the unknown true M, and W values. In our
case the data consists of photometric fluxes and uncertainties (see
CL21, section 3.4 for more details). The KO7 model is designed to
marginalize over the unknown, true values of M, and W for each
object when deriving the parameters of interest, namely g7, 8, and
o.
In this work, we extend the model of CL21 by including the redshift
evolution of the main sequence. It is also important to account for
objects which do not belong to the star-forming main sequence,
which we shall refer to as ‘outliers’. We explicitly model these
outliers to ensure that the uncertainty of which objects belong to the
main sequence is fully accounted for in our analysis. To determine
what form of redshift evolution to include in the model, we first
measure the main sequence in a series of redshift bins (Section 3.1).
We describe our model for the redshift evolution of the main sequence
in Section 3.2.

3.1 Redshift bins

3.1.1 Modelling outliers

Not all galaxies belong to the star-forming main sequence. Quiescent
galaxies will lie significantly below the main sequence while star-
bursting galaxies, which may be experiencing a recent or ongoing
merger, can lie significantly above the relation. In order to investigate
how to appropriately model the outliers in our sample, we initially
divide our subset of 1038 objects based upon their BEAGLE-derived
posterior medians into redshift binsof 1.25 <7 <2,2 <z7<3,3 <
z<4,4<z<5,and5<z<6.

Hogg, Bovy & Lang (2010) suggest a simple model for incorpo-
rating outliers. We therefore investigate the possibility of extending
the work of CL21 using this model which allows objects to either
reside on the main sequence or within a separate outlier distribution

M,—SFR 2957

which is described as a simple Gaussian
¥ ~ N(uor, ooL?), (5)

where N (ior, oor?) is a normal distribution with mean o and
standard deviation opr. This model is implemented as follows

P(¥ | M,) = Pys + Por,
Pys = (1 — por) P(W | 97 + B(M, — 9.7) + N(0, 02)),
PoL = po. P(¥ | N(io, ooL?)), (6)

where Pys is the probability that the object belongs to the main
sequence and Pgop is the probability that the object is an outlier.
The parameter pop. defines the ratio of the integrals of the functions
describing the outlier and main-sequence distributions at M,, respec-
tively. We restrict pop < 0.5, and oo > 1 ensuring that within the
main sequence the relative probability of any given object being an
outlier is very small. However, where the probability that an object
belongs to the main sequence becomes negligible, there is a higher
probability that the object belongs to the outlier distribution. When
implementing this outlier model within redshift bins, we have to
make a decision about how we treat the mass distribution. We make
the assumption that the distribution of M, in the outlier population
is the same as that of the objects on the main sequence.

During our preliminary tests, it became clear that the majority
of the quiescent outliers sitting below the main sequence were
highly unconstrained in W. This freedom allowed these objects to
be modelled as belonging to the main sequence, effectively lowering
the measured normalization, biasing the slope and increasing the in-
trinsic scatter. We decided to remove such poorly constrained outliers
beforehand by sampling from each object’s posterior distributions of
M,, ¥, and z, rejecting objects with standard deviation in ¥ > 2 for
the samples within the redshift bin. This method removed 38, 26, 8,
0, and O outliers below the main sequence from the bins 1.25 < z <
2,2<z7<3,3<z<4,4<z<5,and5 < z < 6, respectively.

Having accounted for the majority of the quiescent outliers below
the main sequence, we test the proposed outlier model (we label this
method OL-Gauss) and compare it to two other methods. The first
of these methods calculates the main sequence without any outlier
rejection beyond the objects with poorly constrained W (we label
this method OL-Minimal). The second method identifies outliers
from iterative 3o-clipping, where we iteratively remove objects
further away than three standard deviations from the best linear fit
to posterior medians in M, and W. This is implemented prior to the
removal of the poorly constrained objects below the main sequence.
The method of clipping outliers prior to fitting the main sequence
is comparable to approaches within the literature (e.g. Kurczynski
et al. 2016; Santini et al. 2017). We label this method OL-Clipped.

Once outliers are removed for the OL-Minimal and OL-Clipped
methods, the main sequence is measured from the remaining objects
using the CL21 Bayesian hierarchical model. The OL-Gauss method
measures the main sequence using an updated version of the model,
adapted to include the outlier model described in equation 6.

3.1.2 Redshift bin results

Fig. 5 displays W versus M, for the objects in each of the five
redshift bins. The points, with various symbols, display the BEAGLE-
derived posterior medians in M, and W, while the errors show the
marginalized 68-per cent credible intervals. Objects that are removed
because they have poor constraints in W are coloured green and
objects that are removed by the OL-Clipped method are displayed as
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Figure 5. BEAGLE-derived posterior median log(/ /Mg yr~!) plotted against log(M /M) in redshift bins. The error bars show marginalized 68-per cent credible
intervals in these two parameters. The red-blue colour-coding represents logarithm of the ratio of probability that a given object belongs on the main sequence
to the probability that it is an outlier (see equation 6). Green symbols represent the objects removed, regardless of outlier treatment, due to poorly constrained
W, Stars of any colour show the objects removed during the 3o -clipping procedure for the OL-Clipped method. The grey histograms on the left of each panel
represent the best-fitting outlier distribution, showing 68-per cent credible regions with dark grey. In the bottom two panels, the outlier distribution is shown as
broad, since the distribution is unconstrained due to lack of obvious outliers in redshift bins 4 <z < 5and 5 <z < 6.

stars. The remaining points are coloured by log(Pys/PoL), therefore
showing the relative probability of being on the main sequence or
within the outlier distribution when using the OL-Gauss method.

The left three panels of Fig. 6 show the derived posterior median
values of the main-sequence parameters, o7, B, and o, in redshift
bins spanning 1.25 < z < 6. The derived values are also reported
in Table 2. The blue shaded rectangles and solid lines show the
68-per cent credible regions and posterior medians, respectively, for
the constraints derived with the OL-Gauss method. The dashed and
dotted lines show the posterior medians for the parameters derived
with the OL-Minimal and OL-Clipped methods, respectively.

Fig. 6 (top left-hand panel) shows that all methods measure an in-
creasing normalization with redshift. For the lowest two redshift bins,
the OL-Minimal method returns a higher normalization (~1.2—1.3)
than the other two methods (~1.0—1.2). This is to be expected as
the OL-Clipped and OL-Gauss methods both identify a fraction
of the objects above the main sequence as outliers, lowering the
measured normalization. Within the 3 < z < 4 bin, however, very
few objects are rejected above the relation with the OL-Clipped
method, making the results of the OL-Minimal and OL-Clipped
methods very similar. The OL-Gauss method, however, ends up
assigning a lot of the objects above the relation a high probability of
belonging to the outlier distribution, returning a lower normalization.
This demonstrates how sensitive the results are to the chosen method
to account for outliers.
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Fig. 6 (middle left-hand panel) shows that overall there is no
strong evidence of varying slope with any of the three methods.
OL-Gauss measures a steeper slope than the OL-Clipped and OL-
Minimal methods in the 2 < z < 3 and 3 < z < 4 redshift bins,
because some objects slightly above the relation at masses M, ~
8 — 9 have non-zero probability of belonging to the OL-Gauss outlier
distribution (Fig. 5, top middle and top right-hand panels). In the
lowest redshift bin, however, the OL-Clipped method measures the
shallowest slope (~0.76), but OL-Minimal measured the steepest
slope (~0.89). This is because the OL-Minimal run includes two
objects below the relation at M, ~ 8.5 — 8.7 that are identified as
having poor constraints on W, yet are clearly below the main sequence
(Fig. 5, top left-hand panel).The steeper slope from the OL-Minimal
method is therefore less reliable.

The results for the intrinsic scatter in the three lowest redshift bins
(Fig. 6, bottom left-hand panel) show that OL-Minimal measures
the largest scatter, while the OL-Gauss method shows the lowest
measurements with a trend of decreasing scatter with increasing
redshift. With further investigation of the 3 < z < 4 redshift bin (that
with lowest OL-Gauss scatter measurement), we find that many of
the objects are drawn to a tight main-sequence relation with the
OL-Gauss method. This is because the co-varying uncertainties
in M, and W (for the objects with high probability of being
on the relation) approach the expected magnitude of the intrinsic
scatter within the underlying relation. KO7 demonstrate that in this
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Figure 6. Redshift bin results showing the posterior median values for the best-fitting OL-Minimal, OL-Gauss, and OL-Clipped methods (as shown in the
legend). The shaded blue regions show the 68-per cent credible intervals for the OL-Gauss method. Left-hand panel: From top to bottom shows the normalization,
slope, and intrinsic scatter of the main sequence as a function of redshift. Right panel: From top to bottom shows por., oL, and ooy, of the outlier distribution
as a function of redshift. The redshift bin 4 < z < 5 and 5 < z < 6 results have been omitted from the bottom two panels for clarity, as in this scenario, por.

approaches 0.

Table 2. Posterior median values and 68 per cent credible intervals for the fitted main sequence and outlier parameters

per redshift bin.
Parameter 125<z<2 2<z<3 3<z<4 4<z<5 5<z<6
Lo L1370 TR LR 2wt
+0.06 +0.06 +0.06 +0.15 +2.09
B 0.84 7506 0.947505 0.85Z)06 0.88%) 15 13477,
+0.06 +0.03 +0.04 +0.07 +0.20
o 0.33Z)06 0.20Z 03 0.09%) 3 0.32%5 7 0.397517
poL 0.1225:06 0172503 0217503 0.02X051 0.0750 56
09403 o972l L9 03ty 0l
ooL 1062503 104703 1072008 5355308 5.2613 58

regime, the method will underestimate the intrinsic scatter. This
demonstrates a potentially problematic feature of the OL-Gauss
model. In Fig. 7, we show a simplified example where essentially,
objects can be identified as belonging to the main sequence (red
points) if they have posterior distributions that overlap in M,—W¥
space (effectively if the uncertainties are broad, as shown by red
ellipses) while objects without overlapping posteriors (blue points)
can be assigned to the outlier model. This will lead to shrinkage
in the scatter about the derived main sequence (black arrows)
by the amount allowed by the overlap. This behaviour may be
particularly problematic if constraints on M, and W are poor, but
led to occupy a similar region in M, —W space by informative priors
at the SED-fitting stage. We discuss this case further in Section 5.1.

Understanding this behaviour allows us to mitigate its effect when
deriving the full redshift evolution model with the OL-Gauss method
(Section 3.2).

The three right-hand panels of Fig. 6 show the measured poste-
rior medians and 68-per cent credible intervals for the parameters
describing the fitted outlier distribution in the OL-Gauss method:
poL, MoL, and oor. The increase in pop with redshift mirrors the
decrease in o with redshift for the lowest three redshift bins. This
demonstrates a degeneracy between these two parameters, and the
importance of clearly identifying outlier galaxies for constraining o
of the main sequence. For clarity, we have not plotted the redshift
bins 4 < z < 5and 5 < z < 6 in the panels displaying poL and oo,
as the probability of an object belonging to the outlier distribution,
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Figure 7. A simplified model of the main sequence (relation shown as a
solid black line) showing log(y/ /Mg yr~!) plotted against log(M /Mg,). This
cartoon displays the behaviour of the model when some objects on the main
sequence have poor constraints that overlap (red points) while some have
good constraints (blue points). Even though all objects belong to the main
sequence, in this case, with our model, the red points would be assigned to
a main sequence with small intrinsic scatter while the objects with better
constraints (blue points) would be assigned to the outlier model. In this
scenario, the large overlap between the red objects will lead to shrinkage in
the derived intrinsic scatter, as demonstrated by the black arrows.

PoL, approaches zero in the highest redshift bins, leaving pop. and
oo unconstrained. This, in turn, leads to all three methods measuring
a similar main-sequence slope (~0.9, ~1.3), intercept (~1.6, ~2.4),
and intrinsic scatter (~0.3, ~04)inthe 4 <z <5and5 <z <6
bins, respectively. We note that this may be due to the small sample
sizes making outlier identification less secure, rather than there being
fewer outliers in the underlying sample.

We have shown that the derived normalization and intrinsic scatter
of the main sequence are highly sensitive to the presence and
treatment of outliers in the data. In Section 3.2, where we model the
full redshift evolution of the main sequence, we choose to model the
outlier population with the OL-Gauss method as it is the only method
that can propagate the uncertainties on the treatment of outliers on to
the parameters of interest. We note that the oo posterior probability
is close to the prior lower limit. The reason we impose a lower limit
of oo, > 1 (as well as the upper limit in pg) is to ensure that the
outlier distribution does not account for objects primarily on the
main sequence. As we are fitting two Gaussians to the population, a
narrow outlier distribution introduces degeneracies. A wide outlier
distribution also ensures that it is accounting for objects far from the
main sequence. We will proceed with the current model as there are
so few objects within the outlier population that adding further free
parameters is unlikely to considerably improve the main-sequence
constraints.

The results in this section also demonstrate that we cannot
simultaneously constrain the intrinsic scatter and the outlier model
within each redshift bin (especially withinthe 2 <z <3 and 3 < z
< 4 redshift bins), and so we account for this when constructing our
full redshift-dependent model, as described in the following section.
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3.2 Redshift evolution of the main sequence

Our Bayesian hierarchical model of the full redshift-dependent
main sequence is composed of three levels. The first describes the
distribution of stellar masses and redshifts

M. |9 ~ PM, | ),
2|0 ~P|0), N

where we model P(M, | ) as a weighted linear combination of
three Gaussians, called a Gaussian Mixture Model (GMM). The
corresponding set of three means, standard deviations, and relative
weightings are denoted as . We note that the mass distribution
is not modelled as a function of redshift. This does not mean that
the M, distribution within each redshift bin must look identical,
but simply that the model learns the collapsed mass distribution
of all objects regardless of their redshifts. We model P(z | §) as
a uniform distribution U/(1.25, 6) between our redshift limits. One
would ideally also model the redshift distribution as non-uniform,
potentially with another GMM. Modelling the redshift distribution
explicitly would potentially help for deriving the relative likelihoods
of peaks in probability that are separated significantly in redshift.
However, in implementing this model, we found that we had to
handle these objects separately (as described later in this section).
We therefore chose to not add more free parameters to the model at
this level.

Given M, and z, the second level of the model describes the
probability distribution of W as a linear combination of a main-
sequence distribution and an outlier distribution

WIM,, z ~ Pys + Por,
Pys = (1 — por(2)) [a97(2) + B(2)M, — 9.7) + N (0, o (2)))],
Por = por(z) N (o (2), ooL(2)?), ®)

where w97, B, 0, poL, oL, and ogr are now functions of redshift.

We determined suitable parametrizations for slope, intercept, and
scatter based upon the OL-Gauss redshift bin measurements shown in
Fig. 6. The measurements of slope are consistent with being constant
within the 68-percent credible regions so we therefore choose to
model it as constant

B(2) = B. (C))

The main-sequence normalization, «g 7, is shown to increase with
redshift from z ~ 1.25 to z ~ 6. We have shown that the normalization
can be very strongly dependent on the modelling of the outliers and
our redshift bin results are likely affected by this. We see strong
evolution in ag; to higher redshifts that is not well-reproduced by
the parametrization of Speagle et al. (2014), and we do not trust the
relatively low normalization of the 3 < z < 4 bin compared to the
4 < z < 5 bin for reasons described in Section 3.1.2. We therefore
chose to proceed with the physically motivated parametrization that
follows the redshift evolution of the rate of accretion of gas on to dark
matter haloes (Birnboim et al. 2007). We discuss the implications of
this choice in Section 5

w97(z) = log(N(1 +2)Y) + 0.7, (10)

where N and y are the free parameters of our redshift-dependent
model. The 0.7 is added for simplicity when plotting sSFR (at M, =
9.7) against redshift.

As discussed in Section 3.1.2, the measured value of the intrinsic
scatter is strongly dependent on the treatment of outliers. We have
demonstrated that, at least for redshift bins 2 < z <3 and 3 < z <
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4, the intrinsic scatter and the outlier model cannot be constrained
independently. We therefore choose to parametrize the intrinsic
scatter as a constant across all redshifts

o(z)=o0. (11)

This parametrization effectively allows the better M, and ¥ con-
straints in the lowest redshift bin to constrain o across all redshift
bins. This choice is due to the limitations of the current data, which
we discuss further in Section 5.1.

Fig. 6 (top right-hand panel) shows a lack of obvious outliers at
redshifts z > 4. As guided by our OL-Gauss method results, we opt
to fit with constant por, oL, and ogp for 1.25 < z < 4, while at z
> 4, we make the assumption that all of our remaining objects are
galaxies belonging to the star-forming main sequence. We implement
this by setting por to zero at the highest redshifts

toL(z) = HoL,
ooL(z) = ooL,

_ Jpor forl25 <z <4
poL(@) = {o forz > 4 '

It is worth noting here that our implementation of the outlier model
is not the same as sigma-clipping. Each object has a probability of
belonging to either the main sequence or the outlier distribution, in
contrast to sigma-clipping which permanently removes outliers from
the subset. However, an outlier model of this sort is not without
potential risks. For example, at a given mass, as the star-forming
main sequence evolves with redshift, it will cross directly through
the fixed outlier model. If the main sequence and outlier distributions
were of comparable probability and width, the outlier distribution
could have a similar (but not identical) effect to sigma-clipping of the
relation (reducing the derived intrinsic scatter). We have attempted to
mitigate this risk by constraining the relative probability of the outlier
distribution to pop < 0.5 and its width to oo > 1. Our complete
model is then better described as a high probability main sequence,
with a low probability distribution of outliers. To ensure that our
derived main sequence is not dependent on our implementation of
the outlier model, we additionally investigate the effect of using a
uniform outlier distribution. The results of this test suggest that our
measurement of the star-forming main sequence is robust, as further
discussed in Section 4.

Originally, the third level of the KO7 model accounts for the data
and associated uncertainties, which are assumed to be point-wise
estimates. Our data is one step further removed, being instead fluxes
and flux uncertainties, rather than direct measurements of M,, W,
and z. We follow the approach of CL21 (section 3.4) for dealing with
this extra level of complexity. For simplicity of implementation, the
individual object joint posteriors on M,, W, and z are modelled as a
linear combination of three tri-variate Gaussians.

We found when implementing this model that the Gibbs sampler
does not efficiently sample between peaks in posterior probability
for a given object that are very far apart. It is beyond the scope of this
work to re-visit the sampling method. Instead, we use the information
provided by the full sample to determine the most likely redshift peak
in objects with peaks separated by Az > 2. Each separate probability
peak (determined from the Gaussians fitted to the M, —\W —z posterior
probability space) is multiplied by the probability that the object lies
on the main sequence as measured within redshift bins (Fig. 6), and
integrated. The peak with higher probability overall is kept. Where
two of the three Gaussians overlap within 1.5¢ in redshift, their
probabilities are summed together and joint probability compared to
the final peak. Where all three Gaussians overlap, no peak is rejected.

12)
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Table 3. Parameters, fitted results (with 68-per cent credible intervals)
and associated priors for the redshift-dependent main-sequence model
including the outlier distribution.

Parameter 125<z<6 Prior

N 0.1275:04 Uniform log N € [— 3.0, 2.3]
% 2.407018 Uniform € [0.0, 5.0]

B 0.79100% Uniform € [ 5.0, 5.0]

o 0.261002 Uniform € [0.05, 5.0]
poL* 0.19%0:03 Uniform € [0.0, 0.5]
HoL 0.98%01 Uniform € [— 10.0, 10.0]
ooL LO1¥00 Uniform € [1.0, 10.0]

Note. “Fixed to 0 for z > 4.

Although only ~6 per cent of galaxies had peaks removed, this was
necessary because a small fraction of low-redshift objects with a
peak at high redshift can significantly affect the results since there
are far fewer high-redshift galaxies.

The implementation of the full model is based initially on the J.
Meyers PYTHON implementation® of the KO7 Gibbs sampler updated
by CL21 to accept GMM fits to posterior M,—W —z distributions
derived from BEAGLE fitting. We release the code and input values
used for this work.”

4 RESULTS

In summary, our final model includes the following free parameters
that we wish to constrain: the redshift evolution of the normalization
at log(M/Mg) = 9.7, parametrized by N and y; the (redshift-
independent) slope, §; the (redshift-independent) scatter, o'; and the
parameters describing the outlier distribution, por, (oL, and ooL.
Table 3 gives the parameters and priors used in this work (including
our results as described in the following section).

To constrain main-sequence parameters (N, y, B, o, poL, LOL>
and op) for our subset of 1038 objects, we ran the full Bayesian
hierarchical model for 20000 iterations, four separate times. We
checked for convergence between and within chains following the
method described in chapter 11.4 of Gelman et al. (2013), ensuring
an R value of <1.1. We use the second half of each chain (rejecting
any burn-in phase) and combine them to determine the constraints
on the parameters of interest. The results are given in Table 3.

We display the results in Fig. 8. The left-hand panel shows the
BEAGLE-derived posterior median M, and W plotted in the M,—W¥
plane colour-coded by redshift. We see a clear sign of an increase in
the normalization with redshift, consistent with previous literature
results. The dashed black line passing through M, = 9.7 indicates
the mass at which we define the normalization of the main sequence,
a97. The right-hand panel shows the offsets from the fitted redshift-
evolving main sequence versus M,, colour-coded by the logarithm
of the ratio of the probability that objects are on or off the main
sequence. A value of zero corresponds to an equal likelihood that the
object is on or off the main sequence. In our model, objects with a
posterior median redshift value of z > 4 are assigned a zero proba-
bility of belonging to the outlier distribution and are shown as dark
red circles with artificially assigned values of log(Pums/Por) = 3.

Shttps://github.com/jmeyers314/linmix
"https://github.com/1s861/M-SFR-Sandles2022
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Figure 8. Left-hand panel: BEAGLE-derived posterior median values of log(M/Mg) and log(y /Mg yr~') colour-coded by posterior median redshift for the
objects in our sample. The vertical dashed line at log(M /M) = 9.7 indicates the fixed mass at which the normalization in the main sequence is fitted. Right-hand
panel: The same objects as in the left-hand panel, showing the residual between log(/ /Mg yr~!) and the fitted redshift-evolving main sequence, plotted against
log(M /Mg). The colour-coding shows the relative probability that the objects are on or off the main sequence.

The objects with poorly constrained W that are rejected prior to
fitting are not plotted, leaving more objects significantly above the
relation than below. The outlier model primarily accounts for objects
above the main sequence but is broad enough to also encompass
those below the relation.

Fig. 9 shows the derived posterior median values and 68-per cent
credible intervals (red line and shaded regions, respectively) of the
main-sequence slope, redshift-dependent normalization and intrinsic
scatter spanning 1.25 < z < 6. The OL-Gauss redshift bin values are
shown as solid black lines and shaded blue regions. The panels ad-
ditionally include data obtained from the literature® and simulations.
The top panel shows the redshift evolution of ag7. The 1.25 < z <
2 redshift bin results are higher than those of the full model. This
is a known problem with our full model parametrization. It is based
on the measured accretion rate of gas on to parent haloes, but at low
redshift many studies measure higher SFRs than accounted for by
this evolution. The recent work of Leja et al. (2021) find a much lower
normalization for the main sequence at low-to-intermediate redshifts,
agreeing well with the predictions from hydrodynamic simulations
of galaxy formation (e.g. Illustris-TNG Donnari et al. 2019a). Our
measured normalization is still higher than that measured by Leja
et al. (2021), which can be attributed to the different SFHs employed
(their non-parametric histories show older, more massive galaxies
than estimates derived with simple analytic forms like the DE used
here). We discuss further the limitations of our results with respect
to SFH in Section 5.1. The high-redshift bins are driving the fit of the
redshift evolution of a9 7, showing that our results are inconsistent
with a flatter evolution at high redshifts as measured by e.g. Speagle
et al. (2014) and Pearson et al. (2018).

The middle panel of Fig. 9 shows the measurements of main-
sequence slope, B, across the full redshift range. Our measurements
agree well with those of Kurczynski et al. (2016), Speagle et al.
(2014), and Pearson et al. (2018) above z > 2, but are somewhat
shallower than those measured by Santini et al. (2017) and Leja et al.

8We ensure consistency of IMF using conversion factors —0.21 for Salpeter
to Chabrier M,, —0.20 for Salpeter to Chabrier ¥ and —0.03 for Kroupa to
Chabrier M, and W.

MNRAS 515, 2951-2969 (2022)

(2021). The Schreiber et al. (2015) and Salmon et al. (2015) slope
values are fixed (where we take the low mass slope of the curved
relation fitted in Schreiber et al. 2015, and we have chosen to plot the
results from Salmon et al. 2015 fitted with a fixed slope). We discuss
in Section 5.1 the effects of the priors employed in BEAGLE, which
will strongly affect the measured slope.

The bottom panel of Fig. 9 shows measurements of the scatter
about the main sequence. Our constant, intrinsic scatter estimate,
o, agrees well with Pearson et al. (2018) up to z ~ 3, Kurczynski
et al. (2016), Steinhardt et al. (2014), and Salmon et al. (2015). We
note that the value of scatter plotted for Steinhardt et al. (2014) is an
observed scatter, rather than the intrinsic value. Interestingly, some
of the studies show decreasing scatter with particularly low estimates
at z 2 3 (e.g. Santini et al. 2017; Pearson et al. 2018) which agree
better with our z ~ 3 redshift bin results. However, at these redshifts
the Pearson et al. (2018) main sequence has a very strong lower limit
that appears to be biasing the scatter to low values (see their figure 8).
Additionally, Santini et al. (2017) used the same data set as us, and
so are likely inhibited by the same limitations in constraints on M,
and W, which would underestimate the o at z ~ 3.

As discussed in Section 3.1.1, it was important to ensure that
our derived main sequence was not strongly dependent on our
implementation of the outlier model. As a simple check, we decided
to also fit the full 1.25 < z < 6 subset with an adjusted outlier
model: a truncated Gaussian between —2.0 < ¥ < 3.75 with fixed
oL = 0.0 and oo = 9.0 (effectively a uniform outlier distribution
between —2.0 < W < 3.75 for z < 4). The redshift evolution of the
fitted main-sequence intercept (N = 0.16£303 and y = 2.294019)
remained consistent with the original model (N = 0.1240:93 and
y = 2.40401%), whilst the slope was measured to be only slightly
lower at 8 = 0.7140:04. The intrinsic scatter was determined to be
significantly higher: o = 0.46+£003. We note that this was primarily
due to the uniform outlier model being assigned a low probability
(por. = 0.04+393), with most of the objects having a high probability
of being on the main sequence. This suggests that a uniform outlier
model is inadequate for describing the outlier population.

Fig. 10 shows the bi-variate posterior distributions between each
pair of parameters. The main diagonal shows the marginalized
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Figure 9. Redshift evolution of the normalization, a9 7 (upper panel), slope,
B (middle panel) and scatter, o (bottom panel) of the main sequence. Red
lines show the relations derived from the posterior medians of our fitted
parameters. The red shaded regions show the 68-per cent credible intervals.
For the case of ag7, we sample from the joint posterior distribution of N
and y, before calculating the distribution of a9 7 at each given redshift. The
redshift bin results from the OL-Gauss method (Fig. 6) are shown as solid
black lines with 68-per cent credible intervals shaded blue. Results from the
literature are also overplotted following the legend. Illustris-TNG results
come from Donnari et al. (2019b) and FLARES results are taken from Lovell
et al. (2021) (values obtained via private communication). All data in the top
two panels are plotted for M, = 9.7. Uncertainties in literature «g7 values
are calculated in quadrature if the original work measured the intercept at a
different mass. Where the fitted main sequence allows for curvature at high
masses, we plot the low mass linear slope (e.g. Schreiber et al. 2015). For
Leja et al. (2021), we use broken power-law parametrization fitted to the
ridge in density in M,—W space (their table 1). For Whitaker et al. (2014),
we use the broken power-law fit results. The scatter is sometimes measured
as a function of mass. For Schreiber et al. (2015), Santini et al. (2017), and
Leja et al. (2021), we plot the values of scatter taken at masses M, = 10.2,
9.2, and 9.7, respectively. We have converted the values where necessary to
be consistent with a Chabrier IMF.

posterior distributions of each individual parameter, with vertical
lines representing the median and 68-per cent credible intervals. This
helps to understand where degeneracies between different parameters
may impact our results. We see a negative correlation between o and
poL, poL and pop. This further demonstrates the sensitivity of our
o estimates to the details of the outlier model. We also see strong

M,—SFR 2963
degeneracies between y, N, and B, such that low N requires a low S,
but high N. This might explain why we measure shallower slope in
the full model compared to in the redshift bins.

Fig. 11 shows the redshift evolution of the specific star formation
rate (SSFR) at log(M /Mg) = 9.7. By definition, at a fixed stellar
mass, SSFR follows the redshift evolution of the main-sequence
normalization at that mass. Measurements of sSSFR are not always
derived from measuring the main sequence, and so we can compare
to more results in the literature. Our measured evolution is clearly
more consistent with the data that show significantly higher sSFR at
high redshifts, compared to the data that suggest a flatter evolution
to high redshift. Our measurement of y (2.407|%) is consistent with
the evolution of the accretion rate of gas on to parent haloes [shown
as the dashed blue line, with evolution ~(1 + z)>>].

5 DISCUSSION

5.1 Choice of star formation history

5.1.1 Determining constraints on M, and WV

In Section 4, we have presented our measurement of the slope,
intercept and scatter of the star-forming main sequence between
redshifts 1.25 < z < 6. We performed the BEAGLE fits with a delayed
exponentially declining SFH of the form ¥ (7) ot exp(—t/Tsr)-
CL21 demonstrated that the constraints on g, can be poor, and
subsequently lead to significantly biased estimates on main-sequence
parameters. The CL21 study was based on simulated data at z ~ 5,
using a set of JWST Near-infrared camera (NIRCam) filters. Our
data set spans a wide redshift range and uses a different set of filters,
but we can still evaluate the possible impact of poorly constrained
SFH parameters on the derived main sequence by comparing fits
performed using different priors on ;. We therefore re-ran BEAGLE
using a uniform prior on 1/7g4y (a prior suggested by Carnall et al.
2019), within the same limits as our fiducial prior, which was uniform
on log(ts:) (see Table 1).

The results for the M, — W plane for the 1.25 < z < 2 redshift bin are
shown in Fig. 12, where we plot the values prior to correcting for any
magnification correction to more clearly display any effects from the
priors. The original posterior medians are shown as blue points, while
the new posterior medians are coloured red, and their 68-per cent
credible regions in M, and W are displayed as grey error bars (for
clarity, we do not plot uncertainties for the original estimates). We
see a large excess of red points significantly below the relation with
very large uncertainties in W. Objects with log(y /Mg yr~!) < —1.8
are shown as large circles, as are the corresponding objects fitted with
the original prior. As a comparison, we applied the method described
in Section 3.1 to derive a main-sequence slope, intercept, and scatter
for the red objects. As one may expect from visually inspecting

Fig. 12, we measured a steeper slope of o.93t3;33 (compared with

0.84f8:82) and a larger intrinsic scatter of 0‘671’8:81 (compared with

0.3370:0%). The newly fitted main-sequence intercept (1.157)19) was

consistent with that of the original run (1.014_’8383). However, the
presence of an outlier distribution was significantly down-weighted
with por, = 0.00%00) (compared with 0.1270:09).

To understand the behaviour of the fits with uniform prior on
log(ts), we need to visualize the resulting prior in M,—W space.
This is shown in Fig. 13. We see a ‘ridge’ in the original prior,
which is very close to the values of W measured for objects that are
subsequently measured to have very low W with the new prior (we
have plotted the posterior medians, so they are slightly above the
ridge which would represent the extent of the 95-per cent credible
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blue line represents a simple functional form consistent with the evolution of the accretion rate of gas on to parent haloes, normalized to our work at z = 2.

MNRAS 515, 2951-2969 (2022)

€202 UIBN LE U0 1sanB Aq 01.52599/1G62/2/G L G/2I01E/SEIUW/WO0d"dNOD1LSPED.//:SA)Y WO} POPEOjUMOQ


art/stac1999_f10.eps
art/stac1999_f11.eps

T T T y I
A 125 <z < 20 . ]
3k 3 ¥ |
- s ]
2..- .h-;;:':-. A
— 1— '.i'.-;... i
i I =1
Is_ (0] = - . ]
= [ ]
o -1 I 7
= | [ ]

e _2"‘ -

3 -’ -
gt ? '-
— _4_ =
_5_ I
-6k Uniform log(tsgr)
7 i Uniform 1/Tspr

N 1

8 9 10

log(M/Mg)

Figure 12. SFR versus stellar mass for objects within the 1.25 < z < 2
bin measured with different priors on zgsz. We display the SFR and mass
constraints before correcting for magnification to more clearly show the
effects of the priors. The blue points show the measurements used in our
fiducial model, fitted with a uniform prior on log(zsrg ), while the red points
show the results when fitted with a uniform prior on 1/7sz. Grey error bars
showing 68-per cent credible intervals in log(M/Mg) and log(y/ /Meyr—!)
are shown for the red points (for clarity, we do not plot uncertainties for the
original estimates). Large circles show the objects that, when fit with uniform
prior on 1/Ts, give log( /Mpyr~') < —1.8. The black dashed line shows
the limit at which the prior density falls off quickly for the prior used in our
fiducial model (see Fig. 13).

intervals). The prior in M,—W space is, in fact, a combination of
how the priors on T and 7 interact. When ¢ < 7qx, the SFH is in the
rising portion, prior to the exponential decline. This rising history
actually has a hard lower limit in M,—W¥ shown by the dashed line
in Figs 12 and 13 (middle and right-hand panels). The uniform prior
on log(tsr) has larger weight in high g, values (left-hand panel,
Fig. 13), which puts higher weighting into the rising portion of the
SFH. This can lead to uncertainties on W that are small, suggesting
that & has been constrained by the data, when in fact the small
uncertainties are caused by the informative prior on Tgp.

We used a redshift-dependent mass completeness cut (Fig. 4)
to determine which objects we would use to measure the main
sequence. This simple exercise demonstrates that for low-mass
objects (still above the mass completeness cut), the signal-to-noise
ratio is insufficient to constrain W. To obtain results of the main
sequence that are not dominated by the priors on SFH parameters,
one needs to determine the mass limit at which M, and W are both
constrained to a certain level of accuracy. Within this redshift bin, a
by-eye assessment (from Fig. 12) suggests that a lower mass limit of
log(M /Mg) = 9.3 — 9.5 would be appropriate, more than an order
of magnitude higher than our mass-completeness limit.

An alternative approach that would allow deriving constraints on
the main sequence to lower stellar mass, would involve censoring
the data with poor constraints on W. This might take the form of
retaining only objects with W above a lower limit which is defined
by how well W is constrained. This type of modelling is explicitly
accounted for in the package LEO-PY, (Feldmann 2019), but the
underlying model does not explicitly account for outliers. This is
mitigated by Feldmann (2019) when fitting to the main sequence at
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0.01 < z < 0.05 by modelling the distribution as asymmetrically
distributed about the main sequence, allowing a tail to low ¥ to
account for quiescent galaxies and those in transition. However, we
have demonstrated that objects above the relation also need to be
accounted for in an outlier model. It is beyond the scope of this paper
to include modelling of censored data, which we defer to future work.

It is possible that the lower-limit in the prior for a rising SFH is
reducing the slope we measure from the main sequence, since the
region of low W at low mass required to produce a steeper slope
is relatively inaccessible thanks to the effective prior. This is likely
why our study and that of Kurczynski et al. (2016), who use the
same SFH and similar prior (priv. communication) on gz, measure
a lower slope than Santini et al. (2017). Santini et al. (2017) measure
M, with a similar SFH to ours (but constrained to the rising portion
at z > 4), but estimate W indirectly using assumptions of a constant
W (via the Kennicutt & Evans 2012 UV-luminosity to W calibration).
This breaking of the dependence of W and M, on the same SFH can
reduce the impact, somewhat, of hard lower- and upper-limits in the
M, —V plane imposed by priors. However, the individual M, and W
estimates are still limited by their respective priors and assumptions.

5.1.2 Form of SFH

Our chosen SFH is still very constraining in form; it ties the current
SFR directly to the past star formation. There is an argument, often
used, that the rest-frame ultra-violet varies with SFR on a timescale
of ~ 100 Myr, and so broad-band photometry is not sensitive to short
timescales of star formation. By this argument, short timescales do
not have to be represented in the SFH when fitting only to broad-
band photometry. This assumption is clearly incorrect at high redshift
where emission lines (sensitive to W on timescales ~ 10 Myr) have
been demonstrated to significantly affect broad-band fluxes (Curtis-
Lake et al. 2013; Stark et al. 2013; de Barros, Schaerer & Stark
2014; Smit et al. 2014; Curtis-Lake et al. 2021). New studies with
more complex SFHs demonstrate how measurements made with
simpler SFH prescriptions can be biased (Carnall et al. 2019; Leja
et al. 2019a). Leja et al. (2019b) derive older ages and lower SFRs
when fitting to multi-band photometry from the 3D-HST catalogues
(Skelton et al. 2014) with a SFH described by discrete bins of star
formation. This leads to a lower measurement of the normalization
of the main sequence (Leja et al. 2021).

We have shown that our SFR estimates for objects with
log(y /Mg yr~!) < 0 in the 1.25 < z < 2 bin are highly dependent
on SFH priors. However, for objects with firm M, and W constraints
with the DE SFH, it can be instructive to fit with a SFH with more
freedom. We fit with a simple history that completely decouples the
present SFR with the previous SFH (and hence with the accumulated
stellar mass). This SFH describes the current star formation with a
constant history over the last 10 Myr (with a uniform prior between
—4 < log(¥ /Mg yr~!) < 4) while earlier times are described by a
DE. We label it DE SFH + BURST. The results are displayed
in Fig. 14 as red points, with the 68-percent credible regions in
M, and W shown as grey error bars. We plot the constraints prior
to correcting for magnification. The blue points show the original
posterior median constraints. As expected, given more freedom in the
SFH, a very large fraction of the objects have very poorly constrained
W (low SFR objects with large uncertainties in SFR), while some
objects also have very poorly constrained masses (those with high
W that also have large uncertainties on M, ). When further analysing
the DE SFH + BURST sample in order to derive a main-sequence
slope, intercept, and scatter, we determined that a cut of 1.0 dex in W
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Figure 13. The two priors on 75 employed when testing the dependence of the results in the 1.25 < z < 2 bin on the priors employed in the fits. The fiducial
prior employed for our fits is uniform on log(zsr ), and we also fit with a prior that is uniform on 1/7sgz. The two priors are plotted in the left-hand panel. The
middle panel shows the prior probability weighting in the M, —W plane for our fiducial prior on s, while the uniform prior on 1/tsgg is shown in the right-hand
panel. The colour-coding shows the weighting in the prior with arbitrary normalization. The white dashed line shows the lower limit in the prior space imposed
by the rising portion of the DE SFH (see text for details). As can be seen, the weighting in our fiducial prior (middle) falls significantly below this line.

[ 125 <z < 20 ]

log(w/Mgyr1)

_4_' e DESFH ]
51 e DE SFH + BURST |
1 " 1 L 1 N 1
8 9 10 11
log(M/Mg)

Figure 14. SFR versus stellar mass for objects in the 1.25 < z < 2 bin for
objects fitted with two different SFHs. As for Fig. 12, we display the SFR
and mass constraints before correcting for magnification as it more clearly
shows the effects of unconstrained parameters. The blue points show posterior
medians measured when fitting with a delayed exponential (DE) SFH, while
the red points show the posterior medians measured with a DE SFH where
the SFR within the most recent 10 Myr is constant, and allowed to vary
independently of the previous history (DE SFH + BURST). For clarity, we
show the 68 per cent credibility regions for the DE4+BURST measurements.
The black lines connect the measurements for five object originally identified
as residing above the main-sequence relation with the DE SFH, that sit on or
below the main sequence when fitted with a DE + BURST SFH.

uncertainty would be necessary to remove the highly unconstrained
objects. For the DE SFH + BURST sample in the 1.25 < z < 2
redshift bin, this flagged 83 per cent of the objects. We therefore did
not proceed to fit a main sequence to this subset. For comparison,
only 13 per cent of the original DE SFH sample had uncertainties in
W greater than 1.0 dex.

For certain high SFR objects that are originally identified as
outliers above the main sequence, the DE SFH could not allow
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Figure 15. Postage stamps of the five objects originally identified as outliers
at high M, and W in the 1.25 < z < 6 bin (see Fig. 14). The objects increase
in BEAGLE-derived M, (prior to magnification correction) with the DE SFH
from top to bottom.

for a recent burst of star formation without forcing the galaxy to
be very young (¢t ~ 107%). We demonstrate the trajectory of five
such outliers when fitting with the more flexible SFH by black lines
connecting the original posterior medians (blue points) with the new
estimates (red points). When the SFH allows the current SFR to be
decoupled from previous SFH, these objects are either found to lie
in regions consistent with the measured main sequence extrapolated
to higher M, (4/5), or have very poorly constrained SFR (1/5). These
results suggest that the DE SFH did not encompass the true SFH
of the objects, leading to the objects being incorrectly interpreted as
outliers from the main sequence. We show the postage stamp cut-outs
for these objects in Fig. 15, which show no strong evidence for the
very young ages derived with the DE SFH.

From so few objects with firm constraints with the more flexible
SFH, we cannot comment on the likely bias on the measurements
of the main sequence due to our original choice. However, we have
demonstrated that fitting with a more complex SFH would have been
unfeasible for our sample given the current broad-band constraints
without firm priors. Leja et al. (2019b) used more flexible SFHs in
their analysis, but demonstrated that the results are dependent on the
priors on their SFH in Leja et al. (2019a). They chose a ‘continuity’
prior that down-weights sharp transitions between bins of star
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Figure 16. Redshift versus rest-frame wavelength showing the filter coverage over key spectral features. The dashed black lines from left to right show the
Lyman and Balmer breaks. The solid black lines from left to right represent Ly e, [On]AA3726A, 3729A, H g, [Omi]A5007A, and H «.. Top panel: The shaded
regions represent the ASTRODEEP filter-set. The dotted area shows the F140W filter which overlaps the F125W and F160W filters. The black hatched regions show
the redshifts at which the Ks and IRAC filters are contaminated by strong emission lines. Bottom panel: The shaded regions represent the JADES broad-band
filter-set. The dotted regions show the two JADES medium-band filters, F335M, and F410M.

formation. This prior is somewhat justified by the demonstration
that the chosen SFH+-priors brings the observed cosmic SFR density
and stellar mass growth into agreement for the first time. This means
that on average the prior is appropriate at the redshift studied (z
< 2.5). However, it is not clear that these priors are suitable for
determining the impact of bursty star formation on the form of the
main sequence at higher redshifts (z 2 2.5), where short time-scale
star formation can significantly affect the broad-band fluxes via the
emission lines. Ideally we should first use data to determine how
bursty the star formation is in systems at high redshift to settle on a
suitable prior. Our demonstration here shows that the data set used
in this study is not appropriate for this purpose for most galaxies
in the sample. We must await JWST data sets, with medium-band
filters spanning the rest-frame continuum, and rest-frame optical
spectroscopy constraining the emission lines, and even continuum
emission with the lower resolution mode.

5.2 The limitations of the filter-set and prospects for
main-sequence measurements in the future

The filter-set used in this work is close to the optimum available data
to study the low-mass end of the main sequence at high redshifts
before the advent of JWST. The addition of HAWK-I Ks-band
provides a vital data point between the reddest HST filter and bluest
Spitzer filter.

Fig. 16 displays the filter coverage over key spectral features
as a function of redshift for the ASTRODEEP (top panel) and the
JWST Advanced Deep Extra-galactic Survey (JADES) filter-set
(bottom panel). The Lyman and Balmer breaks are shown as

dashed lines, while key emission lines are shown as solid lines
with corresponding labels. Regions where the Ks-band or IRAC
3.6- and 4.5-pum filters are contaminated by bright emission lines
(either [ONAA3726A, 3729A, [O1]A5007A, H B or H) are shown
as hatched regions. To derive firm M, and W estimates requires a
firm photometric redshift estimate as well as filters sampling the
rest-frame ultra-violet to rest-frame optical. In particular, the rest-
frame optical should provide constraints of the stellar continuum
free from contamination by bright emission lines. One would ideally
also have reasonable constraints on the shape of the Balmer break.
The firm photometric redshift can come from filters bracketing either
the Lyman or Balmer breaks.

For the ASTRODEEP filter-set, the 3 < z < 4 bin has two Spitzer
filters probing the rest-frame optical free from emission-line contami-
nation, but the Lyman break is passing through the lowest wavelength
filter (F435W) and the Balmer break strength and position is muddied
by the contamination of [OIII])L5007/°% and H 8 to the Ks-band. Both
these effects significantly reduce the accuracy of the photometric
redshift constraints, which impacts the constraints on M, and W, and
also the constraints on o, as explained in Section 3.1.2. By z > 4, the
Lyman break is securely bracketed by two filters, thereby improving
the photometric redshift constraints, and the 4.5-um filter provides
constraints of the stellar continuum in the rest-frame optical. This
provides firmer M, and W constraints, and explains why our scatter
estimate at 4 < z < 5 is no-longer significantly underestimated in
the redshift bin analysis (see Fig. 6).

The bottom panel of Fig. 16 shows the coverage from an example
JWST NIRCam filter-set, that was chosen for JADES. The coverage
from the two longest wavelength broad-band filters (F356W and
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F444W) appears similar to that of IRAC 3.5 and 4.5 um. However,
imaging with the F356W and F444W filters will have a far greater
depth and resolution, which in turn minimizes the uncertainties
arising from the deconfusion process. The F200W and F277W filters
provide wavelength coverage across the gap between the HST and
Spitzer filters in the ASTRODEEP catalogue. Additionally there are two
medium-band filters (F335M and F410M), which in total provides six
filters red-ward of the Balmer break, significantly mitigating the issue
of emission line contamination. There are considerably more medium
and narrow band filters to choose from, and part of the area covered
by JADES (specifically the Hubble Ultra Deep Field) will also be
visited by proposal 1963 (Williams et al. 2021). This imaging will
provide additional medium band filters (F182M, F210M, F430M,
F460M, and F480M), further sampling the rest-frame optical of high
redshift galaxies. This extra imaging will provide multiple anchors
probing the stellar continuum free from emission line contamination.
It is worth noting that the addition of optical HST ACS photometry
is still beneficial in determining robust photometric redshifts where
the JADES filter-set does not bracket the Lyman break, as well as for
constraining the rest-frame UV continuum at low redshifts.

6 CONCLUSIONS

We used BEAGLE to fit to photometry in the ASTRODEEP catalogue
for the first four Frontier Field clusters: Abell 2744, MACS0416,
MACS0717, and MACS1149. Gravitational lensing due to the large
foreground clusters has enabled us to probe masses as low as 107 —
10® My, between redshifts 1.25 < z < 6.0.

We have presented a Bayesian hierarchical model of the star-
forming main sequence which accounts for the heteroskedastic, co-
varying errors on stellar mass, SFR, and redshift, as well as the
presence of outliers.

To determine a suitable parametrization for our full model, we
initially fitted the main-sequence relation within different redshift
bins. Our initial analysis demonstrated that the sampling of galaxy
SEDs provided by the filter-set used (representing the best filter-
set currently available for probing faint galaxies at high redshift)
provides M, and W estimates that are too poorly constrained to
warrant fitting with a fully flexible model. We describe here the
decisions made and results for the redshift-dependent model.

(1) We fit with a slope that is constant with redshift, measuring
B = 0.79+003.

(i) We choose a physically motivated parametrization for the
evolution in the normalization of the main sequence, based on
the expected evolution of accretion rate of gas on to the parent
haloes, with the form oy 7(z) = log(N(1 + z)¥) + 0.7. We measure
N =0.12709% and y = 2.40%018. The value of y is consistent with
the value expected if sSFR scales with accretion on to dark matter
haloes (a value of 2.25) and the data is consistent with a rising sSSFR
to high redshifts.

(iii) Having removed the majority of outliers located below the
main sequence due to their highly unconstrained measurements of
SFR, we account for outliers at z < 4 by modelling them simply
as belonging to a broad Gaussian distribution in ¥ with mean and
standard deviation constant with redshift, as well as the probability
of an object being an outlier.

(iv) For z > 4, we set the probability of outliers to zero finding no
strong evidence for them from the redshift bin results.

(v) We find that intrinsic scatter about the main sequence is
highly degenerate with the outlier model parameters, and cannot be
accurately determined separately within the 3 < z < 4 bin. For the
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full model, we resort to fitting a scatter that is constant with redshift,
and measure an intrinsic scatter (deconvolved from uncertainties on
M, and ¥) of o = 0.2670:%2,

We have explored the limitations of the data and demonstrated
how to diagnose when the data may be insufficient to constrain the
star-forming main sequence without significant biases. We re-fitted
the galaxies in the 1.25 < z < 2 bin (those galaxies in our sample
with the most complete sampling of their SEDs, and therefore likely
the best physical parameter constraints) in two ways. First, with a
different prior on 7y, which describes the time-scale of decay in
our delayed exponentially declining SFH. Our results show that
with our fiducial prior, the M, and W estimates appeared well-
constrained, yet when the prior is changed, it shows that objects
which were originally fitted with log(y /Mg yr~!) < 0.0 give much
lower SFR estimates. The fiducial prior was therefore somewhat
informative and veiling which objects had poorly constrained SFR.
We also re-fit galaxies in the 1.25 < z < 2 bin with a less
constraining SFH that allowed the recent 10 Myr of constant star
formation to vary independently of the previous SFH. We demon-
strate how few objects had well-constrained M, and W estimates
with this history, meaning that in order to fit more complex and
realistic SFHs, we first require an improved data set with better
constraints.

The improved sampling of the SED that can be achieved with JWST
NIRCam broad and medium-band filters, as well as the consistent
depth that can be achieved will significantly improve the constraints
on the main sequence at high redshifts.
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