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A B S T R A C T 

New-generation radio telescopes like LOFAR are conducting e xtensiv e sk y surv e ys, detecting millions of sources. To maximize 
the scientific value of these surv e ys, radio source components must be properly associated into physical sources before being 

cross-matched with their optical/infrared counterparts. In this paper, we use machine learning to identify those radio sources 
for which either source association is required or statistical cross-matching to optical/infrared catalogues is unreliable. We train 

a binary classifier using manual annotations from the LOFAR Two-metre Sky Survey (LoTSS). We find that, compared to a 
classification model based on just the radio source parameters, the addition of features of the nearest-neighbour radio sources, the 
potential optical host galaxy, and the radio source composition in terms of Gaussian components, all impro v e model performance. 
Our best model, a gradient boosting classifier, achieves an accuracy of 95 per cent on a balanced data set and 96 per cent on the 
whole (unbalanced) sample after optimizing the classification threshold. Unsurprisingly, the classifier performs best on small, 
unresolved radio sources, reaching almost 99 per cent accuracy for sources smaller than 15 arcsec, but still achieves 70 per cent 
accurac y on resolv ed sources. It flags 68 per cent more sources than required as needing visual inspection, but this is still fewer 
than the manually developed decision tree used in LoTSS, while also having a lower rate of wrongly accepted sources for 
statistical analysis. The results have an immediate practical application for cross-matching the next LoTSS data releases and can 

be generalized to other radio surv e ys. 
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1

T  

i  

w  

o  

r  

v  

S  

2  

s  

2  

a  

a  

r  

�

h  

b  

e  

v  

t  

t  

(  

r  

i
 

i  

t  

n  

t  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/4716/6679294 by guest on 15 August 2023
 I N T RO D U C T I O N  

he number of detected sources and the complexity of the structures
n astronomical images has increased dramatically in recent years,
ith high-sensitivity telescopes surv e ying deeper but also wider areas
f the sky. Radio astronomy has been at the forefront of this big data
evolution, with telescopes like the LOw Frequency ARray (LOFAR;
an Haarlem et al. 2013 ), the Very Large Array, and the Australian
quare Kilometre Array Pathfinder Telescope (ASKAP; Hotan et al.
021 ). These have been conducting wide radio continuum surveys,
uch as the LOFAR Two-meter Sky Survey (LoTSS; Shimwell et al.
017 , 2019 , 2022 ), the VLA Sky Survey (VLASS; Lacy et al. 2020 ),
nd the Rapid ASKAP Continuum Surv e y (RACS; Hale et al. 2021 ),
nd the Evolutionary Map of the Universe (EMU; Norris et al. 2011 ),
espectively. When completed, these surveys will have covered both
 E-mail: alegre@roe.ac.uk 
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emispheres and disco v ered tens of millions of radio sources. This
rings radio astronomy into a re volutionary ne w era: large samples
nable detailed statistical studies whilst probing the unexplored Uni-
erse at these wavelengths (see Norris 2017 for a re vie w). In addition
o producing scientific results, these surv e ys are also developing
echnology in preparation for the upcoming Square Kilometer Array
SKA; Dewdney et al. 2009 ), which will be the world’s most powerful
adio telescope. The SKA will generate massive amounts of data and
s expected to detect billions of radio sources. 

In order to extract the full scientific return from these surv e ys, it
s essential to cross-match the objects detected at radio wavelengths
o their counterparts at other wavelengths, particularly optical and
ear-infrared. This allows us to identify the host galaxies, classify
he radio sources according to their morphology, black hole activity,
nd other characteristics, and derive basic physical properties such
s redshifts, luminosities and stellar masses (e.g. Best et al. 2005 ;
mol ̌ci ́c et al. 2017 ; Duncan et al. 2019 ; G ̈urkan et al. 2022 ).
he cross-identification of radio galaxies with their optical (or
© 2022 The Author(s) 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0003-0986-9143
http://orcid.org/0000-0002-9777-1762
http://orcid.org/0000-0003-4223-1117
http://orcid.org/0000-0001-6127-8151
http://orcid.org/0000-0001-9708-253X
mailto:alegre@roe.ac.uk
http://creativecommons.org/licenses/by/4.0/


LOFAR machine-learning classifier 4717 

i
a
m
s
v  

2
 

b
t
a  

o
a  

c
S
1  

S  

a  

e  

s
t  

t
o  

T
(  

(  

i  

S  

T  

b
n
T
r

o
r
O  

t  

(
S  

t  

fi  

a  

5  

(

a
2  

a
7  

S
R  

S  

r
a
(
a  

s
t  

r
e  

h
s

c
o
i
c
i
d  

t
n
m
m

a  

t  

t  

s
t  

a  

e
e  

a  

1  

e  

m
c  

t  

t  

a
 

m  

b  

B  

L
(  

p
r  

d
N
(  

s  

C  

i  

e
2
r
m
L  

t  

m  

a  

d
i
e  

a  

l
f
r  

e  

n
a
d  

b
G  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/4716/6679294 by guest on 15 August 2023
nfrared) counterparts is a complex process due to the extended 
nd multicomponent nature of many radio sources, as well as the 
ismatch in the angular resolution between the radio and optical 

urv e ys. Traditionally, it has relied mostly on statistical methods, 
isual analysis, or a combination of the two (see Williams et al.
019 , hereafter referred as W19, for a discussion). 
In early continuum radio surv e ys, the sources detected were mainly

right active galactic nuclei (AGNs); only a small proportion of 
hese had counterparts in the all-sky optical imaging data available 
t that time, but the samples were small enough that dedicated deep
ptical imaging of individual sources could be coupled with visual 
nalysis (e.g. Laing, Riley & Longair 1983 ). By the turn of the
entury, a statistical comparison of the Faint Images of the Radio 
ky at Twenty centimetres survey (FIRST; Becker, White & Helfand 
995 ) with the large-area optical imaging from the Sloan Digital Sky
urv e y (SDSS; York et al. 2000 ) provided optical identifications for
round 30 per cent of the ∼10 5 radio source host galaxies (Ivezi ́c
t al. 2002 ). Recent radio surv e ys hav e been rev ealing still fainter
ources, including higher fractions of star-forming galaxies (SFGs) 
hat begin to dominate over AGNs at low flux densities . At the same
ime, deeper optical and near-infrared observations are no w av ailable 
 v er large sky areas, such as imaging from the Panoramic Survey
elescope and Rapid Response System (Pan-STARRS-1) survey 
Chambers et al. 2016 ) or the Dark Energy Spectroscopic Instrument
DESI) Le gac y surv e y (De y et al. 2019 ), with ev en deeper and wider
maging expected in the coming years from the Large Surv e y of
pace and Time (LSST; Ivezi ́c et al. 2019 ) and the Euclid Space
elescope surv e ys (Laureijs et al. 2011 ). These surv e ys increase
oth the fraction of radio sources with optical counterparts and the 
umber of potentially confusing foreground or background sources. 
he simultaneous increase of possible matches and data volumes 

equires impro v ement in the current cross-matching techniques. 
In LoTSS, the source density is already more than a factor 

f 10 times higher than in the existing widely used large-area 
adio continuum surv e ys such as the National Radio Astronomy 
bservatory (NRAO) VLA Sk y Surv e y (NVSS; Condon et al. 1998 ),

he FIRST surv e y, the Sydne y Univ ersity Molonglo Sk y Surv e y
SUMSS; Bock, Large & Sadler 1999 ), and the Westerbork Northern 
k y Surv e y (WENSS; Rengelink et al. 1997 ). LoTSS detected more

han 300 000 sources in its first data release, containing just the
rst 2 per cent of the surv e y (LoTSS DR1; Shimwell et al. 2019 ),
nd a second data release with almost 4.4 million sources co v ering
634 deg 2 , 27 per cent of the northern sky, has just been published
LoTSS DR2; Shimwell et al. 2022 ). 

In LoTSS DR1, the radio sources were cross-matched with optical 
nd near-infrared surv e ys, P an-STARRS1 DR1 (Chambers et al. 
016 ) and the AllWISE catalogue (Cutri et al. 2013 ), respectively,
nd an optical and/or near-infrared counterpart was identifiable for 
3 per cent of the LoTSS sources (W19). Compact sources, such as
FGs or compact AGNs, were cross-matched using the Likelihood 
atio technique (LR; e.g. Richter 1975 ; Willis & de Ruiter 1977 ;
utherland & Saunders 1992 ; Ciliegi et al. 2003 ) which assesses the
elative probability of a given optical source being a true counterpart 
gainst a randomly aligned optical object, based on source properties 
for LoTSS DR1, the LR assessment considered both the magnitude 
nd colour of the potential host galaxy; see Nisbet 2018 , W19). This
tatistical method is reliable when the flux-weighted mean position of 
he radio emission is an accurate estimate of the location at which the
adio source originates, and is therefore coincident with the optical 
mission. Ho we v er, more e xtended sources cannot yet be reliably
andled through these statistical methods. Furthermore, for radio 
ources with emission that is extended and/or split into different radio 
omponents (e.g. double-lobed sources), source detection algorithms 
ften fail to correctly group together the multiple radio components 
nto a single source, generating independent entries in the radio 
atalogues. In other cases, the source finder can incorrectly group 
ndividual physical radio sources together into a single-blended 
etection. Thus, radio catalogues are not al w ays a true description of
he physical sources, leading to further inaccuracies if statistical tech- 
iques are naively applied. In LoTSS DR1, these complex-structured, 
ulticomponent and blended sources were therefore visually cross- 
atched alongside manual component association or dissociation. 
In order to discriminate between sources that require visual 

nalysis and those that can be reliably cross-matched using the LR
echnique, W19 designed a decision tree based on the properties of
he radio sources and their cross-ID LR values. This decision tree
elected nearly 30 000 sources for visual inspection, corresponding 
o around 10 per cent of the total LoTSS DR1 sample. This was
 conserv ati ve selection process, and indeed post-analysis (i.e. the
xamination of which ones actually required visual inspection, 
xplained in Section 2 ) shows that only just o v er half of these sources
ctually required to be inspected. LoTSS DR2 co v ers an area almost
5 times larger than DR1, with a higher fraction of counterparts
xpected due to the use of the (deeper) Legacy data set for cross-
atching. The large number of sources makes visual inspection very 

hallenging for more than a small fraction of the sources, while
he ultimate goal is to replace all visual analysis with automated
echniques, a more practical and immediate step is to minimize the
mount of unnecessary inspection. 

Some progress has been made to impro v e the current statistical
ethods, for example by modifying the LR technique to tackle the

lending problem (Weston et al. 2018 ), by replacing the LR by
ayesian approaches (Fan et al. 2015 , 2020 ; Mallinar, Budav ́ari &
emson 2017 ), or by applying machine-learning (ML) techniques 

e.g. Alger et al. 2018 ). Various efforts have also been made to im-
ro v e the cross-matching process for the extended/multicomponent 
adio sources, using a ridgeline approach (Barkus et al. 2022 ) and
eep learning techniques mainly based on Convolutional Neural 
etworks (CNNs), for example to group radio source components 

Mostert et al., in preparation) or to find the host galaxy in previously-
elected sources with multiple radio components (Alger et al. 2018 ).
NNs have also been used to improve the source finding and

dentification (e.g. Vafaei Sadr et al. 2019 ), or for automatic source
xtraction and further morphology classification (e.g. Wu et al. 
019 ). Deep learning has been particularly successful in automating 
adio galaxy morphology classification of (previously associated) 
ulticomponent sources using CNNs (e.g. Aniyan & Thorat 2017 ; 
ukic et al. 2018 , 2019 ; Alhassan, Taylor & Vaccari 2018 ), using

ransfer learning (Tang, Scaife & Leahy 2019 ) and using clustering
ethods (Galvin et al. 2020 ; Mostert et al. 2021 ) combined, for ex-

mple, with Haralick features (Ntwaetsile & Geach 2021 ). Ho we ver,
eep learning models, which perform feature extraction from the 
mages before classification, require a higher number of annotated 
xamples to train, and are also more difficult to interpret and to
dapt than simpler ML models. In addition, a variety of unforeseen
imitations due to limited experimentation in radio astronomy can 
urther introduce different biases. Some examples include issues 
elated to the use of fixed-size data images (Mostert et al. 2021 ) or
ven the image input file format (Tang et al. 2019 ). Furthermore,
one of these methods can yet perform reliable source association 
nd fully cross-match extended and multicomponent sources. To 
ate, the full cross-matching of modern large radio surv e ys has
een only achieved through citizen science projects [e.g. Radio 
alaxy Zoo (RGZ), Banfield et al. 2015 ] and e xtensiv e science team
MNRAS 516, 4716–4738 (2022) 
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fforts [e.g. LOFAR Galaxy Zoo (LGZ), W19; Kondapally et al.
021 ]. 
In this work, we propose a gradient boosting classifier (GBC) to

dentify which radio sources can be reliably cross-matched using the
R technique, or instead require visual inspection. We use supervised
L algorithms, which offer greater intuitive interpretation and

re simpler to adjust and analyse than deep learning models. The
odel adopted is an ensemble of decision trees, and it was selected

nd optimized using Automated Machine Learning (AutoML; see
ppendix A and He, Zhao & Chu 2021 for a re vie w). While

ndividual decision trees have been used in radio galaxy classification
n the past (e.g. Proctor 2016 ), ensembles of decision trees have been
ro v en to achiev e better performance (Dietterich 2000 ). Examples of
he use of ensembles of decision trees in radio astronomy include the
lassification of blazars using multiwavelength data (Arsioli & Dedin
020 ) and the estimation of physical properties of radio sources such
s redshifts (Luken et al. 2022 ). 

We build a data set based on LoTSS DR1, which provides more
han 300 000 annotated examples, and select a set of rele v ant features,
llowing the model to successfully classify unseen sources with an
ccuracy of 94.6 per cent and select the ones that can be cross-
atched by LR with a precision of 96.3 per cent. This helps to limit

he manual analysis to the most complex sources (extended sources,
ources with multiple components or blended detections), which are
hose for which the LR method is not successful. The results of this
tudy are already being incorporated, by helping to identify unrelated
adio components, into the automatic component association of
ources larger than 15 arcsec from LoTSS DR1 (Mostert et al.,
n preparation). Furthermore, the methods applied in LoTSS DR1
re directly transferable to other parts of the LoTSS surv e y since
he techniques used for processing and cross-matching the next data
eleases are broadly similar. Therefore, our work has immediate
ractical benefit for deciding which sources require visual analysis
n LoTSS DR2 (Hardcastle et al. in preparation). 

The paper is organized as follows. In Section 2 , we describe the
oTSS DR1 data and in Section 3 we explain how these data were
sed to create a data set suitable for our ML classification problem.
ection 4 refers to the experiments performed to select and optimize

he model, including the specifications of the model adopted. The
odel performance and interpretation are explained in Section 5 . In
ection 6 , we interpret the results of the model applied to the full
oTSS data sets, discussing the implications and comparing them
gainst the methods currently used. The conclusions and a discussion
f their significance for the next LoTSS data releases can be found
n Section 7 . 

 DATA  

he data used in this work consist of LoTSS DR1 (Shimwell et al.
019 ) 1 radio catalogues that were derived from the 58 mosaic images
f DR1, which co v er 424 de g 2 o v er the Hobby–Eberly Telescope
ark Energy Experiment (HETDEX; Hill et al. 2008 ) Spring Field

right ascension 10 h 45 m 00 s – 15 h 30 m 00 s and declination 45 ◦00 
′ 
00 

′′ 
–

7 ◦00 
′ 
00 

′′ 
). LoTSS has a frequency coverage from 120 to 168 MHz,

nd achieves a typical rms noise level of 70 μJy beam 

−1 over the DR1
egion, with estimated point source completeness of 90 per cent at a
ux density of 0.45 mJy. LOFAR’s low frequencies combined with
igh sensitivity on short baselines gives it high efficiency at detecting
xtended radio emission. LoTSS DR1 has an angular resolution of
NRAS 516, 4716–4738 (2022) 

 https://lofar-surveys.org 2
 arcsec and an astrometric precision of 0.2 arcsec, making it robust
or host-galaxy identification. 

In LoTSS DR1, the source detection was performed using the
ython Blob Detector and Source Finder ( PYBDSF ; Mohan & Rafferty
015 ), where a total of 325 694 PYBDSF sources were extracted with
 peak detection abo v e 5 σ . PYBDSF fits Gaussians to pixel islands
ssigning one or multiple Gaussians to each PYBDSF source. The
adio catalogues with the PYBDSF properties for both the sources and
he Gaussians include positions, angular sizes and orientations, peak
nd integrated flux density as well as statistical errors. 

PYBDSF sources do not al w ays represent true radio sources (i.e.
hysically connected sources). Some of the radio components of
xtended sources may appear as separated and unrelated PYBDSF

ources, which need to be associated together into the same source
n post-processing. We refer to these as multicomponent sources in
he rest of the paper and they account for 2.8 per cent of LoTSS
R1. In other cases, Gaussians may be incorrectly grouped into
ne PYBDSF source when they are actually distinct physical sources.
n this case, we refer to them as blended sources and they make
p only 0.3 per cent of LoTSS DR1. In the vast majority of cases
96.9 per cent in LoTSS DR1), ho we ver, PYBDSF correctly associates
he radio emission into true physical sources. We refer to these
ereafter as single sources. These are, in most cases, compact sources
omposed of only one Gaussian, but can also be extended sources
omposed by various Gaussians (hence our definition of singles is
ot the same as the ‘S’ code from the PYBDSF software used in
19). Even for these correctly associated sources, ho we ver, cross-
atching with other surv e ys using statistical means alone can fail

ue to an incorrect (or missed) counterpart identification, especially
f the source is extended and/or asymmetric. This is the case for
.8 per cent of the sources of LoTSS DR1. 
In order to enhance science quality, as part of LoTSS DR1,

onsiderable effort was undertaken to properly associate the radio
ource components (or dissociate blended sources) and get the correct
ptical/near-infrared counterparts (W19). For the majority of LoTSS
R1 sources, PYBDSF correctly associates source components and
utputs an accurate estimate of the position and radio source prop-
rties, and therefore such sources were cross-matched statistically
sing LR. Ho we v er, comple x sources with multiple components or
xtended emission, and incorrectly blended sources, were sent to
isual inspection. This was carried out on a pri v ate LOFAR Galaxy
oo (LGZ) project, hosted on the Zooniverse platform, 2 in which
ach source was inspected by at least 5 collaborators of the LOFAR
onsortium. The selection of the sources to be analysed in LGZ
as done using a decision tree (also referred to as flowchart ) built
sing the characteristics of the PYBDSF sources and Gaussians, the
eighbouring sources, and the LR of any optical/IR cross-matching
see W19). 

The decision tree generates three main outcomes: the source
ssociation and/or identification requires LGZ ; the source has been
orrectly catalogued by PYBDSF and the cross-identification (or lack
f) can be made by LR; and the source is sent to a quick visual sorting
 prefiltering ), where one expert inspects the source and redirects it
o one of the other two categories or identifies it as an artefact.
 summary of the number of sources in each of these categories

s given in Table 1 , where we include in the prefiltering category
23 sources with large optical IDs that were automatically matched
o a nearby (large angular size) SDSS or 2MASX galaxy since they
ere afterwards visually confirmed. We further exclude 2591 PYBDSF
 https://www.zooniverse.org 

https://lofar-surveys.org
https://www.zooniverse.org
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Table 1. For each of the main categories (LR, LGZ, and prefiltering) 
classified by the W19 decision tree, the table gives the number of sources 
that were suitable for LR and the number that required visual analysis, as 
determined using the final outcomes after visual inspection. The final column 
indicates the percentage of the time that the flowchart decision was correct 
(i.e. the proportion of sources that were assigned correctly to each of the 
categories). 

W19 Total No. suitable No. requiring Percentage 
decision number for LR visual analysis correct 

LR 295 225 294 129 1096 a 99.63 
LGZ 8195 3144 5051 61.64 
Prefiltering 19 683 10 079 9604 48.79 

Total 323 103 307 352 15 751 95.57 

a The 1096 sources selected by the decision tree for LR, but identified as 
requiring visual analysis, represent a lower limit to the true number as these 
were only identified when they were part of multicomponent sources for 
which other components were sent to LGZ (see Section 6.2 for further 
discussion of this). 
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Figure 1. Fraction of PYBDSF sources sent to visual inspection by the W19 
decision tree (blue lines) and the ones that actually required to be inspected 
(as determined from the final visual inspection outcomes; red dashed lines) as 
a function of different source parameters: major axis length, total flux density, 
total number of Gaussians that compose each PYBDSF source, and distance of 
each PYBDSF to its nearest neighbour (NN) PYBDSF source. 
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ources identified by W19 as artefacts, except for one source which 
as automatically marked by the decision tree as an artefact but was

nstead noted during the LGZ process to be a genuine source. In
oTSS DR1, the artefacts were either remo v ed in an initial stage
f the selection process (the majority by being in the proximity of
right sources; 31 per cent) or by visual inspection (mainly during 
he prefiltering step; 55 per cent). In the next, LoTSS releases the
mpro v ed calibration and imaging pipeline for the radio data (Tasse
t al. 2021 ) means that we expect a lower proportion of artefacts,
ost of which will be clearly identifiable and remo v ed at early

tages. Furthermore, the properties of any remaining artefacts may 
e different due to calibration changes. For these reasons, we exclude 
he artefacts when constructing the ML classifier and analysing the 
esults; our final data catalogue therefore contains 323 103 PYBDSF 

ources. The values quoted in Table 1 refer to PYBDSF sources and are
ifferent to the ones presented on table 5 of W19 that summarizes the
otal number of sources after component association or dissociation. 

Using the decision tree, W19 initially classified 91.37 per cent of
he sources (295 225) as being suitable for LR analysis (see Table 1 )
nd 8.63 per cent (27 878 sources) as requiring visual inspection 
either prefiltering or LGZ). These numbers correspond to sources 
fter removal of artefacts. After visual analysis and processing of 
he final DR1 data, in hindsight, the conclusion is (see Section 3.1 )
hat 95.13 per cent (307 352) could be cross-matched using LR and
.87 per cent (15 751) required visual inspection. For the sources that
ere sent directly to LGZ (8195 PYBDSF sources), an examination of

he final LGZ decision indicates that 5051 of them (61.64 per cent)
ere not correctly associated by PYBDSF and therefore, could not have 
ad their optical identification assigned statistically by LR (or lack 
f identification in case of no LR match). Similarly, the prefiltering 
tep corresponds to 19 683 PYBDSF sources for which 9604 PYBDSF 

ources (48.79 per cent) could not have been processed using LR. In
ontrast, from the 295 225 PYBDSF sources selected as suitable for
ross-matching with LR, 294 129 of them (99.63 per cent) retain the
R cross-match in the final catalogue. In reality, the number of these

hat are correct will actually be marginally lower since these sources
ere not subjected to visual examination unless they were part of a
ulticomponent source (usually the core of a radio source) for which 

ne of the source components was sent to visual analysis. This was
he method through which the 1096 sources, sent by the decision 
ree to LR but which required visual analysis, were disco v ered. We
iscuss this in more detail in Section 6.2 . 
It is evident from Table 1 that o v erall the W19 decision tree has
 high accuracy (95.57 per cent). This is mainly because most of the
ources are compact and can be cross-matched by LR (where the
pplication of statistical methods results in very high precision). 
o we ver, the decision tree places about twice as many sources

n to the LGZ and prefiltering categories as required, increasing 
he burden on visual analysis. Fig. 1 illustrates the dependence of
he decision tree outcomes on some key PYBDSF source properties: 
he major axis length, the total radio flux density, the number of
aussians that compose a PYBDSF source, and the distance of each

YBDSF source to its nearest neighbour (NN). In each panel, the
lue line shows the fraction of sources that were sent to visual
nspection, and the red dashed line shows the fraction of sources
hat actually needed to be inspected, as determined from the final
ross-matched catalogues incorporating the LGZ outcomes. The 
lots show that the fraction sent for visual analysis increases with
ncreasing source size (note that 15 arcsec was the limit used by

19 to distinguish between ‘small’ and ‘large’ sources, with all 
he large sources being visually inspected, either directly in LGZ 

r during the prefiltering stage), increasing flux density, increasing 
umber of Gaussian components, and decreasing distances to the 
N. These are in line with expectations, as they are all indications

hat a given source is more likely to be extended and complex.
nterestingly, in all cases the red lines are broadly scaled down from
he fractions sent to LGZ by about a factor of 2 with no strong
arameter dependencies (fluctuations range only from around 1.5–
.5 across the parameter space). This indicates that it would not be
traightforward to impro v e the decision tree outcomes simply by
djusting these parameter values. 

 DATA  SET  

n supervised ML, models are learned from a set of labelled examples
rawn from the data set . The goal is to predict to which class a
MNRAS 516, 4716–4738 (2022) 
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Table 2. List of features used in the analysis. These were selected or 
calculated using different LoTSS DR1 catalogues ∗. The LR threshold value 
adopted in LoTSS DR1 ( L thr = 0.639) was used to scale LR value features 
(these have the suffix tlv). Features in logarithmic scale appear with the log 
prefix. Sources refer to PYBDSF sources. 

Features Definition and origin 

Baseline (BL) 
Maj Source major axis (arcsec) a 

Min Source minor axis (arcsec) a 

Total flux Source integrated flux density (mJy) a 

Peak flux Source peak flux density (mJy bm 

-1 ) a 

log n gauss No. Gaussians that compose a source b 

Likelihood ratio (LR) 
log lr tlv Log 10 (source LR value match/ L thr ) c 

lr dist Distance to the LR ID match (arcsec) c 

Gaussians (GAUS) 
gauss maj Gaussian major axis (arcsec) b 

gauss min Gaussian minor axis (arcsec) b 

gauss flux ratio Gaussian/source flux ratio a , b 

log gauss lr tlv Log 10 (Gaussian LR/ L thr ) c 

gauss lr dist Distance to the LR ID match (arcsec) c 

log highest lr tlv Log 10 (source or Gaussian LR/ L thr ) c 

Nearest neighbour (NN) 
NN 45 No. of sources within 45 

′′ a 

NN dist Distance to the NN (arcsec) a 

NN flux ratio NN flux/source flux density ratio a 

log NN lr tlv Log 10 (LR value of the NN/ L thr ) c 

NN lr dist Distance to the LR ID match (arcsec) c 

Closest prototype (SOM) 
10x10 closest prototype x1 cos (2 π Closest prototype x/10) d 

10x10 closest prototype x2 sin (2 π Closest prototype x/10) d 

10x10 closest prototype y1 cos (2 π Closest prototype y/10) d 

10x10 closest prototype y2 sin (2 π Closest prototype y/10) d 

Note. ∗ a PYBDSF radio source catalogue (Shimwell et al. 2019 ). 
b Gaussian component catalogue (Shimwell et al. 2019 ). 
c Gaussian and PYBDSF source LR catalogues (W19). 
d Self-Organizing Map for LoTSS DR1 (SOM; Mostert et al. 2021 ). 
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reviously unseen example belongs based on the value of its features .
he data set is a key input for training the ML model and relies upon
n adequate and well-profiled number of examples. We create our
ata set by e v aluating all 323 103 PYBDSF sources from LoTSS
R1 based on their individual characteristics and assigning them to
ifferent classes (Section 3.1 ). We create different sets of features by
sing radio source parameters and optical information (Section 3.2 ),
nd we address the class imbalance problem by exploring different
ays of balancing the data set (Section 3.3 ). The impact of these last

w o f actors on the classification is investigated further in Section 4 . 

.1 Classes 

o create the classes, we first e v aluate each PYBDSF source (after the
esults of any deblending or LGZ source association) and assigned
hem an ‘association flag’ according to different outcomes: the
nes that were neither deblended nor associated with other PYBDSF

ources ( singles , flag 1); sources that were deblended ( blends , flag
); and PYBDSF sources that were grouped with other PYBDSF sources
 multicomponents , flag 4). Note that a small number of sources have a
ombination of flags, since they were first deblended and afterwards
ne or more of the deblended components was grouped with another
YBDSF source (leading to flag 6). 

To create these outcomes, the correspondence between each
YBDSF source and the final radio source association (or lack of
ssociation) was assessed using the PYBDSF radio source catalogue
rom Shimwell et al. ( 2019 ) and the final value-added catalogue
source associations and optical IDs) from W19. PYBDSF sources
hat were grouped with other PYBDSF sources appear as components
f a radio source in the corresponding component catalogue, and
YBDSF sources that were deblended appear as two or more radio
ources. 

To create a final diagnosis, we also inspected the ‘single’ sources
i.e. the ones with the association flag 1) in order to e v aluate whether
he LR was a suitable method to identify the host galaxy. This is the
ase for those sources where the final ID in the value-added catalogue
s the same as would have been drawn through LR analysis, or where
here was no ID in the final catalogue and the LR analysis also
redicted no ID. In contrast, if visual analysis resulted in a change
n optical ID (or a change from having no LR ID to having an ID,
r vice versa) then these sources are not suitable for cross-matching
sing the LR method. As a result of this e v aluation, the sources were
ssigned into two classes (denoted by the flag ‘accept lr’ throughout
his work): 

(i) Class 1: PYBDSF sources that were not associated with other
YBDSF sources, and were not deblended, and for which LR gave the
ame outcome as was finally accepted in the value-added catalogue
i.e. same host galaxy ID, or correctly gave no ID). These sources
ould be suitable for LR analysis. 
(ii) Class 0: PYBDSF sources that were either associated with other

YBDSF sources in LGZ, or deblended into more than one source, or
R would obtain an incorrect ID. These sources are all unsuitable

or analysis by LR alone. 

The classes comprise 307 352 sources suitable for LR (class 1)
nd 15 751 that require visual analysis (class 0); from the latter 9072
re multiple component PYBDSF sources, 857 are blended PYBDSF

ources, and 5822 are single sources for which a simple application
f LR would produce an incorrect ID. Artefacts (which we exclude
rom the analysis) correspond to PYBDSF sources that are not in the
nal DR1 value-added catalogue. 
NRAS 516, 4716–4738 (2022) 
.2 Features 

s input features for the ML classifier we used radio source
arameters along with properties of the LR matches for both the
YBDSF source being considered and its nearest neighbour (NN). We
iscuss these below and list them in Table 2 . 
The radio features were built from the PYBDSF catalogue from

himwell et al. ( 2019 ), where each PYBDSF source has an identifier
source name) with the corresponding radio properties; here, we use
he major and minor axis sizes and the peak and total flux densities.
n addition to these basic radio properties, we used the LR value
f the best match and the distance to this match. We computed the
R values for the PYBDSF sources and for each of the Gaussians that
omprise a PYBDSF source in the same way as described in W19, with
inor modifications that resulted from impro v ements of the original

ode (Kondapally et al. 2021 ). 
We also used the Gaussian component catalogue (described in

himwell et al. 2019 ), which contains the radio information for
ll the Gaussians that compose each PYBDSF source. We use the
umber of Gaussian components comprising a source (indicative
f the morphological complexity of the source), and also use the
roperties (major and minor axis size, fractional source flux density,
nd LR match properties) of the Gaussian with the highest LR value,
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borders of the mosaics) do not have SOM information. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/4/4716/6679294 by guest on 15 August 2023
r of the brightest Gaussian if the LR of all Gaussian components is
elow the LoTSS DR1 LR threshold adopted in W19. 
We also used the radio and LR properties of the NN source. In

ddition, we computed the number of radio sources within 45 arcsec 
used as an estimate of the local source density, which might be
ndicative of the presence of multicomponent sources) and the flux 
atio between the source and its NN. 

Finally, we investigated using the positions of the LoTSS DR1 
ources on a cyclic Self-Organizing Map (SOM; Mostert et al. 
021 ) as input features. The SOM provides information of the 
ifferent LoTSS DR1 morphological source ‘prototypes’ on a two- 
imensional grid. 
In ML, the quality of the features affects the ability of the model

o learn. In order to feed useful features that can be more easily
nterpreted by the algorithm, we made the following transformations 
o the data: 

(i) We searched the catalogues for missing values (e.g. LR values 
here there was no potential host within the 15 arcsec search radius)
hich we assigned extreme values (e.g. a very low arbitrary value 
f 10 −135 in the case of LR), even though the tree models adopted in
ection 4 can in general handle missing data well. 
(ii) We used the log value of the number of Gaussians, since 

omplex sources can be made of dozens of Gaussians (up to 51 in
oTSS DR1). 
(iii) We encode the values of the SOM morphological prototypes 

nto cyclical features. The prototypes are located on a square grid with 
 x , y ) coordinates. Each radio source is mapped to the prototype of
he SOM that it most resembles. We transformed the corresponding 
 x , y ) coordinates by using a sine and a cosine transform: this creates
 new features from each of the original ones, but ensures the cyclical
ature of the SOM is retained. We set the values of the prototypes to
n arbitrary high value of 10 20 when the source is not available. 

(iv) We set the value of the LR to a log scale, although this choice
as no effect on our results (decision tree models, which we adopt in
ection 4 , are not sensitive to feature transformations). Using a log
cale allows this feature to be used interchangeably with different 
lassifiers (e.g. neural networks). 

(v) We create a feature which uses either the LR of the source or
he LR of the Gaussian component with the highest LR value if the
R of the source is lower than the LR of one of the Gaussians that
ake up the source. This is more indicative of a LR match when the

ource is composed by multiple Gaussians, one of which traces the 
adio core (and it is the same if the source is only composed by one
aussian). This can also be indicative of a blended source, especially 

f the source LR value is below the LR threshold. 
(vi) We further scaled the LR values by dividing them by the LR

hreshold value used to process the sources in the HETDEX field 
only sources for which the match had a LR value higher than 0.639
ot an ID or no ID via this method). This has the advantage of
aking the model appropriate for future LoTSS fields that might use 

ifferent optical/near-IR data sets with a correspondingly different 
R threshold. 

.3 Balancing the data set 

he number of objects in the two classes created previously is
eavily imbalanced: class 1 has 307 352 sources while class 0 
omprises 15 751 objects. The major problem with imbalanced data 
ets is the tendency of the model to get specialized in the class
ith more examples (i.e. to o v erfit to class 1). For that reason, we

xplore different ways of creating a balanced data set by under- 
nd o v ersampling (cf. Collell, Prelec & P atil 2018 , and references
herein). 

We performed undersampling of the majority class by extracting a 
andom sample of 15 751 objects from class 1 (which is the number of
ources available in class 0). Undersampling is the standard method 
dopted throughout the experiments (Section 4 ); we use 31 502
ources, comprising the same number of examples in both classes. 3 

n these experiments, we used a training set (used to train the model)
f 75 per cent of the data set, and a test set (used to e v aluate the model)
f 25 per cent. When performing model selection and optimization 
see Section 4.4 ) we use a 10-fold cross-validation (CV), otherwise
e test and train the models on 10 different randomly sampled data

ets and use the mean value as the model performance. 
Since both under- and o v ersampling hav e the potential to affect

erformance, we conducted experiments to determine which method 
as the best. We created a synthetic training data set with ADASYN

He et al. 2008 ), an adaptive sampling technique that is used to
enerate synthetic examples of the minority class (class 0) by using
he original density distribution of the sources in this class. To a v oid
ata leakage, we re-sampled only 75 per cent of the minority class
11 841 sources) and tested on a test set comprising the remaining
5 per cent of these sources (which is balanced as well). The
umber of sources in the training set before and after re-sampling
s 303 386:303 386 for class 1 and 11 841:301 738 for class 0,
espectively. We compare the performance using the model trained 
sing under- and o v ersampling in Section 4.4.2 . 
Finally, it should be emphasized that although both under- and 

 v ersampling techniques aim to create a balanced data set that can
eneralize well for the two different classes, the distribution of the
ources is inherently highly imbalanced and objects that need to 
e visually inspected are relatively rare in LoTSS (and other deep
adio surv e ys). F or that reason, when applying the model trained on
 balanced data set to the real (imbalanced) data, which we do in
ection 6 , other factors require consideration; we discuss these in
etail in Section 6.1 . 

 EXPERI MENTS  

e start by defining in Section 4.1 the metrics that will be used to
 v aluate the performance of the classifier. In Section 4.2 , we create
 baseline model for the experiments. This is a less complex yet
till ef fecti ve model that produces acceptable results but has room
or impro v ement. The baseline model was selected using the Tree-
ased Pipeline Optimization Tool ( TPOT ; Olson et al. 2016b ), and
onsists of a GBC; see Appendix A for an o v erview of the ML models
nd AutoML tools used. In order to impro v e model performance, we
xamine the impact of adding different sets of features in Section 4.3 ,
nd optimizing the model hyperparameters in Section 4.4 . 

.1 Performance metrics 

ccuracy is the most common metric to e v aluate the performance
f an ML classifier. Accuracy can be given as the percentage of
he correctly classified inputs relative to the overall classifications: 
ccuracy = (TP + TN)/(TP + FP + TN + FN), where in our case the
umbers of false positives (FP), false ne gativ es (FN), true positives
TP), and true ne gativ es (TN) correspond to 
MNRAS 516, 4716–4738 (2022) 
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Table 3. Accuracy on the test sets of the GBC model before and after 
optimization of the hyperparameters, and using cumulative sets of features: 
baseline features (BL), PYBDSF source LR features (LR), PYBDSF Gaussian 
features (GAUS), nearest neighbour (NN) and SOM features (SOM) as 
described in Table 2 . In each case the GBC was run on 10 different 
undersamplings with random sampling of the dataset into training and test 
sets, and the mean of these 10 is quoted. The standard deviation between the 
10 data sets is typically around 0.2 per cent. 

Set of features Accurac y achiev ed (per cent) 
Baseline hyperparameters Optimised GBC 

(0) BL 88.7 88.7 
(1) BL and LR 90.2 90.2 
(2) 1 and GAUS 90.3 90.3 
(3) 2 and NN 94.4 94.6 
(4) 3 and SOM 94.7 94.8 
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(i) TP: sources correctly classified as suitable for LR methods; 
(ii) FP: sources that should be visually inspected, but which the

lassifier deems suitable for LR; 
(iii) TN: sources correctly classified as requiring visual inspec-

ion; 
(iv) FN: sources that could be done by LR techniques but are

eing sent by the classifier to visual analysis. 

When training and testing with a balanced number of examples in
ach cate gory, accurac y shows the robustness of the classifier. For
ur binary classification on a balanced data set, the classifier returns
 probability of the source being able to be accepted by LR (class
), with the probability of being class 0 (requiring LGZ) being 1
inus this probability. 0.50 is the normal threshold value used to

iscriminate between the two, and it is the value we adopted when
 v aluating the results in this section and in Section 5 . We do, ho we ver,
nvestigate other thresholds in order to e v aluate the model applied
o an imbalanced data set in Section 6 . When e v aluating the results
e are mainly concerned with minimizing the number of sources
rongly accepted through LR (FP), while keeping a low number of

ources that need to be sent to visual analysis (FN and TN sources).
hat is another reason why we further investigate ‘threshold moving’

n order to establish more suitable cut-off probabilities. 
We also analyse the values of recall [also known as sensitivity or

rue positive rate (TPR)] and precision for our two classes. Precision
an be defined as the fraction of sources predicted as being from
 certain class that are actually from that class [e.g. TP/(TP + FP)],
nd recall as the fraction of sources from a certain class that are
redicted correctly [e.g. TP/(TP + FN)]. The o v erall balance between
recision and recall for the different classes is given by the F1-score
2 ×(precision ×recall)/(precision + recall)]. In Section 5 , we also
se the false positive rate (FPR) to illustrate the performance of the
lassifier. The FPR corresponds to the fraction of sources from class
 that are incorrectly classified [FP/(FP + TN)]. 
In our analysis, we further define the ‘LGZ scale-up factor’ that

orresponds to the total number of sources that we would have
o visually inspect scaled by the ones we should really inspect
(FN + TN)/(TN + FP)]. In other words, it represents the multiplica-
ive factor of additional galaxies we would have to send to LGZ
esides the ones that should be sent. We compare it with the false
isco v ery rate [FDR = FP/(FP + TP)], which corresponds to the
raction of sources deemed to be suitable for cross-matching by
R that are classified incorrectly. 

.2 Baseline 

n order to create a baseline model, we used TPOT and a set of baseline
eatures (BL) that contain only basic radio source information:
YBDSF peak and total fluxes, major and minor axis sizes, and the
ogarithm of the number of Gaussians that compose each PYBDSF

ource. 
We ran TPOT using a set of conserv ati ve parameters: three

enerations (number of iterations of the optimization process; see
ppendix A for more details), a population size of 20 (number
f candidate solutions TPOT retains in each generation), and a 10-
old CV (number of data splits where each pipeline is trained and
 v aluated). This allo ws TPOT to search for 600 different models
n each run. The choice of the values for these parameters is
ubjecti ve, and higher v alues would enable the search for more
odel combinations. Ho we ver, running TPOT for a larger number

f generations and population size would drive TPOT towards more
omplex ML pipelines with stacked models that could cause the
NRAS 516, 4716–4738 (2022) 
odel to o v erfit; this is a current challenge of the method (see Olson
t al. 2016b for a discussion). Therefore, we define low values for
he TPOT parameters, and use it to get recommended pipelines. In
hat way, we select a simple model that provides interpretability for
ur experiments and we perform model optimization at a later stage.
We performed different TPOT runs and we found a consistent

election of tree-based models as the fa v oured choice: using different
alanced random samples of the full data set, TPOT would select a
BC or occasionally an XGBoost (XGBoost is an optimized version
f a GBC that can include regularization and allows further opti-
ization due to the amount of parameters that can be tuned); when

sing subsets of the data (half-size data set) a Random Forest or an
xtra Trees classifier was fa v oured. For all the models, we achieved
n internal CV accuracy of around 89 per cent and a test accuracy
ithin ±0.5 per cent of the CV value. The GBC achieved higher
erformance on the CV tests but the Random Forest models showed
 higher generalization ability when training with only 50 per cent
f the data set. This suggests that the smaller data set does not
ontain enough examples for TPOT to detect strong patterns among the
eatures and therefore it fits a model that performs well with higher
ariance data. This also indicates that the classification could benefit
rom adding more rele v ant features and could be impro v ed using a
BC model (with optimized hyperparameters, such as a bigger en-

emble size and/or a different learning rate). For our baseline model,
e therefore select a GBC with 100 estimators and a learning rate
f 0.01, which are also the hyperparameters suggested by TPOT . The
omplete specifications of the baseline model can be seen in Table 4 .

.3 Feature selection 

e started with the baseline model and investigated the impact of
dding different sets of features (as described in Table 2 ) to the
lassifier; their impact on classification is illustrated in Table 3 .
hese comprise four sets of features in addition to the (0) baseline

eatures: (1) LR information of the PYBDSF source; (2) properties of
he Gaussian component with the highest LR value (or the brightest
aussian if none have a LR match); (3) the nearest PYBDSF neighbour

nformation, and (4) the positions of the PYBDSF sources on the SOM.
Sour ce LR featur es: The addition of the LR features (LR value

nd LR distance) of the PYBDSF source increases the performance ac-
uracy of the baseline model by about 1.5 per cent (from 88.7 per cent
o 90.2 per cent; see Table 3 ). This impro v ement is expected, as
he presence or absence of a potential host galaxy at the expected
osition is a strong indicator of whether the source has been correctly
ssociated. 
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Figure 2. Correlation matrix using Pearson correlation. This shows the correlation coefficients between each of the different input features considered for 
the modelling (blue for positive linear correlation, red for negative linear correlation, scaling from 1 to -1). The bottom row provides the correlation of each 
parameter with the final ‘accept lr’ outcome, indicating the strength of any linear relation between the features and the target class. 
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Gaussian (GAUS) features : The addition of the Gaussian features 
as a small impact on the model with only minor impro v ements
or the classification. When adding these features to the Baseline 
eatures and the LR features, the impro v ement is 0.1 per cent. Fig. 2
hows the correlation between different input features (and with the 
esulting classification). It is evident from this plot that the flux 
atio relative to the source and the size of the Gaussian (gaus min
nd gaus max) do sho w, respecti vely, a strong positive and strong
e gativ e correlation with the ‘accept lr’ output, and thus contain
seful information. Ho we ver, the sizes of the Gaussians sho w a very
trong correlation with the sizes of the sources, the flux ratio between
he Gaussian and the source is highly correlated (inversely) with the 
umber of Gaussians that composed each PYBDSF source, and the 
aussian LR features (log gauss lr tlv and gauss lr dist) are also
ighly correlated with the source LR parameters (not least because 
ost sources are composed by single Gaussian components). Thus, 

he inclusion of the Gaussian features does not introduce much new 

nformation. Nevertheless, we include these features in our final 
odel, as they are easily available and offer marginal impro v ement.
Near est neighbour (NN) featur es: Adding the NN information 
as the greatest impact on the model performance, improving the 
lassification by more than 4 per cent. Even though there is not a
trong linear correlation with the ‘accept lr’ output in Fig. 2 , the
N dist, NN lr dist and log NN lr tlv, and the NN 45 parameters
rovide valuable additional information for the classification, as 
oes the flux ratio of the NN source relative to the source under
onsideration. 

Self-organizing Map (SOM) features : Experiments using solely 
he baseline and the SOM features impro v es the classifier by about
.5 per cent compared to the baseline only . Impressively , if using only
he SOM as input features (not shown in Table 3 ), the model achieves
 classification of almost 80 per cent, which demonstrates the power
f the morphological representation for the classification. Ho we ver, 
t also demonstrates that some essential information contained within 
he baseline features is not retrie v able from the SOM alone. 

The addition of the SOM features on top of all of the other
ifferent experiments improved the model accuracy by 0.3 per cent, 
o 94.7 per cent on the baseline model and 0.2 per cent on the
MNRAS 516, 4716–4738 (2022) 
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nal model. This indicates that the information encoded in the
OM, through a visual representation of the source (compact versus
xtended emission, single versus blended versus multiple radio com-
onent source, etc.) does provide some additional information over
he other features. Ho we ver, this is limited, due to the correlations
etween the SOM and other features as seen in Fig. 2 . Due to the
elativ ely small impro v ement, and because the SOM features come
rom an external source, we have decided to exclude the SOM from
ur final model. 
Deconv olv ed features: We also investigated using the decon-

olved (DC) major and minor axis instead of the measured values,
nd we found the same results. We ran the model using the DC and
on-DC major and minor axis for both the PYBDSF sources and the
aussians and the differences were negligible. Baseline experiments

eplacing the measured sizes by the deconvolved sizes of the sources
ointed to a small impro v ement on the classifier, but well within the
ange of the variance of the model. In our final model, we opted to
se the non-deconvolved sizes as these are potentially more robust
gainst inaccurately measured beam sizes; ho we ver, this choice is
rbitrary and is not expected to have a significant effect on the
lassifier for LoTSS DR1. 

.4 Model optimization 

.4.1 Selection of model and model hyperparameters 

fter feature selection, we performed further experiments using TPOT

o optimize the model hyperparameters using a single data set. The
yperparameters are used to adjust the learning process (e.g. learning
ate) and the model specifications (e.g. number of estimators, i.e.
rees, on a tree-based model). We ran TPOT for three generations with
 population size of 5, and a cross-validation (CV) of 10 and the sets
f features from Table 2 excluding the SOM. The range of values
e defined for TPOT to perform the search, and the optimized set of
odel hyperparameters for the GBC model finally selected, can be

een in Table 4 . 
Since there is some discussion in literature about boosting meth-

ds o v erfitting under certain circumstances (see Appendix A for
eferences) we give special attention to check that the model we use
oes not o v erfit. Therefore, and for v erification purposes, we tested
ifferent possible combinations of hyperparameters. Increasing the
earning rate and increasing the number of estimators both make
he model increase its accuracy; for example, for 1000 estimators
he accuracy is able to reach values higher than 99 per cent on the
raining set and 94.8 per cent on the test set. Ho we ver, a training
et performance close to 100 per cent is a strong indication that
he model is o v erfitting, especially with the significant difference in
erformance between the training and test sets (although the high
ccuracy on the test set shows the model is still able to generalize).
POT fa v ours the use of 500 estimators, which offers good results
nd minimizes the risk of o v erfitting. Our optimized GBC model
chieves an internal TPOT CV score of 94.6 per cent and an average
ccuracy of 94.6 per cent on the test and 95.9 per cent on the training
et. 4 These are also the values obtained for the model trained and
ptimized using a single data set which we further use to present
he results in the next section. This is within 0.2 per cent of the
NRAS 516, 4716–4738 (2022) 

 Note that this accuracy cannot be fairly compared against the accuracy of the 
ecision tree of W19 quoted in Table 1 , since the latter is for a very unbalanced 
ata set and is optimized for performance on the majority population of class 
 sources. We compare the ML performance against that of the W19 decision 
ree in Section 6.3 . 
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erformance with 1000 estimators, but by using a smaller number of
stimators we reduce the complexity of the model as well as training
ime, and can have higher confidence that the model is not o v erfitting.

We also investigated an XGBoost model, as this was also fa v oured
y TPOT . The best XGBoost model achieves an internal TPOT CV
core of 94.6 per cent and an average accuracy of 94.7 per cent on
he test and 96.6 per cent on the training set. This is a marginally
uperior performance on the test set to the GBC model, but within
he scatter of different data set selections, and also has a higher
ifference between test and training set performance. Given this, we
pt to retain the less complex GBC model for our final analysis. 
Overall, as can be seen from Tables 3 and 4 , the hyperparameters

nd performance for the optimized GBC model are not dissimilar
rom those of the baseline model. 

.4.2 Training with re-sampling 

o test whether under- or o v ersampling is a better approach, we
pplied the optimized classifier on the re-sampled data (see Sec-
ion 3.3 ). Not surprisingly, we found that training the model with

ore examples of class 0 (even if they are synthetic) results in
 higher precision for this class. Additionally, when compared to
raining without resampling, it results in a more proportional model
erformance across the two classes. This model reduces the number
f sources that need to be visually inspected (the value of recall
or class 1 increases), but this comes at the cost of accepting more
ources for LR than should be (precision on class 0 decreases). This
ncrease in the number of false positives is not in alignment with our
cience goals, as these sources will all remain incorrectly classified
n the final analysis. The o v erall performance for the re-sampled data
ets decreases by 0.7 per cent in accuracy on the test set, compared
o the undersampling method, while the accuracy for the training
et increases by 1.16 per cent. This difference is particularly evident
or sources in class 1, for which the model got too specialized: it
chieves 98.41 per cent precision on the training set, which does not
llow it to generalize well on the test set for this class. This is the
ost probable reason why the model accepts too many false positive

ources as suitable for LR analysis. We conclude that training with
e-sampling leads to o v erfitting the classifier, and hence we opt for
raining the final classifier with undersampling instead. 

 M O D E L  P E R F O R M A N C E  A N D  

NTERPRETATI ON  

.1 Final model performance 

he model that we adopt in the rest of the paper is the GBC model
ith the optimized hyperparameters described in Table 4 and the
8 features (which exclude the SOM features) from Table 2 , trained
nd tested on a balanced data set created with undersampling. In
able 5 , we present the suite of metrics defined in Section 4.1 to
ssess the performance a binary classifier, in order to illustrate the
 v erall performance of the model, as well as the performance on the
ifferent classes. The results presented here are run on an independent
est set and adopt a standard cut-off probability of 50 per cent between
he two classes. 

Our best model achieves an o v erall accurac y of 94.6 per cent on
he test set, and just 1.3 per cent higher on the training set. The model
an be seen to fa v our precision for class 1 (sources that can be cross-
atched using LR) and recall for class 0 (sources that require visual

nspection). These are the values we intend to optimize: while we
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Table 4. GBC model hyperparameters: baseline, tuning values, and finally adopted optimized hyperparameters obtained by TPOT optimization. 
The learning rate controls how quickly the loss is corrected at each iteration; no. of estimators corresponds to the number of sequential trees 
create by the model; max depth represents the maximum tree extension; subsample is the proportion of data used in each tree; min samples split 
corresponds to the minimum number of examples necessary to split a tree into different branches; min samples leaf is the minimum number 
of examples required in a terminal leaf; and max features is the maximum number of features to take into consideration while searching for 
the optimal split. 

Hyperparameters Baseline GBC Search values Optimized GBC 

Learning rate 0.01 0.001, 0.01, 0.05, 0.1, 0.5, 1 0.01 
No. of estimators 100 100, 250, 500, 1000 500 
Max depth 10 Range (1, 11, steps = 1) 8 
Subsample 0.75 Range (0.05, 1.01, steps = 0.05) 0.15 
Min samples split 6 Range (2, 21, steps = 1) 12 
Min samples leaf 10 Range (1, 21, steps = 1) 5 
Max features 0.35 Range (0.05, 1.01, steps = 0.05) 0.6 

Table 5. Performance on the test and training sets: the results give the overall 
accuracy, and the F1-score, precision and recall for each class (where 1 = 

suitable for LR; 0 = requires LGZ), for a decision tree threshold of 0.50 or 
50 per cent. The results quoted are for a single undersampled balanced data 
set. 

Test set Training set 

Accuracy 0.946 0.959 
F1-score 1 0.945 0.958 
F1-score 0 0.947 0.960 
Precision 1 0.963 0.975 
Precision 0 0.930 0.944 
Recall 1 0.928 0.942 
Recall 0 0.964 0.976 
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Figure 3. Receiver Operating Characteristic (ROC) curve of the optimized 
model for a training and test balanced data set, showing that this has an Area 
Under the Curve (AUC) close to unity, where 1 would be the value for a 
perfect classifier classifier. The true positive rate [TP/(TP + FN)] is the rate 
at which a source suitable to cross-match with LR is correctly identified as 
such out of all the ones that can be done using this method, while the false 
positive rate [FP/(TN + FP)] is the proportion of sources that are incorrectly 
predicted to be suitable to LR out of all the ones that require visual inspection. 
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ant to a v oid a high number of visual inspections it is more important
o reduce the number of sources accepted as class 1 when they do
ot belong to that class. From the total number of sources accepted
s being suitable for LR analysis, 96.3 per cent are actually from that
lass; similarly, 96.4 per cent of the sources that need to be visually
nspected are sent to visual inspection. While this means that there is
lready a low percentage of sources wrongly predicted to be class 1,
n practice the number that will end up being mis-classified is even
maller as some of these sources will be corrected during the LGZ
rocess (see corrections applied in Section 6.2 ). The model yields 
lightly lo wer v alues of precision for class 0 and recall for class 1,
eaning that the model sends more sources to visual inspection than 

eeded. Overall, the classification predictions send around 7 per cent 
ore sources (in a balanced data set) to visual inspection than needed

o be inspected; this percentage will be significantly higher when 
pplying the model to a highly imbalanced data set with many more
ources in class 1. 

For illustration, we show in Fig. 3 the ROC curve of the model. This
hows the true positive rate (TPR) against the false positive rate (FPR)
lotted for different thresholds. The plot illustrates the performance 
f the model on detecting a source that can be processed by LR (i.e.
 positive test) as we achieve values close to a TPR of 1 and FPR
f 0; and an AUC (Area Under the Curve) for the test set of 0.98
where an AUC of unity would correspond to the perfect classifier).
nstead of using the default 0.50 threshold for balanced data sets, we
an further explore a more suitable cut-off threshold closer to the top
eft corner of the curve, which is particularly important when dealing 
ith imbalance data sets. We therefore explore the effect of varying 

he cut-off threshold in Section 6.1 in order to optimize the trade-off
etween the number of sources wrongly accepted as suitable for LR
nd the number of sources sent to visual inspection. 
.2 Feature importance in the model 

o interpret the importance of the different features for the classifica-
ion, we use SHAP (SHapley Additive exPlanations; Lundberg & Lee 
017 ), through the use of a PYTHON package explicitly applied to tree- 
ased ML models (Lundberg et al. 2020 ). The method measures the
mpact of different features on the model classification by averaging 
he contribution of a particular feature compared to when that feature
s absent for the prediction. 

The SHAP values are computed individually for each source in the
raining set, and the left-hand panel of Fig. 4 shows how the values of
ach feature contribute to the classification. SHAP values are given 
n units of log of odds, with positive SHAP values implying that the
alue of the feature fa v ours class 1 sources and ne gativ e SHAP values
mplying that the feature value fa v ours class 0 sources. The colour-
oding on the plot indicates the value of the input feature compared to
he range of values of that feature for all sources. Thus, for example,
igher values of the major axis are associated with sources that have
ighly ne gativ e SHAP v alues (class 0), while lo wer major axis v alues
a v our class 1. 

The right-hand panel of Fig. 4 shows the global contribution 
f the different features to the model predictions, in descending 
rder. These correspond to the mean of the absolute SHAP values
er feature across all the data on the training set. The features at
MNRAS 516, 4716–4738 (2022) 
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M

Figure 4. Left . SHAP values for each feature and for each source within the training set. The colour coding indicates the value of the feature for that source 
compared to the range of values for that feature across all sources, as indicated by the colour bar, and the thickness of the plot indicates the density of sources 
at a gi ven SHAP v alue. Larger absolute SHAP v alues indicate higher impact in the prediction. Right: SHAP feature importance computed as the mean of the 
absolute SHAP values. These are ordered such that the features with the highest predictive power are at the top. 

Figure 5. Probability distributions of the most distinctive features, as identified by the SHAP analysis. In each case, blue corresponds to sources that are suitable 
for statistical match by LR (class 1) and red represents sources that require visual analysis (class 0). For all of these features, a systematic offset in feature values 
between class 1 and class 0 sources is apparent, in the direction that would be expected from the radio source properties (see the text for details). 
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he top of the plot are those with the highest predictive power:
hese are the major axis of the source followed by the distance
o the source’s NN. The features towards the bottom of the plot
rovide the least predictive power of those considered in the
odel. 
Fig. 5 shows the distribution of feature values for the six features

icked out to have the highest predictive power. Specifically, it shows
istograms of the distributions of feature values for the two classes
NRAS 516, 4716–4738 (2022) 
f objects (class 0, class 1), each normalized to the total number
f sources of that class. In each case a distinction between the two
lasses is apparent, and is in the direction which would be expected.
maller sources (both major axis in the upper left and minor axis in

he lower left) have a higher probability of having a correct cross-
atch by statistical means, as opposed to more extended sources,
hich are more likely to be resolved and possibly complex. Brighter

ources (upper right) are also more likely to require visual analysis,
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Figure 6. Zoom in of the ROC for the full LoTSS DR1 data set, showing 
the different threshold levels. Note that to better visualize the results, the 
x -axis is on a log scale, and only the upper values of the y -axis are shown (cf. 
Fig. 3 ). The open (lower) symbols represent the raw results from the model 
fitting, and the filled (upper) symbols demonstrate the impro v ement which 
results from the corrections for reco v ered false positiv es (see Section 6.2 ). 
The threshold value adopted is indicated by the red and blue crosses which 
corresponds to a false positive rate (FPR) of 11.7 per cent for not corrected 
values and 4.3 per cent for the corrected values, and a true positive rate (TPR) 
of 95.8 per cent. The grey point indicates the results of the W19 decision tree 
using the raw values from Table 1 , with the horizontal error bar representing 
the potential spread from uncorrected to corrected values if the false positive 
reco v ery rate for W19 would be the same as for the classifier. 

Figure 7. A comparison of the performance metrics adopted for analysis 
of our model for dif ferent v alues of the cut-off threshold between the two 
classes. The y -axis is the false disco v ery rate (FDR), which measures the 
fraction of sources accepted for LR that were incorrectly selected. The x -axis 
is the LOFAR Galaxy Zoo (LGZ) scale-up factor, which measures the total 
number of sources that the model selects for visual inspection divided by the 
number that we should really inspect. This is the combination of parameters 
that we aim to minimize. Symbols are as in Fig. 6 . 
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ue to the predominance of more extended AGNs at higher flux 
ensities compared to more compact AGNs and SFGs at fainter flux 
ensities (see discussion in W19). Sources for which the Gaussian 
omponent contains only a fraction of the total flux density and 
ence other Gaussian components must also be present, indicating 
n extended source, are also more likely to need visual analysis 
lower middle panel), as compared to compact sources with all of
heir flux in a single Gaussian. Finally, those sources with a close
ear neighbour (upper middle panel), especially when that near 
eighbour does not have a close LR match (lower right-hand panel) 
re also indicative of multicomponent sources which require visual 
nalysis. 

 APPLICATION  TO  FULL  LOTSS  DATA  SETS  

n this section, we apply our model to the full LoTSS DR1 data
et, and also make a preliminary e v aluation of its performance on
 subset of LoTSS DR2. When applying the trained ML model 
o the full LoTSS DR1 data set there are two main points that
equire consideration. Firstly, unlike the data set used to train and 
est the model, LoTSS DR1 is highly imbalanced. In Section 6.1 ,
e investigate varying the cut-off probability to select a value 

hat is more suitable for this class distribution problem rather than 
sing the default 0.50 threshold. We also define the parameters by 
hich we will assess the performance of the model in order to

elect the appropriate threshold. Secondly, it should be noted that 
ome sources wrongly classified by the algorithm as being suitable 
or LR (false positives) may be recovered (corrected) if additional 
omponents of the same (multicomponent) source are sent to LGZ. 
his may particularly be the case for the cores of extended radio
ources: the core itself is compact and aligns with the optical host
alaxy so may have a higher LR match, pushing towards a class 1
rediction, but the surrounding extended lobes are far more likely 
o be predicted to need LGZ. We examine and correct for this issue
n Section 6.2 . 

To investigate the overall performance of the classifier in different 
egions of parameter space, we compare our results with those of
he W19 decision tree in Section 6.3 and investigate the success of
he classifications for different source properties (as defined from 

he SOM) in Section 6.4 . Finally, we conclude the e v aluation of the
odel on LoTSS DR1 by examining the nature of those sources that

eliver false positive outcomes (i.e. are sent to LR but should require
GZ) in Section 6.5 . In Section 6.6 , we further apply our model
irectly to LoTSS DR2 as a first step to e v aluate ho w the model
erforms in a completely unseen data set. 

.1 Threshold moving for an imbalanced data set 

he distribution of the two classes in the LoTSS DR1 data set is
e verely ske wed to wards class 1, and the default 0.50 threshold value
oes not represent an optimum cut-off probability between the two 
lasses. The model prediction threshold reflects the proportion of 
xamples in the two classes that were used to train the classifier; as
 result, when the model is applied to the entire, imbalanced LoTSS
R1 data set, the majority of sources are classified as belonging to

lass 1, which is the most frequent class. Therefore, we tune the
ecision threshold, often known as ‘threshold moving’, which is a 
ommon approach used to optimize the predictions for imbalanced 
ata sets (e.g. Collell et al. 2018 ). The effect of changing the threshold
s demonstrated on the ROC curve in Fig. 6 . 

Instead of e v aluating the whole performance of the model solely
ith the typical metrics (accuracy, precision, etc.), we seek in 
articular to minimize the number of sources wrongly predicted as 
uitable to process with LR while keeping the number of sources sent
o visual inspection low. These two requirements can be captured by
i) the false disco v ery rate, FDR = FP/(FP + TP), which quantifies
he fraction of sources sent to LR which are incorrect; and (ii) a
arameter we refer to as the LOFAR Galaxy Zoo scale-up factor,
iven by (TN + FN)/(TN + FP), which expresses the factor by which
he number of sources selected for visual analysis in LGZ is higher
han the number actually required to be sent (cf. Table 1 ). In Fig. 7 ,
e show how the comparison between these two metrics changes 
MNRAS 516, 4716–4738 (2022) 
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Figure 8. Confusion matrix for all the sources in LoTSS DR1 using the 
optimized model and a threshold value of 0.20. The confusion matrix shows 
how examples belonging to each class are assigned correctly and incorrectly 
to the 2 possible classes. A perfect classifier would produce a confusion 
matrix filled diagonally with only TP (top left) and TN (bottom right) values, 
where the FP (bottom left) and FN (top right) would have values of zero, 
as defined in Section 4.1 . The background colours illustrate the proportion 
of sources in the matrix (given also by the percentage values in brackets) 
with darker colours representing a greater number of sources. The numbers 
presented correspond to the corrected values (see Section 6.2 ). 

Figure 9. The model confusion matrix (for a threshold level of 0.20), split 
by the three main decision tree outcomes of W19: LR, LGZ, and prefiltering. 
The FP values quoted are after corrections, with the numbers in brackets 
showing the values prior to corrections. As may be expected, the highest 
classification accuracy is for the LR sources, and the lowest accuracy is for 
the population of sources with intermediate parameter values deemed by 
W19 to require prefiltering. 
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s we change the cut-off threshold (open symbols, colour-coded by
hreshold level). 

Although Fig. 7 does not dictate which threshold value to use,
he practical requirement to keep the LGZ scale-up factor to below

2 pushes for a lower value of the threshold than the nominal 0.50
alue, while the threshold values should not be so low to allow a
alse disco v ery rate abo v e about 1 per cent. In practice, we adopt
 threshold value based on comparison with the W19 decision tree
esults. After correction for reco v ered components (Section 6.2 ), the
lassifier outperforms the W19 decision tree in both false disco v ery
ate and LGZ scale-up factor for thresholds in the range of 0.18–0.25.

e select a threshold level of 0.20, as a round number towards the
entre of this range. This threshold value corresponds to an LGZ
cale-up factor of 1.68 and a false disco v ery rate of 0.006 for the raw
odel outputs. 

.2 Corrections adopted 

orrections were determined to account for the multicomponent
ources wrongly classified as suitable to cross-match by LR (FP)
hat would subsequently be reco v ered by LGZ. Specifically, we
nalyse the prediction for each PYBDSF component that makes up
 multicomponent radio source and if at least one of the components
s sent to visual analysis by the model, the source is remo v ed from
he FP group. The sources reco v ered in this way are discussed in
ection 6.5 ; in many cases these are the cores of radio sources (which
n their own resemble a compact radio source) for which the more
xtended lobes are sent to LGZ. 

We calculated the number of reco v ered sources for each different
hreshold value. The filled symbols on Fig. 6 demonstrate the
mpro v ement that these corrections make to the ROC curve analysis,
nd those on Fig. 7 demonstrate the impact on our metric plot (FDR
ersus LGZ scale-up factor) after applying these corrections to the
DR. Except at the very lowest thresholds, the impro v ement that

he corrections make to the FDR is very significant; the fraction of
eco v ered sources increases for higher threshold values, leading to
ery low FDRs at high thresholds, but with the cost of a higher
umber of visual inspections. For our adopted threshold of 0.20,
3 per cent of the FP sources are reco v ered, resulting in a corrected
alse disco v ery rate of 0.002. This is also shown in the confusion
atrix for that cut-of f le vel, presented in Fig. 8 . In the analysis that

ollows, these corrections are applied unless stated otherwise. 

.3 Performance relati v e to W19 decision tree 

n this section, we compare the performance of our model against
hat of the W19 decision tree for the same data set. First, in Fig. 9 we
resent the confusion matrix for the final model, split by the three
ain decision tree outcomes of W19: suitable for LR, send to LGZ,

r requires prefiltering. 
It can be seen that the performance of the model on the ‘LR group’

s excellent with nearly 99 per cent of the sources being deemed by
he classifier to be suitable for LR. Furthermore, of the 1096 sources
hat were incorrectly selected by the W19 decision tree as ‘LR’ but
hich were subsequently re-classified during the LGZ process (e.g.
y being examined in parallel with another LGZ source) the classifier
orrectly sends the majority (o v er 600 sources) to LGZ, and of the
est all but 75 are reco v ered by having an alternate component of
he source sent to LGZ. The classifier does send 3710 sources to
GZ that W19 sent directly to LR and which have a label of being
uitable for LR. Ho we ver, it is important to note that none of these
ources has been visually examined to confirm that the W19 label is
NRAS 516, 4716–4738 (2022) 
orrect: where the W19 decision tree provided a LR classification,
hat was simply adopted by W19 (unless LGZ examination of a
ifferent PYBDSF component o v errode that). There may, therefore,
e (many) examples amongst these 3710 sources that, like the 1096
ources discussed abo v e, would hav e been re-labelled had the y been
isually examined and for which the classifier is therefore correct.
e explore this further below, and in Section 6.5 . 
For the sources selected by W19 to go directly to the LGZ process,

he classifier provides an overall accuracy of 73.5 per cent, with the
o wer v alue mostly dri ven by nearly 2000 sources being sent to
GZ despite being suitable for LR. Nevertheless, amongst the 3000
ources in the W19 LGZ sub-sample that were found (after visual ex-
mination) to be suitable for LR, the classifier is able to send o v er one-
hird of these directly to LR, thus reducing the LGZ scale-up factor. 

The classifier performance is poorest on the sources sent by W19
or prefiltering. This is not surprising, since these are generally
ources with intermediate parameter values, between the compact
R sources and the e xtended LGZ e xamples. Again the classifier

s able to send around one-third of the true LR sources directly to
R, but still assigns nearly 7000 sources incorrectly to the LGZ
lass, providing the largest contribution to the LGZ scale-up factor.
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he prefiltering category also contains the largest number of false 
ositives (339 after corrections). 
We also compare the performance of our model in our metrics of

DR versus LGZ scale-up factor, against those of the W19 decision 
ree. The LGZ scale-up factor of the W19 decision tree is easily
alculated from the numbers in Table 1 and corresponds to a value
f 1.77, while the 1096 PYBDSF sources identified as false positives
mplies a W19 FDR of 0.004. The FDR and LGZ scale-up factor thus
etermined for the W19 decision tree are shown in Fig. 7 . Compared
o these, the ML model with a threshold of 0.20 achieves both a lower
alse disco v ery rate and a lower LGZ scale-up factor. Furthermore,
s discussed abo v e, the v alue of 0.004 represents a lo wer limit to
he FDR of W19 because the objects selected as being suitable for
R analysis were, in general, not visually examined, and thus false 
ositives were not identified. We can estimate the total number of
Ps by assuming that the fraction of sources rescued in this way

s broadly the same as the ML model (the ‘corrections’ calculated 
n Section 6.2 ). This value depends weakly on the threshold value
dopted (for similar theshold values). For thresholds around 0.20 
e calculated abo v e that 63 per cent of the sources are rescued. If
096 sources correspond to 63 per cent then we can estimate the
otal number of false positives in the W19 decision tree will be
pproximately 1730 sources. 5 This would correspond to a higher 
DR of 0.006. 
To gain a better understanding of which types of sources the model

erforms well on, and on which it performs badly, in Fig. 10 we
eproduce a simplified version of the W19 decision tree, and examine 
he model confusion matrix at different locations of the decision tree. 
n the W19 decision tree, sources are first classified as ‘Large’ (major
xis larger than 15 arcsec) or ‘Small’ (under 15 arcsec), with a small
umber being associated with nearby large optical galaxies (abo v e 
0 arcsec of radius in the 2 μm all sk y-surv e y e xtended source
atalogue, Jarrett et al. 2000 ). The ‘Large’ sources are then separated
y W19 in flux density (abo v e or below 10 mJy total flux densities),
here W19 send the brighter large sources all to LGZ and the fainter

arge sources all to prefiltering. The performance of the classifier 
n these two sub-categories is comparable to that on the general 
LGZ’ and ‘prefiltering’ classes discussed abo v e: these large sources
roduce more than half of the false ne gativ es that lead to the abo v e-
nity LGZ scale-up factor. We examine the nature of these extended 
ources in more detail in Section 6.4 . 

For the ‘Small’ sources, W19 next examined whether the source 
s relatively ‘Isolated’ (no NN within 45 arcsec) or not. Isolated 
ources were examined to see if they were composed of single 
r multiple Gaussians. ‘Single Gaussians’ were sent by W19 to 
R and it can be seen that the classifier achieves a remarkable
ccuracy of 99.98 per cent on these sources, which comprise nearly 
8 per cent of the full sample. This subset of sources probably
xplains why the addition of LR features was found to only offer a
mall impro v ement in model performance in Section 4 : these small,
solated, single Gaussian sources can almost entirely be sent for LR
nalysis based on their radio properties alone, and the LR provides 
o extra information. This does imply, ho we ver, that the addition
f the LR features has much more impact in the other branches of
he decision tree than the raw statistics of Table 3 suggest – indeed,
or the ‘Large’ and for multiple Gaussian sources, the addition of
 Note that these extra false positives will be mis-labelled in the input data 
et, most likely comprising some of the false ne gativ es in the LR subset of 
ig. 9 as discussed abo v e, and thus the performance of the ML model may 

herefore be fractionally higher than quoted. 

f  

b  

s  

‘  

f  

t  
he LR information provides around 5 per cent increase in accuracy 
ompared to the baseline. 

For sources with multiple Gaussians, the W19 decision tree was 
omplicated, but can be simplified to consider those sources for 
hich the PYBDSF source has an LR match abo v e the LR threshold,

hose for which the PYBDSF source does not but one of the Gaussian
omponents does, and those for which neither source nor any of
he Gaussians has an LR match abo v e the threshold. The classifier
erforms fairly well (accuracy ≈90 per cent) on the first and third of
hese classes, but less well (accuracy ≈60 per cent) on the Gaussian
R matches, which are only 0.5 per cent of the complete sample but
ontribute nearly 30 per cent of the (corrected) false positives in the
hole sample. This implies that it may be possible to impro v e the

lassifier through better consideration of which Gaussian features 
o include (e.g. a second Gaussian to assist in identifying blended
ources; see Section 6.5 ) but such an investigation is beyond the
cope of this paper. 

If the NN is within 45 arcsec (‘Not Isolated’) then the number of
ther PYBDSF sources within 45 arcsec is counted: sources with at
east 4 others within that distance (‘Clustered’) were sent by W19
o LGZ, and the classifier similarly sent most of these to LGZ. The
Unclustered’ sources were then examined as for the isolated sources,
nto single or multiple Gaussian components and looking at the LR
atches for the latter. In this case, the performance on the single
aussians (30 per cent of the o v erall sample) is less strong than for

he isolated single-Gaussian sources, both in terms of false positives 
nd LGZ scale-up factor, but still achieves 97.8 per cent accuracy. 
his illustrates that the near-neighbour components are impacting 

he classifier. Similarly, the performance on the multiple Gaussians is 
oorer than for the isolated sources (o v erall 71.6 per cent accuracy),
n the sense of having a higher LGZ scale-up factor (more false
e gativ es), albeit with a lower false positive rate. 

.4 Performance as a function of source properties 

e also investigate the model performance as a function of source
orphology and different source characteristics. For this, we con- 

ider the SOM, and separate the locations of the sources within this
nto six different morphological categories following Mostert et al. 
 2021 ). These six categories (described in more detail below) are
extended singles’; ‘compact doubles’; ‘core-dominated doubles’; 
large diffuse lobes’; ‘extended doubles’; and ‘single lobe/near 
eighbour’. Added on to these are the sources classified by Shimwell
t al. ( 2019 ) as ‘unresolved’, which were not considered on the SOM.

Considering first the unresolved sources, the top panel of Fig. 11
hows the confusion matrix for these sources. Perhaps surprisingly, 
ore than 9000 of these sources have ‘LGZ’ labels, and the classifier

lso sends a further 7556 sources to LGZ, corresponding to a
ignificant proportion of the LGZ scale-up factor. To investigate 
he reason for this, in the bottom panel of Fig. 11 we show how the
ifferent classifier outcomes vary with the size of the source major
xis. Despite these sources being identified to be ‘unresolved’ by 
himwell et al. ( 2019 ), the major axis sizes can extend to more than
0 arcsec; this is because the Shimwell et al. classification adopts
 signal-to-noise dependent size envelope for separating unresolved 
rom extended sources based on their integrated flux density to peak
rightness ratios, and so at low signal-to-noise ratio where there is
ubstantial scatter in the flux ratio it is possible to have quite large
unresolved’ sources. It is not surprising that LR is not appropriate
or these, as the radio position is poorly defined. Fig. 11 indeed shows
hat both the true ne gativ e and false ne gativ e percentages increase
MNRAS 516, 4716–4738 (2022) 
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Figure 10. A simplified version of the W19 decision tree, showing the performance of the classifier (in the form of the confusion matrix) at different locations 
on the decision tree. 
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ith increasing major axis size, each reaching ≈10 per cent at a
ajor axis size of 15 arcsec. 
Fig. 11 also illustrates that beyond 15 arcsec in size, the true

e gativ e fractions suddenly jump to 40 per cent. This is due to a
NRAS 516, 4716–4738 (2022) 
eature of the training sample: all sources larger than 15 arcsec in
ize were visually examined by W19, and thus we expect them to
e all correctly labelled, but at smaller sizes those sources for which
he W19 decision tree predicted ‘LR’ were not visually examined;

art/stac1888_f10.eps
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Figure 11. Top: The confusion matrix for the sources classified as ‘unre- 
solved’ by Shimwell et al. ( 2019 ). Bottom: The distribution of major axis 
sizes of these unresolved sources, and the variation of the different classifier 
outcomes as a function of the major axis size. The predicted LGZ outcomes 
are primarily associated with those sources with larger major axis sizes. The 
jump at a major axis of 15 arcsec is associated with the training sample 
characteristics (see the text for more details). Note that the ≈6000 sources 
larger than 20 arcsec are not included on this plot. 
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s discussed in Section 6.1 some of these may be wrongly labelled.
his suggests that the LGZ-fraction at sizes just below 15 arcsec may
e somewhat higher than the labels suggest. 
Note that although the jump appears pronounced, only a small 

raction of the ‘unresolved’ sources have these large sizes, as can be
een in the histogram in Fig. 11 . Specifically, 10 516 (3.5 per cent
f the unresolved sources) have sizes between 12 and 15 arcsec, 
nd 12 281 (4.1 per cent of the unresolved sources) are larger than
5 arcsec; these small numbers will not have a large effect on the
lassification outcomes. It is interesting to note that the false ne gativ e
raction shows a large jump at 15 arcsec size as well: due to the issues
f the training sample, the classifier is learning that 15 arcsec is a
ritical size abo v e which sources are more likely to require LGZ.
his suggests that with an impro v ed training sample that did not
ontain this issue, the performance of the classifier could potentially 
e impro v ed ev en further than that presented here. 
Considering the extended sources, Fig. 12 displays the confusion 
atrices for each of the six categories of extended sources, along with

hree example thumbnails of each cate gory, dra wn from the SOM
epresentativ e sources. F or both the ‘e xtended single’ sources [those
tted by PYBDSF as a single Gaussian, but classified by Shimwell
t al. ( 2019 ) as resolved] and the ‘compact doubles’ (typically two
aussian components in the PYBDSF source, but small angular size), 

he performance of the classifier is similar: o v er 75 per cent of
oth categories are classifiable by LR, and the classifier performs 
easonably well (accuracy ≈77 per cent) but sends about twice as
any sources to LGZ as required. For the ‘core-dominated doubles’, 
hich show a bright central component but extended emission, the 

lassifier sends about 70 per cent of the sources to LGZ, presumably
ue to the extended emission, although in reality 60 per cent would be
lassifiable by LR due to the central component (the other 40 per cent
re not, as most are split into multiple PYBDSF sources). Similarly
or the more ‘extended doubles’, the classifier sends the majority to
GZ even though around half are symmetric enough that LR could
e used. For the sources called ‘large diffuse lobes’ by Mostert et al.
 2021 ) (which typically comprise either one or two extended lobes),
he classifier achieves an accuracy of over 75 per cent by correctly
ending the majority of the sources to LGZ, and again erring on the
ide of caution with an abo v e-unity LGZ scale-up factor but few false
ositives. Finally Mostert et al. ( 2021 ) define a category of ‘single
obes’, but we re-define this as ‘single lobe/near neighbour’ because 
nv estigation rev eals that while some of these are indeed one lobe
f a double, two-thirds are single-component sources (classifiable 
y LR) for which there just happens to be a near neighbour. The
lassifier achieves a good accuracy (69 per cent) on these sources
ut again sends nearly twice as many as necessary to LGZ in order
o minimize the number of false positiv es. Ov erall, it is clear that
he performance on the extended sources is poorer than that on the
unresolved sources’, but still relatively strong: the total LGZ scale- 
p factor for these extended sources is only ≈1.8, not much higher
han that of the unresolved sources, and the extended sources provide
ess than 300 false positives after corrections, with a false disco v ery
ate below 4 per cent. 

.5 Examination of false positi v es 

inally, in Fig. 13 we provide a montage of examples of false positive
ources: these are the most critical failures, because of the lack of
isual inspection. The false positives can be categorized into four 
ain categories, illustrated in the first four rows of the figure. The top

ow of the figure shows examples of multicomponent sources that get
eco v ered (corrected) because one of the other PYBDSF components
hat makes up the source is sent to LGZ. These sources account for
3 per cent of all false positiv es. The y are dominated by cases of the
ores of radio sources for which the more extended lobes are sent to
GZ (e.g. in the first and second columns), but also include sources
howing small extensions selected as a separate PYBDSF source (third 
olumn; in some cases these may be noise and in other cases they
ay be genuine extensions), and even a small number of radio source

obes rescued by other components of the source (fourth column). 
The second row shows additional multicomponent sources, which 

re not reco v ered. In these cases, which amount to about 10 per cent
f all false positives, it is essential to examine the sources with LGZ
n order to properly associate the different PYBDSF sources into the
ame physical source and to identify the host galaxy, but the classifier
MNRAS 516, 4716–4738 (2022) 

art/stac1888_f11.eps


4732 L. Alegre et al. 

M

Figure 12. For six different broad morphological classes of extended sources defined by Mostert et al. ( 2021 ), the figure shows the confusion matrix, along 
with three example thumbnails drawn from the SOM representative sources. 
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redicts that all of the PYBDSF components are suitable for LR. These
ources are typically relatively compact, two-component sources;
ometimes, it is clear from the radio structure that these form a single
ource (e.g. the example in the first column), whereas in many cases
his is only apparent when examining the optical and infrared data and
oting the presence of a host galaxy between the two lobes (examples
n second and fourth columns). Finally, a proportion of these
ulticomponent sources represent sources with weak extensions,

ome of which may be calibration artefacts (see example in the third
olumn). In future work, it would be worth investigating whether the
erformance of the classifier on these multicomponent sources could
e impro v ed by including an additional feature related to the LR at the
ux-weighted position between a source and its NN (corresponding

o roughly where a host galaxy would be expected if the two sources
orm part of a double source). 

The third row of Fig. 13 shows examples of blended sources (about
0 per cent of the false positives). These are cases where two physical
ources have been merged into the same PYBDSF component, and
hese need to be examined and separated, but the classifier predicts
hat LR is appropriate. The optical images make the deblending
equirement obvious, but it is understandable that this is difficult for
he classifier to identify where the central component is substantially
righter in the radio and has a strong LR match. It is possible that
f the LR of the second brightest Gaussian component was included
s an additional feature of the classifier the performance on these
bjects could be impro v ed. 
NRAS 516, 4716–4738 (2022) 
The last two bottom rows represent sources that amount for about
he remaining 20 per cent of the false positives. The fourth row
resents examples of single sources (i.e. sources where PYBDSF has
orrectly identified the physical radio source) which the classifier
redicts can be done by LR, but where the LR outcome disagrees
ith the final W19 identification outcome. There can be many
ifferent reasons for this. The first column shows a source where the
R selects the more northerly galaxy, closer to the radio centroid,
ut examination of the radio contours led the LGZ participants to
onclude that the southern galaxy is the true host. The second and
hird columns both give cases where the galaxy close to the radio
entroid has an LR value abo v e the threshold level, but the LGZ
articipants concluded that this was not sufficiently robust to accept,
nd found no ID. The fourth column shows an example where the
R finds no identification, but in LGZ it was concluded that this was
n asymmetric source with the galaxy on the right-hand component
eing the host. It should also be noted that the LGZ process is not
erfect and some of these single components may be mis-labelled,
nd should actually be true positives rather than false positives. The
fth row of Fig. 13 demonstrates this: these are all examples of
ingle sources deemed by the classifier to be suitable for LR (and to
ave an identification) but judged by W19 decision tree not to be.
n all of these cases, the LR identification does appear to be robust.
his suggests that these sources may be wrongly labelled by W19
nd that the classifier is consequently performing even better than
uoted. 
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Figure 13. Examples of ‘false positive’ classifications, where the model predicts that a LR approach is suitable, but in reality LR gives the wrong outcome and 
examination by LGZ is required. In all figures, the red cross and red dashed ellipse indicate the PYBDSF source being examined, the dark blue contours indicate 
the LOFAR radio emission, and the green contours indicate the higher frequency 1.4 GHz radio emission from the FIRST surv e y. Yellow dashed ellipses indicate 
other PYBDSF sources that need to be combined to form a multicomponent source; solid Yellow ellipses indicated unrelated sources. For the blended sources 
(row 3) the blue and red solid ellipses indicate the deblended components. The top row shows examples of multicomponent sources where the false positive 
PYBDSF source is reco v ered (corrected) because a different component of the same source is sent to LGZ. The second row shows multicomponent sources where 
none of the components is sent to LGZ. The third row shows blended sources, where LGZ is required to separate the PYBDSF source into two physical sources. 
The fourth ro w sho ws single components (correctly associated) but for which the LR prediction does not match the final W19 ID outcome. For some of these, 
as indicated in the final row, the W19 label appears to be incorrect and the machine learning (ML) correct. See the text for further discussion. 
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.6 Application to LoTSS DR2 subset 

e have applied the model trained on LoTSS DR1 data directly
o a subset of LoTSS DR2 in a small region in which LGZ source
ssociation and cross-matching process has already been completed
or sources with total flux density higher than 4 mJy (these bright
ources were examined first in LGZ in order to prepare targets
or the WEAVE-LOFAR spectroscopic surv e y; Smith et al. 2016 ).
ince LoTSS DR2 contains almost 14 times more sources LoTSS
R1, the application of ML methods is crucial to help managing

hese large data sets. We find that for the same threshold of 0.20,
he classifier recommends that 11.8 per cent of LoTSS DR2 sources
equire visual analysis, compared to 8.2 per cent for LoTSS DR1.
nv estigation rev eals that this difference is largely due to the source
eclinations: at declinations abo v e about 50 de g the classifier sends
.7 per cent of LoTSS DR2 sources for visual analysis, which is
ot much higher than the DR1 statistics, but that fraction increases
s we mo v e to lower declinations. This declination dependence
s likely to be largely due to the lo wer sensiti vity of the LoTSS
urv e y at lower declinations (Shimwell et al. 2022 ), which raises the
edian image rms. This means that a larger fraction of the detected

ources are at higher flux densities, where they are more likely
o be multicomponent and require LGZ (see the upper right-hand
anel of Fig. 5 ). Adjusting the prediction threshold to a higher value
ould therefore help to increase the correct classifications at lower
eclinations. An additional factor may be the increasing size of the
OFAR beam at lower declinations (the use of deconvolved sizes in
ur features might have mitigated this). 
To further test the performance of the model on DR2, we examine

nd compare the output predictions within this DR2 region. From
 sample of 59 122 sources brighter than 4 mJy, the classifier
chiev es an accurac y of 76 per cent; this compares with an accuracy
f 82.7 per cent for sources brighter than 4 mJy in DR1, without
aking into consideration reco v ered source components in both cases.
he lower accuracy for the DR2 data is mostly associated with the
lassifier sending more sources to LGZ, as discussed abo v e. Con-
idering that the classifier has not been trained on DR2, but simply
pplied with its DR1-determined hyperparameters (and the DR1 cut-
ff threshold) directly on the DR2 data set, this shows that it has a
trong ability to generalize to an unseen data set. The optical cross-
atching for LoTSS DR2 (Hardcastle et al. in preparation) will differ

rom that of DR1 in the use of the DESI Le gac y imaging surv e ys (De y
t al. 2019 ) instead of Pan-STARRS as the primary optical survey;
o we ver, our use of ‘log lr tlv’, that is, the logarithm of the ratio
f the LR relative to the threshold value, as the primary LR feature
hould mitigate against these differences in the cross-match surv e y. 

 C O N C L U S I O N S  A N D  F U T U R E  O U T L O O K  

n order to get the most science out of the surv e y catalogues being
roduced by the new generation of radio interferometers, it is nec-
ssary to properly associate radio source components into physical
ources, and then cross-match those sources with multiwavelength
ata. This enables us to identify the host galaxies and correctly derive
he physical properties of the radio sources. To address the question
f which sources are suitable for simple statistical cross-matching,
nd which ones require a more advanced (currently visual) approach,
e trained a machine-learning (ML) classifier using LoTSS DR1 and

pplied it to different LoTSS releases. The main conclusions of our
ork are as follows: 

(i) Our best model is a tree-based gradient boosting classifier,
nd achieves an accuracy of 95 per cent on a balanced data set.
NRAS 516, 4716–4738 (2022) 
his accuracy is maximized by appropriate choice of features in the
odel: inclusion of information on nearest neighbour (NN) radio

ources, on the properties of any LR match, and on the composition
f the radio source in terms of Gaussian components all impro v e the
odel. 
(ii) The full LoTSS data set is highly imbalanced, with the majority

 ≈95 per cent) of the sources being suitable for LR analysis. Adaption
f the default 0.50 probability threshold for the classifier would result
n far too many of these sources being predicted to require visual
nalysis. An optimized threshold of 0.20 restricts the LGZ sample to
nly 68 per cent larger than strictly required, while keeping the false
isco v ery rate (i.e. the fraction of those sources accepted by LR that
hould have required LGZ) to only 0.2 per cent. With this threshold,
he classifier outperforms the manually defined decision tree used for
oTSS DR1 by W19 in both the LGZ scale-up factor and the false
isco v ery rate. 
(iii) We hav e inv estigated the performance of the classifier on

ources of different radio morphologies and with different source
haracteristics. As expected, performance is strongest for the most
ompact sources, achieving an accuracy of o v er 98 per cent on
ources with a major axis size smaller than 15 arcsec (and o v er
9.9 per cent on the subset of these that have no near neighbours
nd can be well-modelled by a single Gaussian). The accuracy drops
o just abo v e 60 per cent for sources larger than 15 arcsec in size,
rimarily due to sending substantially more sources to LGZ than
equired. 

The efficiency of the ML approach means that it can be applied
o other radio surv e ys, and in particular to future data releases of
he LoTSS surv e y, where the radio data are almost identical in
ature to the DR1 sample analysed here (although there will be small
ifferences, associated with impro v ements in the calibration scheme
nd a changing telescope beam as we mo v e to lower declination; see
himwell et al. 2022 for more details). Because of these results, the
lassifier outcomes derived for the full DR2 sample have been used,
n conjunction with the W19 decision tree, to identify the LoTSS DR2
ources that are being sent to LGZ; Hardcastle et al. (in preparation)
ill provide more details. 
In conclusion, the ML classifier that we have developed has been

hown to have a high accuracy at identifying those sources for which
 statistical cross-matching process is insufficient, and to outperform
 manually-defined decision tree in both the false disco v ery rate,
nd in the number of sources that are predicted to require the time-
onsuming visual analysis step. The classifier has been demonstrated
o be able to generalize to unseen data sets; it already has immediate
pplication in the cross-matching of the LoTSS DR2 and can be
asily applied to other radio surv e ys. 

The classifier could potentially be further impro v ed by the in-
lusion of additional features, for example, the LR of a second
aussian component to assist in identifying blended sources, an LR

t the flux-weighted position between a source and its NN to help
dentify multicomponent sources, or additional properties such as the
ocal noise level or the source signal-to-noise ratio. Howev er, ev en
f the classifier were impro v ed still further, the number of sources
hat require more than statistical cross-matching will still remain
arge, and visual analysis of all of these will become impractical
s radio surv e ys continue to grow in size. The crucial next step
s therefore to be able to replace visual analysis as the process to
andle those sources. To this end, work to automatically associate
ulticomponent sources (e.g. Mostert et al., in preparation) and

o impro v e automatic source cross-matching for extended sources
e.g. ridge-line based approaches; Barkus et al. 2022 ) is on-going.
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he automatic source association of Mostert et al. (in preparation) 
ctually makes use of the ML classifier developed here to reject 
nassociated compact sources that lie within the boundary of more 
xtended multicomponent sources. It is likely that a selection of 
ifferent ML and deep learning techniques will need to be developed 
nd combined to fully solve this problem. 
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PPENDI X  A :  M AC H I N E - L E A R N I N G  TO O L S  

N D  A L G O R I T H M S  

1 AutoML 

n Section 4 , we streamline model selection and optimization
sing Automated Machine Learning (AutoML). AutoML generates
ptimal ML pipelines by identifying the best model and model
yperparameters. AutoML has already been used in astronomy with
he application of open source AutoML toolkits, and the use of
rtificial intelligence platforms. For instance, Arsioli & Dedin ( 2020 )
nvestigated the LUDWIG framework (Molino, Dudin & Miryala
019 ) in the classification of blazars, and Zuntz et al. ( 2021 ) used
UTO-KERAS (Jin, Song & Hu 2019 ) to select one of the models
or the LSST-DESC 3x2pt Tomography Optimization Challenge.
arsitano et al. ( 2022 ) used the MODULOS.AI platform to select the
est CNN architecture to perform optical galaxy morphological
lassification, Barsotti et al. ( 2022 ) used the D ATAR OBO T platform
o predict gravitational waveforms from compact binaries, and Kruk
t al. ( 2022 ) used the GOOGLE CLOUD AUTOML VISION to train a CNN
or the Hubble Asteroid Hunter project. Other AutoML framework
xamples include the Tree-based Pipeline Optimization Tool ( TPOT ,
lson et al. 2016a ) and AUTO-SKLEARN (Feurer et al. 2015 ) for

raditional ML; and AUT O-PYT ORCH (Zimmer, Lindauer & Hutter
021 ) for deep learning. In this work we use TPOT , which we will
xplain in more detail next. 

1.1 TPOT 

POT is an open source AutoML tool that e v aluates dif ferent ML
ipelines using genetic programming (GP; Banzhaf et al. 1998 ). In
he field of evolutionary computation, GP (and its variants) are the

ost widely used type of evolutionary algorithm (e.g. Eiben & Smith
015 ). By using a function that minimizes the error in the solution,
hese algorithms search for an optimal candidate within a group of po-
ential solutions. TPOT was further developed to incorporate pipeline
esign automation; it performs feature selection, pre-processing and
ngineering, besides algorithm searching and optimization. It uses
he PYTHON SCIKIT-LEARN library to implement both individual
nd ensemble tree-based models (decision trees; random forests and
radient boosting), non-probabilistic and probabilistic linear models
support vector machines and logistic regression), k-nearest neigh-
ours; and it uses PYTORCH for neural networks. The code can be used
or both classification and regression problems, and has been adapted
o work with large datasets of features (Le, Fu & Moore 2020 ). 

TPOT is built on Distributed Evolutionary Algorithms in PYTHON

 DEAP ; De Rainville et al. 2012 ), a framework that implements
volutionary computation. TPOT implements GP by creating trees of
ipeline operators and evolving those operators in order to maximize
ccuracy. In brief (see Olson et al. 2016a ; Olson et al. 2016b , for
ore details), in the first iteration (i.e. generation) TPOT sets and
 v aluates a random number of tree-based pipelines (i.e. population).
he next generation is constructed as follows. First, 10 per cent of

he new pipelines are copies of the highest accuracy pipeline from
he previous generation; 90 per cent of new pipelines are selected
rom the previous generation using a three-way tournament selection
ith a tw o-w ay parsimony (i.e. three random pipelines are e v aluated
y first eliminating the one with the poorest performance and then
hoosing the simplest of the remaining two). Next, a proportion
f these new generation pipelines are modified; 5 per cent of the
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ipelines suffer a one-point crossover , which consists of swapping 
he contents of two random pipelines at a random split in the tree
f operators. For 90 per cent of the remaining new pipelines a
utation is applied, where random operators are inserted, remo v ed 
r replaced in the pipelines. The process is repeated for the number
f generations defined. 

2 Ensembles of decision trees 

e provide a brief description of ensembles of decision trees, with 
articular focus on the gradient boosting classifier (GBC), which is 
he type of algorithm we chose to apply (see Section 4 ). Ensembles of
ecision trees are sets of decisions trees, typically containing between 
00 and 1000 trees. On their o wn, indi vidual trees have moderate
erformance, but when combined, the ensemble achieves strong 
erformance. There are different ways of creating these ensembles. 
wo common techniques are bagging and boosting. In bagging (e.g. 
andom forest) the trees are created in parallel using splits between 
he features and the final prediction is, in general, given by the
verage of the predictions or the majority of the votes of the trees. By
ontrast, in boosting (e.g. gradient boosting) each tree is constructed 
equentially by minimizing a loss function from the preceding tree, 
nd in general trees (also referred as weak learners ) with better
erformance have higher weight on the final predictions. (see e.g. 
auer & Kohavi 1999 ; Sutton 2005 , for details and comparison of

he methods). Since bagging models output av erage predictions, the y 
educe the variance of the model, and are therefore more robust to
utliers and defective features (since these will be mainly ignored). In
oosting, the trees grow in the direction where the loss is minimized.
herefore, each additional tree reduces the bias of the model. By
ggregating the predictions from all the trees, boosting also reduces 
he model variance (Schapire & Freund 2013 ). As a consequence, 
oosting models are more powerful than bagging models, but they 
an also o v erfit in some cases, especially when the number of trees is
ncreased: since each iteration reduces the training error, this can be 
ade arbitrarily small by growing trees, which can lead to o v erfitting

o the training data (Trevor, Robert & Jerome 2009 ). 
The model used in this work is a GBC, for which the original

ormulation can be found in Friedman ( 2001 ). It is a stochastic
oosting model (Friedman 2002 ) that uses a functional gradient 
escent (Mason et al. 1999 ). Consider an input training set of n
 xamples, where each e xample has a set of feature values x and an
utput value y (where for our binary classifier y is defined as 0 or 1).
he model sequentially builds an ensemble of weak learners, whose 
utput prediction after iteration m is F m . 
The weak learners are constructed by first initializing a very simple
odel ( F 0 ) in which the output prediction is a constant for all sources;

his constant may be set to zero or may be chosen to minimize the
nitial loss function L 0 . The loss function is defined based on the
ifference between predicted and true values, summed across the 
ull training population: for the binary classifier used in this work,
 binary log loss function (also known as binary cross-entropy or
inomial deviance) is used: 

 m 

= 

1 

n 

i= n ∑ 

i= 1 

y i log F m i 
+ (1 − y i ) log (1 − F m i 

) , (A1) 

here L m is the loss function for tree m and F m i 
is the model

rediction for source i in iteration m . For each subsequent iteration,
 , the procedure is then as follows. First, the pseudo-residuals for

ach training source are calculated from the model. Pseudo-residuals 
 for each source i are defined as 

 i,m 

= 

∂L ( y i , F m −1 ( x i )) 

∂F m −1 ( x i ) 
. (A2) 

 modified data set is then made with the input parameters x ,
nd output values of r . A tree is then fitted to this data set, with
he resultant predictions h m ( x i ). Using these predictions, the model
rediction F m is defined as 

 m 

( x) = F m −1 ( x) + νh m 

( x) , (A3) 

here ν is the shrinkage parameter, commonly referred as learning 
ate, which scales the contribution of each tree by a factor between 0
nd 1, acting as a regularization method (Friedman 2002 ). This value
ust be such that there is a trade-off with the number of trees M in

he model. The loss function for the new tree can then be calculated,
nd the process is repeated until a final prediction F M 

( x ) is produced.
ue to the way that the model is constructed, it can be considered

o be a weighted additive combination of all of the individual weak
earners from which it is comprised: 

 M 

( x i ) = 

M ∑ 

m = 1 

νh m 

( x i ) . (A4) 

PPENDI X  B:  MASTER  TA BL E  

n electronic table provides the source identification and feature 
ata used as input to the ML algorithm, along with the source iden-
ification flags and diagnostic flags, and the final model prediction. 
able B1 describes the columns provided in that table, which also

nclude the columns from Table 2 . 
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Table B1. Master table columns description. These were selected or computed using different catalogues ( a - f listed in the footnote below). 

Column Definition and origin 

Source information 
Source Name PYBDSF source identifier (typically a combination of RA and Dec. position) a 

RA PYBDSF source right ascension (deg) a 

DEC PYBDSF source declination (deg) a 

Source Name final Final radio source name (after any source association or deblending); NULL if artefact d 

RA final Final radio source right ascension (deg) d 

DEC final Final radio source declination (deg) d 

AllWISE lr Source identifier of near-infrared AllWISE counterpart cross-matched by likelihood ratio c , f 

AllWISE final Source identifier of finally-assigned near-infrared AllWISE counterpart d 

objID lr Source identifier of optical Pan-STARRS cross-matched by likelihood ratio c , f 

objID final Source identifier of finally-assigned optical Pan-STARRS counterpart d 

Mosaic ID HETDEX mosaic which contains the source image d 

Gaus id Gaussian component identifier used as feature b 

NN Source Name PYBDSF Source Name of the nearest neighbour a 

Identification flags 
W19dt W19 decision tree main outcomes [0-LGZ, 1-LR (ID or no ID), 2-prefiltering, 3-large optical IDs, −99-artefacts] d 

Diagnosis flags 
association PYBDSF source association diagnosis [1-single, 2-blended, 4-multicomponent, −99-artefacts] f 

accept lr Source suitable to LR technique [0-false,1-true, −99-artefact] f 

multi component Multicomponent source [0-false, 1-true, −99-artefact] f 

ML features 
(Several columns) Machine-learning features from Table 2 

Additional ML features 
n gauss Number of Gaussians that compose the PYBDSF source b 

gauss total flux Integrated flux density of the Gaussian component used as feature (mJy) b 

Deconv olv ed sizes 
DC Maj PYBDSF source deconvolved major axis (arcsec) a 

DC Min PYBDSF source deconvolved minor axis (arcsec) a 

gauss dc maj Gaussian deconvolved major axis (arcsec) b 

gauss dc min Gaussian deconvolved minor axis (arcsec) b 

Likelihood ratio (LR) values 
lr LR value match for the PYBDSF source c , f 

gauss lr LR value match for the Gaussian c , f 

highest lr Highest LR value match between the Gaussian and the source c , f 

NN lr LR value match for the PYBDSF nearest neighbour c , f 

Self-organizing map (SOM) 
10x10 closest prototype x Row position of the PYBDSF source on the LoTSS DR1 cyclic 10x10 SOM 

e 

10x10 closest prototype y Column position of the PYBDSF source on the LoTSS DR1 cyclic 10x10 SOM 

e 

Predictions 
probability lr Prediction probabilities to accept the LR match [range 0-1, 0-false, and 1-true] f 

dataset Data set splitting [0-not on the training or test sets, 1-training set, 2-test set] f 

prediction 0.20 Predictions for 20 per cent threshold [0-send to LGZ, 1-accept LR, 2-reco v ered PYBDSF source component] f 

Note . Artefacts are flagged with the value of −99. a LoTSS DR1 PYBDSF radio source catalogue (Shimwell et al. 2019 ); b LoTSS DR1 PYBDSF Gaussian 
component catalogue (Shimwell et al. 2019 ); c LoTSS DR1 Gaussian and PYBDSF source LR catalogues (W19); d Optical LoTSS DR1 source catalogue (W19); 
e LoTSS DR1 self-organized map (SOM; Mostert et al. 2021 ); f Results calculated in this work. 
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