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Abstract: The visually secure image encryption scheme is an effective image encryption method,
which embeds an encrypted image into a visual image to realize a secure and secret image transfer.
This paper proposes a merging compression and encryption chaos image visual encryption scheme.
First, a dictionary matrix D is constructed with the plain image by the K-SVD algorithm, which can
encrypt the image while sparsing. Second, an improved Zeraoulia-Sprott chaotic map and logistic
map are employed to generate three S-Boxes, which are used to complete scrambling, diffusion, and
embedding operations. The secret keys of this scheme contain the initial value of the chaotic system
and the dictionary matrix D, which significantly increases the key space, plain image correlation, and
system security. Simulation shows the proposed image encryption scheme can resist most attacks and,
compared with the existing scheme, the proposed scheme has a larger key space, higher plain image
correlation, and better image restoration quality, improving image encryption processing efficiency
and security.

Keywords: image encryption; compressive sensing; K-SVD; chaos
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1. Introduction

The development of information and modern communication technology has made
it possible to transmit digital images quickly and conveniently. However, digital images
contain much private and secret information, and the protection the security of digital
images quickly and effectively has become an urgent problem. Digital images have char-
acteristics of high correlation among pixels, a large amount of data and visualization, etc.
Traditional encryption techniques cannot meet their encryption demand. Therefore, digital
image encryption (IE) technology has become a hot research topic [1–6].

Chaotic systems have characteristics of pseudo-randomness, uncertainty, and initial value
sensitivity, and can be used to obtain pseudorandom sequences [7–10]. In 1989, Mattews [11]
first proposed a chaos-based encryption scheme. Then Fridrich proposed a “scrambling-
diffusion” IE framework with a two-dimensional chaotic map in 1998 [12]; from then, most
digital image encryption methods are based on this framework, and many research results
have emerged [13]. There are two main research directions in this field. The first is the
application of a new chaotic system. A one dimensional chaotic map is first employed
in IE, followed by a multi-dimensional chaotic system. With an in-depth study of chaos
theory, hyperchaotic systems [14] and memristor hyperchaotic are also utilized [15–17]. The
second direction is the design of the scrambling-diffusion algorithm. Scrambling consists
of scrambling the position of each pixel in the picture, and diffusion of spreading the value
of each pixel point to other pixel points; a good algorithm for scrambling and diffusion
is an important assurance of IE security [18,19]. A large number of different algorithms
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have been proposed and applied to chaotic IE, such as DNA coding [20,21], S-Box [22],
Bit-Level Permutation [23], Bit-plane Rotation [24], Random walk [25,26], etc. However, the
scrambling-diffusion framework has two shortcomings. One is that the encrypted image
has the same size as the plain image, which provides valuable information for the attacker.
The other is the nature of random-like encrypted images, which are easier to recognize as
encrypted images and vulnerable to attack.

Compressive sensing can reduce the size of an encrypted image, improve transmission
efficiency, solve the first problem mentioned above, and sample, compress, and encrypt
the image simultaneously, and has been widely used in image encryption schemes [27]. In
a compressive sensing image encryption scheme, the plain image should first be sparse,
then a measurement matrix is employed to reduce and encrypt the plain image. Yu et al.
proposed constructing the measurement matrix with chaos [28], and Zhou et al. pro-
posed an image compression–encryption scheme to generate a measurement matrix with a
logistic map [29].

To solve the second problem, Ye et al. proposed a visual image encryption scheme [30].
In this scheme, the plain image is compressed and encrypted through compressive sensing
to obtain a compressed image, then the compressed image is confused and diffused and
becomes an encrypted image, and finally the encrypted image is embedded into a carrier
image to prevent the attacker from discovering the encrypted image. Based on this scheme,
a variety of research results have emerged. For example, Jiang et al. proposed an adaptive
embedding algorithm [31], and Yang et al. designed a Generalized Embedding Model [32].
Hua et al. employed an adaptive-thresholding sparsification method, to improve the quality
of the reconstructed image [33]. To improve the transmission efficiency of cipher images, a
double-image encryption algorithm is designed in [34,35]; furthermore, Liu et al. proposed
a multi-image encryption algorithm [36]. These methods improve the efficiency of image
encryption and transmission; however, the existing methods of encrypting images with
compressive sensing use the measurement matrix as the key, which lacks the correlation
of a plain image. The repeated use of the measurement matrix is vulnerable to attack by
selected plaintext.

Based on the above analysis, this paper proposes a high plain image correlation
measurement matrix compressive sensing image encryption scheme. This scheme includes
three steps. First, dictionary D is produced from the plain image with the K-Singular
Value Decomposition (K-SVD) algorithm [37]. Based on the singular value decomposition
(SVD), the K-SVD algorithm consists of the generalizing of a K-means clustering process,
learning an over-complete dictionary from a set of signals. Second, the plain image is
sparsed, compressed, and encrypted to a compressed image. Third, three S-Boxes are
constructed with the Improved Zeraoulia-Sprott chaotic Map 5 and logistic map and are
used to complete the scrambling, diffusion, and embedding operations.

The main contributions of this work are as follows.
First, a compressive sensing algorithm related to plain images is proposed, and a

dictionary matrix D is constructed with the plain image by the K-SVD algorithm. D is one
of the secret keys and is used to sparse the plain image, then compress the plain image,
completing compression and encryption at the same time, which can significantly improve
processing efficiency and security.

Second, the secret key of the scheme includes the initial value of the chaotic system
and the dictionary of the compressive sensing algorithm, which greatly increases the key
space and complexity. Simulations and comparisons show that, compared with the existing
schemes, the proposed scheme has larger key space, higher image recovery quality, plain
image correlation, flexibility, and a higher security level.

The remainder of the paper is organized as follows. Section II introduces the basic
theory of the logistic chaotic system, improved Zeraoulia-Sprott map (IZSM), compressive
sensing and S-box. Section III presents the encrypted scheme, the encrypted steps, the
encrypted detail and the decryption scheme. Simulation and analysis are performed in
Section IV. The last section concludes the paper.



Mathematics 2023, 11, 1658 3 of 20

2. Materials and Methods
2.1. Logistic Chaotic System

A logistic map is a simple one-dimensional chaotic map, proposed by American
scientist Li and Yorke in 1975 [38], and has been widely used in the field of encrypted
communication. The formula for the logistic map is as follows,

xn+1 = µxn(1− xn), (1)

where µ refers to the system parameter whose value range is (0, 4) and xn refers to the
system variable whose value range is (0, 1).

2.2. Improved Zeraoulia-Sprott Map (IZSM)

In this paper, a 2D modular chaotic system(2D-MCS) [39], IZSM, with higher chaos
complexity and larger chaotic ranges, is employed, which can effectively solve the problems
of narrow chaotic ranges and limited parameter ranges. The employed IZSM is defined
as follows, {

xn+1 = −âxn/
(
1 + y2

n
)

mod N
yn+1 = (xn + b̂yn) mod N

, (2)

where â, b̂ are system parameters. The modulus coefficient N is a positive integer. Com-
pared with the limitation of the modular operation in 2D-MCS, IZSM can compact the
phase plane significantly. Consequently, the values of the two parameters â and b̂ in the
IZSM are more flexible. As shown in Figure 1, variables x and y in the IZSM can randomly
visit the entire regions of the phase plane under all given parameter settings, and the
outputs of the IZSM can be randomly distributed on the whole phase plane.
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Figure 1. Bifurcation diagrams and trajectories of three existing 2D chaotic maps. Panel (a–c) display
the Zeraoulia-Sprott map’s bifurcation diagrams under a = 3.8 and b ∈ (−1.5, 1.5), and its trajectory
under (a, b) = (3.8, 0.6); (d–f) bifurcation diagrams and trajectories of the IZSM.

2.3. Compressive Sensing

Compressive sensing can sample, compress, and encrypt the image simultaneously,
improving the efficiency of encryption algorithms and the ability to protect the confiden-
tiality of images. The specification of compressive sensing includes three parts, sparsity,
uncorrelated observation, and optimum reconstruction of signals.
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Given a signal x ∈ RN×1, under the action of the orthogonal basis Ψ ∈ RN×N , the
signal x can be sparsely represented as follows,

x = ∑n
i=1 Ψisi = Ψs, (3)

where, si = {s1, s2, . . . sN} is the coefficient vector of signal x. If the number of non-zero
coefficients in vector s is K � N, i.e., the coefficient vector si is K-Sparse, then the signal
x is sparse, and can be compressed under the action of the orthogonal basis Ψ. The low-
dimensional linear observation value y of length M can be acquired after employing the
matrix Φ ∈ RM×Nof size M× N(M� N) to perform dimensionality reduction observa-
tion on the signal. Moreover, y vanishes the correlation of signal x, and the important
information of the reconstructed signal x remains,

y = Φx = ΦΨs = Θs, (4)

where Θ = ΦΨ is the sensor matrix, and y ∈ RM×1 is the measurement result.
If the original signal x is reconstructed from the observed value y, then the sensor

matrix Θ is supposed to satisfy the Restricted Isometry Property (RIP). Some references
denote that the measurement matrix Φ does not correlate with the sparse basis Ψ. If the
sensor matrix Θ satisfies RIP, the reconstruction problem can be solved by solving the
minimum `0 norm problem of Equation (5),

s = min||s||L1
= min

∣∣∣∣∣∣ΦTx
∣∣∣∣∣∣

L1
(5)

Finally, by using reverse transformation for s, the approximate solution vector can
be acquired,

x =
n

∑
i=1

Ψisi = Ψs. (6)

2.4. S-Box

A substitution S-Box is one of the most significant modules in a symmetric key en-
cryption algorithm and has been widely used in combining the complete Latin square
with a chaotic system. S-Box is a square matrix that regards numerous bits as input and
converts from these bits to the same number of output bits, constructed by the orthogonal
matrices generated from the complete Latin square. First, the chaotic system based on the
given initial state is used to generate chaotic sequences, and the complete Latin square
is generated by a part of the chaotic sequences. As a result, two orthogonal matrices are
created. After scrambling the orthogonal matrices based on the chaotic sequences, an S-Box
can be constructed. The S-Box makes it easy to change the pixel positions of an image.
Analysis results demonstrate that an S-Box has complicated nonlinear properties, can resist
different kinds of security attacks, and satisfy the requirement of the security level of the
encryption algorithm.

3. Image Encryption Scheme

This section proposes a new K-SVD-based compressive sensing visual chaotic image
encryption scheme. There are two stages in the encryption process, encryption and embed-
ding. In the encryption stage, a dictionary is obtained from the plain image by K-SVD, then
the plain image is sparsed with the dictionary. The dictionary is one of the secret keys, and
the sparse operation is also a kind of encryption operation. The sparsification operation
brings better plaintext correlation to the scheme. Next, the sparse image is compressed
with a compressive sensing algorithm. The other keys are x0 and y0, which are the initial
value of IZSM and the Logistic map. IZSM generates two pseudorandom sequences to
construct S-Boxes, which are used to permute and embed the secret image. In addition,
chaos sequences created by a Logistic map are used to diffuse the image. Thus, a plain
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image is encrypted into an encrypted image. In the embedding stage, the mix coding
algorithm embeds the encrypted image into an embedding image with S-Box, and at last
the cipher image is obtained.

3.1. OMP

The orthogonal matching pursuit algorithm (OMP) is a regression algorithm. For
an underdetermined equation y = Θs, OMP finds the most approximate solution of s
when y (size of M × 1) and Θ (size of M × N) are known. OMP is used in both sparse
decomposition and compressive sensing reconstruction in this paper. The solution steps
are as follows:

Step 1: Consider each column of the matrix Θ as an atom d,

Θ = (d1, d1, . . . , dn), (7)

so, y is the linear combination of atoms in Θ, s is the linear combination coefficient, and si
measures the contribution of the i-th atom di. Next, we calculate the contribution si〈di, y〉
of each atom to y, and select di that maximizes this value, where 〈di, y〉 is the absolute value
of the result of multiplying the transpose matrix of di and y.

Step 2: Set the initial residual f = y and create a new compression matrix Θnew = ∅,
where ∅ represents an empty set. Following this, di with the largest contribution calculated
previously is added into Θnew. Then we subtract di from y and the remaining residual is
achieved:

f = y− 〈di, y〉di. (8)

Step 3: Through 〈di, y〉, we can find out di with the largest contribution except di, and
then add dj to Θnew. Now, the contribution of Θnew to y is required. In order to obtain a
new coefficient, OMP will solve the least squares problem:

min|| Θnewω− y||2. (9)

Then the new coefficient ω is get by

ω =
(

ΘT
newΘnew

)−1
ΘT

newy. (10)

The residual is updated to
f = y−Θnewω. (11)

Step 4: When the residual is less than a certain value, the iteration stops. If the sparsity
K is known, it will be iterated K times. Finally, we add the values of ω to the corresponding
positions and set the values of other positions as zero, so the reconstructed signal ŝ of S can
be obtained.

3.2. K-SVD Sparse Dictionary

K-SVD is an algorithm for designing overcomplete dictionaries for sparse represen-
tation. Supposing a matrix Y ∈ Rm×n represents the original signal (image), Ym×n =
Dm×KXK×n, where D is the dictionary matrix with the size of m× K, and X is the corre-
sponding sparse matrix with the size of K× n which is expected to be as sparse as possible.
To deal with this problem, an optimization problem is proposed, which is

min
D,X
‖ Y− DY ‖2

Fs.t.∀i, ‖ xi ‖0 ≤ T0, (12)

or
min
D,X

∑ ‖ xi ‖0, s.t.min
D,X
‖ Y− DX ‖2

F ≤ ε. (13)

where xi(i = 1, 2, . . . , K) is the row vector of the sparse matrix X, and ‖ xi ‖0 is the zero-
order norm representing the number of numbers that are not 0 in the vector. By applying
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the Lagrangian multiplier method, this problem transforms into a non-constrained opti-
mization problem, which is described as

min
D,X
‖ Y− DX ‖2

F + λ‖ xi ‖1. (14)

To make this easy to understand and solve, ‖ xi ‖0 is replaced by ‖ xi ‖1.
The general method to optimize X is the OMP algorithm, while the solution for D

optimizing can be explained as follows.
Suppose the sparse matrix X is known, the column-wise update of dictionary matrix

D can be implemented. The above formula can be converted into

‖ Y− DX ‖2
F = ‖ Y−∑K

j=1 djx
j
T ‖

2

F
= ‖ (Y−∑j 6=k djx

j
T)− dkxj

T ‖
2

F
= ‖ Ek − dkxj

T ‖
2

F,
(15)

where dj is the j-th column vector of D, xk
T is the k-th row vector of X and the residual

Ek = Y−∑j 6=k djx
j
T . The optimization problem can be described as

min
dk ,xk

T

‖ Ek − dkxk
T ‖

2
F. (16)

The problem is transformed into finding the optimal dk, xk
T is a least squares question

and can be solved by SVD.
To obtain the new xk

T sparse, the positions in Ek where the corresponding xk
T is not 0,

are extracted, and a new matrix E′k is rebuilt. As a result, the question is converted into

min
dk ,xk

T

‖ E′k − dkx′kT ‖
2
F. (17)

By employing SVD, we can perform singular value decomposition on E′k,

E′k = UΣVT . (18)

Taking the first column vector of the left singular matrix U as dk the product of the
first-row vector of the right singular matrix as V, and the first singular value Σ as x′kT , the
corresponding xk

T can be updated.

3.3. Construction of S-Box

In this paper, we construct the S-Box based on the IZSM, as shown in Figure 2. Three
steps are needed.

Step 1: Given the initial keys of IZSM, to generate two sequences x and y, with a
length of 10,000, and a value range (0, 1).

Step 2: Normalize x and y sequences to the range (0, 256) and round down, then the
normalized sequences x′ and y′ are obtained.

Step 3: Create a 16× 16 size matrix, fill the matrix with the first 256 non-repeating
values of sequence x′, and obtain Box1. Box2 can be obtained via sequence y′ in the
same way.

3.4. Coordinate Mapping Algorithm Based on S-Box

In this step, the S-Boxes are employed to perform image coordinate mapping, Box1 used
for the abscissa and Box2 used for the ordinate. Figure 3 shows partial data for Box1 and
Box2. Taking the coordinate (136, 239) as an example, the specific steps of coordinate
mapping are as follows. In the 16× 16 matrix, the 136-th coordinate is located in the 9-th
row and 8-th column, so the abscissa corresponds to the coordinate (9, 8) of Box1. As shown
in Figure 3, the value of this coordinate (9, 8) in Box1 is 28, and after adding 1, it is 29.
Therefore, the abscissa is mapped from 136 to 29. The same is true for the ordinate. The
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239-th coordinate is located in the 15-th row and 15-th column, the coordinate value of
Box2 (15, 15) is 201, and 202 after adding 1. To sum up, the coordinate (136, 239) becomes
(29, 202) after mapping. Because the coordinate range of the encrypted image is [1, 256]
and there is no duplicate coordinate, the value range of the S-Box is also [1, 256], and there
is no duplicate value, the coordinate mapping is reversible.
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3.5. The Scheme of Image Encryption

The proposed encryption scheme is given in Figure 4, which includes four stages:
compression, scrambling, diffusion, and embedding. The size of the original image P is
M× N, the compressed image size is M× N, and the compression ratio is N/M.

3.5.1. Image Compression

Step 1: The dictionary set Dictionary and the SparseMatrix are obtained by the K-SVD
algorithm.

[Dictionary, ∼] = K− SVD(P, param), (19)

where param is the parameter set.
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SparseMatrix = OMP(phi× Dictionary, phi× P, L), (20)

where phi is the randomly generated measurement matrix of size M × N and L is the
number of OMP iterations.

Step 2: Construct a random observation matrix PHI of size M× N.
Step 3: Sampling the sparse matrix through the observation matrix PHI to obtain the

observation signal Y,

Y = PHI × Dictionary× SparseMatrix, (21)

where the size of Y is M× N.

3.5.2. Image Scrambling

Before scrambling, image Y needs to be supplemented to the size of N × N, and the
range of pixel values of each point is required to be (0, 256).

Step 1: Calculate the maximum pixel value Max1 and the minimum pixel value Min1
in image Y. The pixel value of each point is normalized to (1, 255) with the formula

Y(i, j) = (Y(i, j)−Min1 + 1)/(Max1 −Min1)× 255. (22)

Step 2: Construct a random matrix Add of size (N −M)× N, normalize each value to
(1, 255), and splice the matrix Y with the matrix Add to obtain matrix Y1 of size N × N.

Step 3: Two 16 × 16 S-Boxes, Box1 and Box2 are generated through the IZSM, with
the algorithm mentioned in the section “Construction of S-Box”.

Step 4: Coordinate mapping is performed on Y1 to achieve image scrambling, and Y2
is obtained.

3.5.3. Image Diffusion

A logistic chaotic system is utilized to realize image diffusion. First, two N×N chaotic
sequences S1 and S2 are generated via the Logistic chaotic system, and normalized to the
range of [1, 256]. Then, additive modular algorithm is applied to Y2 to create Y3, called
image diffusion. The diffusion process includes forward diffusion and reverse diffusion.
The details are as follows,

forward diffusion

Ci = (Ci−1 + Pi + Si)mod 256
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Pi = (256× 2 + Ci − Si − Ci−1)mod 256 (23)

reverse diffusion
Ci = (Ci+1 + Pi + Si)mod 256

Pi = (256× 2 + Ci − Si − Ci+1)mod 256 (24)

where P is the plain-text, C is the cipher-text, and S is the random sequence.

3.5.4. Image Embedding

Supposing the embedding image is Cr, whose length and width are more than twice
that of the encryption image, one pixel of the encryption image can be mapped to four
pixels of the embedding image.

Step 1: Four pairs of S-Box (BoxA1, BoxA2), (BoxB1, BoxB2), (BoxC1, BoxC2)
and (BoxD1, BoxD2) are generated through the IZSM.

Step 2: The pixel value of each point in the encryption image is divided into four parts:
Temp1, Temp2, Temp3, and Temp4. Temp1 is the integer part. After removing Temp1, shift
the decimal point right by four digits and take the integer part Temp2. After removing
Temp2, continue to shift the decimal point right by four digits, and take the integer part as
Temp3. Temp4 is equal to Temp1.

Step 3: For each pixel part Tempx of each point, its coordinates are mapped from (x, y)
to (x1, y1) through a pair of S-Boxes. Then it is mapped to the coordinates of the embedding
image through coordinate transformation,

(x0, y0) = (2(x1 − 1) + 1, 2(y1 − 1) + 1). (25)

Then the coordinates corresponding to each pixel part are (x0, y0), (x0 + 1, y0),
(x0, y0 + 1), (x0 + 1, y0 + 1).

Step 4: Each part of the pixel is embedded to the decimal part of the corresponding
pixel of the embedding image to achieve ciphertext hiding. The embedded image is Cr1.

3.6. Image Decryption Scheme

The decryption process is the opposite of the encryption process and includes four
parts: extracting the encryption image from the embedding image, inverse diffusion,
inverse scrambling, and compressive sensing recovery. The decryption scheme is shown in
Figure 5.
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Step 2: Four pairs of S-Box (BoxA1, BoxA2), (BoxB1, BoxB2), (BoxC1, BoxC2) and
(BoxD1, BoxD2) are generated through the IZSM with the same keys as the
encryption process.

Step 3: Create an N×N zero matrix Y3 to represent the separated decryption image. For each
pixel position (x, y), the mapping coordinate values (xA, yA), (xB, yB), (xC, yC) and (xD, yD)
are obtained through the above four pairs of S-Box. After the coordinate change, the corresponding
coordinates of Cr2 are obtained (2(xA − 1) + 1, 2(yA − 1) + 1), (2(xB − 1) + 1, 2(yB − 1) + 1),
(2(xC − 1) + 1, 2(yC − 1) + 1) and (2(xD − 1) + 1, 2(yD − 1) + 1), the four parts of the cor-
responding pixel can be obtained: Temp1, Temp2, Temp3 and Temp4. In particular, if
Temp1 = 0, then Temp1 = Temp4,

Y3(x, y) = Temp1 + Temp2/104 + Temp3/108 (26)

3.6.1. Inverse Diffusion and Inverse Scrambling

Step 1: Execute the inverse algorithm of reverse diffusion on the encryption image Y3
via Equation (24), then execute the inverse algorithm of positive diffusion on the image via
Equation (23), and the inverse diffusion image Y2 is generated.

Step 2: Execute the same operation as section “Construction of S-Box” and obtain Box1
and Box2.

Step 3: Start from the last coordinate of Y2 and carry out the following operations
consecutively. For each coordinate (x, y), obtain the corresponding mapping coordinate
(x1, y1) through Box1 and Box2, exchange the pixel value of the coordinate (x, y) and the
coordinates (x1, y1), and then the image inverse scrambling is finished and Y1 is obtained.

Step 4: Restore the values of the first M line of Y1 according to Equation (27),

Y1(i, j) =
Y1(i, j)

255
× (max1 −min1) + min1 − 1. (27)

Step 5: Take the first M rows of Y1 to form a new matrix Y of size M× N.

3.6.2. Compressive Sensing Recovery

The proposed system adopts the OMP algorithm to recover the observed signal, and
the required parameters are the observation matrix PHI, the dictionary set Dictionary and
the observed signal Y.

4. Simulation Results and Analysis
4.1. Simulation Results

In the following simulation experiments, the experimental environment is windows10
and MATLAB R2016a, CPU: Intel(R) Core (TM) i7-10700 CPU @ 2.90 GHz 2.90 GHz, RAM:
16.0 GB. Four 256× 256 gray-scale images, Lena, pepper, baboon, and couple are employed
as the original images. One 512× 512 embedded flower image is used for the first two
images, and the other two images utilize another embedded mountain image.

The simulation results are exhibited in Figure 6; the pixels of the encrypted images are
completely confused, and there is no relevant information. Meanwhile, after the encrypted
images and embedded images are mixed, the embedded images almost have no change.
Additionally, all decrypted images are identical to the original images.

The average encryption time of four images is 7.69 s, and the embedding time is 0.2 s,
reaching the average level of existing work.

4.2. Key Space Analysis

The set of all possible keys in an encryption system is called a key space, denoted as S.
Generally, the key space S should be larger than 2100 to make brute-force attacks infeasible.
In the proposed scheme, the keys are,

(1) the initial values x0, y0 of the IZSM and Logistic chaos map.
(2) the dictionary set “Dictionary”.
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As mentioned earlier, the IZSM significantly reduces the range limit of the initial
values and indirectly increases the difficulty of cracking. Usually, the Lyapunov exponent
(LE) is used as an indicator of chaos. As shown in Figure 7, the IZSM can obtain positive
LE in a larger parameter range than the original one, which means a larger key space. The
key space S in this paper can obtain S = 10166 = 1096 ≈ 2318 � 2100, which is large enough
to resist brute-force attack.
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4.3. Key Security Analysis

Key sensitivity is an important indicator to measure the security of an encryption
system. If a system can make the decrypted image irrelevant to the original image after
making a tiny change to a key value of the correct keys, it indicates that the key sensitivity
of the system is good. The ‘baboon’ image shown in Figure 8a is used for key sensitivity
analysis. The original key is set as x0 = 1.1212, and the slightly modified key is set as
x0 = 1.12120000000001. The decrypted image for the correct decryption key is shown in
Figure 8b, and the decrypted image for the incorrect decryption key is shown in Figure 8c.
The information related to the original image cannot be obtained when the key is changed
by only a tiny value of 10−14, which means that the proposed scheme is rather sensitive to
the secret keys.
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4.4. Histogram Analysis

A histogram is used to reflect the distribution of the pixel intensity values in the image.
For an ideal image encryption system, the histogram of the encrypted image should be
as uniform as possible to resist statistical attacks. Figure 9 shows the original images, the
encrypted images, and the corresponding histograms. The histogram of the encrypted
images is evenly distributed, while the histogram distribution of the original images is
uneven. The proposed scheme can effectively withstand statistical attacks.
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Figure 9. Histogram analysis. (a,e,i,m) are the original images, (b,f,j,n) are the histograms
of the original images, (c,g,k,o) are the encrypted images, (d,h,l,p) are the histograms of the
encrypted images.

4.5. Correlation Analysis

The adjacent pixels of the original images have a high correlation in the horizontal,
vertical, and diagonal directions. An ideal image encryption system should sufficiently
reduce the relevance between neighboring pixels of the encrypted image to resist statistical
attacks. Select 2560 pairs of pixels from the image baboon randomly before and after
encryption to draw correlation diagrams. As shown in Figure 10, we can intuitively see
that the adjacent pixels of the original images are linearly related, while the adjacent pixels
of the encrypted images have a low correlation. Usually, we use correlation coefficient
defined by Equation (28) to measure the correlation of adjacent pixels.
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The correlation coefficients calculated by Equation (28) are demonstrated in Table 1.
The correction coefficients of the original image are very close to 1, while those of the
encrypted images are around 0 in all directions, which means that the images after en-
cryption are uncorrelated. Thus, the proposed encrypted algorithm can effectively resist
statistical attacks.

Table 1. Correlation coefficient of adjacent pixels.

Image
Horizontal
Correlation
Coefficient

Vertical Correlation
Coefficient

Diagonal
Correlation
Coefficient

Original image 0.9797 0.9778 0.9615
Encrypted image −0.0195 0.0191 −0.0051

The number of changing pixel rate (NPCR) and Unified Average Changing Intensity
(UACI) are two criteria to quantitatively evaluate the capability of resistance to differential
attacks. They are defined by

NPCR =

∑
i,j

D(i, j)

W × H
× 100%, (29)
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UACI =
1

W × H

[
∑
i,j

|C1(i, j)− C2(i, j)|
255

]
× 100% (30)

where W and H represent the length and the width of the image, C1(i, j) and C2(i, j) are
the pixel values of the two encrypted images, which correspond to the two original images
with only 1-bit difference, and D(i, j) is defined by

D(i, j) =

{
0, C1(i, j) = C2(i, j)
1, C1(i, j) 6= C2(i, j)

. (31)

The results in Table 2 show that the value of NPCR and UCAI are approaching the
ideal theoretical value of 99.61% and 33.46%, indicating the excellent performance of the
proposed scheme in resisting the differential attacks.

Table 2. NPCR and UACI of different images.

Image NPCR UACI

Lena 99.64% 33.51%
pepper 99.63% 33.44%
baboon 99.64% 33.59%
couple 99.61% 33.56%

4.6. Known-Plaintext Attack Analysis

When attackers know part of the plaintext and the corresponding ciphertext, the
general regular pattern of pixel mapping can be obtained via the plaintext ciphertext pair,
which is known-plain text attack. A simple linear encryption system is easily cracked by
known-plaintext attacks. However, the two-dimensional chaotic system adopted in this
paper is nonlinear. At the same time, the one-time encryption method strengthens security.
Therefore, the proposed encryption system can resist known-plaintext attacks well.

4.7. Different Compression Ratios

Considering the use of Compressive sensing technology, the reconstruction quality of
the image under different compressive ratios is analyzed. Taking two images, Lena and
baboon as examples, the decrypted image quality is investigated when the compressive
ratios are 8, 4, 2, and 1.33, as shown in Figure 11; when the compressive ratio is 1.33, the
decrypted images are of high quality, and are almost the same as the original images. The
difference between the decrypted images and the original images is still imperceptible to the
human eye when the compressive ratio is 2. When this parameter is set to 4, the decrypted
images still have high quality, but a few vertical lines appear. When the compressive
ratio increases to 8, the decrypted images become blurred and many vertical lines appear
because of the high value of the compressive ratio.

4.8. Sparse Matrix Analysis

The proposed encryption algorithm combines the compressive sensing theory, and
the K-SVD algorithm is employed to generate the sparse matrix. Considering that DWT
(discrete wavelet transform) is another well-known method for generating sparse matrix,
we compare K-SVD and DWT on the quality of the decrypted image, as recorded in
Figure 12. It is noticeable that the reconstruction quality of the decrypted image using
K-SVD is far better than that using DWT under the same compression ratio. It is also
noticeable that the reconstruction quality of the decrypted image using K-SVD is far
better than that using DWT under the same compression ratio, but adds encryption and
decryption time, which signifies more performance consumption.
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4.9. Cropping Attack Analysis

During encrypted image transmission, attackers may crop part of the encrypted image,
which is called a Cropping Attack. The restoration ability of the decrypted image after
cropping is an index to measure the resistance of an algorithm to cropping attacks. Simulations
are implemented with the two images, Lena and baboon. Figure 13 shows the decryption
images when the embedded images are cropped by 100, 400, and 2500 pixels, respectively.
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As observed, when 100 pixels are cropped, the decrypted images retain most of the
information of the original images. When 400 pixels are cropped, the decrypted images lose
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some details. When 2500 pixels are cropped, many details are lost in the decrypted images,
but the content of the images can still be recognized. Thus, the encryption algorithm
proposed in this paper has good resistance to cropping attacks.

5. Conclusions

In this paper, we proposed a K-SVD-based compressive sensing chaotic image encryp-
tion scheme. The scheme employs the visual secure image encryption structure, through
the embedding of the encrypted image into a visual image, increasing the security of image
transmission. The key to this scheme includes a dictionary matrix D constructed by K-SVD
from the plain image, and the initial value of IZSM chaotic has good plain-image correlation
and high quality of image recovery. Three S-Boxes are constructed by the IZSM chaotic se-
quences and logistic sequences, in order to complete scrambling, diffusion, and embedding.
Simulations and comparisons are executed, and the results show that the proposed scheme
has larger key space, higher plain image correlation, flexibility, and security level, which
can significantly improve the processing image recovery quality and security. Further, the
proposed encryption scheme can be optimized in the executing speed, and expanded to
achieve color image encryption.
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The following abbreviations are used in this manuscript:

K-SVD K-Singular Value Decomposition
IE digital image encryption
DNA Deoxy-ribo Nucleic Acid
D Dictionary
IZSM Improved Zeraoulia-Sprott Map
2D-MCS 2D modular chaotification system
Ψ Sparse basis
Θ Sensor matrix
Φ Measurement matrix
RIP Restricted Isometry Property
OMP orthogonal matching pursuit algorithm
PHI random observation matrix
LE Lyapunov exponent
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