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Abstract

To understand how biological and bio-inspired complex com-
putational networks can function in the presence of noise and
damage, we have evolved very small spiking neural networks
in the presence of noise on the membrane potential. The net-
works were built with adaptive exponential integrate and fire
neurons. The simple but not trivial task we evolved the net-
works for consisted of recognizing a short temporal pattern in
the activity of the network inputs. This task can be described
in abstract terms as finding a specific subsequence of symbols
("ABC”) in a continuous sequence of symbols (”..ABCC-
CAAABCAC..”). We show that networks with three interneu-
rons and one output neuron can solve this task in the pres-
ence of biologically plausible levels of noise. We describe
how such a network works by mapping its activity onto the
state of a finite state transducer—an abstract model of com-
putation on continuous time series. We demonstrate that the
networks evolved with noise are much more robust than net-
works evolved without noise to the modification of neuronal
parameters and variation of the properties of the input. We
also show that the networks evolved with noise are denser and
have stronger connections than the networks evolved with-
out noise. Finally, we demonstrate the emergence of memory
in the evolved networks—sustained spiking of some neurons
maintained thanks to the presence of self-excitatory loops.

Introduction

Natural complex systems, including networks of biological
neurons, maintain their functionality in the presence of noise
and damage. Noise in natural neural networks originates
from many sources, including thermal variations and small
number of cellular components (for example, ion channels).
These components, moreover, undergo constant turnover,
and so do parts of the cell (such as dendrites), and the cells
themselves. Including noise in models of biological systems
helps in our understanding how reliable computation can be
performed in the presence of noise, and in building more
reliable artificial systems (Florian, 2003).

In biological neuronal networks and in artificial spiking
neural networks, the timing of discrete events (spikes) rep-
resents the information received from the senses. Processing
this information requires recognizing temporal patterns in

neuronal activity by other neurons (Bialek et al., 1989; Ger-
stner et al., 1996; Laurent, 1996; Rieke, 1999; Decharms and
Zador, 2000; Ahissar and Arieli, 2001; Huxter et al., 2003).
Recognition of temporal patterns requires delays or main-
taining the state of the network (Steuber and Willshaw, 1999;
Steuber and De Schutter, 2002; Steuber and Willshaw, 2004;
Steuber et al., 2006; Maex and Steuber, 2009). Intuitively,
the necessity for precise synaptic delays seems a more frag-
ile solution.

In this paper, we evolve very small spiking neural net-
works for simple pattern recognition in the presence of
noise. We hope that analyzing the diverse solutions ob-
tained using artificial evolution will allow us to identify the
way robust pattern recognition can be accomplished. To
represent the computation performed by the evolved spik-
ing neural networks, we will use a formal computational
model of the finite state transducer—a deterministic finite
state automaton that receives a continuous sequence of sym-
bols and produces a continuous output (Sipser, 1996). Our
focus here is not the induction of a specific finite state au-
tomaton (as in Natschldger and Maass, 2002; Tiflo and Mills,
2005; Rutishauser and Douglas, 2009; where large recurrent
multilayer spiking neural networks were used). Rather, we
will use the formalism to illustrate how the evolved networks
work. Finally, we will compare the functioning and structure
of networks evolved in the presence of noise to networks
evolved without it (which were the subject of our previous
work, Yaqoob and Wrébel, 2017). Our preliminary analysis
shows that even a relatively low level of noise during evo-
lution results in much more robust networks, and that the
networks evolved with noise are denser than the networks
evolved without it.
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Figure 1: Encoding of a spiking neural network in a linear
genome. See text for details.
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The Model

We use the model of evolution of spiking neural networks for
temporal pattern recognition introduced previously in the ar-
tificial life software platform GReaNs (Wrébel et al., 2012;
Wrébel, 2016; Yaqoob and Wrébel, 2017). The networks in
this model are encoded in linear genomes built from genetic
elements. Each element has a type (input, output, cis and
trans; the biological inspiration for such a representation
and these terms has been discussed previously; Fig. 1), sign
and two coordinates. The elements encode the nodes in the
network: three input nodes (encoded by an input element
each), up to three interneurons (each encoded by a series of
cis elements followed by a series of trans elements), and
one output neuron (encoded by a single output element). To
determine the connectivity, every pair of input-cis, trans-
cis and trans-output elements is considered. If the coordi-
nates of two elements in a pair are such that the Euclidean
distance is below a threshold (equal to 5), the presence of
such a pair contributes to the weight of the connection be-
tween two nodes; the contribution is positive if the signs of
the two elements coincide and negative otherwise (the con-
tribution is s;s; W, where s;, s; are signs and d; ; is
i+l 1 53 J

distance; the threshold prevents full connectivity). If the
overall sum of such contributions for two neurons is positive,
the link (synapse) is excitatory, otherwise it is inhibitory.

In our previous work (Yaqoob and Wrébel, 2017) we have
shown that two interneurons are sufficient for the simple pat-
tern recognition task considered here, with no noise. We
have subsequently found out that artificial evolution could
not find any efficient solution when noise was present and
the network size was limited to two interneurons, but could
do so with three interneurons. In the evolutionary runs de-
scribed here we have thus limited the number of interneu-
rons in the decoded network to up to three, by ignoring the
rest of the genetic elements. This restriction was imposed
both to limit the search space and to ease the analysis of the
networks. Similarly, superfluous input or output elements,
introduced for example by unequal crossing over (see be-
low) were ignored.

As in our previous work (Yaqoob and Wrébel, 2017), in
this paper we used the adaptive exponential integrate and
fire neuronal model for each interneuron and output neuron.
Each adaptive exponential neuron has four state variables
(membrane potential V/, adaptation w, excitatory conduc-
tance gg, and inhibitory conductance, gr):
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The default values of the parameters we used here (Ta-
ble 1) were the same as in our previous work (Yaqoob and
Wrébel, 2017). They result in tonic spiking in response to
constant input current (Naud et al., 2008).

When V' in the adaptive exponential neuron is high
enough, V' quickly diverges to infinity because of the expo-
nential term; this models a spike. For simulation purposes,
the spike is cut at a finite value (here, 0 mV). After a spike
occurs in a neuron, this neuron’s V' is reset to V,., and adapta-
tion w is incremented by b. In any neuron to which the neu-
ron that spiked connects (in any postsynaptic neuron) with
positive (negative) weight, the excitatory (inhibitory) con-
ductance gg (gr) is increased by synaptic gain (gaing or
gaing, respectively; here, 9 nS) multiplied by the absolute
weight.

Modifying four parameters in the adaptive exponential
neuron can bring qualitative change in neuronal behavior
(qualitatively different responses to constant input current).
These four bifurcation parameters (which are directly pro-
portional to the four free parameters; Touboul and Brette,
2008; Naud et al., 2008) are: adaptation time constant
Tw, adaptation conductance a, reset voltage V., and spike-
triggered adaptation b. The remaining ones are scaling pa-
rameters: membrane capacitance C, threshold slope fac-
tor Ar; three time constants, membrane (7,,,), and excita-
tory/inhibitory (7g/77); four potentials, effective rest (Ep),
inhibitory (E) and excitatory (Eg) reverse, and effective
threshold (V).

We used Euler integration with 1 ms step. When evolving
with noise, a random value taken from a Normal distribution
(mean 0, standard deviation 2 mV) was added to V' at every
step. This level of noise is similar in magnitude to the level
observed in biological neurons resulting from spontaneous
or background synaptic activity (Paré et al., 1998; Destexhe
and Paré, 1999; Anderson et al., 2000; Finn et al., 2007).

The task for the network was for the output neuron to
spike at least once after the network received the activation
from the input nodes in a specific order: first from input A,
second from input B, third from input C. During both evo-
lution and testing, input nodes were activated in a random
order. Each such activation lasted for 6 ms. Only one input
node could be active at a time. Each activation of an input
node was followed by an interval of 16 ms during which no
input node was active.

In abstract terms, this task corresponds to recognizing a
pattern of symbols ("ABC”) in a continuous stream of sym-
bols {A, B, C} received in a random order. In terms of mod-
eling, when a network receives a symbol, it means that six
spikes, each one 1 ms apart, are received by all the interneu-
rons to which the input node corresponding to the symbol
connects.
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The genomes in the initial population were created ran-
domly as described previously (Yaqoob and Wrébel, 2017).
Each evolutionary run had a constant population size (300),
with size two tournaments, elitism (10 individuals) and
crossover (30 individuals in each generation; there was no
crossover in Yaqoob and Wrébel, 2017).

Multi-point crossover was implemented in the following
manner. First, two parents (A and B) are selected from pop-
ulation as winners of two independent size two tournaments.
A cursor pointing to the genetic elements to be copied is ini-
tiated at the first element for both genomes. Then, one of the
four schemes is chosen: copy an element from parent (i) A
or (ii) B to offspring, advance cursor on both genomes, or
copy from (iii) A or (iv) B, advance cursor only on the tem-
plate copied from (each with probability 0.03). The prob-
abilities of choosing actions (i) and (ii) were equal and 4
times larger than the (again, equal) probabilities of choosing
(iii) or (iv). After an element is copied, the scheme stays
the same as previously with probability 0.7, and otherwise
a scheme is re-chosen (the same one can be chosen again),
maintaining the ratio between the probabilities as above.

If an element was chosen for a point mutation (per ele-
ment probability of 0.1), the coordinates were changed so
that the associated point was moved in a random direction
(drawn from a uniform distribution) by a distance drawn
from a normal distribution (mean 0, standard deviation 1).
Duplications (probability of 0.001 per genome) occurred
twice as often as deletions (probability 0.0005). The starting
element and the insertion site were chosen randomly (each
element had the same chance of being chosen). The length
of duplication/deletion was drawn from a geometric distri-
bution with mean 11.

Each individual in the population was evaluated on six
random sequences (different from each other, for each in-
didvidual, and in each generation), each with 500 symbols.
Four sequences were generated with equiprobable occur-
rence of A, B, and C (and thus contained about 16 ABC
subsequences each), and two other continuous sequences
were constructed by concatenating, in random order, ABC
with ABB, and ABA (two subsequences that are the most
problematic to discriminate from ABC; Yaqoob and Wrébel,
2017).

The fitness function rewarded for spike(s) after the target
subsequence and penalized for spikes elsewhere:

ffitness =1-R+4P (5)

R (for reward) is the fraction of time intervals when the
input nodes are silent (each such silence is 16 ms long) after
the last C in ”ABC” and the output spikes at least once. In
other words, it is the fraction of instances in which the output
spikes correctly. P (for penalty) is the fraction of instances
in which the output spikes incorrectly. These instances can
happen either in (i) 16 ms silence intervals not after ABCs,
or in (ii) 6 ms time intervals in which one of the input nodes

is active. Although P in principle could reach 1, in prac-
tice it was always quite small, and the ffiness Was below 1.
We call an individual a perfect recognizer if fritness = 0.
The number by which P is multiplied, 4, was chosen after
preliminary exploration to find a value that resulted in the
highest evolvability (number of evolutionary runs that ended
with perfect recognizers).

Results and Discussion

Among 100 independent evolutionary runs without noise, 33
ended with perfect recognizers—champions with fiiness =
0 when re-evaluated (tested) on 500 random input sequences
(thus different than the sequences experienced during evo-
lution) with equal probability of each symbol (in Yagoob
and Wrébel, 2017 we used different settings for artificial
evolution—in particular, no cross over, different probabili-
ties of duplications and deletions—and the yield was much
lower; other difference were: time during which outputs
were active were 4 ms, with 8 silences; the fitness function
was more complex; excitatory/inhibitory gain was 5 nS; the
output neuron had an offset current).

In the presence of noise, 1000 generations were needed to
obtain 10 champions in 100 independent runs that were per-
fect recognizers when re-evaluated as above without noise—
with noise they failed to produce a spike on output at most
after 1 in 100 ABCs.

All perfect recognizers evolved without noise always pro-
duced only 1 spike in output after an ABC in the input
sequence. The perfect recognizers evolved with noise be-
longed to two classes: when evaluated without noise, either
(1) the output always spiked once, or (ii) always twice after
each ABC. When evaluated with noise, the output neurons
in both classes spiked once after some ABCs, and twice after
the other ABCs in the same input sequence, but never more
times.

To measure the robustness, we first analyzed what was the
range of robustness for each parameter. In this preliminary
analysis, only one parameter was changed at a time. The
range of robustness was defined as the largest continuous
set of parameter values around the default value for which
a given network had the true positive rate of at least 99%
and the false discovery rate of at most 5%. We define here
the true positive rate and the false discovery rate as follows.
The true positive rate is the average number of recognized
ABCs (the number of 16 ms intervals after ABCs in which
the output neuron spiked, correctly) divided by the actual
number of ABCs in the input sequence. The false discov-
ery rate is the average number of intervals (6 ms or 16 ms)
in which the output spiked incorrectly (not in the interval of
silence after an ABC), divided by the total number of inter-
vals in which the output spiked. Since we are interested in
temporal pattern recognition in a continuous input sequence,
we actually evaluated the champions on 600-symbol input
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Figure 2: Network activity of the champion 3 evolved with noise on membrane potential. The individual is tested for signal
length 6 ms, silence interval 100 ms (it evolved for 16 ms). The output neuron spikes after ABC around 330 ms and 700 ms
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Figure 3: Example of robustness of network performance to change of a parameter (here, E1). Blue circles show the true
positive rate, red triangles show the false discovery rate (see text for more details). The range of robustness is showed by two
continuous vertical lines, the dashed vertical line shows the default value, -70 mV. The network evolved (and tested) with noise
(left; the network of champion 3) shows graceful degradation of network performance and a larger range of robustness than the

network evolved (and tested) without noise (right; the network of the most robust champion evolved without noise).

sequences and considered the response to the last 500 sym-
bols, over 500 such sequences. This is a very conservative
approach as in practice discarding the response to the first
symbol or a few at most would work equally well.

Second, we compared the ranges (differences between
maximum and minimum value) for a given parameter across
champions, defining relative robustness as the fraction of the
maximum range for a given parameter among the champions
(thus the champion with the largest range has the relative ro-
bustness 1.00, and the one with, say, half that range, has
0.50).

Third, we calculated the average relative robustness for
each champion (Table 1; only the most robust champion

evolved without noise is shown for simplicity). All the
champions evolved with noise were robust to setting 7,, in
the range from 1 to more than 1000 ms (the default value was
30 ms). Only the best champion evolved without noise was
equally robust to changes of 7, other champions evolved
without noise had smaller ranges. When the integration step
was changed from 1 ms to 0.5 ms, the champions evolved
with noise displayed a drop in the true positive rate (from
0.99 to 0.98), while the false discovery rate remained unaf-
fected. The networks evolved without noise were not robust
to such a change.

The comparison between champions evolved and re-
evaluated with noise to the champions evolved and re-

d-sBuipasooid/esy/npayw-joalip//:dyy woly papeojumoq

€ esl/yy6706 L/S99/0€/81 0ZOMIE/IP

€20z aunr 90 uo jsenb Aq ypd'1Z1.00



evaluated without noise is conservative, as champions
evolved with noise have much larger ranges of robustness
when re-evaluated in the absence of noise. Moreover, the
average relative robustness is a crude measure, as robustness
to change of a particular parameter may be highly correlated
to the robustness to change of other one(s); a more refined
measure would give lower weights to relative robustness for
parameters that belong to such a group.

We expected that noise will promote robustness to dam-
age (here, change of neuronal parameters), as has been ob-
served before in GReaNs for evolving gene regulatory net-
works, were damage affected an artificial developmental
process (Joachimczak and Wrébel, 2012), and spiking neu-
ral networks (Wrdébel, 2016).

In accordance with our expectations, the networks
evolved with noise were much more robust to change in
neuronal parameters than networks evolved without noise
(Table 1; the second best, in terms of robustness, champion
evolved without noise had average robustness 0.13, the rest
had average robustness below 0.1).

Moreover, the networks evolved with noise showed grace-
ful degradation beyond the range of robustness (for most of
the parameters; F', is shown as an example in Fig. 3, tak-
ing champion 3 as the one evolved with noise and the most
robust champion evolved without noise for comparison).

In contrast to gene regulatory networks regulating artifi-
cial development, networks evolved with noise functioned
very well (in fact, better) when tested without noise. The
most robust champion evolved with noise (champion 3) was,
in particular, the most robust to lengthening the silences be-
tween the activity of the input nodes, and when this cham-
pion was tested without noise, these silences could be ex-
tended with no discernible limit, indicating that this network
is able to maintain its states forever (Fig. 2).

Table 2: States of the finite state transducer corresponding to
states of the network of the champion 3 evolved with noise

S hA hAB hABC
Neuron 0 330Hz 333Hz O 331 Hz
Neuron 1 333Hz O 0 333 Hz
Neuron 2 0 0 0 1 spike
Output 0 0 0 1 spike

We can describe how this network functions by mapping
the network activity to the states in a finite state transducer
(Table 2, Fig. 4). Let us first assume that the network has
already received some symbols (some input subsequence).
If this subsequence ends with a C that did not follow AB
or with a B that did not follow an A, the network is in the
state S (starting state), in which (inter)neuron 0 and neuron
1 spike continuously, at high frequency. If an A is received,
the network goes to a state hA (“had A”), in which only
neuron O spikes in this fashion. If this A is followed by

a B, all interneurons do not spike (state hAB, “had AB”).
If this AB is followed by a C, neurons 0 and 1 again start
spiking continuously, while neuron 2 and then the output
neuron produce one spike each, immediately after the C (the
state hABC, “had ABC”).

Although this is not actually relevant for computing the
output in response to a continuous input sequence, if the
network receives a B with no previous history, it goes, es-
sentially, to the state S. However, no previous history (and
no activity in the network) is indistinguishable in this net-
work from the state hAB. This is why the output neuron of
this network will incorrectly spike after receiving a C with
no previous history—in other words, if an input sequence
starts with a C.

B/0,C/0 A/0

B/0,C/0

Figure 4: Minimal finite state transducer for recognizing
ABC; the nodes represent states and edges represents tran-
sition from one state to another state on receiving an in-
put symbol {A,B,C} and with producing an output {0: no
spike(s), 1: spike(s) of the output neuron}.

The analysis of the network of the champion 3 evolved
with noise (Fig. 5) shows that all interneurons connect to
one another and each connects to itself (each has a self-
loop). Two interneurons, neuron 0 and 1, have excitatory
self-loops, which seem to be responsible for maintaining the
continuous high-frequency spiking of these two neurons in
states S, hA, hAB, and hABC. On the other hand, the recur-
rent inhibitory connections between interneurons (neuron 1
excites neuron 0, while 0 inhibits 1; neuron 2 excites 0, while
0 inhibits 2; neurons 1 and 2 inhibit one another) seem to,
together with inhibitory connections from the input nodes to
interneurons, bring the end of continuous spiking of neuron
0, or both neuron 0 and neuron 1, that corresponds to state
transitions from S to hA, from hA to hAB, and from hABC
to S. Finally, inhibitory connections from neurons O and 1
to the output neuron, together with an excitatory connec-
tion from neuron 2 to the output neuron, ensure that a spike
in the output neuron is possible only after neuron 2 spikes
(state hABC).

If we count the number of connections in the networks
disregarding the associated weights (in other words, giving
each one the same weight, 1), the 10 champion networks
evolved with noise show significantly higher density (av-
erage 18.5, standard deviation 1.6) than the 10 champion
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Neuron 1

Figure 5: The topology of the network of the champion 3
evolved with noise. Blue lines are inhibitory connections,
red lines are excitatory, numbers next to the lines show the
weights.

networks evolved without noise (16.2, 2.1, respectively;
p = 0.01, Mann-Whitney U test). Summing the absolute
weight for all the edges gives an even more striking, more
than 2-fold, difference (average for champions evolved with
noise: 82.1, standard deviation: 13.8; without noise: 34.2,
11.8, respectively; p = 0.0012).

Conclusions and future work

Our results show that evolving networks with noise leads
to high robustness to modifying the neuronal parameters
and variations of the input. In addition, the results show
that networks evolved with noise are capable of maintain-
ing their internal state infinitely. This memory seems to be
kept thanks to excitatory self-loops, while switching state is
possible thanks to inhibitory recurrent connections.

In future work, we plan to further investigate the robust-
ness of the spiking neural networks evolved with noise to
modifying parameters. The adaptive exponential model it-
self has in fact only four free parameters (Touboul and
Brette, 2008), which are directly proportional to four bi-
furcation parameters in the model with the parametrization
used here (7, a, V,., and b; Naud et al., 2008). Similarly,

we may expect that robustness to changes in synaptic gains
(gaing or gainy), C, Eg, and E; will be related, and net-
works robust to changing them will be expected to be ro-
bust to variation of synaptic weights. Therefore, it should
be possible to change more than one parameter at a time,
perhaps provided that certain relationships between them is
maintained (for example, their quotient would have to stay
within a certain range).

It will be also interesting if the networks are robust
to changes of the parameters which actually result in the
changed behavior of the neuron in terms of the response
to constant input current. For example, we could evolve
the networks with neurons showing tonic spiking, and then
change parameters so that the behavior is tonic bursting or
delayed spiking (Naud et al., 2008). Our preliminary results,
incidentally, show that it is possible to evolve networks with
neurons displaying all types of responses to the constant in-
put current demonstrated for this model (Naud et al., 2008).
It will be interesting to see if the networks evolved with
noise in neurons showing other behavior than tonic spiking
are equally robust to parameter changes.

We also plan to analyze robustness to introducing synaptic
delays and absolute refractory periods. Such changes, simi-
larly to changes in some neuronal parameters, could lead to
lower firing rates in neurons whose continued spiking pro-
vides memory.

We would also like to know if the networks will be ro-
bust to changes in parameters affecting each neuron in the
network independently (in this paper a particular change af-
fected all neurons in the network in the same fashion). This
last type of robustness is particularly interesting for transfer-
ring an evolved network able to perform a particular com-
putation to analog neuromorphic hardware, in which setting
particular (and the same) parameters for all the neurons in
the network may be problematic.

Although the level of noise we have used here is biolog-
ically plausible, it is on a lower end of the spectrum ob-
served for biological neurons (Paré et al., 1998; Destexhe
and Paré, 1999; Anderson et al., 2000; Finn et al., 2007).
It will be interesting to find out if higher, still biologically
plausible, levels of noise (for example, noise as in this paper
but with standard deviation of 4 mV) allow for evolvability,
and if possibly result in more robustness to changes in neu-
ronal parameters—and if lower levels of noise will result in
lower robustness. Moreover, other models of noise (for ex-
ample, an Ornstein-Uhlenbeck process; commonly used to
model noise in neuroscience) on neuronal variables could
be introduced—also, the presence of noise on input (such
as variable signal or silence length). We wonder if differ-
ent models of noise lead to similar levels of robustness to
changes in neuronal parameters.

Another possible direction of future work could be evolu-
tion of networks for more complex tasks involving tempo-
ral pattern recognition (for example: more symbols, regular
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expressions, recognition of several patterns by the same net-
work, with several output neurons). Our preliminary results
indicate that our model scales up for more complex tasks.
This direction of possible future research would allow us to
find out what are the relationships between the complexity
of the tasks and the size (and complexity) of the minimal-
size spiking neural networks necessary to solve them.
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