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A B S T R A C T   

An explicit density-based solver of the Euler equations for inviscid and immiscible gas–liquid flow media is 
coupled with real-fluid thermodynamic equations of state supporting mild dissociation and calibrated with shock 
tube data up to 5000 K and 28 GPa. The present work expands the original 6-equation disequilibrium method by 
generalising the numerical approach required for estimating the equilibrium pressure in computational cells 
where both gas and liquid phases co-exist while enforcing energy conservation for all media. An iterative nu-
merical procedure is suggested for taking into account the properties of the gas content as derived from highly 
non-linear real gas equations of state and implemented in a tabulated form during the numerical solution. The 
developed method is subsequently used to investigate gaseous bubble collapse cases considering both spherical 
and 2D asymmetric arrangements as induced by the presence of a rigid wall. It is demonstrated that the predicted 
maximum temperatures are strongly influenced by the equations of state used; the real gas model predicts a 
temperature reduction in the bubble interior up to 41% space-averaged and 50% locally during the collapse 
phase compared to the predictions obtained with the aid of the widely used ideal gas approximation.   

1. Introduction 

Thermal effects occurring during the collapse of gaseous bubbles [1], 
including sonoluminescence [2], air dissociation and chemical reactions 
[3] are now well documented. While the bulk liquid temperature does 
not change significantly compared to the inner bubble content [4–7], the 
latter can reach enormous temperatures during the collapse, of the order 
of thousands of degrees Kelvin as computational studies for both 
spherical [8,9] and non-spherical bubble collapse cases [10,11] as well 
as molecular dynamics [12] suggest. A precise determination of the 
bubble thermodynamics is important in different areas such as in 
sonochemistry [13,14] [1,3] and ultrasound therapy such as High- 
intensity Focused Ultrasound (HIFU) to ensure safety and efficiency 
[15][4]. Numerical models utilised for the simulation of spherical 
bubble collapse under such extreme condition typically have employed 
zero-dimensional approximations, such as the Rayleigh-Plesset [16], 
Keller-Miksis [17], or Gilmore [18] models. Despite their simplicity and 
low computational cost, their simplifying assumptions such as spherical 
symmetry and spatial uniformity of the temperature, limit their 

applicability to describe the flow physics of more realistic configura-
tions. These include, for example, the asymmetric bubbles collapse that 
occurs in presence of shocks or near solid boundaries. Moreover, ho-
mogeneity of the temperature distribution is affected by Peclet number. 
[19,20]. 

To account for such effects and overcome the foregoing limitations of 
zero-dimensional models, multi-dimensional computational methods 
have been proposed. In this regard, there are different numerical ap-
proaches developed for predicting the temporal displacement of the 
gas–liquid interface, namely interface tracking [21–24] or interface 
capturing [25–27]. Moreover, some developed approaches [28–30] are 
based on the solution of the zero-dimensional models. Regardless of the 
numerical approach, the thermodynamic closure utilised in the flow 
solvers plays a crucial role in predicting the temperature during the 
collapse. The vast majority of the relevant publications employ the ideal 
gas EoS (Equation of State); indicative studies include [31–33] for 
spherical and [34–41] for non-spherical collapse cases. 

Nevertheless, the ideal gas EoS does not provide accurate estimates 
of the gas temperature by ignoring ionization and dissociation as well as 
the dependency of the enthalpy on pressure which affects the 
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compression heating or decompression cooling. There are only a few 
studies where a non-ideal gas EoS is used to model the thermodynamics 
of the bubble. Moss et al. [8] developed a 1D solver with spherical 
symmetry assumption and used an analytical EoS for the air bubble that 
includes vibrational excitation, dissociation, ionization, and a repulsive 
intermolecular potential. Extremely high temperatures up to 1.74 × 106 

K and 1.16 × 107 K have been reported with and without considering the 
air dissociation and ionization respectively. In [9,42] a 1D model of 
spherical bubble is employed where the vapour bubble thermodynamics 
was modelled as a hard-core van der Waals gas. It was shown that a 1 
mm vapour bubble initially at saturation pressure surrounded by water 
at atmospheric pressure can reach a collapse temperature above 104 K. 
The only work known to the authors that has considered non-ideal gas 
EoS in multi-dimensional flow solvers is [10]; a front tracking method 
was employed for resolving an argon bubble interface motion under the 
influence of a strong incident shock wave with varying pressure of 
0.1–1000 GPa. The authors compared the results with ideal gas and two 
real gas EoSs namely the quotidian EoS, which utilise the thermody-
namic functions from the Helmholtz free energy with the electronic 
contribution, and the SESAME database [43,44], which considers the 
formation of plasma and ionization. It was revealed that the real gas 
EoSs estimate lower collapse temperatures depending on the shock 
strength; with a temperature difference of 3.5 × 104 K and 1.5 × 107 K 

for incident shock pressure of 1 and 1000 GPa, respectively. 
In the present work we are using the six-equation method [45] to 

investigate thermal effects during bubble collapse accounting for the 
real gas thermodynamics. This method incorporates two distinct equa-
tions for the specific internal energy of each phase. Each phase is 
allowed to have different pressures. Mechanical equilibrium is imposed 
after the integration of the conservation equations, taking into account 
the conservation of the mixture’s total energy an equilibrium pressure is 
calculated. Here we present a numerical approach for imposing the 
mechanical equilibrium that can incorporate real gas EoSs in a tabulated 
form. Results are presented for three real gas EoS and compared against 
predictions obtained with the ideal gas EoS. To demonstrate the role of 
the non-ideal gas effects at different collapse strength, the spherical 
collapses are simulated at initial pressure ratios in the range of ≈ 7–353, 
defined as the initial liquid pressure over the gas pressure. Subsequently, 
a shock-induced non-spherical collapse in an ultrasound field of a lith-
otripter is simulated where the collapse pressure reaches the order of 
GPa. 

The first aim of the present study is to gain insight into the impact of 
the real gas thermodynamics modeled by the cubic [46,47] and Helm-
holtz [48] EoSs on an air bubble not only for a spherical collapse but also 
for a practical non-spherical case in Biomedical Science. For the latter, 
the wall pressure discussed in the case of using different gas EoSs. At the 

Nomenclature 

Abbrevations 
BN Baer-Nunziato 
CFL Courant-Friedrichs-Lewy number 
DIM Diffuse Interface Method 
EoS Equation of State 
HLLC Harten-Lax-van Leer-Contact 
IG Ideal gas 
MUSCL Monotonic Upstream-centered Scheme for Conservation 

Laws 
PDE Partial Differential Equation 
PR Peng-Robinson 
RK Redlich-Kwong 
RKPR Redlich-Kwong-Peng-Robinson 
SG Stiffened gas 

superscripts 
(a) After relaxation step 
(b) Before relaxation step 
* perturbated state 
☆ updated value in Newton’s loops 
n time step 

Subscripts 
f far-field 
i cell index in r-direction 
j cell index in z-direction 
k Phases’ index (k = 1,2) 
m mixture 
cons conservative part 

List of symbols 
α Volume fraction 
β Coordinate switch parameter 
Δ shifting value 
∊ Residual 
γ Specific heat ratio 
μ Relaxation coefficient (m2⋅s/kg) 
ϕ Numerical Schlieren 

ψ Numerical Schlieren scaling parameter 
ρ Density (kg/m3) 
F r-direction flux vector 
G z-direction flux vector 
LR Equations’ right hand side 
q State vector 
sg(q) Geometric source terms 
snc(q) non-conservative source terms 
srlx Relaxation source terms 
U Solution vector 
ε Error in iterative loops 
ξ shifting coefficient 
c Speed of sound (m/s) 
cL Reference speed of sound 
curf Under-relaxation factor coefficient 
E Mixture total energy (J/kg) 
e Specific internal energy (J/kg) 
H0 Stand-off distance 
J Jacobian matrix 
L Domain size (m) 
LD Domain size 
N Number of cells 
p Pressure (Pa) 
p∞ Stiffened gas parameter 
pI Interfacial pressure (Pa) 
r radial coordinate axis 
R* non-dimensional radius 
R0 Initial bubble radius (m) 
T Temperature (K) 
t time 
t* non-dimensional time 
u Velocity in r-direction (m/s) 
v Specific volume (m3/kg) 
V* non-dimensional volume 
w Velocity in z-direction (m/s) 
Y Mass fraction 
Z Acoustic impedance (Pa⋅s/m3) 
z axial coordinate axis  
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same time, the second aim is to develop the disequilibrium multiphase 
method [45] to be compatible for any arbitrary equation of state through 
tabulated data. 

The remainder of this paper is organised as follows. The adopted 
equations of state are described in Section 2. The multiphase method 
and the adopted numerical schemes are explained in Section 3. The 
section presents various numerical results Section 4. Lastly, some 
concluding remarks are given in Section 5. 

2. Equation of state 

In this study, the stiffened gas EoS [49] is employed for the liquid 
phase. For the gas phase, in addition to the ideal gas EoS, three distinct 
real gas EoSs are utilised, i.e.: (1) the Helmholtz EoS [48], and the cubic 
EoSs of: (2) Peng-Robinson (PR) [46] and (3) Redlich-Kwong Peng- 
Robinson (RKPR) [47]. Although the Helmholtz EoS is based on exper-
imental data, its range of applicability does not cover the extreme 
thermodynamic state of the collapse studied in the current work. 
Therefore, herein, the cubic EoSs with the benefit of a wider range are 
also employed. The equations of state are described in A. To compare the 
behaviour of the gas EoSs, the deviations of temperature predictions 
among the equations of state for a simple isentropic gas compression are 
illustrated in Fig. 1 The compression starts from assumed values of 300 K 
and 1 bar for the temperature and pressure, respectively. It is clear that 
as the compression ratio (defined as the final over the initial pressure of 
1 bar) increases, the difference between the ideal gas and real gas 
models (cubic and Helmholtz EoSs) increases. Notably, at a compression 
ratio of just 300, the difference in temperature prediction compared to 
that obtained using the ideal gas model is beyond 10%. At a compression 
ratio of 4× 104, this difference is higher than 35%. Such compression 
ratios are commonly found in bubble collapse cases. For example, in the 
study of a single bubble excited by a lithotripter [50], which is also 
simulated in the current work, the bubble starts the compression with 
the initial atmospheric pressure and reaches a collapse pressure more 
than 4 GPa. In another study [9], a laser induced bubble is initially at the 
vapour saturation pressure while it is compressed to the peak pressure of 
≈ 10 GPa during the collapse. Comparing the three real gas models, it is 
observed that the RKPR EoS behaves practically identical to the Helm-
holtz EoS. The PR EoS, however, exhibits a ≈ 5% difference at a 
compression ratio of 4 × 104 compared to the other two. Observing this, 
the RKPR EoS is preferred over the PR EoS for the non-spherical collapse 
case in this study where the bubble pressure reaches pressures higher 

than 4 GPa. It is noted in Fig. 1 that at higher compression ratios, 
comparison between the high order EoSs is not attempted, as the 
Helmholtz EoS is not reliable beyond its calibration range, giving un-
realistic density variation as well as problematic values for heat capacity 
and speed of sound. This is a direct consequence of the high order nature 
of the Helmholtz model, which implies that its monotonicity is not 
guaranteed beyond the calibration range. 

In this study, the stiffened gas and ideal gas EoSs are used in their 
parametric form due to the simplicity of their mathematical expressions. 
The real gas models, however, are implemented through tabular form. 
This offers a more versatile framework applicable to any EoS, i.e., the 
CFD solver does not need to be modified when using different tabulated 
EoSs. Moreover, it disengages the computational problem of evaluating 
the EoS from the CFD computations and circumnavigates the problem of 
deriving explicit solutions from the EoS with implicit expressions. 

Each table of the real gas EoSs is a rectangular structured tempera-
ture - pressure grid with fixed intervals of T and log10 p. The considered 
range for temperature with 121 cells is [60, 17000] K for the cubic and is 
[150,17000] K for the Helmholtz EoSs. The pressure with 375 cells 
ranges in [2300,1.1 × 1010] Pa for the cubic and [2300,4 × 109] Pa for 
the Helmholtz EoSs. It will be shown that while the properties range for 
the cubic EoSs covers all the collapse cases in the present study, the 
Helmholtz EoS fails in simulation of the highest initial pressure ratio 
case. 

3. Numerical method 

In the present work, the bubble collapse is modelled using a so-called 
‘six-equation model’ of [45] which stems from the Baer-Nunziato (BN) 
model [51]. In the BN model individual momentum and specific energy 
equations are considered for each phase. Thus, each phase possesses its 
own velocity, temperature and pressure, i.e., full disequilibrium. The BN 
model can be further simplified to reduced models [52,53], that 
consider single velocity (kinetic equilibrium) and single pressure (me-
chanical equilibrium). However, these further reduced models present 
issues regarding volume fraction positivity and speed of sound mono-
tonicity along with derivation difficulties for the Riemann solver when 
considering both phases according to [45]. To overcome these issues, 
the six-equation model of [45] was developed in which the phases have 
the same velocity but different pressures and temperatures. According to 
its developers [45], the six-equation model is not a physical model but a 
step model for the reduced models to overcome the mentioned issues of 
[52]. In this model, the phases will reach the mechanical equilibrium 
through a relaxation process at infinite rate which will be described in 
the solution algorithm. The model incorporates the mass and the energy 
conservation equations for each phase, a single momentum conservation 
equation for the mixture (considered as one equation in vector form) and 
the volume fraction transport equation for the first phase. In addition, 
the mixture total energy conservation equation is also solved as the 
seventh equation to ensure the total energy conservation. More details 
about this model can be found in literature, e.g., [54,31,33,55,56]. 

In the present work, the six-equation model is used in the 1D 
spherical and 2D axisymmetric coordinates (cylindrical coordinates 
with azimuthal symmetry) to save computational cost: 

∂q
∂t

+
∂F
∂r

+
∂G
∂z

= srlx + snc(q)+ sg(q), (1)  

where: 

Fig. 1. Comparison of the temperature obtained with ideal and real gas EoSs 
for different compression ratios in isentropic compression (T0 = 300 K and 
p0 = 1 bar). 
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where srlx, snc, and sg indicate relaxation, non-conservative, and geo-
metric source terms, respectively. Moreover, subscripts 1 and 2 denote 
the water and air phases, respectively. Also, the following notation is 
adopted: r, z (coordinate axes), t (time), ρ (density), p (pressure), α 
(volume fraction), u (r-direction velocity), w (z-direction velocity), e 
(specific internal energy), E (specific total energy). The interfacial 
pressure pI is defined as follows which is an estimate in the limit of equal 
velocities introduced first in [57]: 

pI =
Z2p1 + Z1p2

Z1 + Z2
, (2)  

where Zk = ρkck denotes the acoustic impedance for phase k with speed 
of sound ck. The value of 2 and 1 for the coordinates switching param-
eter β correspond to the 1D spherical the r-direction and 2D axisym-
metric coordinates in the (r, z) directions, respectively. As can be seen in 
Eq. 2, this model assumes an initial disequilibrium pressure meaning 
that each phase has its own pressure. As pressure waves reach an 
interface, they propagate to the next phase by a pressure coupling be-
tween the phases. This coupling is controlled by the pressure equilib-
rium, characterised by very small time scales. The relaxation parameter 
μ quantifies the mechanical equilibrium time scale. The source terms in 
the specific internal energy equations appear to represent the exchange 
of the specific internal energies due to the pressure work. 

The mixture speed of sound in this model is computed from: 

c2
m = Y1c2

1 +Y2c2
2, (3)  

where Y denotes the mass fraction. As Eq. 1 denotes, the effects of vis-
cosity, heat conductivity, surface tension, and phase transition are 
neglected in the present study. which presents a monotonic variation 
with volume fraction [45]. The numerical solution of the Eq. 1 is ob-
tained through three major steps at each temporal loop:  

1. Solving the hyperbolic part of the system. In this step, the pressure 
disequilibrium is assumed and the relaxation terms are ignored. This 
treatment gives a hyperbolic system for the conservative variables 
that is solved using an approximate Riemann solver with a finite 
volume scheme.  

2. Converging to an equilibrium pressure by solving the relaxation 
system described in B.  

3. Correcting of the solution by enforcing the total energy conservation. 

3.1. Hyperbolic step 

Considering the homogenous part of the PDEs in this step, Eq. 1 is 
solved using a finite volume Godunov method [58] with the second- 
order MUSCL scheme [59] employed to reconstruct the primitive vari-
ables at the cell boundary. Moreover, the HLLC approximate solver [60] 
is adopted to solve the Riemann problem at each cell boundary as an 
appropriate choice for the present method [45,61,55]. 

Using the computed inter-cell fluxes, the solution of the conservative 
and non-conservative variables can be evolved on the entire time step. 
The conventional Godunov scheme to update the conservative part of 
the system reads: 

Un+1
i,j = Un

i,j −
Δt
Δr

[
F*

cons

(
Un

i,j,U
n
i+1,j

)
− F*

cons

(
Un

i− 1,j,U
n
i,j

) ]

−
Δt
Δz

[
G*

cons

(
Un

i,j,Un
i,j+1

)
− G*

cons

(
Un

i,j− 1,U
n
i,j

) ]

+Δtsg,cons,

(4)  

in which: 
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β
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T

.

The subscripts (i, j) stands for the finite volume cell index in (r,z)
direction and superscript n shows the time step. Superscript ’∗’ denotes 
the perturbated state. Calculation of F*

cons and G*
cons using the HLLC 

Riemann solver is explained in [45] and provided in C of the present 
work. The non-conservative part of the equations is updated following 
by approximating the volume integral with a midpoint rule and the di-
vergences with a centred scheme [45]. Using this approximation, the 
volume fraction is updated as: 
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αn+1
i,j = αn

i,j −
Δt
Δr

⎡

⎢
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i+1
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2

⎞

⎟
⎠

⎤

⎥
⎦,

(5) 

Assuming that the product (αp)n
i,j is constant during the time step, the 

non-conservative internal energy equations can be approximated as 
[45]: 

(αρe)n+1
i,j = (αρe)n

i,j

−
Δt
Δr

⎡
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2,j

⎞

⎟
⎠

⎤

⎥
⎦

−
Δt
Δz

⎡

⎢
⎣(αρew)*

i,j+1
2
− (αρew)*

i,j− 1
2
− (αp)n

i,j

⎛

⎜
⎝w*

i,j+1
2
− w*

i,j− 1
2

⎞

⎟
⎠

⎤

⎥
⎦,

(6) 

The approximation of the internal energy at this step is not crucial as 
it is used only to estimate the phasic pressures which will be corrected 
later in the relaxation step [45]. Finally, the solution is advanced using a 
two-step time integration [32]: 

qn+1
2 = qn +

1
2

ΔtLR(qn), (7)  

qn+1 = qn +ΔtLR

(
qn+1

2

)
, (8)  

where LR contains the right hand side of Eqs. (4)–(6). 

3.2. Relaxation step 

The hyperbolic step leads to different phasic pressures whereas the 
numerical solution should converge to a unique pressure to fulfil the 
mechanical equilibrium in the interface. This is achieved through the 
relaxation step. The concept behind the relaxation approach stems from 
two observations: firstly, when a rarefaction or shock wave passes 
through two phases having different pressures, the volume of each phase 
must change in order that pressures tend to equilibrium. The first 
relaxation term in srlx of Eq. 1 represents this volume fraction expansion 
with rate μ. Secondly, a pressure work is associated with the volume 
change of the phases. This is reflected by the last two relaxation terms in 
srlx of Eq. 1. Physically, μ depends on the mechanical properties of the 
fluids as well as the mixture topology [62,63]. The stiff pressure relax-
ation with μ→∞ results in instantaneous pressure equilibrium at the 
interface at any time [62,36]. In [45,56], it is demonstrated the 
instantaneous pressure equilibrium is a valid assumption. 

From the relaxation system described in B, the following equations 
can be derived: 

∂e1

∂t
+ pI

∂v1

∂t
= 0, (9)  

∂e2

∂t
+ pI

∂v2

∂t
= 0, (10)  

in which vk = 1
ρk 

shows the specific volume of phase k. The interfacial 
pressures pI in both phases are considered to be equal such that the 
mixture energy is conserved. A possible estimation of pI is the mixture 
pressure computed after the relaxation step [45,56], which fulfils the 
entropy inequality (more details can be found in [64]). This allows the 
construction of a non-linear algebraic system: 

e(a)1 − e(b)1 − p(a)

(
1

ρ(a)
1

−
1

ρ(b)
1

)

= 0, (11)  

e(a)2 − e(b)2 − p(a)

(
1

ρ(a)
2

−
1

ρ(b)
2

)

= 0, (12)  

where superscripts (b) and (a) denote the values before and after the 
relaxation step, respectively. Considering the five unknowns e(a)1 ,e(a)2 ,ρ(a)

1 ,

ρ(a)
2 ,p(a), three more equations are needed to close the system. First, since 

(αρ)k is conserved during the relaxation, the saturation constraint 
∑

kαk = 1 reads: 

(αρ)(b)1

ρ(a)
1

+
(αρ)(b)2

ρ(a)
2

= 1. (13) 

The two more required equations are extracted from the phasic 
equations of state, which express the internal energy of the phase based 
on its pressure and density. This is straightforward when using simplistic 
equations of state, such as the ideal gas and stiffened gas EoSs described 
in A in their parametric forms, which read as: 

e(a)1 =
p(a) + γ1p∞,1

(γ1 − 1)ρ(a)
1

, e(a)2 =
p(a) + γ2p∞,2

(γ2 − 1)ρ(a)
2

. (14) 

In this specific case, an analytical solution for the system of Eqs. 
(11)–(14) exists, which is described in [45,65]. However, in the case of 
complex equations of state, there is no analytical solution for this sys-
tem. Therefore, an iterative solution should be tailored based on the 
particular formula of the utilised EoS. Herein, we present a general al-
gorithm for this system based on tabulated data. In this regard, residuals 
associated with Eqs. (11)–(13) are defined: 

∊1 = e(a)1 − e(b)1 − p(a)

(
1

ρ(a)
1

−
1

ρ(b)
1

)

, (15)  

∊2 = e(a)2 − e(b)2 − p(a)

(
1

ρ(a)
2

−
1

ρ(b)
2

)

, (16)  

∊3 = 1 −

(
(αρ)(b)1

ρ(a)
1

+
(αρ)(b)2

ρ(a)
2

)

. (17) 

This system can be solved iteratively using the multivariable New-
ton’s method. As the pressure and temperature are the inputs in the 
tabulated data, the system is solving for T(a)

1 ,T(a)
2 , p(a) through the 

following steps:  

1. The values of T(a)
1 ,T(a)

2 , p(a) are initially guessed. For the first loop, the 
values from the previous time step are used. 

2. Based on the guessed values, the corresponding densities and inter-
nal energies are interpolated from the table through bilinear inter-
polation. Therefore, the residual functions ∊1,∊2,∊3 are calculated.  

3. The guessed values of step 1 are shifted by ΔT1 = ξ(T1)T1, ΔT2 =

ξ(T2)T2, Δp = ξ(p)p. Values used in this study are in the range of 
10− 3 < ξ(T1), ξ(T2), ξ(p) < 10− 2. This allows to compute the partial 
derivatives of the residual functions with respect to temperature and 
pressure: Δ∊m,T1

ΔT1
,

Δ∊m,T2
ΔT2

,
Δ∊m,p

Δp , where m is the error index m = 1,2,3: 

Δ∊m,T1

ΔT1
=

∊m(T
(a)
1 , T (a)

2 , p(a)) − ∊m(T
(a)
1 + ΔT1,T

(a)
2 , p(a))

ΔT1
,

Δ∊m,T2

ΔT2
=

∊m(T
(a)
1 , T (a)

2 , p(a)) − ∊m(T
(a)
1 , T(a)

2 + ΔT2, p(a))

ΔT2
,

Δ∊m,p

Δp
=

∊m(T
(a)
1 , T(a)

2 , p(a)) − ∊m(T
(a)
1 ,T (a)

2 , p(a) + Δp)
Δp

,
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Table 1 
Initial conditions for the spherical bubble collapse cases.   

Variable   

Case pair (Pa) pf (Pa) ρair (kg/ 
m3) 

ρwater (kg/ 
m3)   

1 1.01325× 105 3.57589× 107 1.225 9.982× 102   

2 1.01325× 105 3.57589× 106 1.225 9.982× 102   

3 1.01325× 105 7.15178× 105 1.225 9.982× 102    

Fig. 2. (a), (c), (e) Bubble dynamics and (b), (d), (f) space-averaged temperature obtained with different EoSs for collapse with initial pressure ratios of case1, 2, and 
3 in the first, second, and third rows, respectively. 

Table 2 
Maximum collapse temperature averaged in the space of the bubble interior for 
different initial pressure ratios with ideal and real gas EoS.   

EoS   

Case IG RKPR PR Helmholtz   

1 9230 (K) 6300 (K) 6050 (K) -   
2 2900 (K) 2340 (K) 2300 (K) 2330 (K)   
3 1010 (K) 930 (K) 930 (K) 960 (K)    
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4. The following iterative system in constructed based on the Newton’s 
method: 

⎡

⎣
T1
T2
p

⎤

⎦

(a)(n+1)

=

⎡

⎣
T1
T2
p

⎤

⎦

(a)(n)

−
[
J− 1(T1,T2, p)(a)

(n)
]
⎡

⎣
∊1
∊2
∊3

⎤

⎦

(a)(n)

, (18)  

where J− 1 stands for the inverse of the Jacobian matrix: 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Δ∊1,T1

ΔT1

Δ∊1,T2
ΔT2

Δ∊1,p
Δp

Δ∊2,T1

ΔT1

Δ∊2,T2
ΔT2

Δ∊2,p
Δp

Δ∊3,T1

ΔT1

Δ∊3,T2
ΔT2

Δ∊3,p
Δp

⎤

⎥
⎥
⎥
⎥
⎥
⎦

n

.

5. To increase the convergence speed and avoid instabilities, an under- 
relaxation coefficient curf = 0.5 was applied at each loop as: 

⎡

⎣
T1
T2
p

⎤

⎦

(a)(n+1)☆

=
(
1 − curf

)

⎡

⎣
T1
T2
p

⎤

⎦

(a)n☆

+ curf

⎡

⎣
T1
T2
p

⎤

⎦

(a)(n+1)

, (19)  

where superscript (a)(n+1)☆ 
denotes the updated values at the end of 

each iteration of the Newton’s method. The following criteria based 
on the change of the variables over the iterations is considered at 
each point: 
⃒
⃒
⃒
⃒
⃒

(
T1

(n+1)☆
− T☆

1

)

T(n+1)☆

1

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒

(
T2

(n+1)☆
− T☆

2

)

T (n+1)☆

2

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒

(
p(n+1)☆

− p☆
)

p(n+1)☆

⃒
⃒
⃒
⃒<ε,

where ε = 10− 2 is sufficient for convergence to be achieved.  
6. Calculating the equilibrium pressure and the corresponding phasic 

densities, the volume fractions can be updated as (αρ)k is conserved 
for phase k. From the relaxation step, the phasic densities and vol-
ume fractions are estimated properly as inferred from the numerical 
tests of [66]. 

3.3. Re-initialisation 

After the hyperbolic step, the non-conservative internal energies do 
not infer a common relaxation pressure. In addition, the phasic internal 
energies, solved in a non-conservative manner, do not necessarily 
correspond to the total energy. Thus, a re-initialisation step is intro-
duced to ensure that the non-conservative internal energies are consis-
tent with a common equilibrium pressure and correspond to the total 
energy. This is summarized in the following steps:  

1. The mixture internal energy em is extracted from the total and kinetic 
energy computed in the hyperbolic step: 

em = E −
1
2
(
u2 + w2). (20)    

2. The mixture rule for the internal energies is considered as: 

em = Y1e1 + Y2e2, (21)  

in which the left hand side em is known from the previous step while 
Y1 and Y2 are available from the relaxation step. Therefore, with the 
substitution of e1 and e2 with the corresponding pressure and den-
sities based on the equations of state, the pressure will be the only 
unknown. In the case of the stiffened gas EoS, Eq. A.1, we obtain the 
following equation: 

Fig. 3. Spatio-temporal contours of temperature change during the bubble 
collapse obtained with: (a) IG and (b) RKPR EoSs. 

Fig. 4. Space-averaged number of required iterations in the relaxation step for 
case1 simulated with RKPR EoS. The bubble radius change over time (green 
line) is also plotted to observe the collapse stage. 
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p =
ρ
(
E − 1

2 (u
2 + w2)

)
−
(

α1γ1p∞,1
γ1 − 1 +

α2γ2p∞,2
γ2 − 1

)

α1
γ1 − 1 +

α2
γ2 − 1

. (22)  

For more complex equations of state, however, there is no 
analytical solution of Eq. 21. Similar to generalisation made in the 
relaxation system, we present an iterative method valid for any 
arbitrary equation of state. In this regard, the residual based on Eq. 
20 is considered: 

∊ = em − Em +
1
2
(
u2 + w2). (23)  

Newton’s method for pressure reads: 

p(n+1) = pn −

(
∊
∊′

p

)n

, (24)  

where ∊′

p is the partial derivative of the residual function with respect 
to the pressure estimated as: 

∊′

p =
Δ∊
Δp

=
em(p + Δp) − em(p)

Δp
, (25)  

where Δp represents a small change in pressure and can be estimated 
based on the pressure from the previous loop Δp = ξpp for which ξp =

10− 3 is recommended. Moreover, the initial guess values are 
considered based on the relaxation step. Similar to the relaxation 
step, an under-relaxation treatment is also considered to ensure 
stability. The pressure is computed when the solution converges 
⃒
⃒
⃒
⃒
(p(n+1) − pn )

p(n+1)

⃒
⃒
⃒
⃒<ε; a suggested value of ε = 10− 3 has been used. 

3. Finally, the internal energies are recomputed with the pressure ob-
tained in step 2. It is now ensured that the updated internal energies 
are in agreement with the total energy conservation. 

4. Results and discussion 

In this part, three spherical collapse cases with different initial 
pressure ratios are first presented, followed by the non-spherical 
collapse of a bubble near a rigid wall excited by a pressure pulse cor-
responding to conditions similar to those generated by commercial 
lithotripter ultrasound systems. Moreover, the effect of the distance 
between the bubble and the rigid wall is considered. A cavitation case is 
also presented in D as a benchmark test. In all simulation, the gas phase 
is assumed to be non-condensable and the effects of viscosity, heat 
conductivity, surface tension, and phase transition are neglected. 

Each phase contains a small volume fraction of the opposite phase 
αmin = 10− 6 in the initial setups to ensure the hyperbolicity of the sys-
tem, as recommended in [45]. Moreover, the monotonized central slop 
limiter is used for the MUSCL reconstruction scheme explained in [45]. 
The time step is varying based on the CFL number which is set to 0.5. 

The first case considered here is the symmetric collapse of an isolated 
air bubble with initial radius R0 = 1 mm submerged in infinite water at 
rest; the different investigated are indicated in Table 1. This test is 
performed in 1D spherical coordinates. Initially, the pressure inside the 
air bubble pair is uniform in r = [0,R0] while the surrounding pressure in 
r = (R0, LD] increases gradually towards the far-field pf [1]: 

pwater(r) = pf +
R0

r
(
pair − pf

)
, (26)  

where LD indicates the domain size. The grid cells are uniformly 
distributed in two regions with different resolutions. In the first region 
r = [0,3R0] containing the bubble and its neighbourhood, 3NR0 cells are 
uniformly placed where NR0 denotes the number of cells per initial 
radius R0. The number of NR0 = 100 is sufficient to obtain the converged 

Fig. 5. (a) Pressure pulse of the lithotripter and (b) schematic of the setup.  

Fig. 6. Bubble dynamics of shock-induced collapsing bubble compared 
with [50]. 
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solution based on the grid resolution analysis provided in E. In the 
second region r = (3R0, LD] , NL cells are used with the uniform distri-
bution. The size of the domain LD is considered 20R0,50R0,80R0 with 
NL = 2NR0,6NR0, 10NR0 cells for case1, 2, and 3, respectively, to be large 
enough to avoid any possible interaction between the wave reflection 
from the far-field and the bubble. Reflective and transmissive boundary 
conditions [60] are used for the bubble centre and the far-field region, 
respectively. Results obtained with the ideal and real gas equations of 
state are also compared to those obtained with the Keller-Miksis model. 
It should be mentioned that the Helmholtz EoS failed in the simulation 
of case1 as the bubble properties in this case exceed the valid range of 
the Helmholtz EoS described in Section 2. To make the comparisons 
more clear, we use initial radius and Rayleigh collapse time to non- 
dimensionalise the radius and time respectively as follows [33]: 

R* =
R
R0
, (27)  

t* =
t

0.915R0

̅̅̅̅̅̅̅̅
ρwater

pf

√ . (28) 

As can be seen in Figs. 2a, 2c and 2e depicting cases1, 2 and 3 
respectively, the bubble undergoes a compression, the rate of which 
depends on the initial pressure ratio, followed by a rebound. The com-
parison with the Keller-Miksis model shows that the present method 
captures the compression and expansion rate with satisfactory accuracy 
for all cases. The temporal change of the space-averaged gas tempera-
ture inside the bubble is plotted for all cases in Figs. 2b, 2d, 2f using both 
the real and ideal gas EoSs. It is found that the predicted temperatures 
obtained with the three real gas EoSs are very similar, as expected 
considering the results presented previously in Fig. 1. On the other hand, 
the difference between the temperatures predicted by the real gas EoSs 
and ideal gas EoS is significantly affected by the initial pressure ratio. It 
is observed that for the violent collapse, case1, the space-averaged 
temperatures obtained with the real-gas EoSs are ≈ 33% lower than 
the value predicted by the ideal gas EoS. The difference is negligible, 
however, in case3 where the collapse is mild. The maximum tempera-
ture achieved during bubble collapse is reported for all cases investi-
gated in Table 2. 

Fig. 7. (a) and (b) Effect of the gas EoS on the space-averaged bubble tem-
perature and pressure respectively, and (c) on the wall pressure for H0 = 2R0. 

Fig. 8. (a) and (b) Effect of the stand-off distance on the space-averaged bubble 
temperature and pressure respectively, and (c) on the wall pressure where 
RKPR EoS is used. 
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To get more insight into the bubble spatial temperature variation, the 
spatio-temporal distribution of the gas temperature in r = [0,R0] ob-
tained with the ideal gas and RKPR EoSs for case1 is depicted in Fig. 3. 
In this figure, the vertical axis shows the non-dimensional space inside 
the bubble while the horizontal axis denotes the non-dimensional time. 
This representation in useful to illustrate the temperature locally inside 
the bubble during the entire simulation. It is evident that the bubble 
collapse undergoes a nearly isothermal process in the initial stage due to 
the slow collapse rate, followed by adiabatic heating. As the bubble 
approaches to its minimum size during the collapse, the temperature 
rises due to the very high compression rate and reaches a local maximum 
values of ≈ 10,000 K and ≈ 6, 000 K predicted by the ideal gas and the 
RKPR EoS respectively. Subsequently, the bubble cools down during the 

expansion phase where gradients of temperature are observed. 
It should be noted that the number of iterations required for the 

relaxation to converge varies in time. To demonstrate this, the average 
of this value in the whole domain has been reported in Fig. 4 for case1 
with the RKPR EoS. Accordingly, the required number of iterations 
reaches its maximum during the collapse to reach the convergence. The 
CPU time of the serial computation for this simulation is 320.85 s on an 
Intel Core i7-8850U CPU @1.8 GHz. 

4.1. Shock-induced non-spherical collapse close to a rigid wall 

Moving towards a case with more practical interest, a shock-induced 
bubble collapse near a rigid wall surface is examined. The bubble-wall 

Fig. 9. Pressure variation and velocity vectors (left half), numerical Schlieren (right left), and wall pressure over time in the 2D axisymmetric simulation of the non- 
spherical shock-induced collapse with the real gas EoS for H0 = 2R0. a) t* ≈ 11.54, b) t* ≈ 12.82, c) t* ≈ 13.65, d) t* ≈ 14.11. 
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arrangement resembles that of a lithotripter system. This test case was 
first introduced in the work of [50], where they studied the wall pressure 
subjected to the bubble collapse. In this setup, infinite impedance for the 
kidney stone is assumed to avoid any wave absorption in the boundary. 
It was shown that the wall pressure reaches values of GPa depending on 
the initial stand-off distance as well as the pulse width and amplitude. 
Herein, the focus is on the collapse temperature with the ideal and RKPR 
EoSs. Moreover, the wall pressure is depicted for various initial stand-off 

distances. 
The compressive shock front from the upper boundary demonstrated 

in Fig. 5a represents the lithotripter pulse without the tensile part 
propagating in time; this is based on an analytical function described in 
[50]. Initially, the pressure is atmospheric in the whole domain and the 
water and air densities are ρwater = 998.2 kg/m3 and ρair = 1.125 kg/m3, 
respectively. To reduce the computational cost, the case is simulated in 
2D axisymmetric coordinates instead of the full 3D configuration. A 

Fig. 10. Gas temperature variation over time in the 2D axisymmetric simulation of the non-spherical shock-induced collapse with the real gas (left column) and ideal 
gas (right column) EoS for H0 = 2R0. a) t* ≈ 11.54, b) t* ≈ 12.82, c) t* ≈ 13.65, d) t* ≈ 14.11. 
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schematic of the geometry and the mesh is presented in Fig. 5b. Different 
resolutions in r = [0, 1.2R0], r = (1.2R0,2R0] , and r = (2R0, 4R0] are 
used in the r-direction with the total number of Nr = 400 cells. In the z- 
direction, however, the grid is uniform in z = [0,1.2R0] while the 
Vinokur function [67] is used in z = (1.2R0,15R0] for grid stretching 
with the total number of Nz = 750 cells. The grid independence study is 
provided in E, showing that considering NR0 = 150 cells in the initial 
setup is sufficient to obtain grid independent solutions. The reflective 
boundary condition is used for the axis of symmetry whereas for the 
right side and the bottom wall, the non-reflective and no-slip boundary 
conditions have been used, respectively. The bubble has an initial radius 
of R0 = 0.05 mm while the initial stand-off distance case is 2R0. 

To be consistent with the reference [50], the variation of the bubble 
volume normalised with its initial value V* = V/V0 over non- 
dimensional time t* = tcL/R0 is plotted in Fig. 6 where cL = 1647 m/s 
is the reference speed of sound. The results obtained with the ideal and 
real gas EoSs are compared with the study of [50]; overall, good 
agreement is achieved. It can be seen that the dynamics of the bubble is 
not affected by the gas thermodynamics. On the other hand, it was seen 
in the spherical bubble collapse cases that the bubble temperature pre-
dicted by the three real gas EoSs was nearly the same as shown in Fig. 2. 
Therefore, the RKPR EoS is used as the real gas EoS for the rest of the 
results. 

In Fig. 7a, it is observed that the bubble compression results to 
bubble space-averaged temperatures up to 6,500 K when the ideal gas 
EoS is utilised. The temperature predicted with the RKPR EoS is 
approximately 3,800 K which is ≈ 41% lower than the ideal gas EoS 
prediction. This noticeable temperature difference at pb ≈ 4 GPa, which 
is corresponding to the compression ratio of 4× 104, is in agreement 
with the comparison made in Section 2, Fig. 1 where ≈ 35% temperature 
difference between the ideal and real gas prediction for an isentropic 
compression at similar compression ratio was observed. Fig. 7b, how-
ever, shows a less significant difference in the bubble pressure which is 
only ≈ 2.3% based on our data. Similarly, in Fig. 7c, it is observed that 
the predicted wall pressure averaged in r = [0,R0] is less affected by the 
gas EoS due to the sufficiently large stand-off distance. 

Simulations performed with the RKPR EoS for different stand-off 
distances namely H0 = 1.1R0, H0 = 2R0, and H0 = 3R0 as shown in 
Fig. 8a–8c. It is observed that when the stand-off distance is minimum, i. 
e., H0 = 1.1R0, the collapse forms in a more asymmetric shape 
compared to the two other cases. Therefore, a less amount of energy can 
be concentrated inside the bubble. As a result, the maximum bubble 
temperature and pressure are lower when H0 = 1.1R0. On the other 
hand, the wall pressure peak, averaged in z = [0,R0], is the highest in 
this case as the shock immediately hits the wall. 

Numerical Schlieren [68] is used as a useful gradient-based function 
for visualisation of the formed waves as well as the interface location 
[35,69]: 

ϕ = exp
(

−
ψ |∇ρ|

max|∇ρ|

)

, (29)  

where ψ is a scaling parameter to improve the visibility of the waves for 
which a value of 50 is used in the simulations. In the contour plots of 
Fig. 9, the temporal evolution of the pressure field p and velocity vectors 
(on the left-half), and the numerical Schlieren (on the right-half) are 
illustrated at the selected times, namely a) t* ≈ 11.54, b) t* ≈ 12.82, c) 
t* ≈ 13.65, d) t* ≈ 14.11 corresponding to different collapse stages. 
Moreover, the line plots of Fig. 9 represent the wall pressure pw at each 
time. The simulations are obtained for H0 = 2R0 with the RKPR EoS 
while no substantial difference for this set of variables were observed in 
the case of the ideal gas EoS. It can be seen that the emitted pressure 
pulse from the lithotripter hits the bubble at the top boundary creating a 
reflected rarefaction wave and a transmitted shock wave. The induced 
pressure gradient onsets the bubble collapse, as seen in Fig. 9a 
(t* ≈ 11.54). The transmitted wave is then reflected from the rigid wall 

and hits back the bubble from the lower boundary, compressing it 
further. At this stage, the peak pressure of the wall is ≈ 0.055 GPa. The 
liquid jet formation is evident in Fig. 9b (t* ≈ 12.82) as well as an 
emitted shock wave due to bubble collapse. Thirdly, the bubble expands 
into a toroidal-like shape and the emitted shock wave from the collapse 
travels toward the rigid wall, as seen in Fig. 9c (t* ≈ 13.65). Up to this 
point, the wall pressure peak is still less than 0.08 GPa. Lastly, the 
bubble expands further and the shock wave hits the rigid wall and 
abruptly increases its pressure to the peak value of above 0.45 GPa, as 
depicted in Fig. 9d (t* ≈ 14.11). This shows that the peak value of the 
wall pressure is strongly influenced by the collapse shock wave. Also, 
observing the wall pressure above 0.37 GPa in |r| < 30 μm it seems that 
the wall can retain the high pressure value as the shock is passing out-
ward from the centre. 

While the spatial average of the gas temperature presented in 7 is 
appropriate to monitor the bubble temperature over time, we are able to 
extract more insight about the temperature distribution and the real gas 
effects locally at different collapse stages with a 2D representation. 
Therefore, the evolution of the gas temperature is shown in Fig. 10 at the 
same selected times considered for Fig. 9, i.e., t* ≈ 11.54, b) t* ≈ 12.82, 
c) t* ≈ 13.65, d) t* ≈ 14.11. The results obtained with the RKPR EoS 
(left column) are compared with those with the ideal gas EoS (right 
column). In both cases, the temperature distribution inside the bubble is 
inhomogeneous as expected in non-spherical collapse. This temperature 
first increases due to the adiabatic during the compression phase. At this 
stage, the difference between the predictions by the ideal and RKPR EoSs 
is minor, with the maximum of ≈ 60 K in the spot shown in Figs. 10a 
(t* ≈ 11.54). However, this difference becomes substantial at the 
moment of collapse. At the selected t* ≈ 12.82, which is very close to the 
collapse moment, the maximum temperature predicted by the ideal gas 
EoS reaches ≈ 10000 K in the very small red spot in the centre as shown 
in Fig. 10b R which makes a difference of ≈ 3800 K with the maximum 
prediction by the RKPR EoS in Fig. 10bL. Although this maximum 
temperature difference happens only in a very small spot, the RKPR EoS 
predicts lower collapse temperature even in the surrounding of the spot. 
As the bubble expands, cooling of the gaseous content is expected. This 
is clearly seen in Figs. 10c (t* ≈ 13.65) and 10d (t* ≈ 14.11) with the 
maximum temperature difference of ≈ 300 K and ≈ 200 K, respectively. 

5. Conclusion 

A numerical model extending the work of [45] to account real-fluid 
EoS via tabulated data has been developed and applied to gas collapse 
cases. Both spherical and non-spherical collapse cases have been 
considered and compared with simulations obtained with the ideal gas 
EoS. The real gas effects become more dominant when the collapse is 
more violent, leading to a ≈ 33% difference (corresponding to ≈ 3050 
K) in the space-averaged spherical collapse temperature. Also, a differ-
ence of ≈ 41% (corresponding to ≈ 2700 K) is observed for the space- 
averaged non-spherical collapse temperature. It is also shown that the 
difference is even more evident if the local extreme collapse temperature 
is considered. Therefore, it is concluded that the ideal gas assumption 
fails for temperature prediction regardless of the collapse sphericity. 
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Appendix A. Equations of state 

A.1. Stiffened gas for liquid 

The stiffened gas EoS [49] is a simplified form of the Mie-Gr”uneisen EOS in which the pressure is defined as: 

p = (γ − 1)ρe − γp∞, (A.1)  

T =
p + p∞

cv(γ − 1)ρ, (A.2)  

where p and e are the pressure and the specific internal energy, respectively. This EoS has been widely used in the literature, e.g. [32,45,56,55], due to 
its simplicity. The parameters are set to γ =

cp
cv
= 4.4 and p∞ = 6 × 108 Pa for water. With a thermal equilibrium assumption in the initial condition, the 

specific heat is computed which is used as constant without any physical meaning. It is noted that the value of p∞ = 0 and γ = 1.4 converts it to ideal 
gas. 

A.2. Higher order equations of state for gas 

Whereas ideal gas equation of state has proven quite successful in modelling gaseous behaviour, generalisation and expansion such a simple model 
for liquids and/or phase change was not straightforward. Even if simplistic extensions of the ideal gas or polytropic equation of state could cover for 
liquid behaviour (see for example the stiffened gas EoS above, or the Tait EoS for weakly compressible liquids respectively [70], these could not 
describe the thermodynamics of phase change. Considering the variation of pressure and specific volume along a constant temperature, it becomes 
apparent that to describe both liquid and vapor phases at the same time an equation of state of at least third order in respect to density is needed. 
Indeed, the first such equation of state was the Van der Waals EoS [71], which, in its derivation, included both repulsive forces between molecules 
(similar to the ideal gas EoS), but also the attractive intermolecular forces present in liquids. Despite the fact that the Van der Waals EoS could describe 
the critical point of matter and provide a theoretical insight in non-ideal effects, such as the Joule–Thomson coefficient, it proved quite inaccurate in 
predicting accurately the liquid vapor equilibrium [72], hence this model was surpassed by more advanced variations. 

A.2.1. Peng-Robinson EoS 
One of the most notable improvements of the Van der Waals EoS and a characteristic example of the cubic EoS family, is the Peng-Robinson EoS, 

which is commonly used for describing real fluid effects, phase change and transcritical/supercritical mixing, see e.g. [46,73,74]. Despite its success 
and its widespread role in chemical engineering, it suffers from deficiencies when predicting saturated liquid densities and speed of sound. Its 
formulation is discussed in the next section, as it is a subset of a generalised form to be discussed. 

A.2.2. Redlich-Kwong-Peng-Robinson EoS 
Cismondi et al. [47] combined the PR EoS and RK EoS to introduce the generalised RKPR EoS. In this equation, the density dependence of each 

earlier EoS is connected to improve modelling of the real fluid behaviour. The third parameter is used to make interpolations and extrapolations along 
the RK EoS and PR EoS. The analytical equations of the cubic EoSs are very similar. The general form of a cubic EoS is described as: 

p =
ρRuT

Mw − bρ −
aη(T)ρ2

(Mw + δ1bρ)(Mw + δ2bρ), (A.3)  

in which Ru = 8.3145
( J

mol K
)

is the universal gas constant and Mw is the molecular weight of the phase. The attractive and repulsive molecular forces 
are represented by parameters a and b which are empirically determined functions of the critical temperature and pressure. The attractive parameter a 
is multiplied by a correction factor η(T) to consider the species polarity. This factor is a correlation of acentric factor ω and the temperature. The 
acentric factor is derived either from experimental data or from accurate formulas as suggested in [75].The third parameter δ1 in the generalised RKPR 
makes interpolations and extrapolations along the RK EoS and PR EoS. This parameter depends on the critical compressibility factor of the fluid Zc. 
Nevertheless, the value of δ1 = 1+

̅̅̅
2

√
gives the PR EoS as a special case of the RKPR EoS. The parameters of the cubic equations of state are given in 

A.3. Thermodynamic relation for the internal energy in the RKPR EoS reads: 
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e(T, ρ) = e0(T) +
∫ ρ

ρ0

[
p
ρ2 −

T
ρ2

(
∂p
∂T

)

ρ

]

T
dρ

= e0(T) +
1

(δ1 − δ2)bMw

[

T
(

∂aη
∂T

)

− aη
]

ln
(

Mw + δ1bρ
Mw + δ2bρ

)

,

(A.4) 

in which subscript 0 denotes the ideal state. 
The following parameters are used in Table A.3: 

d =
1 + δ2

1

1 + δ1
,

y = 1 + [2(1 + δ1) ]
1
3 +

(
4

1 + δ1

)1
3

,

S = 0.37464 + 1.54226ω − 0.26992ω2,

k = (1.168ZcA1 + A0)ω2 + (1.168ZcB1+B0)ω + (1.168ZcC1 + C0).

The specific heat capacities at constant volume and pressure are computed: 

cv =

(
∂e
∂T

)

ρ
= cv,0 +

T
(δ1 − δ2)bMw

(
∂2aη
∂T2

)

ln
(

Mw + δ1bρ
Mw + δ2bρ

)

, (A.5)  

cp = cv +
T
ρ2

( ∂p
∂T

)2
ρ

( ∂p
∂ρ

)

T

. (A.6) 

Moreover, the speed of sound can be derived as: 

c2 =

(
∂p
∂ρ

)

s
=

cp

cv

(
∂p
∂ρ

)

T
, (A.7)  

where s stands for the specific entropy. 

A.2.3. c) Helmholtz energy EoS 
The Helmholtz energy EoS is based on an ideal and residual Helmholtz energy formulation, where the residual term αr is a large polynomial/ 

exponential function, calibrated with experimental data [76]: 

α(δ, τ) = a(ρ, T)
RT

= α0(δ, τ)+ αr(δ, τ), (A.8)  

in which α is the non-dimensional Helmholtz energy and superscripts 0 and r represent the ideal gas and residual contributions, respectively. 
Moreover, δ =

ρ
ρj 

is the reduced density and τ =
Tj
T is the reciprocal reduced temperature where subscript j denotes the value at the maxcondentherm. 

The residual Helmholtz energy contribution can be computed as: 

αr(δ, τ) =
∑10

k=1
Nkδik τjk +

∑19

k=11
Nkδik τjk e(− δlk ), (A.9) 

Table A.3 
Parameters for the cubic equations of state.   

EoS 

Parameter PR RKPR 

u 1 δ1 + δ2 

w 2 δ1δ2 

δ1 1 +
̅̅̅
2

√
d1 + d2(d3 − 1.168Zc)

d4 + d5(d3 − 1.168Zc)
d6 

δ2 1 −
̅̅̅
2

√ 1 − δ1

1 + δ1 
a 

0.45724
(R2

uT2
c

pc

)
3y2 + 3yd + d2 + d − 1

(3y + d − 1)2

(
R2

uT2
c

pc

)

b 
0.07780

(RuTc

pc

)
1

3y + d − 1

(
RuTc

pc

)

η [
1 + S

(
1 −

̅̅̅̅̅
T
Tc

√ )]2 (
3

2 +
T
Tc

)k 

dη
dT −

S
TTc

[

1 + S
(

1 −

̅̅̅̅̅
T
Tc

√ )]

−
3kk

Tc

(
2 +

T
Tc

)k+1 

d2η
dT2 

S2

2TTc
+

S
2
̅̅̅̅̅̅̅̅̅̅
T3Tc

√

[

1 + S
(

1 −

̅̅̅̅̅
T
Tc

√ )]
3kk(k + 1)

T2
c

(
2 +

T
Tc

)k+2  
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for which the coefficients Nk and values of ik, jk, and jk can be found in [76] as well as the ideal gas contribution. 
Appendix B. Relaxation system 

The relaxation step contains the following equations [45]: 

∂α1

∂t
= μ(p1 − p2), (B.1)  

∂α1ρ1e1

∂t
= − pIμ(p1 − p2), (B.2)  

∂α2ρ2e2

∂t
= pIμ(p1 − p2), (B.3)  

∂α1ρ1

∂t
= 0, (B.4)  

∂α2ρ2

∂t
= 0, (B.5)  

∂ρu
∂t

= 0, (B.6)  

∂ρE
∂t

= 0. (B.7)  

Appendix C. HLLC Riemann solver 

The HLLC solver is being used extensively calculating the fluxes with high accuracy. This solver is recommended for the present method 
[45,55,65]. In this solver, the bounds for the minimum and maximum signal velocities present in the solution of the Riemann problem can be esti-
mated as: 

SR = max(uL + cL, uR + cR), (C.1)  

SL = min(uL − cL, uR − cR). (C.2)  

where c stands for the mixture sound speed. In case of using the parametric SG equation of state, the sound speed for each phase k reads: 

c2
k =

γk
(
pk + p∞,k

)

ρk
. (C.3) 

When the tabulated equation of state is considered, the speed of sound is computed based on pk and ρk through an interpolation using the tabulated 
data. The intermediate wave speed can be calculated using the HLL approximation using the mixture density and pressure: 

SM =
(ρu2 + p)L − (ρu2 + p)R − SL(ρu)L + SR(ρu)R

(ρu)L − (ρu)R − SLρL + SRρR
. (C.4) 

Once the wave speeds are estimated, the following variables are obtained: 

(αkρk)
*
R= (αkρk)R

SR − uR

SR − SM
, (C.5)  

(αkρk)
*
L= (αkρk)L

SL − uL

SL − SM
, (C.6)  

p* = pR + ρRuR(uR − SR) − ρ*
RSM(SM − SR), (C.7)  

E*
R =

ρRER(uR − SR) + pRuR − p*SM

ρ*
R(SM − SR)

, (C.8)  

E*
L =

ρLEL(uL − SL) + pLuL − p*SM

ρ*
R(SM − SL)

, (C.9)  

in which the mixture density and the total energy are: 

ρ*
R =

∑

k
(αkρk)

*
R, (C.10)  

E = Y1e1 + Y2e2 +
1
2

u2. (C.11) 

In the absence of the relaxation effects, the volume fraction is constant along the fluid trajectories: 
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α*
kR = αkR,

α*
kL = αkL.

(C.12) 

Since the volume fraction does not change across the left and right wave, the density reads: 

ρ*
kR = ρkR

uR − SR

SM − SR
. (C.13) 

To compute the internal energy jumps the Hugoniot relation is required: 

e*
k − ek +

p*
k + pk

2

(
1
ρ*

k
−

1
ρk

)

= 0. (C.14) 

If the parametric equations of state are considered, the internal energy can be expressed as a function of pressure and density: 

p*
k = p*

k

(
e*

k , ρ*
k

)
. (C.15) 

Therefore, there will be only one unknown in the Eq. (C.14). In case of using the SG equation of state, for instance, using Eq. (A.1): 

p*
k

(
ρ*

k

)
=
(
pk + p∞,k

) (γk − 1)ρk − (γk + 1)ρ*
k

(γk − 1)ρ*
k − (γk + 1)ρk

− p∞,k. (C.16) 

Subsequently, the internal energy e*
k can be obtained as a function of the pressure and density using the equation of state. However, the Hugoniot 

relation in Eq. (C.14) should be solved iteratively for energy and pressure in the case of using the tabulated EoS for the gas since there is no analytical 
expression relating the pressure and the internal energy. Therefore, the residual is defined based on Eq. (C.14) and the Newton method is used to 
minimise the error iteratively. 

Appendix D. Benchmark tests 

D.1. Cavitation 

Cavitating of a water–air mixture is simulated with the RKPR EoS and IG EoS and the results are compared with the exact solution. Initially, the 
pressure is p = 1 bar everywhere in the domain x = [0,1] m while a velocity discontinuity is placed in the middle of the domain x = 0.5 m. The flow 
velocity on the right side has u = 100 m/s while it is set to u = − 100 m/s on the left side. The tube is filled with the liquid water with ρ = 1000 kg/m3 

while there is a very small air volume fraction αa = 10− 2 in the domain. 
Existence of the gas with the left and right expansion waves from the centre generate vacuum in the middle of the domain where the liquid pressure 

Fig. 11. Numerical simulation of cavitation test with the ideal and real gas EoSs compared with the exact solution [45] a.t t = 1.85 ms.  
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drops, and a cavitation pocket is formed. Good agreement between the results with ideal gas EoS and the exact solution at t = 1.85 ms from [45] is 
demonstrated in Fig. 11 in which the two interfaces are captured with a high accuracy with 1000 cells. It should be noted that real gas effects are minor 
in this regime of pressure. Therefore, it is observed that the results with RKPR EoS is similar to the results with the ideal gas EoS. 

Appendix E. Grid convergence 

The discrepancy between the numerical results and the Keller-Miksis solution for the low initial pressure ratio case can be served as the error when 
the grid resolution is analysed [33]. In this regard, the error is defined as the L2 error for case3: 

ε =
∑Ni

i=0
=

|R(ti) − RKM(ti)|

RKM(ti)
, (C.17)  

in which ε is the error computed in the time [0,2tc] in Nt time steps where tc is the collapse time and R(ti) and RKM(ti) are the radius from the simulation 
and the Keller-Miksis model, respectively. The results shown in Fig. 12a represent a first order convergence which is the expected rate in the case of the 
discontinuous flows [60]. The grid resolution analysis for the same case is shown in Fig. 12b. 

Grid convergence for the shock-induced non-spherical bubble collapse is also shown in Fig. 13. 

Fig. 12. (a) Spatial convergence error. (b) Results with different grid resolutions for the spherical collapse case3.  

Fig. 13. Grid analysis of the shock-induced non-spherical collapse close to a rigid wall.  
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Appendix F. Supplementary data 

Supplementary data associated with this article can be found, in the online version, athttps://doi.org/10.1016/j.ultsonch.2022.106175. 
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