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Abstract: In recent years, the air-drop launch technology of near-space UAVs has attracted much
attention. Between downfall from the carrier and the flight control system’s initiation, the UAV
presents free-fall movement. This free-fall process is very important for the control effect of the flight
control system and is also crucial for the safety of the UAV and the carrier. Focus is required on two
important dynamic parameters of the UAV: the moment of inertia and the center of mass position. In
this paper, we used a quasi-steady model proposed by predecessors to address the flat-plate falling
problem with modifications to describe the freely falling motion of the wing. Computational fluid
dynamics (CFD) were used to simulate the free-fall movement of the wing with various parameters,
and the wing release behavior was analyzed to check the quasi-steady model. Research shows that the
movement characteristics of the falling wing are mostly reflected in the longitudinal plane, and the
developed quasi-steady analytical model can more accurately describe the dynamic behavior of free-
fall to some extent. By using CFD methods, we further investigated the aerodynamic performance of
the free-fall wing. The results show that the wing mainly presents tumbling and fluttering motion.
Changing the moment of inertia around the tumbling axis changes the tumbling frequency and the
time point as the wing enters tumbling. In contrast, changing the position of the center of mass
significantly changes the form of falling and makes the free-fall motion more complex. Therefore, it is
necessary to carefully configure the center of mass in the UAV design process.

Keywords: air-drop launch technology; near-space UAVs; free-fall motion; quasi-steady model; free
drop experiment; phase trajectory

1. Introduction

In recent years, the air-drop launch technology of unmanned aerial vehicles (UAVs)
has become a new hot topic [1-5]. It refers to the use of balloons, airships, rockets, re-
entry spacecraft, and other vehicles to release the UAVs at a specified altitude and speed.
Compared to the traditional take-off mode, air-drop launch is independent of the runway and
ground environment. Moreover, it can save time and costs for some special UAVs to reach
the designated airspace and improve safety in their approach. For example, a near-space
solar-powered UAV [6-8] requires a lot of time and energy to climb to its cruising altitude,
and it always encounters safety problems caused by atmospheric turbulence in the climb
process. If air-drop launch technology is adopted, the problems associated with near-space
solar-powered UAV takeoff sites can be effectively solved, flight safety can be improved, and
limited energy can be used for the mission flight rather than for climbing. Hence, air-drop
launch technology offers broad application opportunities in the fields of high-altitude aircraft,
fast-deploying UAVs, and alien exploration [9]. Although much research on air-drop launch
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technology has been conducted in recent decades [3,10-12], there are still open questions that
need to be understood if further improvements are to be realized.

For near-space solar-powered UAVs, the ideal air-drop launch process is undoubtedly
free-fall motion from balloons [13,14] without any energy injection. However, during the
uncontrolled falling motion between being dropped from the carrier to the start of flight control,
the UAV presents uncontrolled falling. It is well known that the free-fall motion exists widely in
nature and industry, such as the falling motion of leaves, paper, feathers, dust particles, diffusion
of plant seeds [15-17], the uncontrolled re-entry of spacecraft [18], etc. Lightweight objects
such as falling leaves, pieces of paper, thin disks [19], and plant seeds exhibit complex and
abundant dynamic behaviors in the falling process. This is mainly due to the strong coupling
between aerodynamics and kinematics, which makes it difficult to predict fall trajectory and
to analyze the unsteady aerodynamics of the object. As early as 1854, Maxwell studied the
irregular tumbling phenomenon of thin plates [20]. Willmarth et al. [21] generated a phase
diagram of dropping disks with steady descent, tumbling, and fluttering. EH Smith [22]
and Field [23] observed the chaotic motion of thin disks in experiments and provided phase
diagrams of the motion form with respect to the dimensionless moment of inertia and Reynolds
number. With the development of numerical simulation methods and experimental technology,
Andersen [24] used high-speed photography to record the the falling track of a flat plate and
compared experimental results with the numerical solution of the two-dimensional Navier—
Stokes equation. Lam et al. [25] studied the free-fall of a disk in a stably stratified fluid using a
similar experimental method. Esteban [26] used high-speed imaging technology to investigate
how roundness influences the fall trajectory. Toupoint [27] experimentally studied the falling
motion of a finite-length cylinder in a low-viscosity fluid. Chern et al. [28] used the direct-forcing
immersed boundary (DFIB) method to numerically study freely dropped objects and compared
the falling behavior of discs, equilateral triangles, and oval objects. Kim [29] used a three-
dimensional particle tracking velocimeter (PTV) and a particle image velocimeter (PIV) to reveal
the induced flow for a cone with different centers of gravity and density ratios during free fall.
In addition, Tam [30] developed a theoretical model for a tumbling flexible wing and observed
the dynamics of a passive flexible wing. Similar studies were conducted by Esteban [31,32],
Toby Howison [33], Lee [34], and Zhou [35]. Several dynamic models have been proposed for
freely falling plates and disks, such as those proposed by Kozlov [36]; Tanabe and Kaneko [37];
Belmonte et al. [38]; and Andersen et al. [39].

Although the aforementioned studies provided valuable understanding of the free-fall
dynamic behavior of different kinds of objects, the aerodynamic mechanisms have not
been fully discovered. The majority of the literature deals with small, light objects falling
in a laboratory environment with a rather low Reynolds number, and very few studies
in the literature have provided any explanations for the free-fall motion of large objects,
such as wings or UAVs, into large-scale space. Hence, it is necessary to carry out more
extensive investigations on the free-fall dynamic behavior of large wings and to deeply
study the aerodynamic influences of several important parameters on the free-fall motion
of air-drop-launched UAVs. This is the topic of the present work.

Considering that the position of the moment of inertia (MOI) and the center of mass
(COM) play important roles in determining the dynamic behavior of falling disks and
cones [25,29], we studied the free-fall dynamic behavior of a rectangular wing with a variable
center of mass location and a variable moment of inertia, mainly focusing on the longitudinal
movement characteristics of the falling wing. The following sections describe the develop-
ment of a quasi-steady analytical model based on the Andersen-Pesavento-Wang model
with some corrections. Furthermore, in order to verify the feasibility of the analytical model
and to improve the understanding of a freely falling wing, a two-dimensional approximate
computational fluid dynamics (CFD) method and a set of wing free-fall experiments were
also developed and are introduced in detail. Then, the dynamic process of a freely falling
wing was simulated and analyzed using the analytical model and experiments. Simulations
were conducted under different conditions by adjusting the parameters and repeating the
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experiment several times in different states, and the effects of the wing’s MOI and COM
position on free-fall were studied.

2. Research Methods and Validations

The COM method has the advantage of being simple in form and clear in physical
implications and has been applied to the analysis of the dynamics of the free-fall of an object,
but has some limitations, such as not taking into account the uneven mass distribution. This
paper therefore developed an analytical model focused on this problem. In order to verify
the feasibility of the quasi-steady analytical model and to gain a clearer understanding of the
free-fall motion, a quasi-steady approximate 2D CFD numerical simulation method based
on overset meshes for airfoils was proposed to enhance the understanding and knowledge
of the development of aerodynamic characteristics through numerical simulation of the
free-fall of elliptical airfoils. CFD free-fall simulations were carried out using a wing with
elliptical airfoil and the chord length was 0.25 m as an example. Additionally, a 3D realistic
wing free-fall experimental test system was developed to realistically represent the dynamic
behavior of the freely falling wing and to validate the results with the analytical model of
this paper further to enhance the understanding based on the theoretical analysis.

2.1. Quasi-Steady Analytical Model

The scenario was based on the Northwestern Polytechnical University’s “MY” full-
wing solar-powered UAV [7,40]. The simplified wing is shown in Figure 1a. Eccentricity
of the airfoil: e = b/a = 1/10, where b and a are the semiminor axis and the semimajor
axis of the ellipse respectively. Past research about freely falling plates has shown that the
movement characteristics in the XOZ plane are the most obvious, where the XOZ plane is
an aircraft-carried normal earth-fixed system. The aspect ratio of the wing in Figure 1 is 4,
so this study simplified the three-dimensional falling problem of the wing to the motion
in the XOZ plane. The force model is based on the body coordinate system X'OZ’. X¢
is the chordal distance between centroid and geometric center, and the pitch angle is 6,
see Figure 1b.

g/
(a) Airfoil “’

(b) Coordinate system

Figure 1. The design of the wing and the coordinate system definition of the model.

Anderson, Pesavento, and Wang [39] established a finite dimensional pattern for
the free-fall behavior of a flat plate and elliptical disk. In the model, the quasi-steady
assumption is adopted for aerodynamic force, and the model is written as follows:

(m +my)oy = (m+my)vy,0 — pflvy — mg(l - pfps_l) sinf — F;, 1)
(m 4 my )0, = —(m 4 my)vu6 + pTo, — mg(l - pfps_l) cosf — FJ, ()

(I4])8 = (my —my)vyvy — Ty + LepfTy /02, 4 0% (3)
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The velocity components v, and v,/, respectively, represent the speed in the X" and
Z' directions of the body coordinate system. The variables m, I, p Iz and p; represent the
mass of the wing, MOI about the Y’-axis, density of the air and the wing, respectively. The
added mass coefficients m,, and m’, and the added moment of inertia | in inviscid theory
are coefficients given by Sedov [41]:

2

1
My = 7Tp9b2, My = ﬂpgaz,] = gnpf (112 — bz) 4)

In the analytical model, the aerodynamic force of the freely falling wing is composed of
an additional mass term, circulation term, and translational drag term. The circulation
includes the translation term and rotation term, which can be written as

I = —%CTVCAZ Sil’l(ZD() + %CRCAZZQ., cpa=2a, V= ’/T)i, + Z)g,, 5)

where « is the angle of attack and the translation terms F;’,, FZ”, are given by:

N 1 5 cos o
< F > N Epr CAZCD( sina ) ©)

In the study of Wang et al. [42], the drag coefficient is given by:
Cp ~ Cy4 — Cpcos2u. (7)
Thus, the translational drag term is written as:
Fo\ _ A Wy
( F ) pfa<CA CBU§,+U§,> Ux,+UZ/< o ) (8)

In the model, dimensionless coefficients Ct, Cg, C4, Cp are related to the thickness
and geometry of the airfoil [43]. Combining the finite dimensional model given by other
researchers, the coefficient is determined as:

Cr=12,Cr=m,Cy =192,Cp = 1.55. )

In angular movement, Ty represents dissipative torque, caused by the wing’s angular
movement, given by

1 T
Ty = EprD (E) [0y |vgrdr. (10)

S 0

In Equation (10), Cp (5 ) represents the drag coefficient at an angle of attack of 77/2,
r is the length between local position and the COM, and v,, represents local normal velocity,
givenby v, = v, + r0. Considering the influence of the position of the COM, substitute
Equation (10) as:

a—Xc . .
T =30fCp(5) [ |vw+10|(vy +r0)rdr
—a=X,
X o exe | a1
<30iCp(3)| [ |oxl(vy +rb)rdr+ [ |r6](vy +16)rdr|.
et —a"Xc
Let
a—Xc a—Xc
A= / [0, |(vy + r0)rdr, B = / |76] (v + 1) rdr. (12)

7!17XC 707XC
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Further, B can be expressed as
El—XC El—XC 0
B= / |76 (v + 10)rdr = / 10| (v + r6)r?dr — / 0] (vy + 1) r?dr.  (13)
7H7XC 0 7H7XC
The integral of A can be obtained
ﬂ—XC
— ) _ _ 2 i( .3 2
A= [0, (vy +10)rdr = —|vy|vy Xca + 3|ZJZ/|6 2a° + 6Xca). (14)
7Q7XC
Similarly, the integral of B is
L 2 3\ L0 4 2y 2 4
B=—z|6fo (6(1 Xc +3Xc ) + 1\(aye(a 122X 42X ) (15)

Since Xc is a small quantity, the higher order terms about X are ignored and only
the primary term is retained. Considering that Equality (11) seriously overestimates the
dissipative moment term, it is assumed that inequality is always valid after ignoring a
small number of higher order terms. Thus, Ty can be approximated as:

1 4 . . 1. -
Ty ~ EprD (g)CS |:—|Z)Z/|UZ/Xcl1 + §|Z)Z/|9a3 — 2|9‘Z)Z/612XC + 4’9|904:| , (16)

where Cs is a scale factor to reduce the overestimation of 7y. Otherwise, since the airfoil is
an ellipse, the parameter /; in Equation (3) equals zero [42]. Then, let the total aerodynamic
force in the Z’ direction be FJ,. Finally, the angular dynamic equation can be written as:

(14 )8 = (my — my)vave — 19 — ESXc. (17)

So far, we have deduced the quasi-steady three-degree-of-freedom dynamic model for the
freely falling wing. Given the initial state, the motion trajectory of the wing in the falling process
can be obtained by using the Runge-Kutta method (refer to Appendix A.1 for details).

In order to verify the feasibility of the analytical model and to gain a clearer under-
standing of the free-fall motion, CFD free-fall simulations were carried out using a wing
with elliptical airfoil and the chord length was 0.25 m as an example, while the MOI of the
wing was 4.5 x 10~ kg-m?. The wing drop experiment was designed to compare with the
CFD result and the analytical model.

2.2. CFD Numerical Method

Having derived the theoretical model, this paper used a CFD method to further
investigate the free-fall motion of the wing, aiming to gain a deeper understanding of
the aerodynamic phenomena involved in the process. Due to the significance of studying
motion in the longitudinal plane, this paper utilized a two-dimensional CFD method to
investigate the freely falling process in the longitudinal plane.

The commercially available CFD package Fluent version 19.0 was used to simulate
the unsteady flow-field around the wing configuration in this study; the two-dimensional
RANS governing equations were discretized by the standard cell-centered finite volume
scheme. Air was considered as the ideal gas, and the Sutherland viscosity law was used
for better accuracy in terms of viscous effects. The turbulence effects were considered
by using the k-Q) shear stress transport (SST) turbulence model. Moreover, the second-
order accurate Roe flux-difference upwind scheme was used for the convective fluxes of
turbulence equations, and the lower-upper symmetric Gauss—Seidel (LU-SGS) implicit
method was adopted for the time integration. Figure 2 displays the computational mesh
around the baseline airfoil. The O-topology grids with 361 cells in the normal-to-wall
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direction and 150 cells around the airfoil were used. The boundary layer thickness was
applied based on the Reynolds number of the flow, and the height of the first layer was
set to be 5.76 x 10~° m so that the non-dimensional y-plus fell in a range less than 0.5. An
overset grid approach was used for calculation; the background grid had an x-direction
range of —12 to 12 m and a z-direction range of —15 to 2 m. The overset component was
fused with the background grid using a cell-based grid merging strategy. The simulation of
free-fall was realized using the SDOF macro in UDF, with a time step of 1 x 10~* s. The
grid of the calculation domain is shown in Figures 2 and 3. Through a two-dimensional
CFD calculation, we can obtain the flow field information of the freely falling wing.

s T
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=
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Figure 2. The computational mesh around the wing (2D view).
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Figure 3. Two-dimensional CFD calculation mesh (a) Complete domain (b) Partial enlarged view of
overset component.

2.3. Experiment Method of Freely Falling Wing

In this section, an experimental method was designed for the freely falling wing. The
experiments on a real wing verify the accuracy of the theoretical quasi-steady analytical
model, and demonstrate the conclusions drawn from the analytical model and CFD nu-
merical simulation. The experiment needs to measure the attitude and position of the
wing’s movement. In previous studies on small objects such as paper and discs, high-speed
photography technology has been used to record the falling trajectory of objects [44], and
the experiments on freely falling objects are mostly carried out in narrow spaces such as
water tanks. This is because the size of objects such as paper and discs is small, and the
space required for the full development of the falling trajectory is also small. Related to the
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vision and lighting conditions, in this context, high-speed photography technology is not
reliable. In prior research, the dynamic characteristics of plates can be measured by sensors
including accelerometers, rategyros and magnetometers [45]. Therefore, in this study, the
inertial measurement unit (IMU), shown in Figure 4, installed at the center of mass was
used to measure the acceleration, attitude angle, and angular velocity of the wing. After
filtering and integration, it was possible to obtain the falling path.

Figure 4. The WT901 inertial measurement unit. WT901 has a mass of 20 g and is able to transmit
data via WiFi with a transmission frequency of 200 Hz.

In order to easily change the MOI of the wing about the Y axis, a light thin stalk extends
from the center of mass of the wing parallel to the chord. Metal clump weights with the same
quality and shape are installed along the stalk, and the metal clump weights can be fixed at
any position on the stalk. By making the clump weights and stalk symmetrical about the
COM and by synchronously changing the position of the weights on the stalk, the MOI of the
wing can be changed while keeping the mass and COM unchanged: see Figure 5.

However, it is very difficult to change the position of center of mass while keeping the
moment of inertia unchanged. In order to change the position of COM, we adjusted the
position of the weights on the stalk, but this will bring an obvious change of the inertia.
Therefore, this work first researched the influence of the MOI on the freely falling wing,
and then researched the effect of the COM position on falling motion. Finally, the total
mass of the system was 253 g. The experimental procedure involved lifting the wing and
release mechanism to a height, and releasing the wing free, as shown in Figure 6.

(a)

Figure 5. (a) Wing and clump weights assembly. (b) The inner structure of the wing.
(c) Clump weights.
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Figure 6. (a) Experimental scheme for freely falling wing. (b) Wing and release system. (c) Wing
free-fall experimental platform.

2.4. Validation and Discussion

To validate the quasi-steady analytical model and to improve the knowledge of the fluid
field characteristics during the falling of the wing, this paper used CFD to numerically simulate
the falling of a wing, with an initial attitude angle 6y = —75°. The results of the analytical
model and CFD simulation as well as the experimental results are shown in Figure 7.

360 ' 7 experiment data
0(°)00 | 1analytical model

0 - WV W cFD
0
10
5
FZ(N)(S)

0 0.5 1 1.5 1(s)
Figure 7. Comparison of simulation data with experimental data for pitch angle 6, x-directional force
Fy, and z-directional force F, simulated by the analytical model and CFD, where (I = 0.00045 kg'mz).

It can be seen that the analytical model can predict the angular motion well during the
falling process, and also gives an accurate indication of the aerodynamic forces on the wing.

For further investigation, this paper used the (2-method (a new generation vorticity
identification method; refer to Appendix A.2 for details) to visualize vorticity around the
falling wing simulated by CFD numerical calculations shown in Figure 8.
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Figure 8. The vorticity street around the freely falling wing. Positive vortices are red and negative
vortices are blue (a—d), respectively, represent the distribution of vortices on the falling trajectory of
the wing with different MOISs in two seconds, where the unit of I is kg-m?.

The process of the tumbling of the wing can be divided into two parts: a “transition
phase” and a “stable tumbling phase”. In the transition phase, the wing is accelerated
from the initial state, and the angular motion of the wing is not obvious while accelerating,
mainly in translation motion. As the speed increases, the wing starts to tumble, and the
vortex on the surface of the wing starts to shed, forming the vortex street. The frequency
of vortex shedding is low in the transition phase. As the wing enters the stable tumbling
stage, the frequency of vortex shedding accelerates and finally remains relatively stable.

The trend of the flow field during the transition phase of the example is shown in
Figure 9. The formation of the vortex is similar to the results in Wan's research [46]. Since
the airfoil is symmetrical, the leading edge of the ellipse is defined as a side of the long-axis
of the ellipse which is upwind and, similarly, the trailing edge can be defined as that
downwind. In the later stage of the accelerated downward phase from the initial position,
along with the pitching motion (Figure 9a), a vortex around the leading edge gradually
forms and gradually strengthens; meanwhile, the force in the Z direction of the wing
increases. When the pitch angle increases, the flow separates from the leading edge, but the
vortex is still attached to the leading edge (Figure 9b), and the force in the Z direction peaks.
The leading edge vortex then begins to shed (Figure 9¢,d) at the same time as F, decreases,
and an opposite separation vortex also appears at the trailing edge (Figure 9e). Due to
the wing’s rotation, the original trailing edge became the current leading edge, and the
circulation around the leading edge increases again (Figure 9e-h). As the wing maintains
the rolling motion, the flow separates again at the leading edge with the separate vortex
shedding out, similar to the process in Figure 9a—c. This tumbling motion is repeated for
the subsequent transition phases of the wing.

In Figure 7, it can be observed that, during the early stages of the transition phase,
the CFD simulation is closely aligned with the quasi-steady analytical model and the
experiment method. During this period, the frequency of flow separation is relatively low,
and there are no complex wake structures in the domain. However, the CFD model enters
a steady tumbling motion after approximately 1 s (for a detailed explanation of the steady
tumbling motion, refer to Section 3). This occurrence is relatively earlier compared to what
is observed in the quasi-steady analytical model and experimental observations. It could
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be attributed to factors such as the approximation assumptions, numerical methods, and
the boundary condition selection employed in the CFD model.

10 T ®) © T T T

NG (o) () (2) (b)

0.6
Time (s)
@)

Force (N) (2)
0

Figure 9. Streamline diagram of the first one second in the transition phase of the wing for
(I =0.00045 kg-mz), with vortex contour with force change curve. (a-h) Vortical contour (Q)-criterion)
and streamline around the wing: positive vortices are in red and negative vortices are in blue.
(i) Aerodynamic forces in x and z directions.

3. Effect of MOI
3.1. Quasi-Steady Analytical Model

Let the moment of inertia of the wing in the Y direction with units of kg-m? be set
to 0.00045, 0.0006, 0.0008, 0.001, 0.002, 0.004, 0.006, 0.008, and 0.009, respectively, while
the mass and shape of the wing remain unchanged. By substituting these states into the
quasi-steady analytical model and simulating at the same initial state, the trajectory of the
freely falling wing can be observed as shown in Figure 10. In order to more clearly illustrate
the simulation of the wing tumbling process, the change in orientation of the wing in the
free-fall path is shown in Figure 11. This is similar to the observations made by Andersen
et al. in a small, freely falling plate, as reported in [24].

z (m)

0 1 2 x(m)

Figure 10. Simulation of falling trajectories of airfoils with different MOIs using the analytical model,
where the unit of I is kg-m?.
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F G(rad/s) d(rad/s)
20 15
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5
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(a)

Figure 11. The trajectory obtained from the analytical model and its (v, v/, §) phase diagram. (a) Tra-
jectory visualization for the simulation of freely falling wings with different MOlIs, (b—e) Extend the
simulation time to 20 s and make the (v, v/, 9) phase diagram, where the unit of I is kg-mz.

As can be gleaned from Figures 10 and 11, it is evident that, as the MOI about the
Y’-axis of the wing increases, the falling trajectory of the wing becomes steeper, resulting
in a greater loss of height. Concurrently, the angular rate of tumbling 6 of the wing also
decreases. In the phase diagrams of Figure 11b,e, the tumbling of the wing exhibits stable
limit cycle oscillation. After entering the falling motion, the phase trajectory from the
initial state is attracted to the limit cycle, eventually undergoing periodic motion within
the limit cycle. As the moment of inertia (MOI) of the wing increases, the process of
convergence from the initial state to the limit cycle becomes more protracted. In phase
space, the phase locus takes longer to converge to the limit cycle in the § direction relative
to the v,/, v, direction, and the average angular velocity decreases, which is a consequence
of the increased MOI. From Equation (5), it can be deduced that the circulation generated
by the angular motion decreases, resulting in a decrease in F;, thereby augmenting the sink
rate of the wing.

3.2. Experiment Results

The falling experiment was conducted using the experimental setup depicted in
Figures 5 and 6. The position of the clump weights were adjusted to alter the wing’s
moment of inertia (MOI), and the wing was released at a height of 5 m with an initial
attitude angle of ) = —75°. The acceleration, angular velocity, and attitude angle were
measured using an inertial measurement unit (IMU) and they were used to derive the
trajectory of the wing’s descent, as shown in Figure 12. The external forces acting on the
wing were also estimated.
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Figure 12. The trajectory of the freely falling wing with different MOlIs observed in the experiment,
where the unit of T is kg-m?.

It can be seen that, as the wing’s MOI increases, the falling trajectory becomes steeper
and the transition phase from the beginning of the fall to the stable tumbling phase becomes
longer, which is consistent with the conclusions obtained from the analytical model in the
previous sections. The experimental results also indicate that the analytical model can
accurately predict the tumbling behavior of a freely falling wing. This is likely due to the
fact that some of the coefficients in the analytical model are determined by experiments
conducted in previous work, allowing the model to capture some of the three-dimensional
effects during the falling motion. However, discrepancies between the simulated and exper-
imental data may be attributed to sensor noise, the analytical model’s inability to account
for complex nonlinear and unsteady aerodynamic effects, and external perturbations in the
falling experiment. The wing tumbling motion in the experiment, shown in Figure 12, did
not occur strictly in the two-dimensional plane, also due to these perturbations.

4. Effect of COM Position on Freely Falling Wing

The coordinate system OX'clump is established at the center of the stalk in Figure 3,
with the OX'clump axis aligned with the O'X’ axis. The coordinates of the two clump
weights on the OX'clump axis are denoted as Cy; and Cy;, respectively.

By altering the relative position of the counterweight on the stalk in Figure 3, the
position of the COM can be adjusted while maintaining the mass constant. The relationship
between the clump weights’ position, the COM position X, and the moment of inertia I is
presented in Table 1:

Table 1. The relationship between the coordinates of the clump weights, the COM position, and
the MOL

Case C,; (mm) Cyy (mm) X (mm) I (kg-m?)
1 —400 500 4.547 0.008
2 —300 500 10.126 0.007
3 —125 500 19.89 0.006
4 100 500 32.44 0.006
5 250 500 40.813 0.006
6 400 500 49.138 0.008




Aerospace 2023, 10, 458

13 of 20

4.1. Simulation of the Analytical Model

By incorporating the above model parameters into the analytical model, the simulation
trajectory can be obtained, as depicted in Figure 13. The phase diagrams of the freely falling
wing’s v,/, v/, and 6 can also be generated.

15 15
0
.10 . .
610 6 s
> 5 10
0 0 -15
2
0 1 -2 2

Va 2 - v, Vx 0 2 ]Olvz

z (m)
101

X 0 lvz
2 P
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W
T
o
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w2
[¢]
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3_5 _'1 0 1 / 2 x (m) (e) case4 (f) case5 (g) caseb
Figure 13. The falling trajectory and phase diagram as predicted by the analytical model. (a) The
falling trajectories corresponding to the six cases in Table 1. (b-g) The plots of (vy, vy, 0) phase
diagrams for the six cases over a simulation time of 20 s. The units of the linear velocities Vs and V;
are m/s, and the unit of angular velocity 0 is rad/s.

According to the simulation results, it can be observed that, as the COM position
moves forward, the transition phase from the initial state to the limit cycle of tumbling
motion takes longer and the phase trajectory of the transition phase becomes more complex.
As seen in Figure 13, when the COM position is shifted approximately 40 mm from the
geometric center of the wing, corresponding to case 5, a new limit cycle appears in the
phase space. The projection of the phase trajectory in the v,/, v.s plane and the v,/, 6 plane in
Figure 13f is shown in Figure 14, respectively. It can be observed that the curve starts from
the initial state and quickly enters the new limit cycle, undergoing quasi-periodic motion
in the ring. The stability of the v,/, v,/ direction within the limit cycle is evident, while the 6
direction is not stable. As a result, the phase trajectory eventually leaves the new limit cycle
as the number of oscillations increases, as shown in Figure 14b. After leaving the new limit
cycle, the curve is attracted to the limit cycle corresponding to the original tumbling motion
and eventually converges to this limit cycle. The falling motion of the wing is characterized
by initial fluttering, with the flutter angular velocity’s amplitude increasing before the
wing enters the tumbling falling phase. The trajectory of the wing’s fall is depicted in
Figure 15. Figure 15a shows the fluttering of the wing during the fall represented by the
newly emerged limit cycle, and Figure 15b shows the transition from fluttering to tumbling
motion. As the COM moves further forward, the limit cycle corresponding to the tumbling
motion disappears and the wing falls while fluttering periodically according to the limit
cycle shown in Figure 13g.
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2Vvz

Figure 14. Phase diagram and the projection of the phase trajectory for case 5 in two planes. (a) Phase
diagram for case 5. (b) Projection of the phase trajectory in the v, 0 plane. (c) Projection of the phase
trajectory in the v/, v plane. The units of the linear velocities V,» and V,; are m/s, and the unit of
angular velocity 6 is rad/s.
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Figure 15. The simulation results for case 5 as predicted by the quasi—steady model: (a) Local magni-
fication of the drop trajectory when the wing exhibits fluttering behavior. (b) Local magnification of
the drop trajectory showing the transformation of the wing from fluttering to tumbling.

4.2. Experiment Results

In this part, the experimental method was employed to observe the actual falling
trajectory of the wing after release. Using the wing shown in Figure 3, the position of
the clump weights block is varied according to the scheme in Table 1, and the falling
experiments are conducted for Case 1 to Case 6, respectively. The measured falling trajectory
of the wing is shown in Figure 16.

In the experiment, due to the asymmetrical disturbance on the wing, the actual falling
trajectory is difficult to maintain in the XZ plane, and the wing typically falls along a helix.
The tumbling motion is depicted in Figure 16 as the wing tumbles around the Y’ axis of the
body coordinate system in the helix. It can be seen that, for case 1 to case 5 (Figure 16a—e),
the tumbling motion occurs before the wing touches the ground, with the transition phase
from the initial state to the tumbling motion of the wing becoming longer as the position
of the COM moves forward. However, for case 6 (Figure 16f), the wing does not tumble
until it touches the ground and falls more smoothly along the helix. Projecting the spiral
line falling trajectory in the transition phase of the wing into the two-dimensional plane
is similar to the trajectory corresponding to case 5 in Figure 15, which demonstrates a
heaving/pitching composite motion along the spiral line in the actual three-dimensional
motion. The discrepancy between the experimental trajectory and the trajectory simulated
by the two-dimensional analytical model is attributed to the asymmetry of the wing, the
asymmetry of external disturbance, and the asymmetrical shedding of vortex on the wing
surface during the actual falling process.



Aerospace 2023, 10, 458

15 of 20

z (m)

(b)

z (m)

y(m) x (m)

y (m) x (m)

Figure 16. The free—falling trajectory of the wing after altering the position of the COM in the

experiment. (a) Flight trajectory for case 1. (b) Flight trajectory for case 2. (c) Flight trajectory for

case 3. (d) Flight trajectory for case 5. (e) Flight trajectory for case 4. (f) Flight trajectory for case 6.

5. Results and Discussion
5.1. Quasi-Steady Analytical Model Results

1.

Effect of MOI: In the case of wings with different MOls, there exists a limit cycle of
tumbling motion that all wings will eventually converge to after releasing, reaching
a stable state shown in Figure 11. The phase from the initial state to the final stable
tumbling limit cycle is defined as the transition phase. As the MOI of the wing
increases, the trajectory of the free-falling wing becomes steeper, and the transition
phase becomes longer, meaning that the wing will take more time to converge to the
limit cycle.

Effect of COM: When the COM moves forward, the transition phase from the initial
state to the tumbling motion limit cycle becomes longer, and the phase trajectory
during the transition phase becomes more complex. A new limit cycle emerges when
the COM is positioned 40 mm ahead of the wing’s geometric center, as can be seen
in Figure 13f, corresponding to the quasi-periodic fluttering motion of the wing. At
this point, the limit cycle of the fluttering motion is unstable, and the phase trajectory
eventually diverges from this limit cycle, converging towards the limit cycle of the
tumbling motion; Figure 15 shows this process well. As the COM continues to move
forward, the limit cycle corresponding to the tumbling motion disappears, and the
limit cycle of the fluttering motion becomes a stable limit cycle, resulting in the wing
freely falling with periodic fluttering motion.

5.2. Experimental Results

1.

Effect of MOI: By symmetrically altering the position of the clump weights block,
the MOI of the wing is changed, and tumbling motion is observed under different
conditions of MOJ, as shown in Figure 12. As the MOI of the wing increases, the
trajectory of the freely falling wing becomes steeper, and the transition phase from
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the initial descent to stable tumbling becomes longer. This observation aligns with the
conclusions drawn from the analytical model.

2. Effect of COM: Experimental results show that maintaining the actual wing trajectory
in the XZ plane is challenging because of asymmetrical disturbances. Typically, the
wing descends along a spiral path, as shown in Figure 16. As the COM moves
forward, the transition phase from the initial state to tumbling motion increases.
Further forward movement of the COM results in the fluttering motion of the wing.
However, no tumbling motion is observed in the experiment after shifting the COM
forward by 40 mm, as shown in Figure 16d.

5.3. Comparison of the Analytical Model with Experimental Results

The quasi-steady analytical model accurately reveals the influence of changes in MOI
and COM on the freely falling motion of the wing. These observed motion patterns are
consistent with the conclusions obtained from the quasi-steady analytical model. How-
ever, due to unavoidable asymmetrical disturbances on the wing during experiments,
maintaining the wing’s trajectory within a two-dimensional plane becomes challenging.
Additionally, obtaining an accurate trajectory of the wing is difficult due to sensor errors.

6. Conclusions

In this study, the dynamics of a freely falling wing in the context of air-drop launch
technology for UAVs was investigated. The mass, MOI, and COM position of the wing
have a significant impact on the flight characteristics of UAVs; thus, this study examined
the effect of changes in the moment of inertia and center of mass position on the falling
motion while holding the mass constant. The aerodynamic forces acting on a freely falling
wing are complex, nonlinear, and unsteady, and exhibit strong coupling with the wing
motion, making them challenging to accurately model numerically. Extensive research
has been conducted on the dynamics of falling objects, resulting in the development of
various numerical simulation methods and simplified descriptive models. However, these
studies largely focus on the free-fall of small objects with simple geometric shapes such
as flat plates and discs in a laboratory setting, rather than larger objects such as wings. In
this study, the Andersen-Pesavento-Wang analytical model was adapted to the analysis
of the freely falling wing, and a correction term was added to account for the center of
mass position. The quasi-steady analytical model was validated by CFD and experimental
results. This study investigated the effects of the MOI and COM position on the dynamics
of a freely falling wing, and drew the following conclusions:

1. A quasi-steady analytical model was developed based on the Andersen—Pesavento-Wang
model. The analytical model was derived in the two-dimensional plane and can reflect
the dynamic behavior well in the longitudinal plane during the three-dimensional falling
of a real wing.

2. After deployment, the wing undergoes a transition phase before eventually entering a
stable motion, which can be characterized as either tumbling or fluttering, as revealed
by the quasi-steady analysis model and experiment method employed in this study.
Through CFD analysis, it is observed that, during the transition phase, the shedding
frequency of vortices gradually increases and stabilizes, resulting in periodic aero-
dynamic oscillations due to the cyclic generation and separation of vortices. These
periodic oscillations eventually lead to the emergence of a stable periodic motion.
Both of these stable motions exhibit relatively low translational velocities. In the
case of rolling motion, the pitch rate of the wing remains approximately 15 rad/s. In
the case of fluttering motion, the pitch rate oscillates between positive and negative
values. Therefore, both of these stable motion patterns should be avoided in the
air-drop launched UAVs.

3. For a wing with elliptical airfoil, the higher the MOI about the Y’-axis, the steeper the
trajectory, the lower the angular rate of tumbling, and the shorter time for it staying in
the air. For most aircraft, the pitch tumbling is not beneficial. Without changing the
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shape of the wing and the position of the COM, and only changing the MOI of the
wing about the Y’-axis, the initial drop attitude cannot prevent the pitch tumbling of
the wing during the falling process.

4.  The position of the COM has a crucial influence on the handling performance and
stability of the UAVs. The traditional flight dynamics theory suggests that the forward
shift of the COM position can make the vehicle obtain better static stability. For
the freely falling wing, the forward shift of the COM will delay the appearance of
tumbling, i.e., the transition phase becomes longer. When the forward shift of the
COM exceeds a certain value, a new relatively stable motion of falling appears, which
is expressed as fluttering in the analytical model, while the wing shows a heaving/
pitching composite motion along the spiral line in the real three-dimensional falling
experiment. In the future, for air-drop launch UAVs with relaxed longitudinal static
stability, the possibility of its tumbling needs to be considered.

In the future, the analytical model can be considered to include corrections for different
airfoil types and wing shapes, and to include the effects of rudder surfaces, so that the model
can describe the freely falling process of a more general aircraft. Since the model also uses
two-dimensional quasi-steady assumptions, extending the model to three-dimensional
space and considering the unsteady aerodynamic force for better prediction of falling
motion is worth studying. In addition, the analysis of the uncertainties of this complex
process is a research direction of interest.
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Abbreviations

CFD Computational Fluid Dynamics

COM Center of Mass

DOAJ Directory of open access journals

LD Linear dichroism

MDPI Multidisciplinary Digital Publishing Institute
MOI Moment of Inertia

TLA Three Letter Acronym

UAV Unmanned Aerial Vehicle

Symbols

a Semimajor axis of the ellipse (m)

b Semiminor axis of the ellipse (m)

e Eccentricity of the airfoil

F Translational drag force in the X’ direction (N)
F§ Translational drag force in the Z’ direction (N)
r Circulation (m2/s)

g Gravitational acceleration (m/s?)

I Moment of inertia about the Y’-axis (kg~m2)
J Added moment of inertia (kg-mz)

It Length of the torque arm (m)

m Mass of the wing (kg)
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My Added mass coefficient in the X’ direction

My Added mass coefficient in the Z’ direction

of Density of the air (kg/m?)

0s Density of the wing (kg/m?)

0o Volume density of the fluid displaced by the wing (kg/m?)

Ty Torque about the Y’'-axis (N m)

Uy Speed in the X’ direction of the body coordinate system (m/s)
Uy Speed in the Z' direction of the body coordinate system (m/s)
Subscripts

C Centroid

f Zone of fluid

s Zone of wing

X' X' direction of the body coordinate system

Y’ Y’-axis vertical to the X’OZ’ plane

z Z' direction of the body coordinate system

Appendix A. Method Description
Appendix A.1. Range-Kutta Method

The general form of the fourth-order Range-Kutta method can be expressed as:

Yn+1 = Yn + %(kl + 2k, + 2k3 + k4)

k1= f(tn yn)

ko = f(tu + 3l yn + 3hk1) (A1)
k3 - f(tn + %h/yn + %th)

ky = f(fn +hyn+ hk3)

Here, y,, represents the numerical approximation of the solution at time step t,,. The
function f corresponds to the derivative function that needs to be solved. The parameter
denotes the step size, while k; through k4 are intermediate values computed at different
points using the function f.

Appendix A.2. The QO-Method Vortex Identification Criterion

(-method is considered as a new generation vorticity identification method [47], the
()-method can be expressed as:

vV = %(VV+VVT)+%(VV—VVT) =A+B (A2)

where V denotes the velocity vector, and let

3 3
a = trace(ATA) =Y. ¥ (A )
i=1i=1
3 3 (A3)
b= trace(BTB) = ¥ ¥ (B; )
i=1j=1
The final form of Q)-method can be written as:
b
a+b+e (A4)

The ()-method exhibits the feature of normalized threshold, setting it apart from other
methods such as vorticity field and Q-criterion, which necessitate the adjustment of various
thresholds. In the ()-method, the thresholds are normalized within the range of 0 to 1. As
a result, the (O-method is regarded as a comprehensive approach capable of effectively
highlighting both strong and weak vortices.
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