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Abstract—Due to high electric stresses in power equipment,
insulation degradation has been prevalent as a result of increased
PD exposure. In this paper, we study different machine learning
(ML) methods for the detection and classification of partial
discharges (PDs) for assessing the reliability of insulation systems.
We introduce and examine a set of features using selected
machine learning-based algorithms. The aim is to detect and
classify PDs transpiring within insulation systems. Therefore,
this paper presents tools to detect defects using suitable PD
sensors and Machine Learning algorithms to facilitate diagnostics
and enhance isolation system design. Experiments are being
conducted on several voids in the insulator with varying shapes
and sizes. A PD sensor is used for detecting the PDs taking place.
Due to the presence of noise and other external interferences,
appropriate filters and denoising methods are implemented. After
that, the relevant PD features, such as the PD magnitude, PD
repetition rate, statistical features, wavelet features, etc., are
extracted. This study attempts to emphasize the importance of
classifying the type of defect, as this will allow engineers to
determine the severity of the fault taking place, and take the
proper countermeasures.

Index Terms—Ensemble methods, electromagnetic emissions,
feature engineering, Machine Learning, Partial Discharge, Sup-
port Vector Machine, Wavelet Decomposition

I. INTRODUCTION

Due to the increasing use of cross-linked polyethylene
(XLPE) cables for power transmission systems in the medium
voltage (MV) and high voltage (HV) range, faults occurring
in the insulating medium are critical to system performance.
These faults are due to defects found in the XLPE insulation
[1]. The main defects are voids, which can initiate electrical
trees that propagate through the insulation until a connec-
tion is established with the outer semi-conductive screen. To
determine the characteristics of any defect, partial discharge
(PD) measurements are normally carried out [2]. Many PD
testing methods are being applied for HV cables under AC
voltages for condition monitoring purposes [3]. Therefore, it
is vital to model and study the characteristics of PD to find
countermeasures against their effects.

Due to high electric stresses in power equipment, insulation
degradation has been prevalent as a result of increased PD
exposure. Ionization can occur in insulation systems, leading

to bond breaking of the insulation or charge recombination.
Bond breaking creates a void at the electrode, leading to the
inception of the electrical tree. If the tree keeps growing until
the counter electrode, then the runaway stage begins, and a
breakdown of the insulating medium takes place.

The PD signal is usually subject to noise originating from
the environment in the vicinity of the PD source. The detection
of PD in insulation materials in general, and in cables specif-
ically, encounters some challenges up to this day for reasons
such as:

1) The signal produced from the PD is normally attenuated
as it propagates through the conductors in the power
cables. Therefore, choosing an optimized position of the
PD detection device is vital and influences the sensitivity
of the detection.

2) Attenuation is also a consequence of the shielding effect
of uniformly distributed current pulses in the vicinity of
the cable sheath, making it difficult for the inductive
coupling devices to identify the PDs initiated.

3) The PD signal is usually superimposed with noise
originating in the vicinity of the PD source. The cable
termination to overhead lines are also the underlying
reason for the presence of noise in power cables. This
is because these lines emulate the behavior of antennas,
instigating noise.

4) Calibrating the signal to determine the size and type of
defect is also difficult [4–6].

The main contribution in this paper is testing several XLPE
samples with different void types to obtain the PD signals
using a PD sensor, and to correlate each signal to its as-
sociated defect using a variety of ML algorithms. Knowing
the type of defect is essential to determining the appropriate
mitigation techniques, to avoid any detrimental effects to the
insulation and the surrounding devices and systems. Wavelet
Decomposition is used to remove unwanted noise that might
have occurred during the test. The flowchart of this process
is shown in Figure 1. We study various learning algorithms
such as Decision Tree (DT) and Support Vector Machine
(SVM). DT is a supervised learning algorithm utilized in

20
22

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 S

m
ar

t G
rid

 a
nd

 R
en

ew
ab

le
 E

ne
rg

y 
(S

G
R

E)
 | 

97
8-

1-
66

54
-7

90
8-

0/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SG

R
E5

35
17

.2
02

2.
97

74
11

3

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on June 22,2022 at 09:27:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Block Diagram of component monitoring system.

classification problems, which seperates the input space into a
certain number of branches or regions with certain parameters.
DT is a decision-making algorithm that gives the connection
between the attributes and the class with a flowchart-like
structure [7]. Therefore, it is useful for PD classification as
it shows superior performance compared to other algorithms.
The reason for this is because PDs are usually unstable, and
a minute variation in the data can lead to a large variation in
the behavior of the DT algorithm.

Support vector machine (SVM) is a supervised learning
algorithm [8]. It is a description of data points in space
parted by a gap that is optimally wide. A boundary that
characterizes a certain class is defined as a hyperplane, and the
values nearest to the hyperplane are defined as support vectors.
SVM works efficiently if one has a small amount of training
data, nonlinear, and high dimensionality pattern recognition
applications. As a result of the size and high dimensionality
of the training data available, SVM is known to be suitable
for this problem. Previous applications have shown that SVMs
are more superior than neural networks in certain disciplines
such as engineering, information retrieval, and bioinformatics
[9].

In order solve nonlinearly separable data in SVM a kernel
function is applied as it maps the data acquired to higher
dimensionality feature space. This method improve the com-
plexity of the computations being made and hence, one does
not have to calculate the inner product space in the feature
space [5]. Yet, the computations require a sufficiently high
number of training patterns so a large training set is favourable
for optimized results. The equation for the computations made
are shown in Equation (1) and Equation (2) [5]:

K(x, x′) =< x, x′ >d (1)

K(x, x′) = (< x, x′ > +1)d (2)

where K(x, x’) is the kernel function responsible for the non-
linear mapping into the high dimensional feature space, and d
is the distance of the vector to the hyperplane represented by
Equation (3):

d(w, b;x) = (
| < w, xi > +b|

||w||
) (3)

where w is the weight vector in the seperating plane The
rest of the paper is organized as follows. Section II describes
the condition monitoring applications of Machine Learning in
Smart Grids (SG). Section III discusses the experimental setup.
Section IV analyzes the results acquired. Section V concludes
the paper.

II. APPLICATIONS OF MACHINE LEARNING IN PD
ANALYSIS

The advent of machine learning, integrated with efficient big
data management and analytics platforms may help in trans-
forming the industry assets condition monitoring market. A
research framework that monitors the health of the equipment,
models their degradation level, and computes the remaining
useful life using historical and online available data would
be a breakthrough. The framework can be tested on various
case studies in smart grids (SG) and communication infrastruc-
tures while using ML and Deep Learning (DL) techniques.
Information from industrial fields, weather information, and
diagnostics data can be utilized for data-driven models toward
a powerful preventive maintenance strategy in SG. The ML
and DL techniques that can be implemented are supervised,
unsupervised, and semi-supervised learning algorithms. Exam-
ples of the algorithms that can be implemented are Support
Vector Machine (SVM), K- Nearest Neighbor (KNN), Random
Forest (RF), Long-Short Term Memory (LSTM), Decision
Trees (DT), Recurrent Neural Networks (RNN), Convolutional
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Neural Networks (CNN), Generative Adversarial Networks
(GAN), Deep Reinforcement Learning, etc. The algorithms
can be used and compared to build such data-driven models.
The correlation between the faults in the past and the features
extracted from the data should be studied. These models must
converge fast enough to predict the faults in timely manner
and with high accuracy.

Data analytics and management are the perfect recipes for
maximizing the value of condition monitoring in SG. This
approach can allow managing vast amounts of data by using
appropriate processing algorithms combined with machine
learning techniques. The unsupervised machine learning al-
gorithms analyze and reveal the hidden dataset correlations
and detect abnormal data patterns. They predict future failures,
which ultimately save operation cost, in addition to personnel
time and their safely. Such schemes automatically adjust their
internal parameters based on the newly received data, while
detecting and alerting operators on any severe issues in real
time. The proposed solution could be the initial step that helps
decrease the downtime of electric assets, allowing utilities
and electric industries to improve the overall infrastructure
reliability and the lifetime of their assets, in addition to the
reduction of their fixed and variable costs related to the future
maintenance requirements.

The significance of XLPE as insulation of power cables
encourages researchers to explore numerous different experi-
mental approaches to determine an accurate behavior regarding
the state of the insulation as it ages. The knowledge emanating
from this investigation enables engineers and researchers to
comprehend the dielectric materials degradation mechanisms
under operating conditions. Moreover, the current research is
concentrated on the XLPE insulation morphological structure
to learn if this dielectric medium can be reused [9]. Recently,
multiple studies have endeavored to diagnose the electrical
treeing mechanism in XLPE cables [10–13]. The impact of
PDs on the insulation properties of the cable has been covered
by many publications [14,15]. Extensive work was conducted
regarding the chemical changes induced through aging and its
repercussions on the cables properties [16–20]. Nevertheless,
these studies are cost-effective and highly time-consuming. It
occasionally requires a number of years to acquire an adequate
database to find solutions for the economical difficulties of
energy and employ maintenance procedures in the easiest
way possible. Therefore, work has been directed to the field
of modeling. The most recent strategies are predicated on
the usage of Artificial Intelligence (AI) techniques, more
specifically, Feature Engineering (FE), ML, and DL. These
new approaches enable scientists, researchers, and engineers
to utilize the data/features available efficiently and ultimately
determine the future condition of the insulation system sub-
jected to aging accurately in a shorter time. Hence, this paper
aims to classify the PD signals as a way of determining the
type and severity of the defect in order to get an insight on
the danger inflicted on the cable.

Nowadays, various modeling and projection techniques
based on artificial neural networks (ANNs), fuzzy logic (FL),

decision trees (DT), etc. models have become prevalent and
implemented by researchers for numerous engineering appli-
cations [21–24]. In High Voltage (HV) Engineering, many
practical uses of ANN were demonstrated [2528]. For instance,
Chen et al. [27] developed a novel ANN model in PD pattern
classification in HV equipment. Forecasting the value of the
breakdown voltage during the occurrence of PD for various
dielectric materials by multilayer feed-forward network and
radial basis function network has been studied in [28]. In [29]
and [30], two NN models were examined, RBFG and MLP to
predict the flashover of contaminated HV outdoor insulators.
In [31], the RBFG neural network trained was implemented
with a two-algorithm (BP and ROM) method (a type of
ML stacking) to forecast the leakage current during aging
of non-ceramic insulators. In [18], the fuzzy logic (FL) ML
model was investigated to determine, during thermal aging, the
mechanical properties of XLPE cables. The results obtained
from this model were compared with NN models (RBFG
trained with the random optimization method (ROM)).

The monitoring system is comprised of three sections,
namely data pre-processing, feature extraction, and develop-
ment of the classification model. In the data pre-processing
module, the data acquired from the sensors is cleaned from
inconsistent measurements, missing data points, and outliers
to sidestep any possible false interpretations in the subsequent
steps [32,33]. Next, data encoding, correlation analysis, and
data normalization are implemented to feed in the required
data into the AI model used. The normalized data is then fed
into the data-split module, in order to separate the data into
training, validation, and testing. Moreover, data optimization
incorporates algorithms that can improve the overall model
accuracy. In the classification module, the AI model chosen
is trained by applying n-fold cross-validation. This is the
procedure followed in the paper.

The main contribution in this paper is also to improve the
PD identification and classification in power cable insulation.
The same experiment was conducted in [34], however, due
to the complex nature of PDs and the high number of classes
(number of different voids), an accuracy of approximately 77%
was observed. In [5], the maximum classification accuracy
acquired was 92.2% but with decreased number of classes.
Therefore, this paper attempts to keep the same number of
classes or voids investigated in [34] and maintain a reasonably
high classification accuracy. This task is challenging due to
a certain degree of similarities in the PD characteristics of
the different voids [35]. Hence, in order to achieve this task,
additional features were extracted other than the statistical and
polarity-based distribution features used in [5] and [34]. The
Weibull distribution features were introduced in this paper
as well. The Weibull distribution features are represented
by the pulse height analysis (PHA) pattern where the data
obtained from the sensor can be visualized using a probability
distribution graph. Features such as the scale parameter and
shape parameters can be acquired from Weibull distribution to
feed into the AI model selected. Moreover, there were features
that had a weak correlation with the output class, decreasing
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the accuracy of the overall classifier used, ergo, they were
removed in this study. The succeeding sections of this paper
explains the experimental setup, the analysis of the results, and
the significant improvement observed relative to the research
articles mentioned.

III. EXPERIMENTAL SETUP

The considered HVAC extruded cable has an XLPE insu-
lation with a thickness of 5.5 mm. The cable rated voltage is
20 kV, and the voltage between the conductor and screen is
12 kV. The HVAC cable geometry is shown in Fig. 2, with
dimensions shown in Table 1. The sample is placed in silicone
oil and observed with an optical microscope. Silicone oil is a
synthetic liquid insulating medium that possesses exceptional
dielectric properties [10]. Therefore, silicone oil can block
external discharges and flashovers. The circuit constructed is
shown in Fig. 3.

TABLE I
DIMENSIONS OF THE HVAC EXTRUDED CABLE

INVESTIGATED.

Fig. 2. Geometry of the HVAC extruded cable investigated.

The circuit in Fig. 3 has an autotransformer T1 employed
as a supply for the circuit with a step-up transformer, a 50
kΩ resistor R connected in series for protection reasons, a
high voltage divider connected to the input of the oscilloscope
to acquire the AC voltage behavior. The other input of the
oscilloscope is connected for the capturing the current pulse
emitted from the PDs instigated. The PD measurements were
conducted in compliance with the IEC 60270 standard. The PD
characteristics were monitored with a PD sensor, the LDS-6

meter, which can be processed by the LDIC program (LDS-6).

Fig. 3. Circuit depicting the PD acquisition procedure under AC voltages.

TABLE II
DESCRIPTION OF THE SAMPLES INVESTIGATED.

Void Type Void Size
Spherical 1mm, 2mm (diameter)

Cubic 2mm (sides)
Cuboidal 2mm (edges)

Cylindrical 2mm (diameter), 10mm (length)

The experiment entails PD tests with different applied high
AC voltages (7, 8, 9, and 10 kV) on spherical, cubic, cuboidal,
and cylindrical voids in cross-linked polyethylene (XLPE)
insulation systems as shown in Table II. The phase-resolved
partial discharge (PRPD) and time-resolved partial discharge
(TRPD) patterns are acquired for classifying the severity of
the defect present in the XLPE insulation. The PD patterns
were detected by a PD sensor and the feature extraction of the
PD activities was implemented. The features extracted were
statistical, Wavelet Decomposition, and Weibull distribution
features. Due to excessive noise present in the system, a
bandpass filter was applied along with Wavelet Decomposition
to denoise the signal. Then unwanted features were removed to
avoid inconsistency in the data obtained. Lastly, different ML
algorithms were implemented to classify the different types of
defects tested

IV. RESULTS AND DISCUSSION

The results acquired show high classification accuracies
for ML algorithms such as Ensemble methods and support
vector machine (SVM). This study also showed the importance
of feature engineering in industrial applications due to the
amount of data reduced for achieving faster and accurate
computational results. Classifying the type of defect will allow
engineers to determine the severity of the fault taking place in
order to take the proper countermeasures against its effects.

As shown in Figure 4, the PD magnitude is in the range
of picocoulombs (pC). The highest magnitude obtained was
approximately 0.5pC. To make sense out of this compli-
cated behavior, feature engineering was applied to extract the
relevant features and classify each defect mentioned in the
previous section. After the feature extraction Decision Tree
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(DT) and Support Vector Machine (SVM) was used to classify
the defects tested. The highest accuracy achieved was 90.4%

Fig. 4. PD signal of the spherical void present in the XLPE insulation.

for DT, where the training time took 77 seconds, the maximum
number of splits was 2927, and the number of learners was 30.
However, for SVM the accuracy acquired was 83.9%, where
the training time took 18 seconds, and the kernel function
was quadratic. The accuracies acquired were quite exceptional
because the defects investigated have similar characteristics so
this decreased the classification accuracy. In addition, multi-
classification problems tend to have lower accuracies due to
the amount of given parameters. The confusion matrices for
SVM and DT, and the ROC curve for DT are shown in Figures
5, 6, and 7 respectively. If defects with different characteristics
were investigated then higher accuracies could have been
achieved. Fig. 5 clearly shows that the misclassification was

Fig. 5. Confusion matrix of the multi-classification problem using DT.

the most prominent with the cylindrical void. There were 154
misclassified values when trying to predict the cylindrical void,
increasing the cost function and decreasing the overall accu-
racy. Having 98 misclassified values with the cuboidal void

suggests that the PD characteristics of the cylindrical void and
the cuboidal void are quite similar. This is also substantiated
in Fig.6, where 103 misclassified values were observed when
employing SVM as the ML algorithm. Hence, to overcome
this effect, more data should be acquired to increase the
overall accuracy of this multi-classification problem. The other
solution is to optimize the features selected by eliminating
unwanted features and/or extracting more features from the
available data. Fig. 7 shows the AUC curve, where the area
under the curve (AUC) indicates the diagnostic ability of a
binary or a multi-classifier algorithm. The DT algorithm was
found to be the best classifier relative to SVM for this multi-
classification problem with a value of 0.99, indicating a great
potential for applying it in real time operation for identifying
and classifying any faults in insulating materials.

Fig. 6. Confusion matrix of the multi-classification problem using SVM.

Fig. 7. AUC curve of the multi-classification problem using DT.
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V. CONCLUSIONS

A study of ML methods for the detection and classification
of PDs was addressed in this paper to assess the reliability
of insulation systems. A set of features were introduced and
examined using selected machine learning-based algorithms.
The aim was to detect and classify PDs transpiring within
insulation systems. PD tests were conducted on spherical,
cylindrical, cuboidal, and cubic shaped voids. The relevant PD
features, for example, the PD magnitude (pC), PD repetition
rate, statistical features, wavelet features, Weibull distribution
features, etc., were extracted. Decision Tree and SVM demon-
strated the highest classification accuracy of 90.483.9charac-
teristics observed among the four voids. Therefore, this study
demonstrated significant improvements relative to previous
research done and showed the importance of classifying the
type of defect as this will allow engineers to determine the
severity of the fault taking place in order to take the proper
countermeasures against its effects. This study also showed
the importance of feature engineering and Machine Learning
in industrial applications due to the amount of data reduced
for achieving faster and accurate computational results.
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