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ABSTRACT

Robustness against real-world distribution shifts is crucial for the successful deployment of object
detection models in practical applications. In this paper, we address the problem of assessing and
enhancing the robustness of object detection models against natural perturbations, such as varying
lighting conditions, blur, and brightness. We analyze four state-of-the-art deep neural network models,
Detr-ResNet-101, Detr-ResNet-50, YOLOv4, and YOLOv4-tiny, using the COCO 2017 dataset and
ExDark dataset. By simulating synthetic perturbations with the AugLy package, we systematically
explore the optimal level of synthetic perturbation required to improve the models’ robustness through
data augmentation techniques. Our comprehensive ablation study meticulously evaluates the impact
of synthetic perturbations on object detection models’ performance against real-world distribution
shifts, establishing a tangible connection between synthetic augmentation and real-world robustness.
Our findings not only substantiate the effectiveness of synthetic perturbations in improving model
robustness, but also provide valuable insights for researchers and practitioners in developing more
robust and reliable object detection models tailored for real-world applications.

Keywords object detection - synthetic perturbation - natural perturbation - deep neural network model - data
augmentation - robustness - real-world distribution shifts - ablation study

1 Introduction

Object detection, a fundamental and critical problem in computer vision, aims to identify and spatially localize objects
within images or videos [1]]. It is integral to various computer vision tasks, including object tracking [2]], activity
recognition [3]], image captioning [4]], image segmentation [5], and visual question answering [6]. Object detection
poses a significant challenge due to high intra-class and low inter-class variance [[7].

In recent years, deep learning has achieved unprecedented advances in various domains, such as generative modeling
[8]], computer vision [9], and natural language processing [[10]. As deep learning techniques are incorporated into
safety-critical application areas like autonomous vehicles, medical diagnostics, and robotics, ensuring the reliability and
trustworthiness of these systems is paramount.

Although object detection models have demonstrated remarkable performance, real-world applications do not guarantee
high-quality input images. Therefore, evaluating the robustness of these models against distribution shifts is essential
before deployment. Numerous robustness interventions have been proposed to improve neural network robustness,
including non-conventional architectures[11]], adding new images to training data [[12], alternative losses [13], and
different optimizers [[14]]. These interventions target specific distribution shifts, such as noises [15] or synthetic
corruptions [16].

Our work presents a novel approach to assessing the robustness of object detection models by comparing their
performance against synthetic and real natural perturbations. We evaluate four state-of-the-art deep neural network
models, Detr-ResNet-101, Detr-ResNet-50, YOLOv4, and YOLOvV4-tiny, using the COCO 2017 dataset and the AugLy



augmentation package, which provides synthetic approximations of natural perturbations. Subsequently, we conduct a
comprehensive ablation study to perform transfer learning by re-training these models on synthetic natural perturbations
and evaluating their robustness against real perturbations using the ExDark dataset.

The primary contributions of this study offer a novel perspective on enhancing the robustness of object detection
models against real-world distribution shifts. We meticulously unravel the intricate relationship between synthetic and
real-world perturbations through the following innovative approaches:

* We delve into a systematic exploration to experimentally identify the optimal level of synthetic perturbation
that effectively enhances the selected models’ robustness, shedding light on the potential benefits of synthetic
data augmentation for real-world deployment.

* Our comprehensive ablation study meticulously evaluates the impact of synthetic perturbations on object
detection models’ performance against real-world distribution shifts, establishing a tangible connection
between synthetic augmentation and real-world robustness.

Our findings not only substantiate the effectiveness of synthetic perturbations in improving model robustness, but also
provide valuable insights for researchers and practitioners in developing more robust and reliable object detection
models tailored for real-world applications.

2 Related Work

The robustness of CNN-based object detection techniques in the presence of noise is a critical area of research in
computer vision, especially for surveillance applications where image quality can be challenging. Several studies
have investigated the impact of noise on object detection algorithms, exploring the effects of synthetic rain, fog, and
other degradations on image quality. [[17] found that noisy images significantly affect classification tasks, while [[18]
demonstrated that synthetic rain impacts object detection algorithms similarly to real rain.

[L9] proposed a novel approach of adding realistic and varying snow and fog to existing image datasets to investigate
their potential for scene reconstruction. [20] evaluated various classifiers trained on ImageNet and found a median 16%
decline in classification accuracy when exposed to natural perturbations. They also discovered that natural perturbations
cause classification and localization errors, resulting in reduced detection mAP for Faster R-CNN and R-FCN models.
[21] assessed the effectiveness of popular deep learning techniques for object detection and recognition in thermal
surveillance scenarios using a custom dataset collected in different weather conditions at night.

[22] suggested semantic adversarial editing as a technique to synthesize believable corruptions and highlighted the
challenging data points on which their target model should be robust. They showed that their proposed technique can
generate a wide range of corruptions and improve model robustness against natural corruptions. The performance
of deep neural network-based methods is directly influenced by the availability and quality of datasets. Several
challenging large-scale datasets have been introduced, consisting of images or videos captured under adverse conditions.
These datasets include ExXDARK, UNIRI-TID, RESIDE, UFDD, and See in the Dark [23]]. Each dataset focuses on
different aspects of challenging conditions, such as low light, various weather conditions, and occlusions. Table|l]
summarizes the main advantages and limitations of the mentioned approaches. Recent studies have demonstrated that
data augmentation can enhance model resilience [29],[16]]. Various augmentations can aid resilience, including different
types of noise [30], deep artificial image transformations [12], natural transformations [31]], and combinations of simple
image transformations such as Python Imaging Library operations [32[],[[16]]. In this research, we used AugLy for
image perturbation. AugLy is a state-of-the-art open-source Python library designed to help Al researchers apply data
augmentations to assess and improve the robustness of their machine learning models. It integrates multiple modalities,
including image, video, and text, which is essential in many Al research domains [33]]. AugLy provides over 100 data
augmentations that mimic what real users do to photos and videos on platforms like Facebook and Instagram. For our
experiment, we used three image augmentations: blur, pixel degradation, and brightness.

In summary, the related work underscores the importance of developing robust deep learning models capable of handling
natural data variance and corruptions. Researchers have explored various methods, such as generative models, data
augmentation, and synthetic corruption benchmarks, to achieve this goal. The availability of challenging datasets and
the application of data augmentation techniques, such as those provided by AugLy, play a crucial role in assessing and
enhancing model robustness under adverse conditions. Our research builds upon these findings and aims to further
investigate the impact of synthetic natural perturbations on model performance and the potential benefits of transfer
learning and retraining on synthetic perturbations to improve robustness against real perturbations.



Table 1: A summary of advantages and limitations of methods tackling object detection in challenging conditions.

Literature | Methods | Advantages | Limitations

[24] Image are transformed and then | Context information fusion al- | Relies on prior information
fed into the RFB-Net. lows detection of object in low- | about type of object, shape etc

light. for detecting them in night-time.

[25]] Fusion of pre-trained models us- | Domain joining with help of | Relies on prior domain knowl-
ing Glue layer and information | glue layer reduces in computa- | edge.
distillation. tion and provides more informa-

tion for models to learn from dif-
ferent domains.

[26] Generative adversarial network | Networks learns both day and | Relies on prior information of
with Faster R-CNN. night-time features. converting night-time images to

day time.

[27] Fully convolutional siamese net- | Pre-frame binary segementation | Relies on prior information
works with modified binary seg- | mask is used for low-level object | while generating binary segmen-
mentation task. representation instead of relying | tation mask. Fails when faced

on feature extractor backbone. with motion blur and non-object
pattern.

(28] Two stream convolutional neu- | Fusion of rgb and thermal im- | Thermal images are not efficient
ral network with attention mech- | age to generate features and | for every envirment use.
anism. noise reduction with convolu-

tional block attention modele.

3 Methodology

3.1 Models, Dataset, and Perturbations
We evaluated model robustness using four pretrained state-of-art neural network models, a test dataset, and synthetic
perturbations. The main components of our methodology are as follows:

* Models: We used four pretrained neural network models: Detr-ResNet-101, Detr-ResNet-50, Yolov4, and
Yolov4-tiny.

* Dataset: The COCO 2017 dataset was employed for training purposes and for creating synthetic perturbations.
The evaluation of the models’ robustness and performance was performed using the ExXDARK dataset [34],
containing images with real-world perturbations, as part of our ablation study.

 Synthetic Perturbations: We introduced three types of robustness specifications (blur, brightness, and pixel
degradation) using the Augly package. Perturbation parameters were adjusted within specific ranges to
simulate natural perturbations. To simulate model robustness with natural distribution shifts on the image
data, we adopted the perturbation strategies on the dataset. We used perturbations with different levels for
each category. Figure[I]depicts how each model’s confidence score corresponds to the perturbation level.
Example results show that all the model’s detection confidence scores decrease when increasing perturbation
level compared to the original one.

3.2 Ablation Study Design

Ablation studies are experimental approaches used to assess the importance of individual components in complex
systems or models, such as deep learning models, by removing or altering these components [35]. This methodology
has been widely adopted in computer vision, particularly for object detection tasks [36]], and in other domains such as
natural language processing and neuroscience [37]].

In this paper, we conduct an ablation study using all four models to evaluate the effectiveness of synthetic perturbations,
specifically focusing on the brightness modality, in enhancing the robustness of object detection models against real-
world distribution shifts. We test with varied numbers of synthetic perturbation images to determine how the size of the
synthetic perturbation training set influences detection performance on natural perturbations. Our ablation study serves
two primary purposes:
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Figure 1: Illustration of how each model is robust against perturbation level (a) blur, (b) brightness (light mood), (c)
brightness (dark mood), (d) degrading pixels.

1. Quantify the impact of synthetic perturbations: We apply varying levels of synthetic brightness perturba-
tions to identify the optimal level that improves the models’ robustness. This process helps us understand the
relationship between the perturbation magnitude and the performance of the object detection models.

2. Analyze the transferability of improvements: We investigate whether the models’ robustness improvements
due to synthetic brightness perturbations translate to enhanced performance against real-world distribution
shifts, thereby determining if synthetic perturbations serve as reliable proxies for natural perturbations in

real-world applications.

Our findings from the ablation study provide valuable insights into developing more robust object detection models and
inform future research on the role of synthetic perturbations in enhancing model resilience.

4 Results

4.1 Model Performance with Synthetic Perturbations

We first evaluated the models’ performance against synthetic natural perturbations created using the AugLy augmentation
package. Table[2]shows the mean average precision (mAP) scores of the four object detection models when tested with
these synthetic perturbations. Most models were susceptible to strong brightness, while all models were more robust to

darkness than other perturbations.

Table 2: The mean average precision (mAP) scores of various models computed with the original dataset and synthetic

corruptions

L Brightness Brightness Degrading pixels

Model OH}A.P | Blur(radius=5) (factor=3) (factor=0.2) (radius=5)
HENA L mAP | mMAPA | mAP | mAPA | mAP | mAPA | mAP | mAPA
Detr-ResNet-101 | 73.56 67.26 6.3 64.39 9.17 | 69.02 4.54 | 64.53 9.03
Detr-ResNet-50 62.37 51.26 | 11.11 | 47.89 | 14.48 | 59.21 3.16 | 48.52 | 13.85
Yolov4 71.49 63.37 8.12 | 62.44 8.12 | 68.21 3.28 | 61.85 9.64
Yolov4-tiny 64.52 53.47 | 11.05 | 51.04 | 11.05 | 60.83 3.69 | 50.25 | 14.27




4.2 Comparison of Model Robustness

To provide a comprehensive comparison of the robustness of the four object detection models (Detr-ResNet-101,
Detr-ResNet-50, YOLOv4, and YOLOv4-tiny), we analyzed their performance under different perturbation conditions.
As shown in Figure 2] Detr-ResNet-101 and Detr-ResNet-50 exhibit similar performance patterns under various
perturbations, with Detr-ResNet-101 performing slightly better than Detr-ResNet-50. YOLOv4 outperforms YOLOv4-
tiny in all scenarios.

Overall, the Detr-ResNet-101 model demonstrated the best performance in handling synthetic perturbations and real-
world perturbations when trained with an augmented synthetically perturbed dataset. However, it should be noted that
the choice of the best model for specific scenarios may depend on various factors, including the computational power
available, the acceptable trade-off between accuracy and speed, and the specific perturbation types encountered in the
target domain.
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Figure 2: Illustration of performance of multiple object detection models against AugLy blur and brightness perturbation
(a) Detr-ResNet-101 model and (b) Detr-ResNet-50 model

4.3 Impact of Perturbation Levels

To investigate the models’ performance against varying levels of synthetic perturbation, we conducted experiments by
changing the radius and factor values of each synthetic perturbation. This experiment aimed to identify the optimal
level of synthetic perturbation that should be used to improve the model’s robustness.

In Figure 3] we observed that the models’ performance worsened when the blur radius value was greater than 5, the
brightness (light mood) factor value was greater than 2, the brightness (dark mood) factor value was less than 0.2,
and the degrading pixels factor value was greater than 0.2. Among the models, Detr-ResNet-101 demonstrated higher
robustness compared to the other three models.
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Figure 3: Illustration of model’s performance against different synthetic perturbation levels.(a),(b),(c),(d) are represent
different synthetic blur level, brightness (light mood) level, synthetic brightness (dark mood) level and synthetic
degrading pixels level respectively



4.4 Ablation Study: Synthetic to Real Perturbation Robustness

In the ablation study, we examined the performance of the four object detection models (Detr-ResNet-101, Detr-ResNet-
50, YOLOv4, and YOLOv4-tiny) against real perturbations from the ExDark dataset, which contains challenging
lighting conditions from an out-of-domain setting. The models were re-trained with synthetic perturbations before
testing. We conducted further tests with varied numbers of synthetic perturbation images to determine how the size of
the synthetic perturbation training set influences detection performance on real perturbations. To test the outcomes, we
added synthetic poor brightness perturbations to a subset of the COCO-2017 training dataset at random percentages of
0%, 20%, 50%, and 70% using the AugLy package.

Figure@ shows the values of the mAP and loss functions for the models with subset ratios of 100:00, 80:20, 50:50, and
30:70, respectively. Our results demonstrate that the mAP has an increasing trend as we increase the percentage of the
augmented synthetically perturbed training dataset and re-train the models. The common observation across all cases is
that while there is a significant gap between the mAP for the original models, the gap narrows as the percentage of the
augmented synthetically perturbed training dataset increases. This suggests that adding synthetic perturbations to the
training data improves the models’ robustness to real-world perturbations. However, in this study, we focused on the
results with brightness adjustments only, as presented in Table 3]
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Figure 4: mAP and loss function graphs for different models and synthetic ratio combinations. (a-d) Detr-ResNet-101,
(e-h) Detr-ResNet-50, (i-1) YOLOvV4, and (m-p) YOLOv4-tiny. Columns represent original to synthetic ratios of 100:0,
80:20, 50:50, and 30:70, respectively.

5 Limitations and Future Work

While our study provides valuable insights into the performance of object detection models under various synthetic
perturbations and their robustness against real-world perturbations, there are several limitations that should be acknowl-
edged. First, our analysis was limited to the ExDark dataset, which primarily focuses on poor lighting conditions. To
generalize our findings, it is crucial to create and test the models on datasets containing different modalities of natural
perturbations, such as occlusions, weather variations, and sensor noise, among others.

Second, our experiments only considered four pre-trained object detection models. To provide a more comprehensive
understanding of model robustness, future work could include a wider range of models and architectures, as well as
customized models specifically designed to handle perturbations.



Table 3: The mAP scores of various models computed with the original dataset and synthetic corruptions

Model Original:Synthetic Model’s pe%‘formance (mAP)
ratio on traing dataset | COCO-testing | ExDARK

Detr-ResNet-101 100:00 73.56 51.85
80:20 73.24 61.43
50:50 75.23 70.56
30:70 77.92 76.47
Detr-ResNet-50 100:00 62.37 48.28
80:20 64.76 58.59
50:50 63.47 62.58
30:70 67.58 66.89
Yolov4 100:00 71.49 49.48
80:20 68.78 60.45
50:50 70.37 61.57
30:70 72.45 62.45
Yolov4-tiny 100:00 64.52 32.45
80:20 65.43 38.58
50:50 67.84 42.59
30:70 69.51 56.73

Another limitation is that our study focused mainly on brightness adjustments in the ablation study. Expanding the scope
of the ablation study to include other types of synthetic perturbations could provide a more complete understanding of
model performance and generalization.

Lastly, the choice of augmentation techniques and their parameter settings may also impact the results. Future work
could explore alternative data augmentation methods and fine-tune the parameters to find the optimal balance between
model robustness and performance.

In summary, future work should aim to:

1. Develop and test object detection models on diverse datasets containing various natural perturbation modalities.
2. Investigate the performance and robustness of a broader range of object detection models and architectures.

3. Expand the ablation study to encompass different types of synthetic perturbations.
4

. Explore alternative data augmentation techniques and optimize their parameters to enhance model robustness
and performance.

6 Conclusion

In this study, we investigated the robustness of four state-of-the-art object detection models, namely Detr-ResNet-101,
Detr-ResNet-50, YOLOv4, and YOLOv4-tiny, to natural perturbations by simulating synthetic perturbations using the
Augly package. We conducted a series of experiments to evaluate the performance of the models against synthetic and
real-world perturbations, assess the impact of the size of the synthetic perturbation training set on detection performance
under real perturbations, and determine the optimal level of synthetic perturbation for improving model robustness.
Ablation studies were also performed to further analyze the models’ performance.



Our findings indicate that the performance of object detection models can be significantly improved by augmenting the
training dataset with synthetically perturbed images, particularly in scenarios involving challenging lighting conditions,
such as those found in the ExDark dataset. Among the models tested, Detr-ResNet-101 exhibited the best robustness to
perturbations. However, the choice of the most suitable model may depend on various factors, including computational
power, the trade-off between accuracy and speed, and the specific perturbation types encountered in the target domain.

These results provide valuable insights for researchers and practitioners seeking to enhance the robustness of object
detection models to natural perturbations and offer a foundation for further research into methods for improving model
performance under a wide range of challenging conditions. By addressing the limitations outlined in the previous
section and expanding the scope of investigation, future work can contribute to the development of more robust object
detection models capable of handling diverse and complex real-world scenarios.
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