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Abstract

One of the main concerns in multidimensional item response theory (MIRT) is to detect the

relationship between observed items and latent traits, which is typically addressed by the

exploratory analysis and factor rotation techniques. Recently, an EM-based L1-penalized

log-likelihood method (EML1) is proposed as a vital alternative to factor rotation. Based on

the observed test response data, EML1 can yield a sparse and interpretable estimate of the

loading matrix. However, EML1 suffers from high computational burden. In this paper, we

consider the coordinate descent algorithm to optimize a new weighted log-likelihood, and

consequently propose an improved EML1 (IEML1) which is more than 30 times faster than

EML1. The performance of IEML1 is evaluated through simulation studies and an applica-

tion on a real data set related to the Eysenck Personality Questionnaire is used to demon-

strate our methodologies.

1 Introduction

Multidimensional item response theory (MIRT) models are widely used to describe the rela-

tionship between the designed items and the intrinsic latent traits in psychological and educa-

tional tests [1]. Early researches for the estimation of MIRT models are confirmatory, where

the relationship between the responses and the latent traits are pre-specified by prior knowl-

edge [2, 3]. Under this setting, parameters are estimated by various methods including mar-

ginal maximum likelihood method [4] and Bayesian estimation [5]. However, misspecification

of the item-trait relationships in the confirmatory analysis may lead to serious model lack of

fit, and consequently, erroneous assessment [6].

To avoid the misfit problem caused by improperly specifying the item-trait relationships,

the exploratory item factor analysis (IFA) [4, 7] is usually adopted. The exploratory IFA freely
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estimate the entire item-trait relationships (i.e., the loading matrix) only with some constraints

on the covariance of the latent traits. To obtain a simpler loading structure for better interpre-

tation, the factor rotation [8, 9] is adopted, followed by a cut-off. Although the exploratory IFA

and rotation techniques are very useful, they can not be utilized without limitations. For some

applications, different rotation techniques yield very different or even conflicting loading

matrices. Therefore, it can be arduous to select an appropriate rotation or decide which rota-

tion is the best [10]. In addition, different subjective choices of the cut-off value possibly lead

to a substantial change in the loading matrix [11].

Recently, regularization has been proposed as a viable alternative to factor rotation, and it

can automatically rotate the factors to produce a sparse loadings structure for exploratory IFA

[12, 13]. Scharf and Nestler [14] compared factor rotation and regularization in recovering

predefined factor loading patterns and concluded that regularization is a suitable alternative to

factor rotation for psychometric applications. Regularization has also been applied to produce

sparse and more interpretable estimations in many other psychometric fields such as explor-

atory linear factor analysis [11, 15, 16], the cognitive diagnostic models [17, 18], structural

equation modeling [19], and differential item functioning analysis [20, 21].

For MIRT models, Sun et al. [12] proposed a latent variable selection framework to investi-

gate the item-trait relationships by maximizing the L1-penalized likelihood [22]. In this frame-

work, one can impose prior knowledge of the item-trait relationships into the estimate of

loading matrix to resolve the rotational indeterminacy. Based on the observed test response

data, the L1-penalized likelihood approach can yield a sparse loading structure by shrinking

some loadings towards zero if the corresponding latent traits are not associated with a test

item. Consequently, it produces a sparse and interpretable estimation of loading matrix, and it

addresses the subjectivity of rotation approach.

Since the marginal likelihood for MIRT involves an integral of unobserved latent variables,

Sun et al. [12] carried out the expectation maximization (EM) algorithm [23] to solve the L1-

penalized optimization problem. We denote this method as EML1 for simplicity. In the E-step

of EML1, numerical quadrature by fixed grid points is used to approximate the conditional

expectation of the log-likelihood. This results in a naive weighted log-likelihood on augmented

data set with size equal to N × G, where N is the total number of subjects and G is the number

of grid points. To optimize the naive weighted L1-penalized log-likelihood in the M-step, the

coordinate descent algorithm [24] is used, whose computational complexity isO(N × G). How-

ever, N × G is usually very large, and this consequently leads to high computational burden of

the coordinate decent algorithm in the M-step. As shown by Sun et al. [12], EML1 requires

several hours for MIRT models with three to four latent traits. Another limitation for EML1 is

that it does not update the covariance matrix S of latent traits in the EM iteration. Sun et al.

[12] proposed a two-stage method. It first computes an estimation of S via a constrained

exploratory analysis under identification conditions, and then substitutes the estimated S into

EML1 as a known S to estimate discrimination and difficulty parameters. However, our simu-

lation studies show that the estimation of S obtained by the two-stage method could be quite

inaccurate.

Further development for latent variable selection in MIRT models can be found in [25, 26].

Zhang and Chen [25] proposed a stochastic proximal algorithm for optimizing the L1-penal-

ized marginal likelihood. They used the stochastic approximation in the stochastic step, which

avoids repeatedly evaluating the numerical integral with respect to the multiple latent traits.

However, the choice of several tuning parameters, such as a sequence of step size to ensure

convergence and burn-in size, may affect the empirical performance of stochastic proximal

algorithm. Xu et al. [26] applied the expectation model selection (EMS) algorithm [27] to mini-

mize the L0-penalized log-likelihood (for example, the Bayesian information criterion [28]) for
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latent variable selection in MIRT models. In their EMS framework, the model (i.e., structure of

loading matrix) and parameters (i.e., item parameters and the covariance matrix of latent

traits) are updated simultaneously in each iteration. In the simulation of Xu et al. [26], the

EMS algorithm runs significantly faster than EML1, but it still requires about one hour for

MIRT with four latent traits.

In this paper, we focus on the classic EM framework of Sun et al. [12] and give an improved

EM-based L1-penalized marginal likelihood (IEML1) with the M-step’s computational com-

plexity being reduced to O(2 × G). The fundamental idea comes from the “artificial data”

widely used in the EM algorithm for computing maximum marginal likelihood estimation in

the IRT literature [4, 29–32]. In Bock and Aitkin (1981) [29] and Bock et al. (1988) [4], “artifi-

cial data” are the expected number of attempts and correct responses to each item in a sample

of size N at a given ability level. Essentially, “artificial data” are used to replace the unobserv-

able statistics in the expected likelihood equation of MIRT models. It should be noted that, the

number of “artificial data” is G but not N × G, as “artificial data” correspond to G ability levels

(i.e., grid points in numerical quadrature). As a result, the number of data involved in the

weighted log-likelihood obtained in E-step is reduced and the efficiency of the M-step is then

improved.

In our IEML1, we use a slightly different artificial data to obtain the weighted complete data

log-likelihood [33] which is widely used in generalized linear models with incomplete data.

Specifically, we classify the N × G augmented data into 2 × G artificial data (z, θ(g)), where z
(equals to 0 or 1) is the response to one item and θ(g) is one discrete ability level (i.e., grid point

value). Thus, we obtain a new weighted L1-penalized log-likelihood based on a total number of

2 × G artificial data (z, θ(g)), which reduces the computational complexity of the M-step to O(2

× G) from O(N × G).

In addition, it is crucial to choose the grid points being used in the numerical quadrature of

the E-step for both EML1 and IEML1. There are various papers that discuss this issue in non-

penalized maximum marginal likelihood estimation in MIRT models [4, 29, 30, 34]. To the

best of our knowledge, there is however no discussion about the penalized log-likelihood esti-

mator in the literature. In this paper, we will give a heuristic approach to choose artificial data

with larger weights in the new weighted log-likelihood. Based on this heuristic approach,

IEML1 needs only a few minutes for MIRT models with five latent traits.

The rest of the article is organized as follows. In Section 2, we introduce the multidimen-

sional two-parameter logistic (M2PL) model as a widely used MIRT model, and review the L1-

penalized log-likelihood method for latent variable selection in M2PL models. In Section 3,

we give an improved EM-based L1-penalized log-likelihood method for M2PL models with

unknown covariance of latent traits. In Section 4, we conduct simulation studies to compare

the performance of IEML1, EML1, the two-stage method [12], a constrained exploratory IFA

with hard-threshold (EIFAthr) and a constrained exploratory IFA with optimal threshold

(EIFAopt). In Section 5, we apply IEML1 to a real dataset from the Eysenck Personality Ques-

tionnaire. A concluding remark is provided in Section 6.

2 Latent variable selection in multidimensional two-parameter

logistic models

In this section, the M2PL model that is widely used in MIRT is introduced. Furthermore,

the L1-penalized log-likelihood method for latent variable selection in M2PL models is

reviewed.
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2.1 Multidimensional two-parameter logistic model

Consider a J-item test that measures K latent traits ofN subjects. Let Y = (yij)N×J be the dichoto-

mous observed responses to the J items for all N subjects, where yij = 1 represents the correct

response of subject i to item j, and yij = 0 represents the wrong response. Let θi = (θi1, . . ., θiK)T

be the K-dimensional latent traits to be measured for subject i = 1, . . ., N. The relationship

between the jth item response and the K-dimensional latent traits for subject i can be expressed

by the M2PL model as follows

FjðθiÞ � Pðyij ¼ 1jθi; aj; bjÞ ¼
expðaTj θi þ bjÞ

1þ expðaTj θi þ bjÞ
; ð1Þ

where aj = (aj1, . . ., ajK)T and bj are known as the discrimination and difficulty parameters,

respectively. The parameter ajk 6¼ 0 implies that item j is associated with latent trait k. P(yij =
1|θi, aj, bj) denotes the probability that subject i correctly responds to the jth item based on his/

her latent traits θi and item parameters aj and bj. For the sake of simplicity, we use the notation

A = (a1, . . ., aJ)T, b = (b1, . . ., bJ)T, and Θ = (θ1, . . ., θN)T. The discrimination parameter matrix

A is also known as the loading matrix, and the corresponding structure is denoted by Λ = (λjk)
with λjk = I(ajk 6¼ 0).

In M2PL models, several general assumptions are adopted. The latent traits θi, i = 1, . . ., N,

are assumed to be independent and identically distributed, and follow a K-dimensional normal

distribution N(0, S) with zero mean vector and covariance matrix S = (σkk0)K×K. Furthermore,

the local independence assumption is assumed, that is, given the latent traits θi, yi1, . . ., yiJ are

conditional independent.

To guarantee the parameter identification and resolve the rotational indeterminacy for

M2PL models, some constraints should be imposed. To identify the scale of the latent traits,

we assume the variances of all latent trait are unity, i.e., σkk = 1 for k = 1, . . ., K. Dealing with

the rotational indeterminacy issue requires additional constraints on the loading matrix A. We

adopt the constraints used by Sun et al. [12] and Xu et al. [26], that is, each of the first K items

is associated with only one latent trait separately, i.e., ajj 6¼ 0 and ajk = 0 for 1� j 6¼ k� K. In

practice, the constraint on A should be determined according to priori knowledge of the item

and the entire study.

2.2 Latent variable selection based on L1-penalized method

The response function for M2PL model in Eq (1) takes a logistic regression form, where yij acts

as the response, the latent traits θi as the covariates, aj and bj as the regression coefficients and

intercept, respectively. We are interested in exploring the subset of the latent traits related to

each item, that is, to find all non-zero ajks. This can be viewed as variable selection problem in

a statistical sense.

Under the local independence assumption, the likelihood function of the complete data

(Y, Θ) for M2PL model can be expressed as follow

LðA; b;SjY;ΘÞ ¼
YN

i¼1

φðθijSÞ
YJ

j¼1

FjðθiÞ
yij ½1 � FjðθiÞ�

1� yij ; ð2Þ

where φ(θi|S) is the density function of latent trait θi. The log-likelihood function of observed
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data Y can be written as

lðA; b;SjYÞ ¼
XN

i¼1

log
�Z

θi

φðθijSÞ
YJ

j¼1

FjðθiÞ
yij ½1 � FjðθiÞ�

1� yijdθi

�

: ð3Þ

To investigate the item-trait relationships, Sun et al. [12] applied the L1-penalized marginal

log-likelihood method to obtain the sparse estimate of A for latent variable selection in M2PL

model. They carried out the EM algorithm [23] with coordinate descent algorithm [24] to

solve the L1-penalized optimization problem. However, the covariance matrix S of latent traits

is assumed to be known and is not realistic in real-world applications.

Instead, we will treat S as an unknown parameter and update it in each EM iteration. For

this purpose, the L1-penalized optimization problem including S is represented as

ðÂZ; b̂Z; ŜZÞ ¼ arg max
A;b;S

lðA; b;SjYÞ � ZjjAjj
1 ð4Þ

where jjAjj1 ¼
PJ
j¼1

PK
k¼1
jajkj denotes the entry-wise L1 norm of A. The tuning parameter

η> 0 controls the sparsity of A. Larger value of η results in a more sparse estimate of A. The

tuning parameter is always chosen by cross validation or certain information criteria. In this

paper, we employ the Bayesian information criterion (BIC) as described by Sun et al. [12].

3 Implementation of the EM algorithm

Due to the presence of the unobserved variable (e.g., the latent traits Θ), the parameter esti-

mates in Eq (4) can not be directly obtained. Sun et al. [12] carried out EML1 to optimize Eq

(4) with a known S. Similarly, we first give a naive implementation of the EM algorithm to

optimize Eq (4) with an unknown S. Then, we give an efficient implementation with the M-

step’s computational complexity being reduced to O(2 × G), where G is the number of grid

points. Lastly, we will give a heuristic approach to choose grid points being used in the numeri-

cal quadrature in the E-step.

3.1 A naive implementation of the EM algorithm

The EM algorithm iteratively executes the expectation step (E-step) and maximization step

(M-step) until certain convergence criterion is satisfied. Specifically, the E-step is to compute

the Q-function, i.e., the conditional expectation of the L1-penalized complete log-likelihood

with respect to the posterior distribution of latent traits Θ. The M-step is to maximize the Q-

function. Let C = (A, b, S) be the set of model parameters, and C(t) = (A(t), b(t), S(t)) be the

parameters in the tth iteration. The (t + 1)th iteration is described as follows.

3.1.1 E-step. In the E-step of the (t + 1)th iteration, under the current parameters C(t), we

compute the Q-function involving a S-term as follows

QðCjCðtÞÞ ¼ EflogLðCjY;ΘÞjY;CðtÞg � ZjjAjj
1

¼ Q0ðSjC
ðtÞ
Þ þ

XJ

j¼1

Qjðaj; bjjC
ðtÞ
Þ;

ð5Þ

where Q0 is

Q0ðSjC
ðtÞ
Þ ¼

XN

i¼1

E flogφ ðθijSÞjyi;C
ðtÞ
g
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and for j = 1, . . ., J, Qj is

Qjðaj; bjjC
ðtÞ
Þ

¼
XN

i¼1

Efyij logðFjðθiÞÞ þ ð1 � yijÞlogð1 � FjðθiÞÞjyi;C
ðtÞ
g � Zjjajjj1;

where jjajjj1 ¼
PK
k¼1
jajkj denotes the L1-norm of vector aj. The conditional expectations in Q0

and each Qj are computed with respect to the posterior distribution of θi as follows

pðθijyi;C
ðtÞ
Þ /

YJ

j¼1

½FðtÞj ðθiÞ�
yij ½1 � FðtÞj ðθiÞ�

1� yij � φðθijS
ðtÞÞ;

where FðtÞj ðθiÞ ¼ Pðyij ¼ 1jθi; a
ðtÞ
j ; b

ðtÞ
j Þ, a

ðtÞ
j is the jth row of A(t), and bðtÞj is the jth element in

b(t).

Note that the conditional expectations in Q0 and each Qj do not have closed-form solutions.

It is usually approximated using the Gaussian-Hermite quadrature [4, 29] and Monte Carlo

integration [35]. For simplicity, we approximate these conditional expectations by summations

following Sun et al. [12]. Specifically, we choose fixed grid points G � ½� 4; 4�
K

and the poste-

rior distribution of θi is then approximated by

~pðθijyi;C
ðtÞ
Þ ¼

C� 1 �
YJ

j¼1

½FðtÞj ðθiÞ�
yij ½1 � FðtÞj ðθiÞ�

1� yij � φðθijS
ðtÞÞ if θi 2 G;

0 otherwise;

8
>><

>>:

ð6Þ

where C ¼
P

θ i
0
2G

QJ
j¼1
½FðtÞj ðθ

0

iÞ�
yij ½1 � FðtÞj ðθ

0

iÞ�
1� yij � φðθ0ijS

ðtÞÞ serves as a normalizing factor.

Thus, Q0 can be approximated by

~Q0ðSjC
ðtÞ
Þ ¼

XN

i¼1

X

θi2G

logφðθijSÞ � ~pðθijyi;C
ðtÞ
Þ ð7Þ

and Qj for j = 1, . . ., J is approximated by

~Qjðaj ; bjjC
ðtÞ
Þ

¼
XN

i¼1

X

θi2G

½yij logðFjðθiÞÞ þ ð1 � yijÞlogð1 � FjðθiÞÞ� � ~pðθijyi;C
ðtÞ
Þ � Zjjajjj1:

ð8Þ

Hence, the Q-function can be approximated by

~QðCjCðtÞÞ ¼ ~Q0ðSjC
ðtÞ
Þ þ

XJ

j¼1

~Qjðaj; bjjC
ðtÞ
Þ: ð9Þ

3.1.2 M-step. In the M-step of the (t + 1)th iteration, we maximize the approximation of

Q-function obtained by E-step

C
ðtþ1Þ
¼ ðAðtþ1Þ; bðtþ1Þ

;Sðtþ1ÞÞ ¼ arg max
C

~QðCjCðtÞÞ; ð10Þ

subject to S� 0 and diag(S) = 1, where S� 0 denotes that S is a positive definite matrix, and

diag(S) = 1 denotes that all the diagonal entries of S are unity.
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It can be easily seen from Eq (9) that ~Q can be factorized as the summation of ~Q0 involving

S and ~Qj involving (aj, bj). Thus, the maximization problem in Eq (10) can be decomposed to

maximizing ~Q0 and maximizing penalized ~Qj separately, that is,

Sðtþ1Þ ¼ arg max
S

~Q0ðSjC
ðtÞ
Þ s:t: S � 0 and diagðSÞ ¼ 1; ð11Þ

and for j = 1, . . ., J,

ðaðtþ1Þ

j ; bðtþ1Þ

j Þ ¼ arg max
aj;bj

~Qjðaj; bjjC
ðtÞ
Þ; ð12Þ

For maximization problem (11), ~Q0 can be represented as

~Q0ðSjC
ðtÞ
Þ ¼ �

1

2
fNKlogð2pÞ þ Nlog detSþ Ntr½S� 1S��g;

where tr[�] denotes the trace operator of a matrix, where

S� ¼ N � 1
XN

i¼1

X

θi2G

θiθ
T
i � ~pðθijyi;C

ðtÞ
Þ: ð13Þ

Therefore, the optimization problem in (11) is known as a semi-definite programming prob-

lem in convex optimization. We can obtain the S(t + 1) in the same way as Zhang et al. [36] by

applying a proximal gradient descent algorithm [37]. It is noteworthy that in the EM algorithm

used by Sun et al. [12], Q0 is a constant and thus need not be optimized, as S is assumed to be

known.

For maximization problem (12), it is noted that ~Qj in Eq (8) can be regarded as the weighted

L1-penalized log-likelihood in logistic regression with naive augmented data (yij, θi) and

weights ~pðθijyi;A
ðtÞ; bðtÞÞ, where θi 2 G. Hence, the maximization problem in (Eq 12) is equiv-

alent to the variable selection in logistic regression based on the L1-penalized likelihood. Sev-

eral existing methods such as the coordinate decent algorithm [24] can be directly used.

After solving the maximization problems in Eqs (11) and (12), it is straightforward to obtain

the parameter estimates of S(t + 1), Aðtþ1Þ ¼ ðaðtþ1Þ

1 ; . . . ; aðtþ1Þ

J Þ
T

and bðtþ1Þ
¼ ðbðtþ1Þ

1 ; . . . ; bðtþ1Þ

J Þ
T

for the next iteration.

We call the implementation described in this subsection the naive version since the M-step

suffers from a high computational burden. It should be noted that the computational complex-

ity of the coordinate descent algorithm for maximization problem (12) in the M-step is pro-

portional to the sample size of the data set used in the logistic regression [24]. In (12), the

sample size (i.e., N × G) of the naive augmented data set {(yij, θi)|i = 1, . . ., N, and θi 2 Gg is

usually large, where G is the number of quadrature grid points in G. For example, if N = 1000,

K = 3 and 11 quadrature grid points are used in each latent trait dimension, then G = 1331 and

N × G = 1.331 × 106. This leads to a heavy computational burden for maximizing (12) in the

M-step. As a result, the EML1 developed by Sun et al. [12] is computationally expensive.

3.2 An improved EM-based L1-penalized likelihood method

In this subsection, motivated by the idea about “artificial data” widely used in maximum mar-

ginal likelihood estimation in the IRT literature [30], we will derive another form of weighted

log-likelihood based on a new artificial data set with size 2 × G. Therefore, the computational

complexity of the M-step is reduced to O(2 × G) from O(N × G).
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As described in Section 3.1.1, we use the same set G of fixed grid points for all θis to approx-

imate the conditional expectation. Let G ¼ fθðgÞ; g ¼ 1; . . . ;Gg with θ(g) representing a dis-

crete ability level, and ~pðθðgÞjyi;C
ðtÞ
Þ denote the value of ~pðθijyi;C

ðtÞ
Þ at θi = θ(g). Using the

traditional “artificial data” described in Baker and Kim [30], we can write ~Qj as

~Qjðaj; bjjC
ðtÞ
Þ

¼
XN

i¼1

XG

g¼1

½yijlogðFjðθ
ðgÞ
ÞÞ þ ð1 � yijÞlogð1 � Fjðθ

ðgÞ
ÞÞ� � ~pðθðgÞjyi;C

ðtÞ
Þ � Zjjajjj1

¼
XG

g¼1

½logðFjðθ
ðgÞ
ÞÞ � rðtÞjg þ logð1 � Fjðθ

ðgÞ
ÞÞ � ðf ðtÞg � r

ðtÞ
jg Þ� � Zjjajjj1;

ð14Þ

where f ðtÞg ¼
PN
i¼1

~pðθðgÞjyi;C
ðtÞ
Þ is the “expected sample size” at ability level θ(g), and rðtÞjg ¼

PN
i¼1
yij~pðθ

ðgÞ
jyi;C

ðtÞ
Þ is the “expected frequency” of correct response to item j at ability θ(g).

Note that, in the IRT literature, f ðtÞg and rðtÞjg are known as “artificial data”, and they are applied

to replace the unobservable sufficient statistics in the complete data likelihood equation in the

E-step of the EM algorithm for computing maximum marginal likelihood estimation [30–32].

If η = 0, differentiating Eq (14), we can obtain a likelihood equation involving the traditional

“artificial data”, which can be solved by standard optimization methods [30, 32].

For L1-penalized log-likelihood estimation, we should maximize Eq (14) for η> 0. Although

the coordinate descent algorithm [24] can be applied to maximize Eq (14), some technical

details are needed. In this paper, from a novel perspective, we will view ~Qjðaj; bjjC
ðtÞ
Þ as a

weighted L1-penalized log-likelihood of logistic regression based on our new artificial data

inspirited by Ibrahim (1990) [33] and maximize ~Qjðaj; bjjC
ðtÞ
Þ by applying the efficient R pack-

age glmnet [24].

Specifically, we group the N × G naive augmented data in Eq (8) into 2 × G new artificial

data (z, θ(g)), where z (equals to 0 or 1) is the response to item j and θ(g) is a discrete ability

level. Thus, ~Qj in Eq (8) can be rewritten as

~Qjðaj; bjjC
ðtÞ
Þ

¼
XN

i¼1

XG

g¼1

X

z¼0;1

Iðyij ¼ zÞ½z logðFjðθ
ðgÞ
ÞÞ þ ð1 � zÞlogð1 � Fjðθ

ðgÞ
ÞÞ� � ~pðθðgÞjyi;C

ðtÞ
Þ � Zjjajjj1

¼
XG

g¼1

X

z¼0;1

½z logðFjðθ
ðgÞ
ÞÞ þ ð1 � zÞlogð1 � Fjðθ

ðgÞ
ÞÞ� �

XN

i¼1

Iðyij ¼ zÞ~pðθ
ðgÞ
jyi;C

ðtÞ
Þ � Zjjajjj1

¼
XG

g¼1

X

z¼0;1

½z logðFjðθ
ðgÞ
ÞÞ þ ð1 � zÞlogð1 � Fjðθ

ðgÞ
ÞÞ� � wðtÞj ðz; θ

ðgÞ
Þ � Zjjajjj1;

ð15Þ

where wðtÞj ðz; θ
ðgÞ
Þ ¼

PN
i¼1
Iðyij ¼ zÞ~pðθ

ðgÞ
jyi;C

ðtÞ
Þ is the “expected frequency” of correct or

incorrect response to item j at ability θ(g). The second equality in Eq (15) holds since z and

Fj(θ(g))) do not depend on yij and the order of the summation is interchanged. Thus, we obtain

a new form of weighted L1-penalized log-likelihood of logistic regression in the last line of Eq

(15) based on the new artificial data (z, θ(g)) with a weight wðtÞj ðz; θ
ðgÞ
Þ. Note that wðtÞj ð1; θ

ðgÞ
Þ ¼

rðtÞjg and wðtÞj ð0; θ
ðgÞ
Þ ¼ f ðtÞg � r

ðtÞ
jg , so the traditional “artificial data” can be viewed as weights for

our new artificial data (z, θ(g)).
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Since Eq (15) is a weighted L1-penalized log-likelihood of logistic regression, it can be opti-

mized directly via the efficient R package glmnet [24]. This is an advantage of using Eq (15)

instead of Eq (14). Moreover, the size of the new artificial data set {(z, θ(g))|z = 0, 1, and θðgÞ 2
Gg involved in Eq (15) is 2 × G, which is substantially smaller than N × G. This significantly

reduces the computational burden for optimizing ~Qj in the M-step. We call this version of

EM as the improved EML1 (IEML1). Since the computational complexity of the coordinate

descent algorithm is O(M) whereM is the sample size of data involved in penalized log-likeli-

hood [24], the computational complexity of M-step of IEML1 is reduced to O(2 × G) from

O(N × G).

It is noteworthy that, for yi = yi0 with the same response pattern, the posterior distribution

of θi is the same as that of θi0, i.e., ~pðθðgÞjyi;C
ðtÞ
Þ ¼ ~pðθðgÞjyi0 ;C

ðtÞ
Þ. When the sample size N is

large, the item response vectors y1, � � �, yN can be grouped into distinct response patterns, and

then the summation in computing wðtÞj ðz; θ
ðgÞ
Þ is not over N, but over the number of distinct

patterns, which will greatly reduce the computational time [30].

It should be noted that any fixed quadrature grid points set, such as Gaussian-Hermite

quadrature points set, will result in the same weighted L1-penalized log-likelihood as in Eq

(15). However, neither the adaptive Gaussian-Hermite quadrature [34] nor the Monte Carlo

integration [35] will result in Eq (15) since the adaptive Gaussian-Hermite quadrature requires

different adaptive quadrature grid points for different θi while the Monte Carlo integration

usually draws different Monte Carlo samples for different θi.

3.3 Heuristic approach for choosing grid points

In the new weighted log-likelihood in Eq (15), the more artificial data (z, θ(g)) are used, the

more accurate the approximation of ~Qj is; but, the more computational burden IEML1 has. To

reduce the computational burden of IEML1 without sacrificing too much accuracy, we will

give a heuristic approach for choosing a few grid points used to compute ~Qj.
Let us consider a motivating example based on a M2PL model with item discrimination

parameter matrix A1 with K = 3 and J = 40, which is given in Table A in S1 Appendix. The grid

point set G ¼ S3
, where S denotes a set of equally spaced 11 grid points on the interval [−4, 4].

Therefore, the size of our new artificial data set used in Eq (15) is 2 × 113 = 2662. Based on one

iteration of the EM algorithm for one simulated data set, we calculate the weights of the new

artificial data ðz; θðgÞÞ 2 f0; 1g � G and then sort them in descending order.

Fig 1 (left) gives the histogram of all weights, which shows that most of the weights are

very small and only a few of them are relatively large. Fig 1 (right) gives the plot of the sorted

weights, in which the top 355 sorted weights are bounded by the dashed line. The sum of the

top 355 weights consitutes 95.9% of the sum of all the 2662 weights. This suggests that only a

few (z, θ(g)) contribute significantly to ~Qj. Furthermore, Fig 2 presents scatter plots of our arti-

ficial data (z, θ(g)), in which the darker the color of (z, θ(g)), the greater the weight wðtÞj ðz; θ
ðgÞ
Þ.

It can be seen roughly that most (z, θ(g)) with greater weights are included in {0, 1} × [−2.4,

2.4]3. In fact, artificial data with the top 355 sorted weights in Fig 1 (right) are all in {0, 1} ×
[−2.4, 2.4]3. These observations suggest that we should use a reduced grid point set G� with

each dimension consisting of 7 equally spaced grid points on the interval [−2.4, 2.4]. Thus, the

size of the corresponding reduced artificial data set is 2 × 73 = 686. In this way, only 686 artifi-

cial data are required in the new weighted log-likelihood in Eq (15). Our simulation studies

show that IEML1 with this reduced artificial data set performs well in terms of correctly

selected latent variables and computing time.
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In the literature, Xu et al. [26] gives a similar approach to choose the naive augmented data

(yij, θi) with larger weight ~pðθijyi;C
ðtÞ
Þ for computing Eq (8). In this paper, we however choose

our new artificial data (z, θ(g)) with larger weight wðtÞj ðz; θ
ðgÞ
Þ to compute Eq (15).

4 Simulation studies

In this section, we conduct simulation studies to evaluate and compare the performance of our

IEML1, the EML1 proposed by Sun et al. [12] and the constrained exploratory IFAs with hard-

Fig 1. Histogram of wj (left column) and plot of sorted wj (right column).

https://doi.org/10.1371/journal.pone.0279918.g001

Fig 2. Scatter plots of the grid points with the weights wj under z = 1 (left column) and z = 0 (right column).

https://doi.org/10.1371/journal.pone.0279918.g002
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threshold and optimal threshold. In all methods, we use the same identification constraints

described in subsection 2.1 to resolve the rotational indeterminacy. In addition, we also give

simulation studies to show the performance of the heuristic approach for choosing grid points.

The R codes of the IEML1 method are provided in S4 Appendix.

Here, we consider three M2PL models with the item number J equal to 40. Three true dis-

crimination parameter matrices A1, A2 and A3 with K = 3, 4, 5 are shown in Tables A, C and E

in S1 Appendix, respectively. The corresponding difficulty parameters b1, b2 and b3 are listed

in Tables B, D and F in S1 Appendix. The non-zero discrimination parameters are generated

from the identically independent uniform distribution U(0.5, 2). The true difficulty parameters

are generated from the standard normal distribution. The diagonal elements of the true covari-

ance matrix S of the latent traits are setting to be unity with all off-diagonals being 0.1.

For parameter identification, we constrain items 1, 10, 19 to be related only to latent traits

1, 2, 3 respectively for K = 3, that is, (a1, a10, a19)T in A1 was fixed as diagonal matrix in each

EM iteration. Similarly, items 1, 7, 13, 19 are related only to latent traits 1, 2, 3, 4 respectively

for K = 4 and items 1, 5, 9, 13, 17 are related only to latent traits 1, 2, 3, 4, 5 respectively for

K = 5.

Two sample size (i.e., N = 500, 1000) are considered. For each setting, we draw 100 inde-

pendent data sets for each M2PL model. We obtain results by IEML1 and EML1 and evaluate

their results in terms of computation efficiency, correct rate (CR) for the latent variable selec-

tion and accuracy of the parameter estimation. The computation efficiency is measured by

the average CPU time over 100 independent runs. The CR for the latent variable selection is

defined by the recovery of the loading structure Λ = (λjk) as follows:

CR ¼
1

KðJ � KÞ

X

1 � j � J; 1 � k � K;
ajkis not fixed for identification

Iðl̂ jk ¼ ljkÞ;

where L̂ ¼ ðl̂ jkÞ is an estimate of the true loading structure Λ. The following mean squared

error (MSE) is used to measure the accuracy of the parameter estimation:

MSEðajkÞ ¼
1

S

XS

s¼1

ðâsjk � ajkÞ
2
;

where asjk denotes the estimate of ajk from the sth replication and S = 100 is the number of data

sets. The MSE of each bj in b and σkk0 in S is calculated similarly to that of ajk.

4.1 Computational efficiency

We first compare computational efficiency of IEML1 and EML1. To make a fair comparison,

the covariance of latent traits S is assumed to be known for both methods in this subsection.

In this study, we consider M2PL with A1. We use the fixed grid point set G ¼ S � S � S,

where S is the set of equally spaced 11 grid points on the interval [4, 4]. In each M-step, the

maximization problem in (12) is solved by the R-package glmnet for both methods. Due to

tedious computing time of EML1, we only run the two methods on 10 data sets. For each repli-

cation, the initial value of (a1, a10, a19)T is set as identity matrix, and other initial values in A
are set as 1/J = 0.025. The initial value of b is set as the zero vector. The candidate tuning

parameters are given as (0.10, 0.09, . . ., 0.01) × N, and we choose the best tuning parameter by

Bayesian information criterion as described by Sun et al. [12].

The average CPU time (in seconds) for IEML1 and EML1 are given in Table 1. From

Table 1, IEML1 runs at least 30 times faster than EML1. Moreover, IEML1 and EML1 yield
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comparable results with the absolute error no more than 10−13. It numerically verifies that two

methods are equivalent.

4.2 Simulation for the unknown S case

In this subsection, we compare our IEML1 with a two-stage method proposed by Sun et al.

[12], a constrained exploratory IFA with hard threshold (EIFAthr) and a constrained explor-

atory IFA with optimal threshold (EIFAopt). In the EIFAthr, all parameters are estimated via a

constrained exploratory analysis satisfying the identification conditions, and then the esti-

mated discrimination parameters that smaller than a given threshold are truncated to be zero.

In the simulation studies, several thresholds, i.e., 0.30, 0.35, . . ., 0.70, are used, and the corre-

sponding EIFAthr are denoted by EIFA0.30, EIFA0.35, . . ., EIFA0.70, respectively. In EIFAthr,

it is subjective to preset a threshold, while in EIFAopt we further choose the optimal truncated

estimates correponding to the optimal threshold with minimum BIC value from several given

thresholds (e.g., 0.30, 0.35, . . ., 0.70 used in EIFAthr) in a data-driven manner.

For IEML1, the initial value of S is set to be an identity matrix. For other three methods, a

constrained exploratory IFA is adopted to estimate S first by R-package mirt with the setting

being “method = EM” and the same grid points are set as in subsection 4.1.

We consider M2PL models with A1 and A2 in this study. To compare the latent variable

selection performance of all methods, the boxplots of CR are dispalyed in Fig 3. From Fig 3,

IEML1 performs the best and then followed by the two-stage method. As we expect, different

hard thresholds leads to different estimates and the resulting different CR, and it would be dif-

ficult to choose a best hard threshold in practices. EIFAopt performs better than EIFAthr. As

complements to CR, the false negative rate (FNR), false positive rate (FPR) and precision are

reported in S2 Appendix. The boxplots of these metrics show that our IEML1 has very good

performance overall.

Fig 4 presents boxplots of the MSE of A obtained by all methods. From Fig 4, IEML1 and

the two-stage method perform similarly, and better than EIFAthr and EIFAopt. We can see

that larger threshold leads to smaller median of MSE, but some very large MSEs in EIFAthr.

Figs 5 and 6 show boxplots of the MSE of b and S obtained by all methods. Note that,

EIFAthr and EIFAopt obtain the same estimates of b and S, and consequently, they produce

the same MSE of b and S. Therefore, their boxplots of b and S are the same and they are repre-

sented by “EIFA” in Figs 5 and 6. We can see that all methods obtain very similar estimates of

b. IEML1 gives significant better estimates of S than other methods.

4.3 Evaluation on heuristic approach for choosing grid points

As presented in the motivating example in Section 3.3, most of the grid points with larger

weights are distributed in the cube [−2.4, 2.4]3. Intuitively, the grid points for each latent trait

dimension can be drawn from the interval [−2.4, 2.4]. In this subsection, we generate three

grid point sets denoted by Grid11, Grid7 and Grid5 and compare the performance of IEML1

based on these three grid point sets via simulation study. Specifically, Grid11, Grid7 and Grid5

are three K-ary Cartesian power, where 11, 7 and 5 equally spaced grid points on the intervals

[−4, 4], [−2.4, 2.4] and [−2.4, 2.4] in each latent trait dimension, respectively.

Table 1. The average CPU time in seconds for IEML1 and EML1 under K = 3 and J = 40.

IEML1 EML1

N = 500 91 3019

N = 1000 114 6553

https://doi.org/10.1371/journal.pone.0279918.t001
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Fig 3. Boxplots of the correct rate of Λ obtained by IEML1 (dark gray boxes), two-stage (light gray boxes),

EIFAthr and EIFAopt (white boxes) for K = 3 and 4 under sample size N = 500 and 1000.

https://doi.org/10.1371/journal.pone.0279918.g003
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Fig 4. Boxplots of the MSE of A obtained by IEML1 (dark gray boxes), two-stage (light gray boxes), EIFAthr

and EIFAopt (white boxes) for K = 3 and 4 under sample size N = 500 and 1000.

https://doi.org/10.1371/journal.pone.0279918.g004
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Fig 7 summarizes the boxplots of CRs and MSE of parameter estimates by IEML1 for all

cases. From Fig 7, we obtain very similar results when Grid11, Grid7 and Grid5 are used in

IEML1. Table 2 shows the average CPU time for all cases. The computing time increases

with the sample size and the number of latent traits. The simulation studies show that IEML1

can give quite good results in several minutes if Grid5 is used for M2PL with K� 5 latent

traits.

Fig 5. Boxplots of the MSE of b obtained by IEML1 (dark gray boxes), two-stage (light gray boxes), EIFAthr and EIFAopt (white boxes) for

K = 3 and 4 under sample size N = 500 and 1000.

https://doi.org/10.1371/journal.pone.0279918.g005
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In fact, we also try to use grid point set Grid3 in which each dimension uses three grid

points equally spaced in interval [−2.4, 2.4]. But the numerical quadrature with Grid3 is not

good enough to approximate the conditional expectation in the E-step. It should be noted that

IEML1 may depend on the initial values. In all simulation studies, we use the initial values sim-

ilarly as described for A1 in subsection 4.1. These initial values result in quite good results and

they are good enough for practical users in real data applications.

Fig 6. Boxplots of the MSE of S obtained by IEML1 (dark gray boxes), two-stage (light gray boxes), EIFAthr and EIFAopt (white boxes) for K = 3

and 4 under sample size N = 500 and 1000.

https://doi.org/10.1371/journal.pone.0279918.g006
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Fig 7. Boxplots of the correct rate of Λ (row 1), the MSE of A (row 2), the MSE of b (row 3) and the MSE of Σ (row 4) for K = 3 (column 1), 4

(column 2) and 5 (column 3) under sample size N = 500 and 1000. The dark gray boxes, light gray boxes and white boxes represent the

results via 11, 7 and 5 grid points per dimension respectively.

https://doi.org/10.1371/journal.pone.0279918.g007
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5 Real data analysis

In this section, we analyze a data set of the Eysenck Personality Questionnaire given in Eysenck

and Barrett [38]. The data set includes 754 Canadian females’ responses (after eliminating sub-

jects with missing data) to 69 dichotomous items, where items 1–25 consist of the psychoticism

(P), items 26–46 consist of the extraversion (E) and items 47–69 consist of the neuroticism

(N). This data set was also analyzed in Xu et al. [26]. In order to guarantee the psychometric

properties of the items, we select those items whose corrected item-total correlation values are

greater than 0.2 [39]. The selected items and their original indices are listed in Table 3, with 10,

19 and 23 items corresponding to P, E and N respectively. Items marked by asterisk corre-

spond to negatively worded items whose original scores have been reversed.

In the analysis, we designate two items related to each factor for identifiability. Based on the

meaning of the items and previous research, we specify items 1 and 9 to P, items 14 and 15 to

E, items 32 and 34 to N. We employ the IEML1 to estimate the loading structure and then

compute the observed BIC under each candidate tuning parameters in (0.040, 0.038, 0.036, . . .,

0.002) × N, where N denotes the sample size 754. The minimal BIC value is 38902.46 corre-

sponding to η = 0.02 × N. The parameter estimates of A and b are given in Table 4, and the

estimate of S is

Ŝ ¼

1:000 0:121 � 0:018

0:121 1:000 � 0:246

� 0:018 � 0:246 1:000

0

B
@

1

C
A:

From the results, most items are found to remain associated with only one single trait while

some items related to more than one trait. Most of these findings are sensible. For example,

item 19 (‘Would you call yourself happy-go-lucky?’) designed for extraversion is also related to

neuroticism which reflects individuals’ emotional stability. Item 49 (‘Do you often feel lonely?’)

is also related to extraversion whose characteristics are enjoying going out and socializing. In

addition, it is reasonable that item 30 (‘Does your mood often go up and down?’) and item

40 (‘Would you call yourself tense or ‘highly-strung’?’) are related to both neuroticism and

psychoticism.

6 Concluding remarks

In this paper, we obtain a new weighted log-likelihood based on a new artificial data set for

M2PL models, and consequently we propose IEML1 to optimize the L1-penalized log-likeli-

hood for latent variable selection. We give a heuristic approach for choosing the quadrature

points used in numerical quadrature in the E-step, which reduces the computational burden of

IEML1 significantly. There are three advantages of IEML1 over EML1, the two-stage method,

EIFAthr and EIFAopt. First, the computational complexity of M-step in IEML1 is reduced to

O(2 × G) from O(N × G). In our simulation studies, IEML1 needs a few minutes for M2PL

Table 2. The average CPU time in seconds of IEML1 with Gird11, Grid7 and Grid5 under K = 3, 4, 5 with sample size N = 500, 1000.

K = 3 K = 4 K = 5

N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000

Grid 11 108 134 768 961 9230 14804

Grid 7 68 66 193 287 953 1155

Grid 5 38 53 80 86 209 267

https://doi.org/10.1371/journal.pone.0279918.t002
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Table 3. The eysenck pensonality questionnaire items.

1� P6 Would being in debt worry you?

2 P22 Would you take drugs which may have strange or dangerous effects?

3 P33 Do you enjoy practical jokes that can sometimes really hurt people?

4� P37 Do good manners and cleanliness matter much to you?

5 P46 Do people who drive carefully annoy you?

6 P50 Do most things taste the same to you?

7� P57 Do you like to arrive at appointments in plenty of time?

8 P67 Do you think people spend too much time safeguarding their future with savings and insurances?

9 P74 When you catch a train do you often arrive at the last minute?

10 P83 Would you like other people to be afraid of you?

11 E5 Are you a talkative person?

12 E10 Are you rather lively?

13 E14 Can you usually let yourself go and enjoy yourself at a lively party?

14 E17 Do you enjoy meeting new people?

15� E21 Do you tend to keep in the background on social occasions?

16 E25 Do you like going out a lot?

17� E29 Do you prefer reading to meeting people?

18 E32 Do you have many friends?

19 E36 Would you call yourself happy-go-lucky?

20 E40 Do you usually take the initiative in making new friends?

21� E42 Are you mostly quiet when you are with other people?

22 E45 Can you easily get some life into a rather dull party?

23 E49 Do you like telling jokes and funny stories to your friends?

24 E52 Do you like mixing with people?

25 E60 Do you like doing things in which you have to act quickly?

26 E64 Do you often take on more activities than you have time for?

27 E70 Can you get a party going?

28 E82 Do you like plenty of bustle and excitement around you?

29 E86 Do other people think of you as being very lively?

30 N3 Does your mood often go up and down?

31 N7 Do you ever feel “just miserable” for no reason?

32 N12 Do you often worry about things you should not have done or said?

33 N15 Are you an irritable person?

34 N19 Are your feelings easily hurt?

35 N23 Do you often feel “fed-up”?

36 N27 Are you often troubled about feelings of guilt?

37 N31 Would you call yourself a nervous person?

38 N34 Are you a worrier?

39 N38 Do you worry about awful things that might happen?

40 N41 Would you call yourself tense or “highly-strung”?

41 N47 Do you worry about your health?

42 N54 Do you suffer from sleeplessness?

43 N58 Have you often felt listless and tired for no reason?

44 N62 Do you often feel life is very dull?

45 N66 Do you worry a lot about your looks?

46 N68 Have you ever wished that you were dead?

47 N72 Do you worry too long after an embarrassing experience?

48 N75 Do you suffer from “nerves”?

(Continued)
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models with no more than five latent traits. Second, IEML1 updates covariance matrix S of

latent traits and gives a more accurate estimate of S. Third, IEML1 outperforms the two-stage

method, EIFAthr and EIFAopt in terms of CR of the latent variable selection and the MSE for

the parameter estimates.

The current study will be extended in the following directions for future research. First, we

will generalize IEML1 to multidimensional three-parameter (or four parameter) logistic mod-

els that give much attention in recent years. Second, other numerical integration such as

Gaussian-Hermite quadrature [4, 29] and adaptive Gaussian-Hermite quadrature [34] can be

adopted in the E-step of IEML1. Gaussian-Hermite quadrature uses the same fixed grid point

set for each individual and can be easily adopted in the framework of IEML1. However, further

simulation results are needed. Compared to the Gaussian-Hermite quadrature, the adaptive

Gaussian-Hermite quadrature produces an accurate fast converging solution with as few as

Table 3. (Continued)

49 N77 Do you often feel lonely?

50 N80 Are you easily hurt when people find fault with you or the work you do?

51 N84 Are you sometimes bubbling over with energy and sometimes very sluggish?

52 N88 Are you touchy about some things?

https://doi.org/10.1371/journal.pone.0279918.t003

Table 4. The parameter estimates by the IEML1 algorithm for the real data.

A b A b
1 0.723 0.000 0.000 -1.943 27 0.000 1.839 0.000 0.745

2 0.659 0.000 0.000 -2.181 28 0.000 1.311 0.000 1.479

3 1.097 0.000 0.000 -3.510 29 0.000 1.699 0.000 1.469

4 0.966 0.000 0.000 -3.175 30 0.321 0.000 1.167 0.769

5 1.177 0.000 0.000 -1.779 31 0.000 0.000 0.890 0.911

6 0.854 0.000 0.000 -3.093 32 0.000 0.000 1.321 2.082

7 1.689 0.000 0.000 -1.952 33 0.000 0.000 0.887 -1.173

8 0.515 0.000 0.000 -1.079 34 0.000 0.000 1.356 1.264

9 2.030 0.000 0.000 -1.718 35 0.000 -0.153 1.430 0.399

10 1.075 0.000 0.000 -3.316 36 0.000 0.000 1.473 0.393

11 0.000 1.542 0.000 1.128 37 0.000 0.000 1.228 -0.562

12 0.000 1.683 0.000 2.283 38 -0.392 0.000 1.679 1.284

13 0.000 1.397 0.000 1.931 39 0.000 0.000 1.197 0.350

14 0.000 1.324 0.000 2.872 40 0.422 0.000 1.475 -1.440

15 0.000 1.696 0.000 0.702 41 -0.248 0.188 0.751 0.311

16 0.336 0.840 0.000 1.294 42 0.255 0.000 0.784 -0.408

17 0.000 1.143 0.000 2.073 43 0.000 0.000 1.168 0.777

18 0.000 1.200 0.000 2.075 44 0.000 -0.247 1.023 -1.214

19 0.000 0.787 -0.463 -0.133 45 0.000 0.225 1.105 0.587

20 0.000 1.617 0.000 0.716 46 0.000 -0.128 0.663 0.057

21 0.000 1.831 0.000 0.983 47 -0.380 -0.253 1.568 0.898

22 0.000 1.962 0.000 -0.066 48 0.000 0.000 1.749 -0.878

23 0.000 0.970 0.000 2.025 49 0.000 -0.220 1.199 -0.327

24 0.000 2.180 0.000 3.455 50 0.000 -0.188 1.126 0.997

25 0.358 0.631 -0.232 0.541 51 0.000 0.000 0.912 1.889

26 0.245 0.478 0.000 0.584 52 0.000 0.000 0.829 2.085

https://doi.org/10.1371/journal.pone.0279918.t004
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two points per dimension for estimation of MIRT models [34]. Therefore, the adaptive Gauss-

ian-Hermite quadrature is also potential to be used in penalized likelihood estimation for

MIRT models although it is impossible to get our new weighted log-likelihood in Eq (15) due

to applying different grid point set for different individual. Third, we will accelerate IEML1 by

parallel computing technique for medium-to-large scale variable selection, as [40] produced

larger gains in performance for MIRT estimation by applying the parallel computing tech-

nique. Fourth, the new weighted log-likelihood on the new artificial data proposed in this

paper will be applied to the EMS in [26] to reduce the computational complexity for the MS-

step.
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