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Abstract— Continual learning (CL) has emerged as an im-
portant avenue of research in recent years, at the intersection of
Machine Learning (ML) and Human-Robot Interaction (HRI),
to allow robots to continually learn in their environments over
long-term interactions with humans. Most research in continual
learning, however, has been robot-centered to develop continual
learning algorithms that can quickly learn new information
on static datasets. In this paper, we take a human-centered
approach to continual learning, to understand how humans
teach continual learning robots over the long term and if
there are variations in their teaching styles. We conducted
an in-person study with 40 participants that interacted with
a continual learning robot in 200 sessions. In this between-
participant study, we used two different CL models deployed
on a Fetch mobile manipulator robot. An extensive qualitative
and quantitative analysis of the data collected in the study
shows that there is significant variation among the teaching
styles of individual users indicating the need for personalized
adaptation to their distinct teaching styles. The results also show
that although there is a difference in the teaching styles between
expert and non-expert users, the style does not have an effect
on the performance of the continual learning robot. Finally,
our analysis shows that the constrained experimental setups
that have been widely used to test most continual learning
techniques are not adequate, as real users interact with and
teach continual learning robots in a variety of ways.

I. INTRODUCTION

We envision a future of general-purpose assistive robots
that can help users with a variety of tasks in dynamic
environments, such as homes, offices, shopping malls, etc.
It would be necessary that such assistive robots are per-
sonalized to their users’ needs and their environments [1].
However, over the long term, users’ needs, preferences, and
their environments will continue to change, which makes
it impossible to pre-program the robot with all the tasks it
might be required to perform. A solution to this problem is
to allow people to continually teach their robots new tasks
and changes in their environments on the fly, an approach
known as continual learning (CL) [2], [3].

Continual learning has been extensively studied in recent
years to allow robots to learn over long periods of time [3],
[4]. As it is imperative for a robot to learn the objects in its
environment, the majority of research on CL has focused
on machine learning (ML) models for object recognition

This research was undertaken, in part, thanks to funding from the Canada
150 Research Chairs Program.

1 University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

{* a%ayub, jm3mehta, zdefrancesco, cnehaniv,
kdautenh} Quwaterloo.ca

2 University of Hertfordshire, Hertfordshire AL10 9AB, England, UK

p.holthaus@herts.ac.uk

in recent years [4], [5]. Most of these techniques were
tested on static object recognition datasets with a large
number of training images for each object class. In real-
world environments, however, robots will need to learn
from individual interactions with their users who might be
unwilling to provide a large number of training examples for
each object.

In the past few years, robotics researchers developed
CL techniques that can learn from only a few training
examples per object, an approach known as Few-Shot Class
Incremental Learning (FSCIL) [3], [6], [7]. Although FSCIL
techniques produced promising results on real robots, they
were only tested with systematically collected datasets by
their experimenters. Overall, most research in continual
learning has been robot-centered, to develop efficient CL
algorithms that can learn from static datasets or interaction
with robot experimenters. However, in the real world, robots
will learn from real users who might be unfamiliar with robot
programming and learning. Therefore, an equally important
area of research in continual learning is human-centered,
to understand how human users interact with and teach
continual learning robots over the long term. To the best
of our knowledge, we know of no other work on developing
long-term user studies where human users teach modern CL
models deployed on robots over multiple interactions.

In this paper, we have a human-centered focus to uncover
the diversity and evolution of human teaching when interact-
ing with a continual learning robot over repeated sessions.
We developed a CL system that integrates a graphical user
interface (GUI) with CL models of object learning deployed
on the Fetch mobile manipulator robot [8]. We conducted a
long-term between-participant study (N=40) where partici-
pants interacted with and taught everyday household objects
to a Fetch robot that used two different CL models. We
analyzed the data collected in the study to characterize
various aspects of human teaching of a continual learning
robot in an unconstrained manner. Our results highlight the
variation in the teaching styles of different users, as well as
the influence of the robot’s performance on users’ teaching
styles over multiple sessions. Our results indicate that the
constrained experimental setups traditionally used to test
most CL models are inadequate, as real users teach continual
learning robots in a variety of ways.

II. RELATED WORK

In this section, we first present an overview of modern
CL methods mostly tested without human users, and then
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Fig. 1: (Left) Experimental layout for the CL setup with the
participant and the robot. (Right) Corresponding real-world setup.

introduce current approaches to robot teaching, highlighting
the need for a human-centered approach at the intersection
of CL and human-robot interaction (HRI).

A. Continual Learning

The goal of CL models is to continuously adapt and learn
new information over time while preserving past knowledge.
Most research in the CL literature has focused on class-
incremental learning (CIL) in which a machine learning
model learns from labeled training data of different classes
in each increment and is then tested on all the classes it
has learned so far [4]. One of the main problems faced
by class-incremental learning models is catastrophic forget-
ting, in which the model completely forgets the previously
learned classes when learning new classes in an increment
[9]. Various research directions have been pursued in the
past to tackle the catastrophic forgetting problem, such as
replay-based techniques that store and replay data of the old
classes when learning new classes [4], [10], regularization
techniques [11], [12], and generative replay based techniques
that generate old data using stored class statistics [13], [14].
These techniques, however, are not suitable for learning from
human users who might be unwilling to provide hundreds or
thousands of images per object class.

In the past couple of years, researchers also developed
class-incremental learning models that can learn from only
a few labeled examples per class, a direction known as few-
shot class incremental learning (FSCIL) [15]. However, CIL
and FSCIL approaches were either tested on static datasets,
or on data captured by a robot while interacting with experi-
menters in systematically controlled setups [2], [3], [15]. To
the best of our knowledge, all of the FSCIL approaches were
robot-centered and none of these approaches were tested with
actual participants (users).

B. Human-Robot Teaching

Human-centered research for robot learning through HRI has
been limited. A few user studies have been conducted in
the past with simulated and real robots to understand the
characteristics of human teaching. Most of these studies were
conducted in Wizard of Oz setups where the robot did not
learn from human teaching [16], [17]. Some research has
been conducted on interactive reinforcement learning through
HRI for learning manipulation tasks through physical human
corrections, learning kitchen-related tasks in simulation, or
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Fig. 2: Our complete CL system. Processed RGB images from
the robot’s camera are sent to the GUI for transparency and also
passed on to the CL Model. The user sends object names to the CL
model either for training the CL model or finding an object. The
arm trajectory planner takes point cloud data, processed RGB data,
and predicted object labels from the CL model as input and sends
the arm trajectory for the Fetch robot to point to the object.

learning natural language description of images from humans
[18]-[20]. However, most of these studies were designed to
test the performance of the reinforcement learning models
or understand the perceptions of users towards these models
and were not focused on understanding patterns of human
teaching. Furthermore, these studies were only tested in a
single interaction with users. However, for continual learning
robots, it is imperative to design multi-session studies to
understand how human teaching of continual learning robots
evolves over the long term. In contrast to prior work, to
the best of our knowledge, we conducted the first long-term
user study at the intersection of continual machine learning
and HRI, to understand patterns of human teaching with a
continual learning robot over multiple interactions.

III. METHOD

We investigated human teaching patterns when interacting
with a continual learning robot to teach an object recognition
task. The subsections below describe our CL system and the
method for our long-term study.

A. Continual Learning System

In this experiment, in each session, the user taught the robot
household objects in a table-top environment and then tested
the robot to find and point to the requested object on the
table. Figure [I] shows the table-top experimental setup for
this study. The simplicity of the setup and the task makes
it clear what the user should do to teach the robot different
objects, and what the robot should do to find the learned
objects during the testing phase.

For this setup, we developed a CL system for the object
recognition task, which integrates CL models with a Fetch
mobile manipulator robot [8], as well as a graphical user
interface (GUI) for interactive and transparent learning from
human users. Figure 2] shows our system for the object
recognition task. In this system, the user interacts with the
robot through the GUI on an Android tablet (Figure [3).
The user provides labels of new objects placed in front of
the robot through the GUI and saves the images of objects
processed through the object detection module in the robot’s
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Fig. 3: The graphical user interface (GUI) used to interact with the
robot. The RGB camera output with bounding boxes is on the top
left. The buttons at the bottom can be used to teach objects to the
robot and ask it to find objects in the testing phase. The top right
of the GUI shows information sent by the robot to the user.

memory. The robot then uses the saved object images in
each session to train the CL model. After teaching, the user
can test the robot by asking it to find objects on the table
through the GUI. The robot passes the pre-processed images
to the CL model to get the predicted object labels. If the
object requested by the user is found, the robot finds the 3D
location of the object on the table and points to the object
using its arm.

1) Continual Learning Models: We consider two CL
models in this study. For the first model, we consider a naive
finetuning (FT) approach [4] in which a convolutional neural
network (CNN) [21] is trained on the image data of the object
classes in each increment (i.e. in an interactive session with
the user). The model does not train on any of the objects
learned in the previous increments (sessions) and therefore it
forgets the previously learned objects. This model can serve
as a baseline for forgetting in continual learning [4], [10].

For the second model, we consider a state-of-the-art CL
approach specifically designed for FSCIL in robotics appli-
cations [3]. This approach, termed centroid-based concept
learning (CBCL), mitigates forgetting by creating separate
clusters for different object classes. CBCL stores cluster cen-
troids of object classes in memory and uses these centroids
to make predictions about labels of new objects. More details
about these models can be found in [3], [4]. Note that all of
these models were only tested on systematically collected
object datasets in prior work, and have never been tested in
real-time with human participants.

B. PFarticipants

We recruited 40 participants (19 female (F); 21 male (M),
all students) from the University of Waterloo, between the
ages of 18 and 37 years (M = 23.48, SD = 4.49). 20
participants (ages: M = 24.15, SD = 4.21, 10 F, 10
M) were randomly assigned to FT condition, and the other
20 (ages: M = 22.78, SD = 4.68, 9 F, 11 M) were
randomly assigned to CBCL condition. The participants had
diverse backgrounds in terms of their majors, but most of
them (65%) were engineering and computer science students.

Based on their self-assessments in a pre-experiment survey,
40% of the participants reported that they were familiar with
robot programming, 55% reported that they had previously
interacted with a robot, 5% were familiar with the Fetch
robot, and 10% had previously participated in an HRI study.
For the remainder of the paper, we will call participants with
prior robot programming experience ‘experts’ and the rest of
the participants ‘non-experts’. All procedures were approved
by the University of Waterloo Human Research Ethics Board.

C. Research Questions

We analyze the data collected in our study to answer the fol-
lowing research questions and test the associated hypotheses:

RQ1 How do different human users label objects when
teaching a continual learning robot over multiple ses-
sions?

H1.1 Labelling strategies for objects vary among different
users.

RQ2 Does the continual learning robot’s performance affect
the way users teach over multiple sessions?

H2.1 Classification performance of the robot affects the
teaching style of the participants over multiple sessions.

H2.2 Users teach a robot that forgets previous objects
differently than a robot that remembers previous objects.

RQ3 Do users change the way they teach the continual
learning robot over multiple sessions?

H3.1 Teaching styles of users change over multiple sessions
regardless of the CL model.

RQ4 Is there a difference in teaching style and robot
performance for expert and non-expert users?

H4.1 Continual learning robots taught by expert users per-
form better than the ones taught by non-expert users.

H4.2 There is a difference between the teaching styles of
expert and non-expert users.

D. Procedure

We conducted five repeat sessions (each lasting ~20-30
minutes) with each participant in a robotics laboratory. All
sessions were video recorded. We also stored the image
data of the objects taught and tested by the participants.
Each participant was randomly assigned to one of the two
experimental conditions using one of the two CL models,
CBCL and FT. Before their first session, each participant
was asked to complete a consent form and a pre-experiment
survey online. After completing the consent form and the pre-
experiment survey, the experimenter greeted the participant
and gave a brief oral introduction to the experiment. The
participant then interacted with the robot in a demo session
to understand how to teach and test the robot. In the demo
phase, the robot did not learn any objects.

During the demo phase, the experimenter explained to the
participant how to start a teaching session using the GUI,
teach an object to the robot, and test the robot to find the
object. The participant then tried teaching a demo object (this
object was not used later) to the robot. The participant then



Fig. 4: The twenty-five objects used in our study.

tested the robot to find the demo object on the table using the
GUI. After the demo phase (~5 minutes), the experimenter
gave a paper sheet, which served as a memory aid, to the
participant to write down the names of the objects of the
current session. In this way the participants could remember
the object names when they needed the robot to find these
objects in the next sessions. The experimenter then took
the tablet from the participant and loaded the program for
the actual session on the tablet. The experimenter handed
the tablet back to the participant and placed five objects
to be taught in the session on one side of the table. The
experimenter then mentioned to the participant that they can
start their session and start teaching the five objects.

The experimenter then went to a secluded area and the
participant taught and tested objects to the robot. At the end
of the session, the experimenter came out of the secluded
area and asked the participant to finish a post-experiment
survey. The participant then scheduled their next session. In
the next four sessions, the same procedure was repeated, ex-
cept for replacing the objects to be taught between sessions.
Figure [4] shows the 25 objects used in our study. Participants
were also told that they can bring a maximum of two objects
per session of their own choice in sessions 3-5 to teach
to the robot. If participants brought their own objects, we
replaced some of the objects from our set (Figure @) with
participants’ objects (total objects taught over 5 sessions was
still 25). Participants did not go through a demo interaction
in the next four sessions. At the end of the last session, the
experimenter asked the participant to have a short interview
to answer some questions describing their experience with
the robot. This interview was audio recorded. Analyses of the
post-experiment survey and audio interview are not reported
since they go beyond the scope of this paper, and will be
reported in future publications. Examples of the teaching and
testing phases are shown in the supplementary video.

E. Measures

We used both qualitative and quantitative measures to an-
alyze the data for the two conditions. We analyzed the
object names given by the participants to different objects
using the image data stored for objects during teaching
sessions. We report the variety and frequency of labels used
by the participants for each object. We also coded the video
recordings to calculate the frequency of teaching by the
participants in all 5 sessions, and if they re-taught any objects

Object No. of Different Labels Most Common Label
Green Cup 10 Cup (59%)
Honey 13 Honey (46.5%)
Bowl 10 Bowl (65%)
Glue 6 Glue (76%)
Spoon 6 Spoon (81%)
Apple 3 Apple (90%)
Banana 3 Banana (90%)
Red Cup 14 Red Cup (25%)
Blue Marker 11 Marker (58%)
Orange 5 Orange (77%)
Mug 7 Mug (72%)
Fork 6 Fork (76%)
Sharpie 8 Sharpie (48%)
Plate 10 Plate (61%)
Stapler 6 Stapler (86%)
Book 4 Book (86%)
Red Marker 4 Red Marker (31%)
Blue Pen 7 Pen (60%)
Pepsi 7 Pepsi (54%)
White Bottle 8 Water Bottle (62%)
Coca Cola 8 Coke (36%)
Milk 7 Milk (77%)
Phone 5 Phone (68%)
7Up 12 7Up (44%)
‘Water Bottle 8 Water (47%)

TABLE I: The number of different labels given by the participants
to all 25 objects in the study together with the most common label
for each object with the percentage of participants that chose this
label. Objects are ordered from top to bottom as they were taught
in 5 sessions with 5 objects per session. Note that the first column
shows some reference names for the objects to be able to identify
them individually in the paper.

to the robot in case the robot was not able to correctly find
them on the table.

We also analyzed the performance of two CL approaches.
Classification accuracy per session (increment) has been
commonly used in the CL literature [4], [6] for quantifying
the performance of CL models for object recognition tasks.
Therefore, for each session, during the testing phase, we
recorded the total number of objects tested by the participant
and the total number of objects that were correctly found by
the robot. Using this data, we calculated the accuracy A of
the robot in each session as:

number of objects correctly found

A= (1)

number of objects tested

We use the accuracy of the models to determine the
teaching quality of the participants in each condition and
over multiple sessions. Further, using the image data stored
for the objects, we calculated the average number of times
each object was taught by the participants in each session
to determine the effort spent by the participants in teaching
the robot. Finally, we analyze how the above-mentioned
variables are affected by the sessions, choice of the CL
model, and previous robot programming experience of the
participants.

IV. RESULTS

In this section we present the results of our analysis in
terms of different labeling strategies and teaching styles of
the participants. We also report the effect of participants’
teaching styles on the robot’s performance and vice versa.



Accuracy No. images Teaching phases Reteaching
Session number 0.002 ** 0.819 0.975 0.639
CL model <0.0001 **** 0.181 0.644 0.4
Programming experience 0.328 <0.0001 ##** 0.096 . 0.772
Session number : CL model <0.001 *** 0.95 0.963 0.862
Session number : Programming experience 0.624 0.681 0.865 0.679
CL model : Programming experience 0.417 <0.0001 ##** 0.071 . 0.147
Session number : CL model : Programming experience 0.991 0.734 0.988 0.335

TABLE II: Results (p values) of the three-way ANOVA using session number, continual learning model, and previous
programming experience as independent variables. Columns for the accuracy of the models, number of images per object,
number of teaching phases, and reteaching misclassified objects show p values for the dependent variables. Significance
levels (. :=p < 0.1;% :=p < .05; %% := p < 0.01; % x % := p < 0.001; * * xx := p < 0.0001).

A. Object Labeling by Human Teachers

Table |I] shows the number of different labels given to the
25 objects by 40 participants in the study. To identify each
object we add a generic name for each object in the table.
For example, for the plastic apple used in our study, we
identify it as an apple in the table. Overall, there was
a significant variation in the labeling of objects by the
participants, ranging from 3 (for Apple) to 14 (for Red Cup)
different labels for the objects. Among such labels, some
were quite simple and generic, such as Honey, Bowl, Milk,
etc. whereas some were quite specific, such as Almost Empty
Yellow Honey Jar , Light Green Flat Bowl, Empty Milk
Carton, etc. We also report the most common label given
to each object and the percentage of participants that chose
that label. The consensus among the participants for labeling
the objects varied from 25% for Red Cup to 90% for Apple.
We also noticed some unique labeling strategies by the
participants. Some of the participants labeled different ob-
jects in different sessions using the same label. For example,
multiple participants gave the label Cup to Green Cup in
Session 1, Red Cup in Session 2, and Mug in Session 3. In
total, 10 out of 40 participants (25%) gave the same label to
at least two different objects. Further, some participants also
gave multiple labels to the same objects. For example, one
participant labeled Milk as both Milk Box and Milk Pouch.
Overall, there were 7 out of 40 participants (17.5%) that
gave more than one label to at least one object. Finally, we
noticed that some participants gave labels that did not match
the objects. For example, one participant named glue Insert
Stick Joke Here, another participant named bowl Plate, and
another participant named stapler The Better Robot.

B. Participants’ Teaching Styles and Robot Performance

We performed a three-way ANOVA with three independent
variables: the two conditions (CBCL, FT), session number,
and previous robot programming experience of the partici-
pants. The ANOVA was performed to understand the effect
of the three independent variables on the teaching style of the
participants and the robot’s performance in the testing phase.
The dependent variables were the classification accuracy of
the robot in the testing phases for 200 sessions, the average
number of images per object shown by the participants
in each session, the number of teaching phases started by
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Fig. 5: Boxplots for accuracy for two conditions. Signifi-
cance levels (x := p < .05; %% := p < 0.001; xxxx := p <
0.0001) are indicated on bars between columns.

the participants in each session, and the number of times
participants retaught misclassified objects in each session.

Table [I]] represents the p values and significance levels for
the ANOVA. For classification accuracy, we see a significant
effect based on the session number and the choice of the
CL model (CBCL or FT condition), and the interaction
between the session number and the CL model. For the
number of images taught per object, we noticed a significant
effect based on the previous programming experience of the
participants, and the interaction between the CL model and
the programming experience. For the number of teaching
phases per session, we only saw a borderline effect by the
programming experience and interaction between the CL
model and the programming experience. Finally, reteaching
of misclassified objects was not significantly affected by any
of the independent variables.

For significant ANOVAs, we performed the post hoc
Tukey HSD test. However, the data for sub-groups for some
dependent variables were not normally distributed, therefore,
we also performed the Wilcoxon rank sum test [22] with
false discovery rate correction [23] for pairwise comparisons
between sub-groups for each dependent variable.

1) Model Accuracy: As the data for classification ac-
curacy was normally distributed, we performed the post
hoc Tukey HSD test for significant ANOVAs. Figure [3]
shows the average classification accuracy of the continual
learning robot over five sessions. As displayed in Figure [5a]
the accuracy is significantly affected by the choice of the
CL model. For the first session, both models have similar
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accuracy (p = 0.53, ¢ = 0.19 for CBCL; p = 0.52,
o = 0.18 for FT). For the next four sessions, there is a
statistically significant difference between the two models:
when comparing CBCL (¢ = 0.54, ¢ = 0.16) to FT
(p = 029, 0 = 0.13) with p = 0.0002 for session 2,
comparing CBCL (¢ = 0.54, 0 = 0.15) to FT (ux = 0.22,
o = 0.13) with p < 0.0001 for session 3, comparing CBCL
(uw = 0.53, 0 = 0.20) to FT (u = 0.24, 0 = 0.13) with
p < 0.0001 for session 4, and comparing CBCL (i = 0.55,
o =0.19) to FT (x = 0.26, 0 = 0.14) with p < 0.0001
for session 5. Further, when considering the two models
separately, significant differences are seen between the first
and the subsequent sessions for FT only.

As evident from the ANOVA, there was no statistically
significant difference in classification accuracy for expert
and non-expert users (based on their previous programming
experience). Results in Figure [5b| correlate with the ANOVA.

2) Number of Images per Object: We performed the post
hoc Tukey HSD test for the significant ANOVAs for the
number of images as the dependent variable. Figure[6a] details
the difference between the two CL models and expert and
non-expert participants in terms of the number of images
taught per object. There is a statistically significant difference
between CBCL and FT for experts only, with (u = 4.48,
o = 2.92) for CBCL and (¢ = 8.76, 0 = 5.75) for FT with
p < 0.0001. Further, we also notice a statistically significant
difference between experts and non-experts irrespective of
the CL model with (¢ = 3.93, 0 = 3.71) for non-experts
and (u = 6.09, 0 = 4.67) for experts with p = 0.0001.
However, this difference seems to stem from participants in
the FT condition only.

To further investigate the experts and non-experts in the
FT condition, we performed a Wilcoxon rank sum test [22]
between experts and non-experts in the FT condition over
five sessions. As displayed in Figure[6b] there is a statistically
significant difference between experts and non-experts for
sessions 4 and 5 only i.e. when comparing experts (u =
9.05, 0 = 4.41) to non-experts (u = 3.68, o = 3.25) with
p = 0.035, W = 10.5 in session 4, and comparing experts
(p = 11.49, ¢ = 7.03) to non-experts (u = 3.14, 0 = 2.49)
with p = 0.035, W = 10.0 in session 5.
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Fig. 7: Boxplot for number of teaching phases per session for
experts and non-experts in two conditions. Significance levels (x :=
p < .05) are indicated on bars between columns.

3) Number of Teaching Phases per Session: As the
ANOVA for the number of teaching phases was not sig-
nificant, we did not perform a post hoc Tukey HSD test.
However, we performed a Wilcoxon rank sum test for the
borderline values in ANOVA. Most of the data values were
1, indicating that most participants started only a single
teaching phase in most sessions. Figure [7| shows the number
of teaching phases per session for the two conditions and for
experts and non-experts. There was no statistically significant
difference between the two conditions, however, as displayed
in the figure, there was a statistically significant difference
between experts (u = 1.69, 0 = 1.78) and non-experts
(n=2.23, 0 = 2.28) with p = 0.047, W = 5427.

Further, 20 out of 40 participants had at least one session
where they started more than one teaching phase with the
robot. Overall, 50 out of 200 sessions had more than one
teaching phase ranging from 2 to 9 teaching phases in a
single session.

4) Reteaching after Misclassification: The ANOVA for
the dependent variable reteaching after misclassification was
not significant and there were no borderline values. There-
fore, we did not perform a post hoc Tukey HSD test. Overall,
we noticed that 18 out of 40 participants retaught at least
one object after it was misclassified by the robot during the
testing phase. In total there were 46 out of 200 sessions
in which participants retaught misclassified objects with a
maximum of 7 reteaching of misclassified objects.

Note that the above statistic only counts the reteaching
of misclassified objects from the current session only i.e.
if an object taught in the previous sessions was misclas-
sified and retaught in a session it is not covered in the
above statistic. Overall, there were only 11 sessions when
participants retaught at least one object from the previous
sessions, with a maximum number of 4 old objects taught in
a session. In terms of the number of participants, only 6 out
of 40 participants retaught objects from previous sessions in
subsequent sessions.



V. DISCUSSION

Results from the qualitative and quantitative analyses of the
data collected in our study allow us to validate the hypotheses
in Section and answer the research questions.

For object labeling, we noticed significant variations in the
labeling strategies of different participants. None of the 25
objects used in the study had a single consistent label across
all 40 participants, even for simple objects, such as Apple.
Further, some participants also labeled different objects with
the same label, and some participants gave multiple labels
to the same object. These strategies significantly affected the
performance of the continual learning robot as depicted by
the high standard deviation in classification accuracy of the
two CL models (Figure[5a)). As a consequence, we can accept
H1.1. These results also indicate the need for developing per-
sonalized robots that adapt to their users’ labeling strategies
and learn, and understand, their environment such that both
the user and the robot can effectively communicate about the
entities in the environment.

The classification accuracy of the continual learning robot
was significantly affected by the choice of the CL model
which was expected as the FT model forgets previous objects
over the five sessions. However, classification accuracy was
not affected by the previous robot programming experience
of the participants. This result was surprising as it indicates
that even expert users who have previous programming
experience might not be familiar with continual learning over
the long term. Therefore, the teaching effectiveness of both
expert and non-expert users might be similar for a continual
learning robot. Consequently, we have to reject H4.1.

We quantified participants’ teaching styles by calculating
the number of images taught per object, the number of
teaching phases started in each session, the number of times
objects were retaught after being misclassified by the robot,
and the number of times objects from previous sessions were
taught by the participants. For the number of images per
object, we did not find a statistically significant difference
regarding the choice of the CL model or the session number
in ANOVA. However, the previous robot programming ex-
perience of the participants did have a significant effect on
the number of images per object. Particularly, this difference
occurred because of a significantly high number of images
shown by expert users in the FT condition. Upon further
investigation, this difference occurred because expert users
showed a significantly larger number of objects than non-
expert users during later sessions in the FT condition. These
results show that based on their previous experiences expert
users might try to compensate for the degraded performance
of the robot in later sessions by teaching more images
per object. Note, that this might still not affect the robot’s
classification performance, as users might not be familiar
with continual learning.

In terms of the number of teaching phases per session,
there was no statistically significant effect of the choice
of the CL model or the session number. However, we did
see a significant difference between expert and non-expert

users. Particularly, we noticed that non-expert users started
more teaching phases with the robot in each session. Note
that in the demo session participants were shown only a
single teaching phase. Therefore, this result indicates that
non-expert users might teach continual learning robots dif-
ferently than the experimenter, i.e., not entirely following
their instructions. Further, taking into account the number
of images taught per object, this result indicates that non-
expert users might teach comparatively few objects to the
robot. However, based on the robot’s performance they might
re-teach the same objects again.

For reteaching objects based on misclassification by the
robot, we did not see any significant effect of the session
number, choice of the CL model, or the previous program-
ming experience of the participants. However, we did notice
that almost half of the participants retaught objects if they
were misclassified by the robot. This result indicates that,
unlike static datasets, the continual learning robots might
get more data for the objects if the robot misclassifies
them in a session. Finally, we also noticed that almost half
(45%) of the participants also retaught some of the objects
from previous sessions to the robot. Note that in the study
instructions, and during the demo phase, participants were
not told that they cannot re-teach old objects, therefore many
of the participants retaught objects from previous sessions
if the robot misclassified them during the testing phases.
These results further demonstrate the difference between
constrained CL test setups and testing in the real world with
real users. Particularly, unlike constrained CL setups, users
will reteach objects that they previously taught the robot
if the robot does not classify them correctly. Finally, these
results show that most users in the study were motivated
to improve the performance of the robot, even though they
were not given any specific incentive to do so. This is quite
promising, as it indicates that users might be motivated
to improve the performance of their personal robots over
long-term interactions. Based on the above results H2.1
can be accepted partially as we noticed that almost half
of the participants retaught objects to the robot based on
the robot’s classification performance. H2.2 can also be
accepted partially as we noticed a difference in the number
of images per object between CBCL and FT for expert users.
Furthermore, H3.1 has to be rejected as we noticed a change
in the number of images per object for expert users in the
FT condition only. Finally, we can accept H4.2 partially,
as we did notice a difference in the number of images per
object, and the number of teaching phases for expert and non-
expert users. However, there was no difference in terms of
reteaching old objects between expert and non-expert users.

VI. CONCLUSIONS

In this paper, we considered a human-centered approach
to continual learning to understand how users interact with
and teach continual learning robots over the long term. We
designed a long-term between-participant HRI study with
a continual learning robot using two different CL models
and analyze the data to understand the different teaching



styles of participants, and how these styles are influenced
by the performance of the robot over multiple sessions. Our
results indicate that different users teach household objects
to the continual learning robot in a variety of ways, which
can also affect the classification performance of the CL
models. Moreover, the results show that the classification
performance of the robot can also influence the teaching
style of the users, which is different from constrained CL test
setups. The results also show that the previous programming
experiences of the users can also significantly influence the
way they interact with and teach the continual learning
robot over multiple sessions. Finally, our results demonstrate
the limitations of current CL test setups and CL models.
Therefore, based on the results of this study, we recommend
future CL models focus on adapting to the teaching style of
their users, and that CL models should be tested in more
realistic test setups.

VII. LIMITATIONS AND FUTURE WORK

We conducted our study in an unconstrained setup, where
participants could teach and test the robot flexibly. However,
the study was conducted in a robotics lab and not in a
realistic household environment. In future work, we plan to
conduct a similar study in a smart home with the same robot
to understand the influence of the household environment on
the interactions and teaching styles of the users.

We conducted the user study with a mix of expert and
non-expert users, however, they were all university students
between the ages of 18 and 37 years. In future work, we
plan to conduct this study with participants who might be
less familiar with robots to understand the effectiveness of
continual learning robots for assistive applications. Finally,
the study was conducted with one particular robot and with
two CL models. Expanding this work to other robots and
CL models can help us understand the larger design space of
continual learning robots and users’ teaching patterns when
interacting with these robots.

Despite these limitations, our user study took the first step
toward a human-centered approach to continual learning by
integrating machine learning-based CL models with HRI.
We hope that our results can help ML and HRI researchers
design CL models that can adapt to their users’ teaching
styles and test these models in realistic experimental setups
where embodied agents interact with human users.
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