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ABSTRACT

Context. Many massive galaxies launch jets from the accretion disk of their central black hole, but only ∼103 instances are known
in which the associated outflows form giant radio galaxies (GRGs, or giants): luminous structures of megaparsec extent that consist
of atomic nuclei, relativistic electrons, and magnetic fields. Large samples are imperative to understanding the enigmatic growth of
giants, and recent systematic searches in homogeneous surveys constitute a promising development. For the first time, it is possible
to perform meaningful precision statistics with GRG lengths, but a framework to do so is missing.
Aims. We measured the intrinsic GRG length distribution by combining a novel statistical framework with a LOFAR Two-metre Sky
Survey (LoTSS) sample of freshly discovered giants. In turn, this allowed us to answer an array of questions on giants. For example,
we can now assess how rare a 5 Mpc giant is compared with one of 1 Mpc, and how much larger – given a projected length – the
corresponding intrinsic length is expected to be. Notably, we can now also infer the GRG number density in the Local Universe.
Methods. We assumed the intrinsic GRG length distribution to be Paretian (i.e. of power-law form) with tail index ξ, and predicted
the observed distribution by modelling projection and selection effects. To infer ξ, we also systematically searched the LoTSS for
hitherto unknown giants and compiled the largest catalogue of giants to date.
Results. We show that if intrinsic GRG lengths are Pareto distributed with index ξ, then projected GRG lengths are also Pareto
distributed with index ξ. Selection effects induce curvature in the observed projected GRG length distribution: angular length selection
flattens it towards the lower end, while surface brightness selection steepens it towards the higher end. We explicitly derived a GRG’s
posterior over intrinsic lengths given its projected length, laying bare the ξ dependence. We also discovered 2060 giants within
LoTSS DR2 pipeline products; our sample more than doubles the known population. Spectacular discoveries include the largest,
second-largest, and fourth-largest GRG known (lp = 5.1 Mpc, lp = 5.0 Mpc, and lp = 4.8 Mpc), the largest GRG known hosted by a
spiral galaxy (lp = 2.5 Mpc), and the largest secure GRG known beyond redshift 1 (lp = 3.9 Mpc). We increase the number of known
giants whose angular length exceeds that of the Moon from 10 to 23; among the discoveries is the angularly largest known radio
galaxy in the Northern Sky, which is also the angularly largest known GRG (φ = 2◦). Combining theory and data, we determined that
intrinsic GRG lengths are well described by a Pareto distribution, and measured the index ξ = −3.5 ± 0.5. This implies that, given its
projected length, a GRG’s intrinsic length is expected to be just 15% larger. Finally, we determined the comoving number density of
giants in the Local Universe to be nGRG = 5 ± 2

(
100 Mpc

)−3.
Conclusions. We developed a practical mathematical framework that elucidates the statistics of giant radio galaxy lengths. Through
a LoTSS search, we also discovered 2060 new giants. By combining both advances, we determined that intrinsic GRG lengths are
well described by a Pareto distribution with index ξ = −3.5 ± 0.5, and that giants are truly rare in a cosmological sense: most clusters
and filaments of the Cosmic Web are not currently home to a giant. Thus, our work yields new observational constraints for analytical
models and simulations featuring radio galaxy growth.
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1. Introduction

When gas, dust, and stars accrete onto a supermassive black hole
(SMBH) in the centre of a galaxy, collimated jets arise along the
Kerr rotation axis that blast some of the infalling material into
the intergalactic medium (IGM) (e.g., Blandford & Rees 1974).
In this process, the ejecta dissolve into a relativistic plasma that

? Table F.1 is only available at the CDS via anonymous ftp
to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/672/A163

drags along a magnetic field and glows in synchrotron light. The
resulting luminous structure is called a radio galaxy (RG); the
central black hole that has generated it an active galactic nucleus
(AGN).

It is increasingly clear that RGs and their AGN play an
important role in galaxy evolution and cosmology. By heating
the interstellar medium (ISM) or even expelling it from their
host galaxies through galactic superwinds, AGN quench star
formation (e.g., Di Matteo et al. 2005). Beckmann et al. (2017)
have shown that AGN-induced star formation quenching is most
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pronounced in massive galaxies. There is also compelling evi-
dence that the accompanying RGs provide the energy neces-
sary to stop (e.g., McNamara & Nulsen 2012; Yang et al. 2019)
bremsstrahlung-mediated cooling flows (Fabian et al. 1984) in
clusters of galaxies. In the absence of cooling flows, the intra-
cluster medium (ICM) remains dilute and hot, and galaxies in the
centres of clusters are denied infalling gas that could otherwise
reignite star formation. Cosmological simulations that include
this RG feedback indeed resolve (e.g., Croton et al. 2006) the
overprediction of baryonic masses and luminosities of central
cluster galaxies that early simulations found. Finally, RGs may
be responsible for magnetising the IGM that pervades the fila-
ments of the Cosmic Web (e.g., Vazza et al. 2017).

Despite the emerging picture that RGs trace quenched star
formation, inhibit cooling flows, and magnetise filaments, our
knowledge of them is far from complete. Concerning geometry,
a major unknown is the exact connection between the morphol-
ogy of RGs and the pressure field of the ambient IGM, especially
in filaments and cluster outskirts. Another question is whether
small and large RGs come from the same initial population, or
whether their growth is driven by distinct physical processes.
Finally, we do not know how large can RGs become, and, more
generally, how many RGs there are of each length.

To test RG growth models that answer these and other ques-
tions, it is imperative to study the subpopulation of most spatially
extreme RGs: the giant radio galaxies (GRGs). The defining fea-
ture of giants is that their proper lengths – when projected onto
the celestial sphere – exceed some threshold lp,GRG, which is
canonically chosen as 0.7 Mpc or 1 Mpc. If lp,GRG = 0.7 Mpc,
then the preceding literature describes a total of 1281 giants.

In recent years, several studies have successfully searched
for giants in systematic, wide-area surveys such as the NRAO
VLA Sky Survey (NVSS; Condon et al. 1998) and the LOFAR
Two-metre Sky Survey (LoTSS; Shimwell et al. 2017). A
combination of manual (i.e. visual) and automated searches
(Solovyov & Verkhodanov 2011, 2014; Amirkhanyan 2016;
Proctor 2016; Dabhade et al. 2017, 2020a) in the NVSS yielded
313 new giants (24% of the aforementioned literature pop-
ulation). Meanwhile, Dabhade et al. (2020b) discovered 225
new giants (17% of this same population) in the LoTSS DR1
(Shimwell et al. 2019), whose survey footprint is 80 times
smaller than NVSS’s. Such searches have the advantage of intro-
ducing almost homogeneous selection effects throughout the
survey footprint, which can potentially be modelled and thus
corrected for during any subsequent statistical inference.

In this work this idea comes to fruition, by conducting a pre-
cision analysis of the intrinsic giant radio galaxy length distribu-
tion. To do so, we require two ingredients. First, in Sect. 2, we
develop a statistical framework that allows one to answer proba-
bilistic questions regarding both large samples of giants and indi-
vidual specimina. Then, in Sect. 3, we describe our LoTSS DR2
(Shimwell et al. 2022) GRG search campaign and the trove of
previously unknown giants it has yielded; moreover, we describe
the assemblage of the most complete GRG catalogue to date.
In Sect. 4, combining theory and data, we infer the tail index
parameter that describes the intrinsic GRG length distribution,
which constrains future models and simulations aimed at under-
standing RG growth. In Sect. 5, we discuss caveats of the current
work and give recommendations for future extensions, before we
present conclusions in Sect. 6.

We assume a concordance inflationary Λ cold dark mat-
ter cosmology with parametersM from Planck Collaboration VI
(2020); that is to sayM = (h = 0.6766, ΩBM,0 = 0.0490, ΩM,0 =
0.3111, ΩΛ,0 = 0.6889), where H0 := h × 100 km s−1 Mpc−1. We

define the spectral index α such that it relates to flux density Fν

at frequency ν as Fν ∝ να, and define giants using threshold
lp,GRG := 0.7 Mpc. Regarding the terminology, we use ‘angu-
lar length’ where others use ‘largest angular size’ (LAS), and
‘projected proper length’ where others use ‘largest linear size’
(LLS)1.

2. Theory

To measure the intrinsic GRG length distribution, we must first
establish a suitable statistical framework. In this section, we pro-
vide a summary of the theory developed in Appendix A. Follow-
ing Occam’s razor, we construct a model with minimal assump-
tions that provides new insight into the GRG phenomenon and
the detection biases inherent to systematic search campaigns.

2.1. Intrinsic proper length

Firstly, we assume that giants and non-giant RGs share a com-
mon length distribution2. In particular, because power laws are
abundant in Nature, we assume that the intrinsic proper length
random variable (RV) L has a Pareto distribution with tail index
ξ < −1 and support from lmin > 0 onwards. If an RV is Pareto
distributed, then the relative occurrence of two possible out-
comes equals their ratio raised to a power: the tail index ξ. In
astrophysics, Pareto distributions describe the kinetic energies of
freshly accelerated electrons in large-scale structure and super-
nova shocks (e.g., Kirk & Schneider 1987), the initial masses
of main-sequence stars (e.g., Kroupa 2001), and the luminosi-
ties of gamma-ray bursts (e.g., Bloom et al. 2001), to name a
few examples. Previous works (e.g., Andernach et al. 2021) have
already hinted at the approximate validity of a Pareto distribution
description for GRG lengths. By comparing our final model to
observations, as discussed in Sect. 4 and visualised in Fig. 14, we
demonstrate that this assumption is indeed a powerful approxi-
mation in the current case.

The probability density function (PDF) fL : R → R≥0 thus
becomes

fL (l) =

0 l ≤ lmin,
−(ξ+1)

lmin

(
l

lmin

)ξ
l > lmin.

(1)

We refer the reader to Appendix A.1 for a derivation of this
expression and a demonstration of its connection to the litera-
ture’s most common parametrisation.

2.2. Projected proper length

From the distribution of intrinsic lengths and the assumption of
random radio galaxy orientations, we now derive the distribution
of projected lengths. This distribution is more easily compared to
observations, which usually lack inclination angle information.

1 An object’s size can refer to either its one-, two-, or three-
dimensional extent. We therefore consider ‘angular size’ to be ambigu-
ous terminology; we propose that ‘angular length’ better captures one-
dimensionality. Naturally, an object’s ‘length’ is understood to be its
total one-dimensional extent, so that the qualifier ‘largest’ seems super-
fluous. We further remark that ‘length’ is synonymous with, but more
succinct than, ‘linear size’. In cosmology, one must distinguish between
proper and comoving lengths, especially when objects are not gravita-
tionally bound – like GRG lobes. In this work, we consider two types
of proper lengths: intrinsic proper lengths and projected proper lengths.
2 Luckily, this assumption turns out to be irrelevant in the forthcoming
GRG-only expressions, which are this work’s focus.
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Fig. 1. PDFs of radio galaxy intrinsic proper lengths L and projected proper lengths Lp. If the intrinsic lengths L are Pareto distributed above some
cut-off lmin, then their projections on the sky Lp are also Pareto distributed above this cut-off. The tail indices are the same. We show the PDFs fL
(left) and fLp (right) for lmin = 0.5 Mpc, lmax = ∞ (see Appendix A) and various tail indices ξ. The support of fL starts at lmin, which is marked by
the vertical grey line in the right panel.

2.2.1. Distribution for RGs

To model length and orientation, we consider a vector L ∈ R3 (of
length L := ||L||2) for each RG. In accordance with the IAU Solar
System convention for positive poles, the unit vector L̂ ∈ S2

marks the direction from which the central Kerr black hole is
seen rotating in anticlockwise direction3. We define the inclina-
tion angle Θ as the angle between L and a vector parallel to the
line of sight pointing towards the observer4. Observations that
allow one to measure the orientation of the RG axis in 3D are
time-intensive, and so usually only the RG length projected onto
the plane of the sky is known.

Geometrically, we model RGs as line segments – as if they
were ‘thin sticks’, with vanishing volumes – so that the projected
proper length RV Lp relates to L and Θ through

Lp = L sin Θ. (2)

We assume that L̂ is drawn from a uniform distribution on S2, so
that the PDF fΘ : [0, π]→ R≥0 becomes fΘ (θ) = 1

2 sin θ. Since L
and Θ are independent, we find in Appendix A.2.1 that the PDF
of Lp, fLp : R→ R≥0, is

fLp

(
lp
)

=


0 if lp ≤ 0,
−(ξ+1)

lmin

lp
lmin

I
(
ξ − 1, lp

lmin

)
if 0 < lp < lmin,

(ξ+1)2

lmin

√
π

4

( lp
lmin

)ξ Γ
(
−
ξ
2−

1
2

)
Γ
(
−
ξ
2 +1

) if lp ≥ lmin,

(3)

where

I (a, b) :=
∫ ∞

1

ηa dη√
η2 − b2

for a < 0, |b| < 1. (4)

We note that for lp > lmin, the projected proper length has a
Pareto distribution with the same tail index as the intrinsic proper
length distribution. We compare fL and fLp in Fig. 1.

2.2.2. Distribution for giants

For giants specifically (i.e. RGs such that Lp > lp,GRG, where
lp,GRG is some constant threshold; in this work, lp,GRG :=

3 S2 is the unit two-sphere.
4 When Θ = 0, the positive pole’s jet points towards us, and the black
hole is seen rotating in anticlockwise direction; when Θ = 90◦, the jets
lie in the plane of the sky; when Θ = 180◦, the positive pole’s jet points
away from us, and the black hole rotates in clockwise direction.

0.7 Mpc), the projected proper length distribution becomes a
Pareto distribution with tail index ξ again:

fLp | Lp>lp,GRG

(
lp
)

=

0 if lp ≤ lp,GRG

−(ξ+1)
lp,GRG

(
lp

lp,GRG

)ξ
if lp > lp,GRG.

(5)

In other words, for giants, projection retains the Paretianity of
lengths. A measurement of the tail index of the projected length
distribution is immediately also a measurement of the tail index
of the intrinsic length distribution.

The survival function, which gives the probability that a
GRG has a projected proper length exceeding lp, takes on a par-
ticularly simple form:

P
(
Lp > lp | Lp > lp,GRG

)
=

(
lp

lp,GRG

)ξ+1

. (6)

The mean projected proper length of giants is the expectation
value of Lp | Lp > lp,GRG:

E[Lp | Lp > lp,GRG] = lp,GRG
ξ + 1
ξ + 2

, (7)

which is only defined when ξ < −2. For example, when ξ = −4,
E[Lp | Lp > lp,GRG] = 3

2 lp,GRG, which becomes 1.05 Mpc for
lp,GRG := 0.7 Mpc and 1.5 Mpc for lp,GRG := 1 Mpc.

Appendix A.2.2 provides a derivation for all three expres-
sions.

2.3. Deprojection factor

The deprojection factor, D := L
Lp

= sin−1 Θ, quantifies how much
larger intrinsic lengths are compared with projected lengths. The
PDF of D, fD : R→ R≥0, is

fD (d) =

0 if d ≤ 1;
1

d2
√

d2−1
if d > 1. (8)

The mean deprojection factor E[D] = π
2 . Deprojection factors

can become arbitrarily large under the current model, because
projected lengths can become arbitrarily small. As discussed in
Sect. 5.2, this is not a very realistic set-up. In reality, an RG’s
projected length is bounded from below by its lobes, which have
a non-vanishing volume and thus extend along all three spatial
dimensions. Upon projection, the projected length therefore can-
not shrink beyond some lower limit that depends on the lobe
geometry. In Appendix A.3, we show that by enriching the con-
ventional stick-like geometry with spherical lobes, deprojection
factors indeed become bounded.
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Fig. 2. Posterior PDFs of intrinsic lengths for a given projected length
L | Lp = lp. If tail index ξ is known, then an RG’s lp fixes the probability
distribution over its possible l. This distribution is strongly skewed, and
the same for all lp – save for horizontal translation and vertical scaling.
We illustrate this point by showing posterior PDFs for giants with two
different lp. Top: lp = 1 Mpc. Bottom: lp = 5 Mpc. For ξ = −4, the
posterior mean E[L | Lp = lp] = 1.13 lp and the posterior standard
deviation

√
V[L | Lp = lp] = 0.23 lp (see Table 1).

2.4. Intrinsic proper length posterior and its moments

Because an RG’s intrinsic length is more physically informative
than its projected length, we ideally obtain the former. In this
subsection, we quantify what a measurement Lp = lp already
reveals about L.

We first note that the projected length bounds the intrin-
sic length from below. The intrinsic length can be much larger,
however, but this is improbable for two reasons: large lengths
are rarer than small lengths, although how drastic this effect is
depends on ξ; in addition, viewing directions with large inclina-
tion angles are uncommon. The best we can do is to construct a
posterior distribution for L given Lp = lp. This posterior has a
concise analytic form. If lp > lmin, which is the relevant case for
giants, the distribution of L | Lp = lp is

fL|Lp=lp (l) =


0 if l ≤ lp
−ξ

21+ξπ

Γ2
(
−
ξ
2

)
Γ(−ξ)

1
lp

1√(
l

lp

)2
−1

(
l
lp

)ξ−1
if l > lp. (9)

For l � lp, fL|Lp=lp (l) ∝
(

l
lp

)ξ−2
: the posterior PDF tends to a

power law in l with index ξ − 2. In Fig. 2, we visualise the pos-
terior PDF for several values of ξ.

Table 1. Intrinsic proper length posterior mean and standard deviation
in multiples of projected proper length lp, given for various tail indices
ξ.

E
[
L | Lp = lp

]
(ξ)

(
lp
) √

V
[
L | Lp = lp

]
(ξ)

(
lp
)

ξ = −2 4
π
≈ 1.27

√
2 − 16

π2 ≈ 0.62

ξ = −3 3π
8 ≈ 1.18

√
3
2 −

9π2

64 ≈ 0.33

ξ = −4 32
9π ≈ 1.13

√
4
3 −

1024
81π2 ≈ 0.23

ξ = −5 45π
128 ≈ 1.10

√
5
4 −

2025π2

16384 ≈ 0.17

Clearly, to evaluate Eq. (9), one must choose lp – however,
the shape of the distribution is the same for all choices. We
illustrate this by comparing the PDF for a comparatively small
GRG (lp = 1.0 Mpc; top panel) to the PDF for Alcyoneus5

(lp = 5.0 Mpc; bottom panel).
The posterior mean is

E
[
L | Lp = lp

]
= lp ·

−ξ

22ξ+3π

Γ4
(
−
ξ
2

)
Γ2 (−ξ)

; (10)

the posterior variance is

V
[
L | Lp = lp

]
= l2p

 ξ

ξ + 1
−

ξ2

24ξ+6π2

Γ8
(
−
ξ
2

)
Γ4 (−ξ)

 . (11)

Both mean and standard deviation scale linearly in lp: the projec-
tion effect is a multiplicative noise source. In Table 1, we provide
explicit values for various ξ.

Higher moments exist up to order d−ξe; because the PDF
fL | Lp=lp (l) is strongly skewed, such moments do further specify
the distribution.

It is important to note that it is formally incorrect to statisti-
cally deproject RGs by drawing samples from deprojection fac-
tor D and multiplying them with some measurement Lp = lp, or
even more crudely, by multiplying the latter with E[D]. The rea-
son that renders such approaches invalid is that Lp = L sin Θ and
D = sin−1 Θ are not independent RVs. We refer to Appendix A.4
for an explicit proof of this fact, and for derivations of this sub-
section’s expressions.

2.5. GRG inclination angle

Radio galaxies with jets that make a small angle with the plane
of the sky are more likely to have a projected length exceeding
lp,GRG than those with jets that make a large angle with the plane
of the sky. For this reason, the inclination angle distribution of
giants is different from that of RGs: it is more peaked around
θ = 90◦. More precisely, the PDF fΘ | Lp>lp,GRG : [0, π] → R≥0 of
the GRG inclination angle Θ | Lp > lp,GRG has the general form

fΘ | Lp>lp,GRG (θ) =

(
1 − FL

( lp,GRG

sin θ

))
fΘ (θ)

1 − FLp (lp,GRG)
. (12)

5 Alcyoneus is the projectively longest giant known to date (Oei et al.
2022a).
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Fig. 3. PDFs of GRG inclination angles Θ | Lp > lp,GRG (colours) and
RG inclination angles Θ (grey). Giants more often have orientations
close to the sky plane. The strength of this tendency is governed by ξ,
with larger ξ meaning more dispersion.

Under our Pareto distribution assumption for L, this
concretises to

fΘ | Lp>lp,GRG (θ) =
2

−(ξ + 1)
√
π

Γ
(
−
ξ
2 + 1

)
Γ
(
−
ξ
2 −

1
2

) sin−ξ θ. (13)

We note that fΘ | Lp>lp,GRG (θ) ∝ sin−ξ θ; the factor in front serves
only as a normalisation constant. The distribution is independent
of the choice of lp,GRG and depends on a single parameter: ξ. We
visualise fΘ | Lp>lp,GRG (θ) in Fig. 3.

Appendix A.5 contains a brief derivation.

2.6. GRG angular length

The model predicts the distribution of GRG angular lengths in
the Local Universe up to comoving distance rmax. The GRG
angular length RV Φ | Lp > lp,GRG relates to the GRG projected
proper length RV Lp | Lp > lp,GRG and the comoving distance RV
R as

Φ | Lp > lp,GRG = Lp | Lp > lp,GRG ·
1 + z (R)

R
. (14)

(We note that this relation is valid only in a flat Friedmann–
Lemaître–Robertson–Walker (FLRW) universe.) We also
assume that the GRG number density is constant in the Local
Universe. The PDF of Φ | Lp > lp,GRG has useful analytic forms
under two different idealisations.

In a Euclidean universe, z(R) = 0, and the minimal GRG
angular length φGRG =

lp,GRG

rmax
. Then

fΦ | Lp>lp,GRG (φ) =

0 if φ ≤ φGRG

−3 ξ+1
ξ+4 ·

1
φGRG

((
φ

φGRG

)ξ
−

(
φ

φGRG

)−4
)

if φ > φGRG,

(15)

which is valid as long as ξ , −4.
In an expanding universe at low redshifts, the Hubble–

Lemaître law z(R) ≈ R
dH

holds; the Hubble distance dH := c
H0

.
In this case,

fΦ | Lp>lp,GRG (φ)

=


0 if φ ≤ φGRG +

lp,GRG

dH

−3(ξ+1)φξ

r3
maxlξ+1

p,GRG

∫ φ
lp,GRG
1

rmax
+ 1

dH

dk

kξ+1
(
k− 1

dH

)4 if φ > φGRG +
lp,GRG

dH
.

(16)

Figure 4 shows GRG angular length PDFs under both
idealisations.
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Fig. 4. PDFs of GRG angular lengths Φ | Lp > lp,GRG. We fix rmax =
1 Gpc (and lp,GRG = 0.7 Mpc), and vary ξ. Top: Euclidean universe.
Bottom: expanding universe at low redshifts.

The PDFs undergo a minor shift upon changing universe type
but are otherwise similar. For most current-day applications, it
will therefore be unnecessary to calculate an even more refined
version of fΦ | Lp>lp,GRG (φ). Appendix A.6 contains derivations and
details.

2.7. Maximum likelihood estimation of the tail index

The GRG projected proper length distribution features just one
parameter of physical interest: the tail index ξ. If observational
selection effects are negligible, one can directly use maximum
likelihood estimation (MLE) on GRG data to infer ξ. In par-
ticular, we consider a set of projected lengths {Lp,1, ..., Lp,N} ∼

Lp | Lp > lp,GRG from N giants. Appendix A.7 shows that the
maximum likelihood estimate of ξ is the RV ξMLE, given by

ξMLE = −
N∑N

i=1 ln Lp,i

lp,GRG

− 1. (17)

2.8. Observed projected proper length

2.8.1. General considerations

In the preceding theory, we have ignored observational selection
effects that favour some projected proper lengths over others. In
practice, several such effects occur; the importance of each varies
per survey and (G)RG search campaign within it. One of them
is the bias against physically long RGs that the interferometer’s
largest detectable angular scale can induce6. As a result, the pro-
jected proper length of an observed RG might not be adequately

6 For example, the Faint Images of the Radio Sky at Twenty Cen-
timeters (FIRST) survey used the Very Large Array (VLA) in B-
configuration, leading it to detect angular scales of at most two arcmin-
utes. By contrast, the largest angular scale of the LoTSS – the survey
relevant to this work – is about a degree. (For the 6′′ and 20′′ resolutions,
the shortest baseline is 100 metres; for the 60′′ and 90′′ resolutions, the
shortest baseline is 68 metres.) As virtually all giants are of subdegree
angular length, we need not consider this bias in our case.
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modelled through RV Lp. Instead, we must introduce a new RV
Lp,obs.

We define the completeness C : R>0 × R>0 → [0, 1] at
(lp, zmax) to be the fraction of all RGs with projected proper
length lp in the cosmological volume up to zmax that is detected in
a particular RG search campaign. Then, assuming that the distri-
bution of Lp does not evolve with redshift between z = zmax and
z = 0 (i.e. ξ remains constant),

C
(
lp, zmax

)
=

∫ zmax

0 pobs

(
lp, z

)
r2 (z) E−1 (z) dz∫ zmax

0 r2 (z) E−1 (z) dz
, (18)

where pobs(lp, z) is the probability that an RG of projected proper
length lp at cosmological redshift z is detected through the cam-
paign, and r (z) is the comoving radial distance at cosmological
redshift z. In a flat FLRW universe, the dimensionless Hubble
parameter E is

E (z) :=
H (z)
H0

=

√
ΩR,0 (1 + z)4 + ΩM,0 (1 + z)3 + ΩΛ,0. (19)

The PDF of the observed projected proper length RV Lp,obs
becomes

fLp,obs

(
lp
)

=
C

(
lp
)

fLp

(
lp
)

∫ ∞
0 C

(
l′p
)

fLp

(
l′p
)

dl′p
, (20)

where we suppress the zmax-dependence for succinctness. We
note that multiplying pobs(lp, z) with an lp- and z-independent
factor affects the completeness C(lp, zmax), but cancels in
Eq. (20); fLp,obs will be independent of it. Finally, the PDF of the
GRG observed projected proper length RV Lp,obs | Lp,obs > lp,GRG
is

fLp,obs | Lp,obs>lp,GRG

(
lp
)

=


0 if lp ≤ lp,GRG

C(lp) fLp (lp)∫ ∞
lp,GRG

C(l′p) fLp (l′p) dl′p
if lp > lp,GRG.

(21)

We derive these expressions in Appendix A.8.1.

2.8.2. Fuzzy angular length threshold

We provide a concrete example of an important observational
selection effect in visual searches for GRG candidates in sur-
vey images. To cope with the sheer number of detectable RGs
in modern surveys like the LoTSS, a natural criterion is to only
add sources to a candidate list if they appear – by eye – to have
an angular length larger than some threshold. However, it is hard
to precisely assess the angular length of a candidate before actu-
ally measuring it; sometimes, a candidate with a smaller angu-
lar length than the threshold will feature in the list, while some
candidates with a larger angular length than the threshold will
not. This leads to the notion of a ‘fuzzy angular length thresh-
old’, where the probability that an RG with angular length φ is
observed through the visual search increases (e.g., linearly) from
0 to 1 between φmin and φmax:

pobs,AL

(
lp, z

)
= min

max

φ
(
lp, z

)
− φmin

φmax − φmin
, 0

, 1
, (22)

φ
(
lp, z

)
=

lp (1 + z)
r (z)

. (23)

See the top row of Fig. 5 for several examples of associated
completeness curves C(lp) and observed projected proper length
PDFs. See Appendix A.8.2 for additional information.

2.8.3. Surface brightness limitations

Another important observational selection effect is due to a sur-
vey’s finite noise level. The noise determines the surface bright-
ness threshold bν,th (typically comparable to the noise level itself)
below which radio galaxy features remain visually undetected.

Fanaroff–Riley class II. We model the lobe surface bright-
ness RV Bν at the central observing frequency νobs as

Bν =
bν,ref · S

(1 + Z)3−α

(
L

lref

)ζ
, (24)

where bν,ref is the median surface brightness of RGs of intrin-
sic proper length lref at cosmological redshift z = 0 and fre-
quency νobs, and S is a lognormally distributed RV with median
1 and dispersion parameter σref that captures the variability in
surface brightness among this population of RGs. The denom-
inator models the fact that surface brightness is not conserved
with distance in an FLRW universe; Z is the cosmological red-
shift RV up to z = zmax and α is the typical lobe spectral index.
The exponent ζ < 0 characterises the scaling between intrinsic
proper length and surface brightness. (If RGs are self-similar, so
that morphology does not predict length, one finds ζ = −2.) For
this selection effect, the observing probability is

pobs,SB

(
lp, z

)
=

∫ ∞

smin

√
1 −

( smin

s

)− 2
ζ

fS (s) ds, (25)

smin =
bν,th
bν,ref

(
lp
lref

)−ζ
(1 + z)3−α , (26)

fS (s) =
1

√
2πσref s

exp
− ln2 s

2σ2
ref

. (27)

We note that pobs,SB does not depend on bν,th or bν,ref separately,
but on their ratio only. See the bottom row of Fig. 5 for several
examples of associated completeness curves C(lp) and observed
projected proper length PDFs.

Fanaroff–Riley class I. For FRI RGs, the assumption of a
constant surface brightness beyond the core is inaccurate. The
simplest correction in which FRI RGs retain a well-defined
notion of length assumes a linearly decreasing surface brightness
profile, which peaks at the core and goes to zero at the RG’s two
endpoints. (A power-law profile does not work: in such case, the
surface brightness only goes asymptotically to zero – but never
actually reaches it.) In this case, we define RV Bν to be the mean
surface brightness along an RG’s jets, which can be regarded as
a typical value for that RG. As Bν again obeys Eq. (24), we find
that the formulaic structure of pobs,SB(lp, z) is identical for FRI
and FRII giants, except that FRI giants require a change

bν,th →
bν,th

2
(
1 − lp,GRG

lp

) , (28)

which affects pobs,SB(lp, z) through smin. There is no change for
lp = 2lp,GRG. Although the formulaic structure might be the
same, the best-fit parameters can differ. For example, it is possi-
ble that σref,FRI , σref,FRII or ζFRI , ζFRII. See Appendix A.8.3
for derivations and numerical implementation considerations.

To include both aforementioned selection effects at the same
time, a natural approximation is to assume that the observing
probability simply factorises:

pobs

(
lp, z

)
≈ pobs,AL

(
lp, z

)
· pobs,SB

(
lp, z

)
. (29)
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Fig. 5. Completeness functions (left column) and PDFs of observed projected proper lengths Lp,obs (right column). Selection effects leave imprints
on the distribution of radio galaxies’ Lp,obs. In the top row, we show how imposing an angular length threshold in a GRG search campaign leads
to incompleteness (left), which causes the PDF fLp,obs (right) to differ from fLp . We assume RGs with angular length φ < φmin have probability 0
to be included in a sample, whilst RGs with angular length φ > φmax have probability 1. The inclusion probability is assumed to increase linearly
between φmin and φmax. In the left panel, we fix φmin = 3′ and vary φmax; in the right panel, we also fix φmax = 7′. In the bottom row, we show how
a survey’s surface brightness limitations lead to incompleteness (left), which causes the PDF fLp,obs (right) to differ from fLp . We assume that lobe
surface brightnesses are lognormally distributed; we parametrise the distribution for RGs of intrinsic length lref = 0.7 Mpc at z = 0 observed at
νobs = 144 MHz with a median bν,ref and dispersion parameter σref . In the left panel, we fix σref = 1.5 and vary bν,ref ; in the right panel, we also
fix bν,ref = 1000 Jy deg−2. We assume a lobe spectral index α = −1, a surface brightness detection threshold bν,th = 25 Jy deg−2, and self-similar
growth: ζ = −2. For both selection effects, we consider RGs up to cosmological redshift zmax = 0.5 only.

2.9. GRG number density

A central question in the field of radio galaxies is: how intrinsi-
cally rare are giants? By counting giants in a search campaign
with well-understood selection effects, we can give an answer.
More precisely, one can estimate the comoving number density
of giants in the Local Universe, nGRG, through the number of
observed giants up to cosmological redshift zmax in a uniformly
searched region of sky of solid angle Ω, NGRG,obs (zmax,Ω). Then,
under the standard assumption lp,GRG > lmin, Appendix A.9
shows that

nGRG =
lξ+1
p,GRG

−(ξ + 1)
·

H0

c
·

4π
Ω

NGRG,obs (zmax,Ω)∫ ∞
lp,GRG

lξp
∫ zmax

0 pobs

(
lp, z

)
4πr2 (z) E−1 (z) dz dlp

. (30)

Although the appropriate pobs(lp, z) varies per search campaign,
it is always possible to bound pobs(lp, z) from above – for exam-
ple by 1. In such case, Eq. (30) bounds nGRG from below.

2.10. GRG lobe volume-filling fraction

Because giants attain cosmological lengths, they might con-
tribute to the energisation and magnetisation of Cosmic Web fil-
aments in regions that smaller radio galaxies cannot reach. A
key statistic that measures the enrichment of the Cosmic Web by
giants is the volume-filling fraction (VFF) of their lobes. Assum-

ing that lobes do not grow along with the expansion of the Uni-
verse, the proper VFF changes over cosmic time: VFFGRG(z) =
VFFGRG(z = 0) · (1 + z)3, where

VFFGRG(z = 0) := nGRG · E[V | Lp > lp,GRG]

= nGRG · E[Υ · L3 | Lp > lp,GRG], (31)

where V is the combined volume of the lobes and Υ := V
L3 is a

dimensionless RV that captures the diversity in radio galaxy lobe
shapes. We find under self-similar growth

VFFGRG(z = 0) = nGRG · E[Υ] · E[L3 | Lp > lp,GRG]. (32)

E[Υ] can be estimated from observations, but one must be wary
of selection effects. Unfortunately, E[L3 | Lp > lp,GRG] does not
exist for ξ ≥ −4, which is the regime supported by observations.
A useful lower bound then is

VFFGRG(z = 0) > nGRG · E[Υ] · E3[L | Lp > lp,GRG], (33)

where

E[L | Lp > lp,GRG] = lp,GRG

Γ
(
−
ξ
2 − 1

)
Γ
(
−
ξ
2 + 1

)
Γ
(
−
ξ
2 −

1
2

)
Γ
(
−
ξ
2 + 1

2

) . (34)

This is the mean intrinsic proper length of giants, which is only
defined when ξ < −2.7

7 For example, when ξ = −3, E[L | Lp > lp,GRG] = 3π
4 lp,GRG, which

becomes 1.65 Mpc for lp,GRG := 0.7 Mpc and 2.36 Mpc for lp,GRG :=
1 Mpc. When ξ = −4, E[L | Lp > lp,GRG] = 16

3π lp,GRG, which becomes
1.19 Mpc for lp,GRG := 0.7 Mpc and 1.70 Mpc for lp,GRG := 1 Mpc.
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An alternative is to deviate slightly from our Pareto ansatz
and truncate the GRG projected proper length distribution at
some lp,max; then

VFFGRG(z = 0) = nGRG · E[Υp] ·
ξ + 1
ξ + 4

·
lξ+4
p,max − lξ+4

p,GRG

lξ+1
p,max − lξ+1

p,GRG

, (35)

where Υp := V
L3

p
. See Appendix A.10 for a derivation and further

details.

2.11. Unification model constraints from quasar and
non-quasar giants

The unification model and its extensions (e.g., Hardcastle &
Croston 2020) form an elegant family of hypotheses that aim to
explain the observational diversity of active galaxies. It posits
that active galaxies with quasars differ from those without
quasars primarily because of differences in orientation of the
dusty tori surrounding SMBHs. In particular, the central idea is
that a quasar appears brighter to the observer than a non-quasar
AGN because the axis of its dusty torus happens to be virtually
parallel to the line of sight. As such, only quasars would offer
an unobscured view of the luminous accretion disk surround-
ing the SMBH, whilst also beaming relativistic jet emission
towards the observer. Using our statistical framework, we pre-
dict the general ramifications of the basic unification model on
a GRG sample.

The basic unification model suggests to divide the radio
galaxy population in two, distinguishing between RGs generated
by AGN with quasar appearance (quasar RGs) and RGs gener-
ated by AGN without quasar appearance (non-quasar RGs). We
assume that quasar RGs have inclination angles θ ≤ θmax or θ ≥
180◦−θmax whilst non-quasar RGs have θmax < θ < 180◦−θmax

8.
If quasar RGs are more closely aligned with the line of sight than
non-quasar RGs but are otherwise similar, fewer of them will
satisfy lp ≥ lp,GRG and thus be classified as giants. Therefore,
the quasar GRG fraction fQ – the fraction of quasar giants in an
actual GRG sample – constrains θmax. We model fQ as an RV:

fQ :=
NQ

N
; NQ ∼ Binom

(
N, pQ

)
, (36)

where the RV NQ is the number of quasar giants in the sample,
the constant N is the total number of giants in the sample and
the parameter pQ is the quasar GRG probability. Our framework
predicts

pQ :=
P
(
Lp,obs ≥ lp,GRG, sin Θ ≤ sin θmax

)
P
(
Lp,obs ≥ lp,GRG

)
=

4Γ
(
−
ξ
2 + 1

)
− (ξ + 1)

√
π Γ

(
−
ξ
2 −

1
2

) ∫ sin θmax

0

x−ξ dx
√

1 − x2
. (37)

See Appendix A.11 for a derivation. Interestingly, as long as
quasar giants and non-quasar giants are subject to the same
selection effects, these selection effects do not affect pQ.

Figure 6 shows that, for all relevant ξ, pQ is a steeply and
monotonically increasing function of θmax. Thus, knowing ξ, one
can use an empirical fQ to determine pQ and in turn θmax.

8 Geometrically, θmax represents the opening angle of the two coaxial
conical gaps in the dusty torus of the AGN.
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Fig. 6. Probability pQ that an observed giant is a quasar giant under
the unification model. Under this model, giants generated by AGN with
quasar appearance (quasar giants) have inclination angles θ ≤ θmax or
θ ≥ 180◦−θmax and giants generated by AGN without quasar appearance
(non-quasar giants) have intermediate θ. As long as quasar giants and
non-quasar giants are subject to the same selection effects, these selec-
tion effects do not affect pQ. Instead, in such case, pQ only depends on
the maximum quasar inclination angle θmax and the tail index ξ.

Does one expect quasar giants to have a different distribution
for Lp,obs | Lp,obs ≥ lp,GRG than non-quasar giants? Interestingly,
our framework allows us to prove that the inclination angle dif-
ferences between the two classes affect their relative rarity, but
not their observed projected proper length distribution. Under
the basic unification model, quasar giants and non-quasar giants
obey the same Lp,obs | Lp,obs ≥ lp,GRG if they are subject to the
same selection effects.

2.12. Extreme giants in a sample

The model can predict the occurrence of giants with extreme pro-
jected proper lengths in a sample of cardinality N. The probabil-
ity that an observed GRG has a projected proper length exceed-
ing lp is

p>lp := P
(
Lp,obs > lp | Lp,obs > lp,GRG

)
=

1 − FLp,obs

(
lp
)

1 − FLp,obs

(
lp,GRG

) ,
(38)

so that the number of observed giants with a projected proper
length exceeding lp is N>lp ∼ Binom(N, p>lp ). Its expectation is
E[N>lp ] = N · p>lp . Furthermore, the probability that the sam-
ple contains at least one giant with projected proper length lp or
higher is

P
(
N>lp ≥ 1

)
= 1 −

(
1 − p>lp

)N
. (39)

See Appendix A.12 for details. Figure 7 shows E[N>lp ] and
P(N>lp ≥ 1) for various ξ. As an example, the case ξ = −3.0
predicts that a sample of N = 1000 giants with redshifts below
zmax = 0.5 should contain almost ten giants of lp > 5 Mpc, and
still several of lp > 6 Mpc. Such predictions are useful as they
can be directly compared to elementary sample statistics.

3. Sample compilation and properties

To measure the intrinsic GRG length distribution, we also
require a large sample of giants collected from a single sur-
vey through a systematic approach. This ensures approximately
homogeneous selection effects, which we can correct for in sub-
sequent analysis using the statistical framework of Sect. 2.
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Fig. 7. Predictions of the existence and expected number of giants that
exceed projected length lp in a sample of cardinality N, as functions of
lp. Both tail index ξ and selection effect parameters affect these predic-
tions. We consider a sample of N = 1000 giants with redshifts below
zmax = 0.5, use φmin = 3′, φmax = 7′, bν,ref = 1000 Jy deg−2, and
σref = 1.5, and keep other parameters as in Fig. 5. Top: the probabil-
ity that at least one observed giant has a projected length of at least lp.
Bottom: the expected number of observed giants with a projected length
of at least lp.

3.1. LoTSS DR2

The Low-Frequency Array (LOFAR; van Haarlem et al. 2013)
is a powerful, Pan-European radio interferometer that features
both (sub)arcsecond-scale resolution and sensitivity to degree-
scale structures. Dabhade et al. (2020b) have already demon-
strated that this combination is ideal for detecting giants: these
authors found a record 225 new specimina in the LoTSS DR1,
the first data release of the LOFAR’s Northern Sky survey at cen-
tral frequency νobs = 144 MHz.9 Excitingly, the recent LoTSS
DR2 (Shimwell et al. 2022) improves the data calibration and
increases the survey footprint from 424 deg2 to 5635 deg2 – that
is by more than a factor 13. By default, the LoTSS features
imagery at 6′′ and 20′′ resolutions. To further facilitate the dis-
covery of giants (among other goals), we reprocessed the LoTSS
by subtracting compact sources and imaging at 60′′ and 90′′
resolution; more details are given in Oei et al. (2022a, and in
prep.). This 60′′ and 90′′ imagery has turned out to be effective
in highlighting jets and lobes of RGs of large angular and phys-
ical extent, whose surface brightnesses are low and which there-
fore have remained undetected in shallower surveys, and even
in the LoTSS DR2 at higher resolutions. We demonstrate this
fact in Fig. 8 by comparing the LoTSS DR2 at 6′′ and 60′′ for
three giants whose discovery has relied on the lower-resolution
images. After the serendipitous discovery of several such hith-
erto unknown giants in the 60′′ and 90′′ images, we decided
to initiate a systematic, multi-resolution, visual GRG search

9 As in the current work, the authors defined giants using the projected
proper length threshold lp,GRG = 0.7 Mpc.

through the area covered by LoTSS DR2 pipeline products as
of September 202210. This search comprised of a hundreds-of-
hours-long inspection of the LoTSS maps at 6′′ and 60′′, along-
side Pan-STARRS DR1 (Chambers et al. 2016) and SDSS DR9
(Ahn et al. 2012) maps, in Aladin Desktop 11.0 (Bonnarel et al.
2000).

Reliable automated search strategies do not yet exist for sev-
eral reasons. Giants showcase a rich morphological variety (see
Sect. 3.6) and are easily confused with other types of astro-
physical sources (see Sects. 3.3 and 3.4). Moreover, the known
population is too small to effectively apply supervised learning
techniques. However, it appears possible to find giants in mor-
phological outlier lists of unsupervised learning techniques such
as self-organising maps (SOMs; Mostert et al. 2021). The effi-
cacy of such techniques in GRG searches has not yet been quan-
tified.

3.2. Angular length threshold

To limit the amount of manual work, we decided to search only
for GRG candidates whose angular length exceeds some thresh-
old. In Fig. 9, we show how the angular length φ of giants
with six different projected proper lengths lp varies as a func-
tion of cosmological redshift z. Because of the expansion of
the Universe, giants have an arcminute-scale minimum angu-
lar length: if lp,GRG = 0.7 Mpc, all giants obey φ > 1.3′11.
For the purpose of finding a GRG, it is therefore never useful
to inspect a source with an angular length less than 1.3′. Our
highest priority has been to find giants with z < 0.2, which lie
in a volume for which the total matter density field is known
or will be known in the coming years through the combined
power of deep spectroscopic surveys and Bayesian inference
frameworks, such as the Bayesian Origin Reconstruction from
Galaxies (BORG; Jasche & Wandelt 2013; Jasche et al. 2015;
Jasche & Lavaux 2019). In an upcoming publication, we com-
bine a sample of low-redshift giants with the BORG to anal-
yse the large-scale environments of giants (Oei et al., in prep.).
Figure 9 shows that all giants with lp > 1 Mpc at z < 0.2 have
an angular length φ > 5′. For this reason, we have chosen 5′ as
the angular length threshold of our search campaign. This choice
has kept the visual inspection duration to order ∼102 h, while still
enabling us to target all Mpc-exceeding giants in the Local Uni-
verse (z < 0.2). In practice, this threshold is ‘fuzzy’: it is hard
to accurately estimate angular lengths by eye before performing
an actual measurement, so that our list of GRG candidates does
contain some with a smaller angular length than the specified
threshold. Inversely, it will presumably lack some GRG candi-
dates with an angular length exceeding the threshold.

3.3. GRG candidates in the radio

We first identified GRG candidates in the LoTSS at 6′′ and 60′′.
These maps serve complementary roles. The 6′′ images reveal
the precise morphology of radio galaxy cores and jets, which are
necessary to pinpoint the host galaxy. Figure 10 provides a rep-
resentative sense of the host galaxy identification accuracy these
data allow for when combined with modern optical surveys such
as the DESI Legacy Imaging Surveys (Dey et al. 2019) DR9. In
contrast, the 60′′ images have such compact sources removed or
highly suppressed, but better highlight diffuse structures, such

10 In this process, we have skipped the enclosed LoTSS DR1 area,
which has already been analysed by Dabhade et al. (2020b).
11 If lp,GRG = 1 Mpc, all giants obey φ > 1.9′.
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Fig. 8. LoTSS DR2 cutouts of three newly discovered giants at 6′′ (left column) and 60′′ (right column). By subtracting compact sources from
calibrated 144 MHz visibility data and imaging at low resolution (60′′ and 90′′), we reveal otherwise speculative giant radio galaxies at the
unexplored ∼1 Jy deg−2 surface brightness level. The claimed host galaxy is in the image centre. Top: a GRG of projected proper length lp =
1.4± 0.3 Mpc, whose angular length φ = 32.3± 0.2′ is larger than that of the full Moon. Middle: a GRG of lp = 1.6± 0.6 Mpc and φ = 16.4± 0.2′.
Bottom: a GRG of lp = 3.6 ± 0.1 Mpc and φ = 8.5 ± 0.2′. For scale, we show the stellar Milky Way disk (with a diameter of 50 kpc) generated
using the Ringermacher & Mead (2009) formula, alongside a 3, 5, or 10 times inflated version.
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Fig. 9. Relations between cosmological redshift z and angular length
φ for six giants of different projected lengths lp. Due to the expansion
of the Universe, there is a minimum angular length for each lp. If one
defines giants as RGs with lp ≥ lp,GRG = 0.7 Mpc, all giants have an
angular length of 1.3′ or above. If one instead defines giants as RGs
with lp ≥ lp,GRG = 1 Mpc, all giants have an angular length of 1.9′ or
above.

as RG lobes. Being similar in morphology, we made sure not to
interpret diffuse emission from low-redshift spiral galaxies and
their circumgalactic media, or radio halos and relics in galaxy
clusters, as RG lobe emission. We required that all new RGs fea-
ture a detection of at least two12 lobes, or of at least one lobe and
one jet oriented towards the lobe(s), at least one of the resolu-
tions used in this work (6′′, 20′′, 60′′, and 90′′).

3.4. GRG candidates in the optical

To confirm that a radio structure really is a radio galaxy, we
compared the radio images with optical images of the same sky
region. If a patch of radio emission is indeed due to RG jets or
lobes, the patch itself must have no codirectional galactic coun-
terpart in the optical. If the radio emission is due to a low-redshift
spiral galaxy or a galaxy cluster instead, a corresponding easily
recognisable counterpart will exist. We also took care not to erro-
neously associate the lobes of two distinct RGs. For this reason,
we were more cautious to associate a pair of lobes to a suspected
host galaxy when, in the optical, one could discern other galax-
ies in the angular vicinity of the lobes that could have generated
them instead.

The Pan-STARRS and SDSS images used for these pur-
poses complement each other, as they differ in quality through-
out the sky – and in particular around sources of high optical flux
density. Neither consistently outperforms the other. Only Pan-
STARRS covers the full Northern Sky and could thus always be
relied upon.

3.5. Host galaxy identification

We also used the Pan-STARRS and SDSS maps for the iden-
tification of host galaxies. We collected host redshifts from the
SDSS DR12 (Alam et al. 2015) and Gaia (Gaia Collaboration
2016) DR3 (Gaia Collaboration 2021) through automated
VizieR queries, from the Galaxy List for the Advanced Detec-
tor Era (GLADE) 2.4 (Dálya et al. 2018), and from the DESI

12 A small fraction of observed RGs are double-double radio galaxies,
which show four lobes.
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Fig. 10. 12′ × 12′ DESI Legacy Imaging Surveys DR9 (g, r, z)-details
with LoTSS DR2 6′′ contours (3σ, 5σ, 10σ) overlaid. At 6′′ resolu-
tion, LoTSS images allow for more accurate host galaxy identification
in SDSS, Pan-STARRS, and Legacy Survey images than was possible
before. Top: the jet of the giant at rank 33 of Table 2 and shown in the
middle-left panel of Fig. B.1. Middle: the giant at rank 37 of Table 2.
Bottom: the giant at rank 43 of Table 2.
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Fig. 11. Mollweide view of the sky showing locations of all known giants, of which 62% are discoveries presented in this work. In the background,
we show the specific intensity function of the Milky Way at νobs = 150 MHz (Zheng et al. 2017). The LoTSS DR2 has avoided the Galactic Plane,
where extended emission complicates calibration and deconvolution. Our search footprint encloses a grey spherical rectangle, which represents the
LoTSS DR1 search by Dabhade et al. (2020b), and a grey spherical cap, which represents the Boötes LOFAR Deep Field search by Simonte et al.
(2022).

DR9 photometric redshift catalogue (Zou et al. 2022). If red-
shifts from multiple sources were available, we favoured SDSS
over GLADE data, GLADE over Gaia data, and Gaia over DESI
data. Similarly, we only adopted photometric redshifts if spectro-
scopic ones were not available.

For a small subset of RGs, a definite host galaxy could not be
established beyond reasonable doubt, but a set of candidates con-
taining the host galaxy could. In these cases, the lowest-redshift
candidate provides a lower bound to the RG’s projected proper
length13. If this lower bound exceeds lp,GRG = 0.7 Mpc, then the
actual projected proper length certainly does so too, and the RG
can be classified as a GRG – despite persisting uncertainty con-
cerning the identity of the host galaxy.

3.6. LoTSS DR2 GRG sample

Our search campaign has led to the identification of 2060 hith-
erto unknown giants. To establish novelty, we assembled a litera-
ture catalogue with all known giants as of September 2022, com-
bining the catalogue of Dabhade et al. (2020a)14 with the giants
discovered in Galvin et al. (2020), Ishwara-Chandra et al. (2020),
Tang et al. (2020), Bassani et al. (2021), Brüggen et al. (2021),
Delhaize et al. (2021), Masini et al. (2021), Kuźmicz & Jamrozy
(2021), Andernach et al. (2021), Mahato et al. (2022), Gürkan
et al. (2022), and Simonte et al. (2022). Fusing our sample with
this literature catalogue, we obtain a final catalogue with N =
3341 giants.

Figure 11 shows the locations of all known giants in the
sky. We list basic properties of the 50 projectively largest new

13 This is true as long as all candidates have a redshift below that of
the angular diameter distance maximum: z = 1.59 for the cosmology
adopted.
14 This catalogue, complete up to and including April 2020, contains
the giants found in 40 prior publications (for a list, see Dabhade et al.
2020a’s Sect. 1: Introduction), alongside their own discoveries.

discoveries in Table 2, and refer to Appendix F for access to
these data for our entire sample. In Fig. 12 and Figs. B.1–
B.3, we present images for discoveries with projected proper
lengths lp in the ranges 5.1–4 Mpc, 4–3 Mpc, 3–2 Mpc, and 2–
0.7 Mpc, respectively. For each giant, we use the LoTSS resolu-
tion θFWHM ∈ {6′′, 20′′, 60′′, 90′′} that most clearly conveys the
morphology through a single image. The selection reflects our
sample’s diversity in shapes and sizes and provides a sense of
the data quality.

3.6.1. Angular lengths

The angular length distribution of the newly found giants is as
follows: the smallest φ = 1.5′, the median φ = 5.2′, the largest
φ = 2.2◦, and 80% of angular lengths fall within [3.4′, 9.8′].
Thirteen of our discoveries – listed in Table 3 – are larger than
the Moon in the sky (whose angular diameter varies over time,
but here taken to be φ = 30′). Our search more than doubles the
known number of such spectacular giants – from 10 to 23.

The GRG associated with NGC 2300 (see the middle-left
panel of Fig. 13) is the giant with the largest angular length ever
found, and the radio galaxy with the largest angular length in
the Northern Sky15. It remains possible that the GRG has been
generated by spiral galaxy NGC 2276 instead, with which ellip-
tical galaxy NGC 2300 is interacting. However, this scenario
seems unlikely, as only a fraction ∼10−3 of known giants are
hosted by spirals. Its discovery emphasises that low-frequency
interferometers like the LOFAR and the MWA, which are sen-
sitive to degree-scale angular scales, are important to complete
a low-redshift census of giant radio galaxies. Sky-wide, a sim-
ple extrapolation of our findings suggests that several (∼101)

15 At φ = 8◦, the Southern Sky’s Centaurus A (Cooper et al. 1965)
is the radio galaxy with the largest angular length overall (e.g.,
McKinley et al. 2022); despite this, at lp = 0.48 Mpc, it is not a giant.
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Table 2. Properties of the 50 projectively longest giants out of a total of 2060 discovered during our LoTSS DR2 search campaign.

Rank Host name Host coordinates Redshift Redshift Angular Projected proper Host stellar Host SMBH Host
SDSS DR12 J2000 (◦) (1) type length (′) length (Mpc) mass (1011 M�) mass (109 M�) quasar

1 J081956.41+323537.6 124.9851, 32.5938 0.749± 0.073 p 11.2 5.07 ± 0.20 . . . . . . . . .

2 J081421.68+522410.0 123.5904, 52.4028 0.2467± 6 × 10−5 s 20.8 4.99 ± 0.04 2.4 ± 0.4 0.4 ± 0.2 n
3 J142910.70+311245.0 217.2946, 31.2125 0.5921± 0.0001 s 11.7 4.80 ± 0.06 . . . 2.3 ± 2.0 n
4 J131823.42+262622.8 199.5976, 26.4397 0.6230± 5 × 10−5 s 11.0 4.62 ± 0.06 . . . . . . y
5 J152634.77+262003.2 231.6449, 26.3342 0.1507± 2 × 10−5 s 28.0 4.56 ± 0.03 3.7 ± 0.6 1.4 ± 0.3 n
6 J121815.66+382407.5 184.5653, 38.4021 0.634± 0.064 p 10.6 4.49 ± 0.21 . . . . . . . . .

7 J175735.88+405154.2 269.3995, 40.8651 0.585± 0.036 p 10.5 4.29 ± 0.14 . . . . . . . . .

8 J161622.52+111135.7 244.0939, 11.1933 0.3574± 7 × 10−5 s 13.4 4.15 ± 0.05 9.5 ± 1.8 5.7 ± 3.1 n
9 J154709.22+353846.1 236.7884, 35.6462 0.0794± 1 × 10−5 s 43.8 4.08 ± 0.01 4.6 ± 0.1 3.9 ± 0.9 n
10 J013406.32+301537.2 23.5264, 30.2604 0.884± 0.138 p 8.5 4.06 ± 0.22 . . . . . . . . .

11 J082747.88+662813.6 126.9495, 66.4705 0.968± 0.160 p 8.2 4.02 ± 0.20 . . . . . . . . .

12 J012440.54+194003.9 21.1689, 19.6678 0.578± 0.162 p 9.6 3.90 ± 0.58 . . . . . . . . .

13 . . . 238.4466, 28.4763 1.094± 0.122 p 7.7 3.88 ± 0.12 . . . . . . . . .

14 . . . 275.3624, 26.6599 0.0850± 0.0001 s 39.0 3.86 ± 0.02 . . . . . . . . .

15 J162656.58+543421.3 246.7358, 54.5726 0.4887± 0.0001 s 10.3 3.84 ± 0.06 . . . 1.0 ± 1.6 n
16 J220605.67+275100.3 331.5237, 27.8501 0.317± 0.116 p 13.2 3.78 ± 0.99 . . . . . . . . .

17 J023544.96+310447.5 38.9373, 31.0799 0.541± 0.063 p 9.6 3.77 ± 0.23 . . . . . . . . .

18 . . . 136.9661, 67.1071 0.754± 0.081 p 8.3 3.77 ± 0.17 . . . . . . . . .

19 J180117.72+510722.4 270.3239, 51.1229 0.448± 0.086 p 10.3 3.66 ± 0.42 . . . . . . . . .

20 J123900.69+360924.5 189.7529, 36.1568 0.5935± 6 × 10−5 s 8.8 3.62 ± 0.06 . . . . . . y
21 J102430.93+381842.8 156.1289, 38.3119 0.411± 0.028 p 10.7 3.62 ± 0.16 . . . . . . . . .

22 J172051.08+294256.8 260.2129, 29.7158 ≥ 0.620± 0.044 p 8.5 ≥ 3.56 ± 0.13 . . . . . . . . .

23 J090534.54+563052.0 136.3939, 56.5145 0.898± 0.056 p 7.4 3.55 ± 0.10 . . . . . . . . .

24 J133105.80+293435.7 202.7742, 29.5766 0.734± 0.034 p 7.9 3.55 ± 0.09 . . . . . . . . .

25 J223649.76+251242.5 339.2074, 25.2118 0.749± 0.075 p 7.8 3.53 ± 0.15 . . . . . . . . .

26 J230125.38+240148.2 345.3558, 24.0301 0.450± 0.089 p 9.9 3.53 ± 0.41 . . . . . . . . .

27 J004848.01+021003.1 12.2001, 2.1675 ≥ 0.3604± 9 × 10−5 s 11.2 ≥ 3.49 ± 0.05 . . . 3.0 ± 1.5 n
28 J220239.13+070656.7 330.6631, 7.1158 0.4649± 7 × 10−5 s 9.6 3.48 ± 0.05 . . . 0.9 ± 0.6 n
29 J165113.78+320943.4 252.8074, 32.1621 0.744± 0.045 p 7.7 3.48 ± 0.10 . . . . . . . . .

30 . . . 102.0173, 70.8276 0.714± 0.049 p 7.8 3.47 ± 0.12 . . . . . . . . .

31 . . . 11.2869, 28.7951 0.668± 0.042 p 8.0 3.46 ± 0.11 . . . . . . . . .

32 . . . 127.9215, 67.1934 0.451± 0.027 p 9.5 3.39 ± 0.12 . . . . . . . . .

33 J112912.14+273313.9 172.3006, 27.5539 0.0732± 1 × 10−5 s 38.6 3.34 ± 0.01 3.7 ± 0.1 3.6 ± 0.8 n
34 J163659.07+541725.4 249.2461, 54.2904 0.5027± 5 × 10−5 s 8.8 3.33 ± 0.06 . . . 53.4 ± 59.1 n
35 J092826.93+230448.0 142.1122, 23.0800 0.491± 0.045 p 8.9 3.33 ± 0.17 . . . . . . . . .

36 J001152.65+310024.3 2.9694, 31.0068 0.757± 0.083 p 7.3 3.32 ± 0.15 . . . . . . . . .

37 J125804.46+273046.0 194.5186, 27.5128 0.741± 0.083 p 7.3 3.29 ± 0.16 . . . . . . . . .

38 . . . 182.5080, 44.0903 1.031± 0.163 p 6.6 3.28 ± 0.15 . . . . . . . . .

39 J084127.02+554627.1 130.3626, 55.7742 0.7912± 3 × 10−5 s 7.1 3.28 ± 0.07 . . . 25.2 ± 27.0 n
40 J143011.92+410404.2 217.5497, 41.0678 0.5868± 0.0001 s 8.0 3.27 ± 0.06 . . . 2.1 ± 1.4 n
41 J135119.31+340844.1 207.8305, 34.1456 0.923± 0.121 p 6.7 3.24 ± 0.14 . . . . . . . . .

42 J134436.33+291239.6 206.1514, 29.2110 0.766± 0.134 p 7.1 3.24 ± 0.23 . . . . . . . . .

43 J112638.34+302541.9 171.6598, 30.4283 0.3049± 4 × 10−5 s 11.6 3.23 ± 0.04 . . . 1.5 ± 0.6 n
44 J012342.20+293633.1 20.9259, 29.6092 2.525± 0.300 p 6.5 3.22 ± 0.11 . . . . . . . . .

45 J223224.15+285753.3 338.1007, 28.9648 0.566± 0.038 p 8.0 3.21 ± 0.12 . . . . . . . . .

46 J103731.47+312948.9 159.3811, 31.4969 0.5228± 0.0001 s 8.3 3.21 ± 0.06 . . . 2.2 ± 1.4 n
47 J154742.69+384119.4 236.9279, 38.6887 0.280± 0.024 p 12.2 3.21 ± 0.20 . . . . . . . . .

48 J114333.93+425800.5 175.8914, 42.9668 0.802± 0.075 p 6.9 3.20 ± 0.12 . . . . . . . . .

49 J122329.86+313116.0 185.8744, 31.5211 0.666± 0.042 p 7.4 3.20 ± 0.11 . . . . . . . . .

50 . . . 212.1410, 67.8036 1.103± 0.181 p 6.3 3.17 ± 0.14 . . . . . . . . .

Notes. The giants are ranked by projected proper length. The column ‘rank’ thus denotes each giant’s projected proper length rank within this
new sample, not within the total known population. Lying outside of the coverage, some GRG host galaxies have no SDSS DR12 name. The
column ‘host coordinates’ contains the central right ascension and declination of the host galaxy. The columns ‘redshift’ and ‘redshift type’
provide cosmological redshift estimates, derived from spectroscopy s or photometry p. The column ‘angular length’ denotes the largest great-
circle distance between two LoTSS DR2–detectable GRG (end)points. These angular lengths may increase in future deeper surveys. We have
not measured angular length errors on a case by case basis, but estimate them to be 0.15′. The column ‘projected proper length’ propagates
both redshift and angular length uncertainty and assumes the Planck Collaboration VI (2020) cosmology. The columns ‘host stellar mass’ and
‘host SMBH mass’, further discussed in Sect. 3.6.4 and Appendix C, provide SDSS-derived estimates of host stellar and supermassive black hole
masses. Finally, the column ‘host quasar’ indicates whether the host’s AGN has a quasar appearance: y (yes) or n (no). In cases where only a set of
candidates containing the host galaxy could be established beyond reasonable doubt, we list the properties of the lowest-redshift candidate. In this
way, the provided projected proper length bounds the actual projected proper length from below. In such cases, to signify uncertainty, we mark
the host name, host coordinates, and physical host properties in grey. We note that this lowest-redshift candidate is often, but not always, also the
most probable host. For access to these data for all 2060 newly discovered giants, see Appendix F.
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Fig. 12. Details of the LoTSS DR2–estimated specific intensity function Iν (r̂) at central observing frequency νobs = 144 MHz and resolutions
θFWHM ∈ {6′′, 90′′}, centred around the hosts of newly discovered giants. Row-wise from left to right, from top to bottom, the projected proper
length lp is 5.1 Mpc, 5.0 Mpc (Oei et al. 2022a), 4.6 Mpc, 4.6 Mpc, 4.1 Mpc, and 4.1 Mpc; in the same order, θFWHM is 6′′, 90′′, 6′′, 90′′, 6′′, and 6′′.
The GRG in the bottom-left panel appears larger in the sky than the Moon. In the middle-right panel, contours signify 2.5 and 3.5 sigma-clipped
standard deviations (SDs) above the sigma-clipped median; in the bottom-right panel, they signify 3, 5, and 10 such SDs. For scale, we show
the stellar Milky Way disk (with a diameter of 50 kpc) generated using the Ringermacher & Mead (2009) formula, alongside a 10 times inflated
version.
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Table 3. (Extended) Table 2 ranks, host names, angular lengths, and
LoTSS DR2 image references for all 13 newly discovered giants that
appear larger in the sky than the Moon (φ > 30′).

Rank Host name Angular LoTSS DR2
Table 2 NGC or LEDA length (′) image reference

1441 NGC 2300 2.2◦ Fig. 13, middle left
141 NGC 6185 1.0◦ Fig. 13, top left
9 LEDA 56028 43.8′ Fig. 12, bottom left
144 LEDA 54794 40.0′ –
14 LEDA 5060619 39.0′ Fig. B.1, top left
33 LEDA 1811497 38.6′ Fig. B.1, middle left
1692 NGC 2789 34.5′ Fig. 13, bottom right
1643 LEDA 38523 33.8′ Fig. 13, middle right
1770 NGC 1044 32.7′ Fig. 13, bottom left
178 LEDA 2048533 32.3′ Fig. 8, top row
1486 NGC 7385 32.0′ –
326 LEDA 3090801 31.0′ Fig. B.2, bottom left
465 LEDA 37801 30.1′ Fig. 13, top right

degree-scale angular length giants similar to the GRG of NGC
2300 still await discovery at the LoTSS DR2 depth.

3.6.2. Redshifts

The redshift distribution of the newly found giants is as fol-
lows: the lowest z = 0.00635 ± 6 × 10−5, the median z = 0.29,
the highest z = 2.6394 ± 6 × 10−4, and 80% of redshifts fall
within [0.12, 0.68]. Because of our focus on giants of large angu-
lar length (see Sect. 3.2), we have found only 36 giants beyond
z > 1. One of these, the GRG at rank 13 of Table 2, is the largest
secure giant found beyond redshift 1. It lies at z = 1.1 ± 0.1
and spans lp = 3.9 ± 0.1 Mpc. Its host galaxy does not appear to
contain a quasar.

3.6.3. Projected proper lengths

With lp = 5.1 ± 0.2 Mpc and lp = 4.99 ± 0.04 Mpc, our LoTSS
DR2 sample contains the first two 5 Mpc–scale giants. We have
presented a dedicated analysis of the latter GRG in Oei et al.
(2022a). 11 discoveries have lp ≥ 4 Mpc, 53 have 3 ≤ lp <
4 Mpc, 291 have 2 ≤ lp < 3 Mpc, 1215 have 1 ≤ lp < 2 Mpc, and
490 have 0.7 ≤ lp < 1 Mpc. The median lp = 1.35 Mpc, and 80%
of projected proper lengths fall within [0.82 Mpc, 2.29 Mpc].

3.6.4. Stellar and supermassive black hole masses

Following Oei et al. (2022a), we collected host stellar masses
M? from Chang et al. (2015) and Salim et al. (2018), and esti-
mated host SMBH masses M• via SDSS DR12 stellar veloc-
ity dispersions (Alam et al. 2015) and the M-sigma relation of
Kormendy & Ho (2013)’s Eq. (7). From all 3341 giants in our
final catalogue, only 732 (22%) could be assigned a stellar mass
in this way, and only 1115 (33%) an SMBH mass; for both quan-
tities, our LoTSS DR2 sample accounts for four-fifths of the
resulting subpopulation. Figure C.1 shows both M? and M• in
relation to projected proper length lp.

The median M? = 3.4 × 1011 M�, and 80% of stellar masses
fall within [1.8×1011 M�, 5.3×1011 M�]. We discover two giants
whose hosts, J150329.07+374850.3 and J073505.24+415827.5,
are the least massive known: both have a stellar mass M? =

4.8 × 1010 M�. These are small giants, with lp = 0.8 Mpc and
lp = 0.7 Mpc, respectively. The top panel of Fig. C.1 hints at a
weak positive correlation between M? and lp, which future work
should confirm or reject.

The median M• = 1.0 × 109 M�, and 80% of SMBH
masses fall within [0.4 × 109 M�, 2.2 × 109 M�]. The SMBH
masses of J123703.24+275819.5, J163659.07+541725.4, and
J103129.54+502959.1 are the highest estimated yet, with M• =
2 × 1011 M�, M• = 5 × 1010 M�, and M• = 5 × 1010 M�, respec-
tively. The latter masses equal the theoretical maximum mass
of accreting black holes of typical spin (King 2016). Curiously,
although J103129.54+502959.1’s M• is among the highest esti-
mated SMBH mass of any GRG host, the GRG itself is rel-
atively small: lp = 0.81 ± 0.06 Mpc. Conversely, the bottom
panel of Fig. C.1 shows that multi-Mpc giants can have hosts
with SMBH masses that are two orders of magnitude lower than
J103129.54+502959.1’s.

3.6.5. Spiral or lenticular host galaxies

Remarkably, although NGC 6185 is a spiral galaxy of Hubble–
de Vaucouleurs class SAa (Jansen et al. 2000), it appears to have
generated the giant shown in the top-left panel of Fig. 13. Such
systems are exceedingly rare: not only are few RGs giants, but
also virtually all giants have an elliptical galaxy as their host.
With lp = 2.54 ± 0.01 Mpc, this is the largest known spiral
galaxy–hosted radio galaxy. Hitherto, the largest spiral galaxy–
hosted giant in the literature has been J2345-0449 (Bagchi et al.
2014), with lp = 1.6 Mpc. Given the favourably low redshift
of z = 0.03430 ± 7 × 10−5, NGC 6185 and its enigmatic
giant solicit a dedicated analysis (Oei et al. 2023). Besides NGC
6185, spiral or lenticular galaxies J080403.40+404809.3 and
J091459.66+294348.8 (known alternatively as NGC 2789; see
the bottom-right panel of Fig. 13) have also generated giants;
these have projected proper lengths lp = 1.1 Mpc and lp =
0.9 Mpc, respectively. Morphological host classification through
SDSS, Pan-STARRS, and DESI imagery is reliable only up to
z ∼ 0.1–0.2, depending on viewing angle and various other fac-
tors. Our LoTSS DR2 sample contains 342 giants with definite
hosts at z = 0.15 or below, among which are all 3 giants with spi-
ral or lenticular hosts discussed here. It thus appears that the frac-
tion of GRG hosts that is of such non-elliptical nature is ∼1%.
A more detailed morphological characterisation of the sample
appears possible, for example using data from Hart et al. (2016),
but this is beyond the scope of the current work.

4. Results

After first building a statistical framework and then collecting a
large sample of giants from a single survey through a system-
atic approach, we were ready to infer the intrinsic GRG length
distribution. In particular, we aimed to establish whether the RG
intrinsic proper length RV L is well described by a Pareto dis-
tribution, and if so, what its tail index ξ is. Subsequently, we
inferred derived quantities, such as the comoving GRG number
density in the Local Universe.

4.1. Giant radio galaxy length distribution

4.1.1. Empirical survival function

From our LoTSS DR2 GRG sample, we computed the empirical
cumulative distribution function (ECDF) of the GRG observed
projected proper length RV Lp,obs | Lp,obs > lp,GRG (see Eq. (21)).
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Fig. 13. Details of the LoTSS DR2–estimated specific intensity function Iν (r̂) at central observing frequency νobs = 144 MHz and resolutions
θFWHM ∈ {6′′, 20′′, 90′′}, centred around the hosts of newly discovered giants. Row-wise from left to right, from top to bottom, the projected proper
length lp is 2.5 Mpc, 1.9 Mpc, 1.1 Mpc, 1.0 Mpc, 0.9 Mpc, and 0.9 Mpc; in the same order, θFWHM is 90′′, 20′′, 90′′, 20′′, 6′′, and 20′′. All appear
larger in the sky than the Moon. The top-left panel shows the giant of NGC 6185, a spiral galaxy. This is the first spiral galaxy–hosted giant known
with lp > 2 Mpc. The middle-left panel shows a structure we interpret as a radio galaxy belonging to the elliptical galaxy NGC 2300. At φ = 2.2◦,
this giant has the largest angular length of all uncovered thus far.
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Fig. 14. Empirical survival function of the observed giant radio galaxy projected proper length RV (ESF; dark grey) and the corresponding
survival function 1 − FLp,obs | Lp,obs>lp,GRG (SF; green curve) using the maximum a posteriori probability parameters (MAP; see Table 4). Observed
GRG projected lengths are well described by a Pareto distribution modified to include selection effects. Keeping the selection effect parameters
fixed, we show how models vary with tail index ξ (green range). We also show the selection effect–free SF 1 − FLp | Lp>lp,GRG using the MAP ξ
(green dots). We included all LoTSS DR2 search campaign giants up to zmax = 0.5. Left: logarithmic horizontal axis and linear vertical axis. Right:
logarithmic horizontal axis and logarithmic vertical axis.

We only included giants for which lp itself – rather than a lower
bound – is known, and set either zmax = 0.5 or zmax = 0.25;
this retained 1473 or 811 giants for analysis, respectively16. The
empirical survival function (ESF), which equals one minus the
ECDF, is shown in dark grey in both panels of Fig. 14. Just as
the ECDF approximates the CDF, the ESF approximates the sur-
vival function (SF). In this case, for any lp, the ESF provides the
probability that a randomly drawn LoTSS DR2 GRG will have
a projected proper length exceeding lp. If Lp,obs | Lp,obs > lp,GRG
were Paretian, its ESF (hereafter: ‘the’ ESF) would resemble a
straight line in Fig. 14’s right panel – both axes have logarithmic
scaling. However, the ESF clearly displays curvature.

4.1.2. Selection effects

Under the ansatz that L is Paretian, as proposed in Sect. 2.1,
the aforementioned ESF’s curvature implies a significant role
for observational selection effects. The reason is the following.
The ansatz implies that the GRG projected proper length RV
Lp | Lp > lp,GRG is also Paretian (see Eq. (5)), as is Lp,obs | Lp,obs >
lp,GRG when selection effects are negligible (see Sect. 2.8.1 and
set C(lp) = 1). But in our case Lp,obs | Lp,obs > lp,GRG is not Pare-
tian: its ESF is curved. To avoid contradiction, we must relax at
least one assumption. If the Pareto ansatz is held, then selection
effects must be at play.

When selection effects are non-negligible, we must devise a
procedure to disentangle them from the data if our ξ estimate is
to be uncontaminated. To this end, we performed joint Bayesian

16 We explored two choices for zmax as our model assumes that ξ
remains constant between z ∈ [0, zmax]. We further discuss this assump-
tion in Sect. 5.5.

inference with a model that includes both ξ and parameters that
describe the selection effects.

In particular, we considered the roles of the fuzzy angular
length threshold and surface brightness selection effects, intro-
duced in Sects. 2.8.2 and 2.8.3, respectively. In Sect. 3.2, we
explain that we have attempted to maintain a 5′ angular length
threshold during our LoTSS DR2 GRG search. If we want to use
Sect. 2.8.2 to correct for the bias against faraway and physically
small giants that this threshold has imprinted onto our sample,
we must estimate parameters φmin and φmax. A natural choice is
to assume that they lie symmetrically around the intended angu-
lar length threshold of 5′ – but at what distance from it? We pro-
pose to consider this distance, 1

2 (φmax − φmin), as a yet unknown
model parameter that we fitted to the data. Similarly, if we want
to use Sect. 2.8.3 to correct for the bias against physically large
giants that the limited depth of the LoTSS DR2 imprints onto
our sample, we must estimate parameters bν,ref and σref . Our
approach was to, again, fit these parameters – possibly making
use of any available prior knowledge.

The meaning of bν,ref depends on the choice of lref and νobs;
we defined lref := 0.7 Mpc and used νobs = 144 MHz. We fur-
thermore assumed bν,th = 1 × σIν , with σIν = 25 Jy deg−2 being
the typical LoTSS DR2 6′′ RMS noise (Shimwell et al. 2022).

4.1.3. Prior

We exploited two sources of prior knowledge. Firstly, we
attempted to directly estimate bν,ref and σref by selecting from all
LoTSS DR2 giants with lp ≤ 1 Mpc a random subset of size 50
(10%). For these giants, we estimated the mean surface bright-
nesses of both lobes from the LoTSS DR2 6′′ imagery, differenti-
ating between the brighter and the fainter lobe. Because our goal
was to estimate bν,ref , we attempted to undo cosmological and
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Fig. 15. Comparison between luminosity density–projected proper
length relations for observed and simulated giants. Each dash-dotted
curve denotes a family of giants at a given redshift, assuming fLν = 0.3
and fl = 0.3, whose mean lobe surface brightnesses equal the LoTSS
DR2 noise level and who are thus borderline-detectable. The grey band
denotes the median-centred luminosity density range that contains 68%
of giants. Top: 139 LoTSS DR1 giants (Dabhade et al. 2020b), along-
side Alcyoneus, with redshift zAlc. = 0.25 (Oei et al. 2022a). The solid
green curve is similar to the dash-dotted green curve, but represents
maximum instead of mean lobe surface brightness. Middle: 1000 sim-
ulated giants, assuming bν,ref = 1750 Jy deg−2 and σref = 1.3. Bottom:
1000 simulated giants, assuming bν,ref = 250 Jy deg−2 and σref = 1.3.

growth-induced surface brightness dimming assuming a univer-
sal lobe spectral index α = −1 and self-similar growth: ζ = −2.
The resulting surface brightnesses correspond to z = 0, and to
the epoch in each giant’s life when l = lref . The median of

the corrected bright lobe mean surface brightnesses is bν,ref =
1.3 × 103 Jy deg−2, whilst the median of the corrected faint lobe
mean surface brightnesses is bν,ref = 0.7×103 Jy deg−2. All lobes
taken together, the median becomes bν,ref = 1.0 × 103 Jy deg−2.
We performed maximum likelihood estimation assuming the sur-
face brightness distribution is lognormal and found σref = 1.3,
again using all lobes. Note, however, that we have only used
observed giants here, whilst bν,ref and σref should correspond to
the entire population of giants. As fainter giants will have prefer-
entially fallen out, we might have overestimated bν,ref and under-
estimated σref .

To probe whether we had overestimated bν,ref and underes-
timated σref , we used data from Dabhade et al. (2020b) and a
Monte Carlo approach. First, for their sample of 239 LoTSS
DR1 giants, we computed total luminosity densities Lν at rest-
frame frequency ν = 144 MHz. (Given that LoTSS DR1 and
DR2 noise levels are similar, this population is also representa-
tive of the LoTSS DR2.) In the top panel of Fig. 15, we show Lν
versus lp for all 139 for which z < 0.6. To increase the range
of lengths covered, we additionally show data on Alcyoneus
(Oei et al. 2022a). Next, under the same assumptions of a con-
stant spectral index and self-similar growth, we derived a simple
luminosity density–surface brightness relationship that allows
for back-and-forth conversion between the two – at least, given
projected lengths and redshifts. The mean lobe surface bright-
ness 〈bν〉 is proportional to the total luminosity density Lν, and
assuming a pair of spherical lobes

〈bν〉 =
2 fLν · Lν

π2 · E[D](η( fl)) · f 2
l · l

2
p · (1 + z)3−α

. (40)

Here fLν is the fraction of the total luminosity density that
belongs to the lobes, fl is the fraction of the RG’s axis length
that lies inside the lobes, and E[D](η( fl)) is the mean deprojec-
tion factor as given by Eq. (A.29). The peak surface brightness
bν,max relates to 〈bν〉 as bν,max = 3

2 〈bν〉. Appendix D contains
derivations for both these results. For Alcyoneus, at zAlc. = 0.25,
fLν = 0.3 and fl = 0.3 (Oei et al. 2022a). Assuming these param-
eter values, again in the top panel of Fig. 15, we show lumi-
nosity density–projected length pairs of RGs at z = zAlc. whose
peak (solid green curve) or mean (dash-dotted green curve) sur-
face brightness equals the LoTSS DR2 noise level. Thus, each
curve represents a family of borderline-detectable giants at Alcy-
oneus’s redshift. The other dash-dotted curves indicate similar
barely detectable families, but for other redshifts. Without opti-
mising any free parameters, the curves correctly predict that
Alcyoneus’s lobes have surface brightnesses comparable to the
6′′ LoTSS DR2 noise level and explain the absence of obser-
vations in the top-left corner of the figure. We conclude that
Eq. (40) appears reasonable, but note that RGs may significantly
differ in their values of fLν and fl.17

Bolstered, we made use of Eq. (40) to Monte Carlo simulate
– for particular values of bν,ref and σref – luminosity density–
projected length relationships as they appear to observers.
The simulated giants have projected lengths adopted from the
observed giants, randomly sampled redshifts up to z = 0.6
assuming a spatially constant GRG number density, and ran-
domly sampled reference surface brightnesses (i.e. those for RGs
at z = 0 that have intrinsic length l = lref) whose distribu-
tion is determined by bν,ref and σref . We then used Eq. (24) to
compute surface brightnesses as they would be observed, and
retained only those giants whose surface brightness exceeds the

17 This is also the reason that some giants in Fig. 15 cross their redshift’s
dash-dotted curve, which represents fLν = 0.3 and fl = 0.3 only.
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LoTSS DR2 noise level. For these simulated detectable giants,
we finally generated luminosity densities using Eq. (40), assum-
ing wide uniform distributions fLν ∼ fl ∼ Uniform(0.1, 0.9).
The middle and bottom panels of Fig. 15 show results for
bν,ref = 1750 Jy deg−2 and bν,ref = 250 Jy deg−2, respectively;
we adopted σref = 1.3 from our LoTSS DR2 GRG surface
brightness measurements. The median luminosity density of the
z < 0.6 LoTSS DR1 giants is Lν = 1.1×1026 W Hz−1, that of the
bν,ref = 1750 Jy deg−2 simulated giants is Lν = 0.6×1026 W Hz−1,
and that of the bν,ref = 250 Jy deg−2 simulated giants is Lν =
0.2 × 1026 W Hz−1.18 Interestingly, the higher reference surface
brightness median provides a better fit to the data. Even in case
our Monte Carlo approach would predict luminosity densities
that are biased low by a factor two, the higher median remains
favoured.

In conclusion, it seems reasonable to suppose that our mea-
surement bν,ref = 1.0× 103 Jy deg−2 is not, or only mildly, biased
high by selection effects. Still, we take a conservative approach
and in setting priors we assume a 75% error on our measure-
ment of bν,ref and a 50% error on our measurement of σref . Thus,
the priors for bν,ref and σref – which we choose to be Gaussian
– have 68% credible intervals [250 Jy deg−2, 1750 Jy deg−2] and
[0.65, 1.95]. We retain flat priors for ξ and 1

2 (φmax − φmin).

4.1.4. Inference

To compute the posterior distribution for ξ, 1
2 (φmax − φmin), bν,ref

and σref , we first brute-force evaluated the likelihood function
over a regular grid that covers a total of 3.3 million param-
eter combinations19. For each proposed parameter quartet, we
computed the PDF of Lp,obs | Lp,obs > lp,GRG, and obtained the
likelihood assuming that the LoTSS DR2 GRG projected proper
lengths are IID draws from it. To obtain the PDF, we successively
evaluated Eqs. (22), (25), (29), (18), (3), and (21), alongside their
direct dependencies. This required the numerical evaluation of
five integrals. Compared with using Riemann sums, we achieved
substantial accuracy improvements at virtually no added numer-
ical cost by approximating these integrals with the trapezoid rule
and the composite Simpson’s rule.

We summarise the likelihood function in Table E.1 and
Fig. E.1. To obtain the posterior, we simply multiplied the like-
lihood function by the prior and normalised the result.

In Table 4, for each parameter, we list the maximum a pos-
teriori probability (MAP) estimate, alongside estimates for the
posterior mean and standard deviation. In Fig. 16, we visualise
all one- and two-dimensional posterior marginals, in which we
mark the MAP (white circle) and the posterior mean (white
cross). The joint marginal for ξ and bν,ref shows that these param-
eters have a strong negative correlation, indicating that with cur-
rent data, the steep slope of the ESF at high lp can equally be
described with a steep intrinsic slope and mild surface bright-
ness selection (i.e. ξ low and bν,ref high), or by a shallow intrin-
sic slope and strong surface brightness selection (i.e. ξ high and
bν,ref low). We leave it up to future studies to break this degener-
acy, either by using larger samples, by measuring bν,ref directly,

18 For another interesting case, bν,ref = 500 Jy deg−2 (not shown), the
median Lν = 0.3 × 1026 W Hz−1.
19 The computation took a few thousand CPU hours to complete, but
can be trivially distributed among nodes, and within a node among
CPUs. Model extensions that introduce additional parameters shall
necessitate more efficient inference techniques, such as Markov chain
Monte Carlo.

Table 4. Maximum a posteriori probability (MAP) and posterior mean
and standard deviation (SD) estimates of the free parameters in intrinsic
GRG length distribution inference.

zmax = 0.5
Parameter MAP Posterior mean and SD

ξ −3.55 −3.5 ± 0.5
1
2 (φmax − φmin) 1.9′ 1.9 ± 0.2′

bν,ref 600 Jy deg−2 720 ± 380 Jy deg−2

σref 1.2 1.2 ± 0.2

zmax = 0.25
Parameter MAP Posterior mean and SD

ξ −3.5 −3.5 ± 0.4
1
2 (φmax − φmin) 1.85′ 1.7 ± 0.3′

bν,ref 900 Jy deg−2 1020 ± 490 Jy deg−2

σref 1.15 1.3 ± 0.4

Notes. The model assumes ξ is constant for z ∈ [0, zmax]. We determined
the posterior twice: for zmax = 0.5, using 1473 giants, and for zmax =
0.25, using 811 giants.

or by improving survey sensitivities so that surface brightness
selection effect modelling becomes superfluous altogether.

4.1.5. Goodness of fit

In both panels of Fig. 14, we compare the ESF and SF of
Lp,obs | Lp,obs > lp,GRG for zmax = 0.5, using the MAP
parameters for the latter. The model appears able to produce
a tight fit to the data. The mean and standard deviation of the
ESF–SF residuals are 0.01% and 0.3%, whilst the mean and
standard deviation of the absolute ESF–SF residuals are both
0.2%. Using a Kolmogorov–Smirnov test, we formally verified
that our best parameters are indeed good parameters – in the
sense that they represent a plausible model underlying the data.
The Kolmogorov–Smirnov statistic is the maximum deviation
between the ESF and SF, and equals 1% in our case. The p-
value – the probability that an ESF–SF discrepancy of at least
this magnitude would occur if the SF represents the true under-
lying distribution – is p = 99%. For any reasonable significance
level, we do not reject the null hypothesis. The model, given our
best parameters, indeed represents a possible description of the
data. We conclude that the distribution of GRG intrinsic proper
lengths, after correcting for selection effects, is consistent with
a single Pareto distribution with tail index ξ = −3.5. We show
the SF of this distribution in both panels of Fig. 14 (fading green
dots). For low lp, the observed slope is shallower (due to angular
length selection), whilst for high lp, the observed slope is steeper
(due to surface brightness selection).

A quasi-Pareto distribution can arise naturally as the tail of a
lognormal distribution (e.g., Malevergne et al. 2011), and there
are reasons to believe that the entire radio galaxy length distribu-
tion is indeed approximately lognormal (Oei et al., in prep.). This
provides an explanation of the approximately Paretian nature of
the giant radio galaxy length distribution found in this section.
The specific value of the tail index ξ is set by both the physics of
radio galaxy growth and the distribution of radio galaxies over
large-scale environments, the latter of which we measure in Oei
et al. (in prep.). Our result ξ = −3.5 ± 0.5 is a new constraint
for dynamical models such as those of Turner & Shabala (2015)
and Hardcastle (2018).
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Fig. 16. Joint posterior distribution over ξ – the parameter of interest – and 1
2 (φmax −φmin), bν,ref and σref – the selection effect parameters, based on

1473 projected lengths of LoTSS DR2 giants up to zmax = 0.5. We show all two-parameter marginals of the posterior, with contours enclosing 30%
and 70% of total probability. We mark the maximum a posteriori probability parameters (white circle) and the posterior mean parameters (white
cross). The single-parameter marginals again show the estimated posterior mean, now marked by a vertical line, alongside shaded median-centred
80% credible intervals. To compare the posterior to the likelihood function, which is also the posterior for a uniform prior, see Fig. E.1.

4.2. Giant radio galaxy number density

If in addition to our discoveries, we know how many giants our
search campaign has missed, then we can infer the true comov-
ing GRG number density in the Local Universe. The poste-
rior distribution over selection effect parameters 1

2 (φmax − φmin),
bν,ref and σref induces a probability distribution over the search
completeness function C(lp). C(lp) denotes the probability that
a giant of projected proper length lp in comoving space up to
z = zmax is detected through the search. We first generated
parameter samples from our posterior using rejection sampling,

and then used each to calculate a C(lp) sample. We show the
distribution over C(lp) for zmax = 0.5 in Fig. 17. For small
lp, C is low as many giants drop out due to angular length
selection; for large lp, C is low as many giants drop out due
to surface brightness selection. The completeness peaks around
lp ∼ 2 Mpc; however, even there the majority of giants remains
undetected.

We inferred a probability distribution over the true comoving
GRG number density nGRG by combining Eqs. (18) and (30) with
the LoTSS DR2 GRG catalogue and samples from Sect. 4.1.4’s
posterior. The resulting skewed distribution, with mean and
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SD nGRG = 4.6 ± 2.4(100 Mpc)−3 and 80% credible interval
3.1–6.7(100 Mpc)−3, is shown in Fig. 18. We note that, although
the uncertainty in bν,ref induces a large uncertainty in C from
lp ∼ 1.5 Mpc onwards, the completeness uncertainty at large
projected lengths does not substantially contribute to the uncer-
tainty in nGRG. This is because the GRG population is dominated
by smaller giants, for which the completeness appears better
constrained.

What picture arises regarding the abundance of giant radio
galaxies in the Local Universe’s large-scale structure? If we
model the Cosmic Web through comoving cubic unit cells
(Oei et al. 2022b) with 50 Mpc sides, and each cubic unit cell
contributes one cluster and three filaments, then a cube with
100 Mpc sides features a total of eight clusters and 24 filaments.
For comparison, in a (100 Mpc)3 volume up to zmax = 0.5,
the SDSS-III cluster catalogue of Wen et al. (2012) contains on
average 11.2 clusters of any mass, and 4.5 clusters of mass
M200 > 1014 M�. Since clusters contain ∼20% of giants (Oei
et al., in prep.), we find the average number of giants per cluster
to be ∼10−1. If one assumes that filaments contain the remain-
ing ∼80% of giants, and uses the fact that the average number of
filaments per cluster is of order unity, it follows that the average
number of giants per filament is also ∼10−1. In all likelihood,
most clusters and filaments do not currently contain a giant.

4.3. Giant radio galaxy lobe volume-filling fraction

Because giant radio galaxies enrich the IGM with hot plasma
and magnetic fields far beyond the circumgalactic media of their
hosts, they may provide a meaningful contribution to the heating
and magnetisation of – in particular – the most rarefied parts
of the filament IGM. By combining the GRG number density
and the GRG jet power distribution (e.g., Dabhade et al. 2020a),
one could estimate the instantaneous heating and magnetisation
contributions directly. We recommend such analysis for future
research.

We evaluated Eq. (35) to obtain an estimate of the fraction
of the Local Universe’s proper volume that GRG lobes occupy.
We used Alcyoneus as a reference giant, for which V = 2.5 ±
0.3 Mpc3 and lp = 4.99 ± 0.04 Mpc (Oei et al. 2022a); this sug-
gests E[Υp] ≈ 2%. Future work should determine whether Alcy-
oneus’s case is typical, as observations, such as those shown in
Figs. 12–13, suggest that giants exhibit a large variety of shapes
– and thus total lobe volume–cubed length ratios. Interestingly,
simulations by Krause et al. (2012) have found that these shapes
also depend on environmental parameters such as ambient pres-
sure and density. Truncating the GRG projected length distribu-
tion at lp,max = 7 Mpc, so that its support is exactly an order of
magnitude, Eq. (35) predicts VFFGRG(z = 0) = 3+4

−1 × 10−7.20

Whether this result is sensitive to changes in lp,max depends
on ξ, with ξ = −3 being a special value under self-similar
growth. In that case, small and large giants contribute equally
to VFFGRG: although large giants are rarer ( fLp ∝ l−3

p ), their
larger lobe volumes (V ∝ l3p) exactly compensate. For ξ < −3,
small giants provide the dominant contribution to VFFGRG and
the choice of lp,max can be irrelevant; for ξ > −3, large giants
dominate and the choice of lp,max always matters.

If we assume that giants occur in clusters and filaments only
and use the fact that clusters and filaments comprise about 5% of
the Local Universe’s volume (Forero-Romero et al. 2009), then

20 We found the weaker constraints VFFGRG(z = 0) > 13+21
−4 × 10−8,

VFFGRG(z = 0) > 11+16
−3 × 10−8, and VFFGRG(z = 0) > 6+4

−1 × 10−8 using
Eqs. (33), (A.100), and (A.101), respectively.
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Fig. 17. Completeness C of a sample of giant radio galaxies up to cos-
mological redshift zmax as a function of projected proper length lp. From
samples of the posterior distribution, we infer the LoTSS DR2 GRG
search campaign completeness up to zmax = 0.5. We show completeness
curves for five randomly selected samples (grey) and for the posterior
mean (dark green). We also show an interval around the completeness
mean with the completeness standard deviation (SD) as the half-width
(light green). The completeness peaks around lp = 2 Mpc.
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Fig. 18. PDF of the comoving GRG number density nGRG. We mark
the mean (vertical line) and the median-centred 80% credible interval
(darker range). In the Local Universe, the average number of giants per
comoving cube with 100 Mpc sides is 4.6±2.4. We define giants through
lp,GRG = 0.7 Mpc, and define the Local Universe to be up to cosmologi-
cal redshift zmax = 0.5.

the GRG lobe VFF within clusters and filaments specifically is
VFFGRG(z = 0) = 5+8

−2 × 10−6. We conclude that, at each given
moment, GRG lobes occupy just a small fraction of the WHIM
and ICM. If the enrichment of the IGM by giants is to affect the
WHIM and ICM on a large scale, mixing processes in the IGM
are necessary and many galaxies must be able to form giants at
some point in their evolution.

4.4. Unification model constraints from quasar and
non-quasar giants

In Sect. 2.11, we have predicted general ramifications of the
basic unification model on a GRG sample. We constrained and
tested this model with our LoTSS DR2 GRG sample.

First, for all 3198 giants with definitively identified hosts,
we queried the SDSS DR12 spectral class spCl: a Boolean
label indicating whether or not the host contains a quasar. As
many hosts have no SDSS DR12 spectrum, or even fall out-
side of SDSS DR12 coverage, we retrieved host classifications
for just 1442 of these giants (45%). Of these classified giants,
318 are quasar giants (22%) (of which 45 (14%) are discoveries
presented in this work) and 1124 are non-quasar giants (78%)
(of which 876 (78%) are discoveries presented in this work).
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Fig. 20. Observed projected proper length PDFs for SDSS-classified
quasar and non-quasar giants, obtained through kernel density estima-
tion. We used a Gaussian kernel with σKDE = 75 kpc. For both pan-
els, two-sample Kolmogorov–Smirnov tests yield p < 1%�. However,
given the severe impact of selection effects, we could not reject the
null hypothesis that quasar giants and non-quasar giants have the same
underlying projected proper length distribution. Top: newly discovered
(LoTSS DR2) giants with SDSS spectral class labels. Bottom: all known
giants with SDSS spectral class labels.

Therefore, the apparent LoTSS DR2 quasar GRG fraction fQ =
45

45+876 = 5%. However, spectral class labels are preferentially
available for GRG hosts with higher optical flux densities, such
as those at low redshifts or those containing quasars, because
they are more probable spectroscopic targets. Through Fig. 19,
we demonstrate that the fraction of observed GRG hosts with
spectral class labels indeed decreases with redshift, whilst the

fraction of quasar identifications increases. For each redshift
interval, in white, we denote the fraction of quasar giants within
the classified population. If spectral class labels would have been
available for the non-classified observed populations as well, the
quasar GRG fractions would probably have been lower. Assum-
ing that all observed giants whose hosts have an unknown spec-
tral class are non-quasar giants, we find quasar GRG fractions
fQ = 5%, 4%, 8%, 16%, and 28%, for redshift intervals 0–
0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1, respectively. The true
quasar GRG fraction for a given redshift interval might still differ
from the aforementioned observed quasar GRG fraction: namely,
if selection effects make a given quasar GRG easier (or harder) to
detect than a given non-quasar GRG. At higher redshifts, quasar
giants certainly appear easier to detect than non-quasar giants, as
hosts without quasars often become too faint to optically iden-
tify. For the lowest redshift intervals, this problem does not exist,
and we therefore consider the observed quasar GRG fraction
fQ = 5% to be closest to the true one. A thorough analysis of the
impact of selection effects on fQ is a topic for future research.

Using Eq. (37), and assuming a quasar GRG probability
pQ = 5%, we found a maximum inclination angle θmax =

39+2
−3
◦. For pQ ∼ Uniform (4%, 6%), the result remained the

same. In conclusion, if the basic unification model considered
in Sect. 2.11 is correct, then observations of giants predict that
quasars are AGN seen along lines-of-sight that make an angle of
at most θmax = 39+2

−3
◦ with the black hole rotation axis.

Finally, we tested whether the RV Lp,obs | Lp,obs ≥ lp,GRG has
the same distribution for quasar and non-quasar giants, as pre-
dicted by the unification model. In the top panel of Fig. 20,
we show PDFs approximated through kernel density estima-
tion (KDE) for newly discovered (LoTSS DR2) SDSS-classified
quasar giants and non-quasar giants up to zmax = ∞. Despite
the small number of quasar giants, NQ = 45, the two-sample
Kolmogorov–Smirnov (KS) test yielded a low p-value p < 1%�:
we rejected the null hypothesis that these distributions stem from
a single underlying one. However, this does not mean that the
unification model hypothesis should immediately be rejected as
well, because the selective availability of SDSS DR12 spectral
class labels induces a severe selection effect21. This effect can
be tempered by choosing a lower zmax, but for choices such as
zmax = 0.25 and 0.5, just NQ = 10 and 16 quasar giants remain
– too few to extract meaningful information. The bottom panel
of Fig. 20 again shows observed projected proper length KDE
PDFs, but now for all SDSS-classified quasar giants and non-
quasar giants up to zmax = ∞; in this case, NQ = 318. Again, the
two-sample KS test yields p < 1%�, but this time quasar giants
appear smaller than non-quasar giants. Because we aggregated
samples here that have different selection effects imprinted, it
becomes hard to draw clear conclusions. Limiting zmax reduces
the severity of most selection effects, but of course comes at the
cost of reducing the sample size. Interestingly, the corresponding
quasar GRG and non-quasar GRG projected length distributions

21 In fact, the top panel of Fig. 20 shows expected behaviour for a GRG
search campaign with a (fuzzy) angular length threshold selection effect
if the unification model is correct. At high redshifts, a GRG must have
a larger projected length to pass the angular length threshold than at
low redshifts. Thus, sampled high-redshift giants are physically larger
than sampled low-redshift giants. Because the fraction of high-redshift
quasar giants that is detectable and spectrally classifiable is higher than
the fraction of high-redshift non-quasar giants that is detectable and
spectrally classifiable, sampled quasar giants will be physically larger
than sampled non-quasar giants. To draw this latter conclusion, we must
also invoke the fact that, under the unification model, the projected
length distributions of quasar and non-quasar giants are the same.

A163, page 22 of 41



Oei, M. S. S. L., et al.: A&A 672, A163 (2023)

do become more alike; for instance for zmax = 0.25 and 0.5,
the two-sample KS test yields p = 4% and 1%, respectively. In
conclusion, because quasar giants are intrinsically rare and the
availability of spectral class labels is biased towards low red-
shifts and hosts containing quasars, it is challenging to robustly
test the unification model with current GRG observations. We
refrain from drawing final conclusions, and recommend a care-
ful future analysis.

5. Discussion

5.1. Radio galaxy length definitions

How large are radio galaxies? Despite the simplicity of this ques-
tion and more than half a century of research on radio galax-
ies, their intrinsic length distribution has not yet been rigorously
characterised. In this work, we have carried out the first precision
analysis of the tail of the radio galaxy intrinsic length distribu-
tion. Precision analyses tend to raise questions; firstly, whether
the studied observable is well defined, and secondly whether one
could conceive of more informative observables – that is to say
those that make it easier to reveal underlying physical mecha-
nisms. This work’s main observable is the radio galaxy projected
proper length; we argue that it is neither well defined nor maxi-
mally informative.

5.1.1. The current length definition: survey-dependence

Contemporary research uses a survey-dependent definition for
radio galaxy angular lengths, which then makes projected proper
lengths survey-dependent too.

The angular length is canonically defined as the largest pos-
sible angular separation between two directions for which the
RG’s specific intensity function Iν,RG exceeds bν,th: some speci-
fied factor of order unity times the image noise σIν . A compli-
cation is that not only Iν,RG, but also σIν varies with observing
frequency; the latter because of observational factors such as
(u, v)-coverage, bandpass, radio-frequency interference (RFI),
ionospheric weather, the sky density of bright calibrators and
the performance of calibration algorithms. Iν,RG additionally
depends on resolution, at least for point sources; σIν addition-
ally depends on resolution and integration time. As a result, both
Iν,RG and the concrete value of bν,th used in the angular length
definition change from image to image. Each study thus far has
therefore implicitly used a different definition for angular length,
instead of a shared, absolute one. As the projected proper length
follows from combining the angular length with the host redshift,
it suffers from the same problem.

Whether the survey-dependence of the current length defini-
tion is problematic, depends on the radio galaxy. For archetypal
FRII RGs, the angular length is roughly equal to the angular dis-
tance between the hotspots. These are an FRII RG’s brightest
morphological components, and are thus the first to be picked up
by a survey. In contrast, archetypal FRI RGs, which gradually
fade with distance from the host, can have significantly larger
angular lengths in surveys of higher sensitivity. The giants in the
middle-right and bottom-left panel of Fig. 13 are good exam-
ples: these radio galaxies were known before the LoTSS DR2,
but were not known to be giants; similarly, more sensitive sur-
veys are poised to assign them even larger extents. If we are to
move towards precision science, it therefore makes sense – at
least for FRI RGs – to more explicitly recognise that the angu-
lar and projected proper lengths are functions of the observing
frequency νobs and a surface brightness threshold bν,th. If cata-

logues would explicitly state for what combination
(
νobs, bν,th

)
they provide φ = φ

(
νobs, bν,th

)
and lp = lp

(
νobs, bν,th

)
, it is pos-

sible to homogenise a collection of data sets by using universal
angular and projected proper length definitions for all RGs22. If
two angular lengths have been measured for the same RG, for
instance φ1 at

(
νobs,1, bν,th,1

)
and φ2 at

(
νobs,2, bν,th,2

)
, then we can

estimate φ for any desired
(
νobs, bν,th

)
through interpolation. For

example, the interpolation formula for a symmetric radio galaxy
with jets or lobes of constant spectral index α, and with a spe-
cific intensity function contribution which fades to zero linearly
with angular distance from the host, is

φ = max

φ1 +
bν,th − bν,th,1

(
νobs
νobs,1

)α
bν,th,2

(
νobs
νobs,2

)α
− bν,th,1

(
νobs
νobs,1

)α (φ2 − φ1) , 0

 .
(41)

5.1.2. The ideal length definition: physical relevance

Alcyoneus, shown in Fig. 12’s top-right panel, is a 5 Mpc
giant whose ageing lobes are revealed for the first time by
the LoTSS DR2 (Oei et al. 2022a). Future image sensitivity
improvements shall reveal more hitherto unseen, fading lobes
around known RGs that formed in the aftermath of earlier AGN
activity episodes. Could a large fraction of sufficiently old RGs
turn out to be giants, once such sensitivity improvements start
providing evidence of earlier and earlier AGN activity episodes?

Up to now, it has been informative to include all visible
plasma in the angular length measurement. In future images,
some of the visible plasma might be of such low pressure that
it has become physically insignificant, in the sense that it does
not affect the thermodynamics of the surrounding IGM any-
more; we propose to exclude such plasma from a radio galaxy
length. Practically, one option is to introduce an absolute thresh-
old: for example to include plasma of pressure P ≥ 10−17 Pa
only – this is the pressure of the warm–hot intergalactic medium
(WHIM) in the ρBM ∼ 10 ΩBM,0 ρc,0 and T ∼ 5 × 105 K regime.
Another option is to introduce an environment-dependent pres-
sure threshold; this would mean that a cluster RG sees its
length measured against a higher pressure threshold than a fila-
ment RG, because its plasma becomes thermodynamically irrel-
evant sooner. A problem with (equipartition or minimum energy)
pressure–based length definitions is that pressure is a derived
quantity: the specific intensity only determines the product of
pressure and line-of-sight length through the lobe.

5.2. Moving beyond line segment projection

In this work, we have adopted a classical approach to treating
projection, by modelling radio galaxies as line segments. When
a radio galaxy’s inclination angle θ is close to 0◦ or 180◦, this
approach predicts that the angular length φ and thus the pro-
jected proper length lp vanishes. In reality however, because
radio galaxy lobes have non-zero volumes, the RV Lp will never
tend to zero. Figure 21 illustrates this point through three sources
interpreted to be radio galaxies aligned closely with the line of
sight. In each case, φ remains of arcminute scale.

A more realistic approach, outlined in Appendix A.3, moves
beyond the simplistic line segment geometry by adding two
lobes of radius R to the endpoints of the line segment, whose
length is given by RV L. The ratio L

Lp
, which was unbounded

22 Our LoTSS DR2 GRG φ and lp correspond to bν,th := 1 × σIν ; on
average, σIν (νobs = 144 MHz, θFWHM = 6′′) = 25 Jy deg−2.
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Fig. 21. Suspected line-of-sight RGs in the radio and optical. We
show 5′ × 5′ LoTSS DR2 6′′ cutouts (left column) and correspond-
ing DESI Legacy Imaging Surveys (g, r, z)-cutouts (right column).
Due to its lobes, an RG whose axis aligns closely to the line of
sight has a non-zero projected length. From top to bottom row, the
SDSS host names are J125027.47+642034.3, J092220.72+560234.9,
and J023100.61+032922.1.

under the classical approach, is now at most 1+ 1
η
, where η := 2R

L .
(The classical approach simply is the limit η = 0.) We sug-
gest a recalculation of this work’s theoretical and applied results
under this more realistic RG geometry as a direction for future
research. To obtain the applied results, one must either fix η as a
hyperparameter, or include it as an additional model parameter.
We note that even using conservatively low values of η, such as
η = 1

10 , will represent an improvement in realism over η = 0.

5.3. Unmodelled selection effects

In this work, we have modelled both an angular length and a sur-
face brightness selection effect. Several other plausible selection
effects have not been included in the forward model, as we have
judged each to be of minor importance. However, in unison, they
could have a non-negligible influence on the distribution of the
observed projected proper GRG length RV Lp,obs | Lp,obs > lp,GRG.
Some of their influence might have been absorbed by the param-
eters of the included selection effects – that is by 1

2 (φmax − φmin),
bν,ref , and σref – or, worse still, by ξ.

One of these unmodelled selection effects is that RGs whose
axes are oriented almost parallel to the line of sight are more
likely to be rejected from a sample than RGs whose axes are
closer to the plane of the sky, as the former do not always have
a characteristic double-lobe appearance. For instance, perhaps
not all readers would regard our identification of the sources
in the left column of Fig. 21 as RGs convincing. Neverthe-
less, as remarked in Sect. 2.11, conditioning Lp,obs | Lp,obs >
lp,GRG on inclination angle does not affect its distribution. As a
result, this selection effect does not necessitate forward model
modifications.

Furthermore, as shown in Sect. 4.4, there is a selection effect
at play that favours the selection of quasar giants over non-quasar
giants at high redshift, as host galaxies with quasars are more
luminous in the optical and therefore have a better chance to be
picked up in optical imagery. This selection effect will get less
severe once deeper photometric surveys become available.

We encountered three more selection effects during our
LoTSS DR2 GRG search. The larger an RG – and especially
an FRII RG – becomes, the harder it is for an observer to iden-
tify its host galaxy, as an increasing number of plausible host
candidates can lie interspersed in the strip of sky between the
lobes. The severity of this effect, which diminishes the preva-
lence of the largest giants in a sample, depends on the balance
chosen between avoiding false discoveries and avoiding rejec-
tions of true discoveries. Another selection effect runs against
RGs in galaxy clusters. Such environments can contain multi-
ple adjacent RGs, making it at times unclear which lobe belongs
to which RG. When no confident double-lobe associations can
be made, the RGs involved fail to make it into the sample. If
galaxy clusters contain primarily smaller giants, this selection
effect induces a bias against smaller giants. A final unmodelled
bias runs against RGs at the end of their life cycle. Once the AGN
stops launching jets for a prolonged period, it becomes hard to
identify the host galaxy, which will no longer present as a bright,
compact radio source. This effect preferentially deselects larger
giants, which are even more likely to approach the end of their
life than smaller giants.

5.4. Does the choice of prior matter?

We have taken a conservative approach to constraining the pos-
terior distribution through the prior: we have left tail index ξ and
angular length selection half-width 1

2 (φmax − φmin) fully uncon-
strained, and have adopted wide Gaussian priors for reference
surface brightness parameters bν,ref and σref , despite measur-
ing them explicitly under assumptions. We provide summary
statistics of the posterior in Table 4 and visualise its one- and
two-parameter marginals in Fig. 16. Does our choice of prior
significantly affect the inferences? To explore this question, we
chose a different reasonable prior and compared results. One
such prior is the fully uniform prior, which equivalises the poste-
rior and the likelihood function. We provide analogous summary
statistics of the likelihood function in Table E.1 and visualise
analogous marginals in Fig. E.1. Reassuringly, no statistically
significant parameter changes occur. In particular, for zmax = 0.5,
ξ = −3.5 ± 0.5 becomes ξ = −3.4 ± 0.5 upon changing to the
uniform prior; for zmax = 0.25, ξ = −3.5 ± 0.4 even remains the
same. However, given the strong likelihood degeneracy between
ξ and bν,ref apparent in Fig. E.1, more stringent priors on bν,ref are
able to meaningfully shift ξ’s posterior mean. Such priors shall
be appropriate only after studying the surface brightness proper-
ties of large radio galaxies – and the associated selection effect –
in more detail.
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5.5. Cosmological evolution of the GRG length distribution

In this work we have assumed that the parameter ξ, which
fully characterises the intrinsic GRG length distribution under
the ansatz of Paretianity, remains constant throughout the cho-
sen redshift range [0, zmax]. To test this assumption, we have
analysed our LoTSS DR2 GRG sample in Sect. 4 up to both
zmax = 0.5 and zmax = 0.25. For zmax = 0.5, we included giants
that existed in the last 5 Gyr of the Universe’s history, and found
ξ = −3.5 ± 0.5. Meanwhile, for zmax = 0.25, we included giants
that existed in the last 3 Gyr of the Universe’s history only, and
found the very similar ξ = −3.5 ± 0.4. Thus, our analysis did
not produce evidence that ξ evolves over cosmic time. How-
ever, given the large error bars, a modest time evolution can-
not be excluded. Furthermore, the data sets that underlie these
inferences are not disjoint: the 811 giants that inform the lower-
maximum-redshift analysis make up 55% of the 1473 giants that
inform the higher-maximum-redshift analysis.

Whether a time evolution of ξ is expected is presumably tied
to whether giant radio galaxy growth varies with environmen-
tal density at a given epoch, because the combined effects of
the Universe’s expansion and ongoing large-scale structure for-
mation can similarly change environmental density. Combining
our LoTSS DR2 GRG sample with Cosmic Web reconstructions
to explore giant growth as a function of environmental density
is the topic of a forthcoming work (Oei et al., in prep.). Inter-
estingly, the recent exploration by Lan & Prochaska (2021) that
compared the environments of giants and non-giants did not find
significant differences.

The most straightforward model extension is to again assume
that RG lengths are Pareto distributed with tail index ξ, but now
ξ = ξ(z). This function’s first-degree Maclaurin polynomial,
which provides the linearisation at the present day, is

ξ(z) ≈ ξ(z = 0) +
dξ
dz

(z = 0) · z. (42)

One would adopt ξ(z = 0) and dξ
dz (z = 0) as the parameters

of interest, replacing what used to be a constant ξ; the number
of model parameters would thus increase by one. However, an
attempt to infer the cosmic evolution of ξ appears promising only
once the major selection effects are better constrained.

6. Conclusions

In this work, we have performed Bayesian inference on a
LoTSS-derived sample of 2060 giant radio galaxy projected
proper lengths, using a one-parameter model that assumes
a spatially homogeneous, non-evolving population of radio
galaxies with stick-like geometry, Pareto-distributed lengths,
and isotropic inclination angles. Before fitting to data, we
extended the forward model with two selection effects typical
of contemporary manual GRG search campaigns. The best-fit
survival function tightly reproduces the empirical one, leaving
permille-scale absolute residuals. Having quantified the most
important selection effects, we estimated the true comoving giant
radio galaxy number density in the Local Universe.
1. We developed an analytical model through which statisti-

cal questions about radio galaxy (RG) lengths can be rigor-
ously answered. In the current work, we applied this model
to giant radio galaxies. We adopted the ansatz that the RG
intrinsic proper length L, as measured in three spatial dimen-
sions, is a random variable (RV) with a Pareto Type I dis-
tribution (i.e. a simple power-law distribution) characterised

by tail index ξ. Next, by assuming that RGs have no prefer-
ential orientation with respect to the observer, we derived
the distribution of the RG projected proper length Lp. By
conditioning, one obtains the version relevant for giants,
Lp | Lp > lp,GRG (where we chose lp,GRG := 0.7 Mpc). This
RV is again Paretian, with the same tail index ξ. In sum-
mary, for giant radio galaxies, projection retains Paretian-
ity. Finally, observers face selection effects; we modelled
the observed projected proper length Lp,obs by consider-
ing an angular length threshold selection effect and a sur-
face brightness selection effect. The angular length threshold
selection effect assumes a linearly increasing angular-length-
dependent probability of sample inclusion around a partic-
ular pre-defined threshold, meant to emulate manual visual
searches that only target RGs of some angular length and
above. The surface brightness selection effect assumes that
giants are self-similar, and that their lobes have lognormally
distributed surface brightnesses which must be above-noise
to secure sample inclusion. The GRG observed projected
proper length Lp,obs | Lp,obs > lp,GRG again follows through
conditioning. We assumed our data to be realisations of this
RV.

2. The model also yielded explicit expressions for the (poste-
rior) distribution of L | Lp = lp. This allows one to depro-
ject RGs in a statistical sense, providing the intrinsic proper
length given the projected proper length in the limit of neg-
ligible selection effects. We also present practical expres-
sions for the mean and variance of L | Lp = lp. To unravel
the driving factors that allow some RGs to become giants,
most authors search for correlations between host or environ-
mental physical parameters and the GRG projected length.
However, if there is a causal chain that connects host or
environmental parameters to GRG length, the connection
will be to the intrinsic length; the observer’s vantage point
does not play a role in the physics. Therefore, the projec-
tion effect merely serves as a multiplicative noise source. We
suggest that future analyses should recognise the projection
effect as such, and correlate host or environmental parame-
ters with the intrinsic, rather than projected, proper length –
using statistical deprojection.

3. Through a manual visual search of LoTSS DR2 pipeline
products, which are part of the LOFAR’s Northern Sky sur-
vey at 144 MHz, we discovered a population of 2060 pre-
viously unknown giants. This is the largest single contri-
bution to the literature yet, and increases the community-
wide census by a factor 2.6. We present 11 discoveries
with lp ≥ 4 Mpc, 53 with 3 ≤ lp < 4 Mpc, 291 with
2 ≤ lp < 3 Mpc, 1215 with 1 ≤ lp < 2 Mpc, and 490 with
0.7 ≤ lp < 1 Mpc. Our study extends the known breadth of
the giant radio galaxy phenomenon. Among the findings are
both the giant hosted by J081956.41+323537.6 and Alcy-
oneus (Oei et al. 2022a), at lp = 5.1 Mpc and lp = 5.0 Mpc
the projectively largest giants ever found. We discover that
multi-Mpc radio galaxies can be generated before redshift 1,
despite the Universe’s mean density being an order of magni-
tude higher, and by spiral galaxies, whose stellar masses are
typically an order of magnitude lower than those of ellip-
ticals. We discover giants whose hosts have a record-low
stellar mass M? = 4.8 × 1010 M�. We also discover giants
whose hosts have a record-high supermassive black hole
mass M• & 5×1010 M�; interestingly, with lp = 0.8 Mpc, one
of these giants is relatively small. We more than double the
number of known giants with angular lengths exceeding that
of the Moon; one discovery, at 2.2◦, is the angularly largest
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radio galaxy in the Northern Sky and the angularly largest
giant overall. Excitingly, our LoTSS DR2 search has been
far from exhaustive: many thousands of readily identifiable
giants still await discovery in this public data set.

4. Using our LoTSS DR2 GRG sample up to zmax = 0.5, we
generated a posterior distribution over ξ and three selec-
tion effect parameters. Our model provides an excellent fit
to the data, with absolute residuals being on average 2%�.
We inferred that the intrinsic proper length distribution of
the largest radio galaxies resembles a Pareto distribution with
tail index ξ = −3.5±0.5. Our analysis did not yield evidence
for an evolving ξ in the last 5 Gyr of cosmic time.

5. The selection effect parameters estimated through the pos-
terior are far from nuisance parameters, as they allowed us
to statistically undo the selection effects imprinted on our
LoTSS DR2 GRG data. As a result, we could for the first
time estimate the true comoving giant radio galaxy number
density nGRG in the Local Universe up to zmax. We relied on
the crucial assumption that the surface brightness distribu-
tion of RGs with intrinsic length lref = 0.7 Mpc at z = 0
and frequency νobs = 144 MHz is unimodal – and lognormal
in particular. We furthermore assumed a lobe spectral index
α = −1 and self-similar growth. We found nGRG(lp,GRG =

0.7 Mpc, zmax = 0.5) = 5 ± 2(100 Mpc)−3. The implication is
that giant radio galaxies are truly rare – not only from a cur-
rent observational perspective, but also from a cosmological
one. Current GRG lobes occupy just a few millionths of the
IGM volume. At any given moment in time, most clusters
and filaments – the building blocks of modern large-scale
structure – do not harbour giants.

Giants embody the most extreme known mechanism by which
galaxies can affect the Cosmic Web around them. Whereas this
work has explored the geometric properties of giants, a thorough
exploration of their Cosmic Web energisation and magnetisation
potential is a future frontier. Excitingly, the interactions between
giants and the ethereal intergalactic medium may also allow for
new constraints on the thermodynamics in filaments.
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Appendix A: Framework derivations and details

A.1. Intrinsic proper length

Let fL : R → R≥0 be the PDF of the distribution of intrinsic
(i.e. 3D) proper (i.e. not comoving) radio galaxy lengths L. We
assume that fL follows a power law between lmin and lmax:

fL (l) =

 fL (lref)
(

l
lref

)ξ
l ∈ [lmin, lmax],

0 otherwise.
(A.1)

Then, when ξ , −1,

1 =

∫
R

fL (l) dl =

∫ lmax

lmin

fL (lref)
(

l
lref

)ξ
dl

=
fL (lref) lref

ξ + 1

( lmax

lref

)ξ+1

−

(
lmin

lref

)ξ+1 . (A.2)

This equation provides the normalisation factor fL (lref) given
lmin, lmax, ξ and an arbitrary choice for lref , 0.

When lmax = ∞, L has a Pareto Type I distribution and we
must have ξ < −1 for the integrals of Eq. A.2 to converge.
Throughout the remaining analysis, for the sake of simplicity,
we assume lmax = ∞ and ξ < −1 and choose lref = lmin. Then
fL (lref) = fL (lmin) = −

ξ+1
lmin

. The corresponding CDF is

FL(l) =

0 if l ≤ lmin

1 −
(

l
lmin

)ξ+1
if l > lmin.

(A.3)

In reality, radio galaxies cannot become arbitrarily long
(Hardcastle 2018): at some distance from the host, all energy
carried by the jets will have been radiated away, used to per-
form work on the IGM, transferred to CMB photons through
inverse Compton scattering, or converted into heat. However,
at the moment of writing, the implied maximum length lmax
remains ill-constrained. As we see throughout Appendix A, a
major advantage of simple model assumptions is that explicit
and thus insightful analytic expressions can be derived. Such
easy-to-evaluate expressions complement the results of expen-
sive numerical simulations, which aim to maximise realism; our
aim to maximise insight is best served by setting lmax = ∞. From
Eq. A.3, we see that for lmin = 0.7 Mpc and ξ = −3.5, the tail of
the intrinsic proper length distribution (l > 5 Mpc) contains less
than 1% of probability. Thus, for most framework applications,
our choice lmax = ∞ is unproblematic — except when higher
powers of L are involved. For example, the volume-filling frac-
tion calculations of Appendix A.10 necessitate considering L3;
for realistic ξ, results exist only for finite lmax.

Upon relabelling ξ → −α − 1, lmin → k, L → X and l →
x, one obtains the literature’s most common form of the Pareto
Type I PDF:

fX (x) =

{
αkα
xα+1 x ≥ k,
0 x < k.

(A.4)

A.2. Projected proper length

A.2.1. Distribution for RGs

Let fLp : R → R≥0 be the PDF of the distribution of projected
proper radio galaxy lengths. The PDF fLp follows from the asso-
ciated CDF FLp : R → [0, 1] through differentiation; FLp and fL

relate through

FLp

(
lp
)

:= P
(
Lp ≤ lp

)
=

∫
R

P
(
L sin Θ ≤ lp | L = l

)
fL (l) dl

=

∫
R

P

(
sin Θ ≤

lp
l

)
fL (l) dl. (A.5)

We note that FLp

(
lp
)

vanishes for lp ≤ 0: fL (l) vanishes when

l is negative, whilst P
(
sin Θ ≤

lp
l

)
vanishes when l is positive.

Clearly, the interesting case is lp > 0. We can differentiate
between two cases: lp ≤ lmin, and lp > lmin. In the first case,
considering that fL has support from lmin onwards only, we have
lp
l ≤ 1, and

FLp

(
lp
)

=

∫ ∞

lmin

(
P

(
Θ ≤ arcsin

lp
l

)
+ P

(
Θ ≥ π − arcsin

lp
l

))
− (ξ + 1)

lmin

(
l

lmin

)ξ
dl

= −
ξ + 1
lmin

∫ ∞

lmin

2P
(
Θ ≤ arcsin

lp
l

) (
l

lmin

)ξ
dl

= −
ξ + 1
lmin

∫ ∞

lmin

1 −
√

1 −
(

lp
l

)2

(

l
lmin

)ξ
dl

= 1 + (ξ + 1)
∫ ∞

lmin

√(
l

lmin

)2

−

(
lp

lmin

)2 (
l

lmin

)ξ−1 dl
lmin

= 1 + (ξ + 1)
∫ ∞

1

√
η2 −

(
lp

lmin

)2

ηξ−1 dη. (A.6)

In the second case, we split up the integral in two:

FLp

(
lp
)

=

∫ lp

lmin

P

(
sin Θ ≤

lp
l

)
fL (l) dl

+

∫ ∞

lp
P

(
sin Θ ≤

lp
l

)
fL (l) dl

=

∫ lp

lmin

fL (l) dl +

∫ ∞

lp

1 −
√

1 −
(

lp
l

)2
 fL (l) dl

= 1 −
(

lp
lmin

)ξ+1

+

(
lp

lmin

)ξ+1

+ (ξ + 1)
∫ ∞

lp

√(
l

lmin

)2

−

(
lp

lmin

)2 (
l

lmin

)ξ−1 dl
lmin

= 1 + (ξ + 1)
∫ ∞

lp
lmin

√
η2 −

(
lp

lmin

)2

ηξ−1 dη

= 1 + (ξ + 1)
√
π

4

(
lp

lmin

)ξ+1 Γ
(
−
ξ
2 −

1
2

)
Γ
(
−
ξ
2 + 1

) . (A.7)

In summary,

FLp

(
lp

)
=


0 if lp ≤ 0

1 + (ξ + 1)
∫ ∞

1

√
η2 −

( lp
lmin

)2
ηξ−1 dη if 0 < lp < lmin

1 + (ξ + 1)
√
π

4

( lp
lmin

)ξ+1 Γ
(
−
ξ
2 −

1
2

)
Γ
(
−
ξ
2 +1

) if lp ≥ lmin.

(A.8)
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Through differentiation,

fLp

(
lp
)

=


0 if lp ≤ 0
−
ξ+1
lmin

lp
lmin

I
(
ξ − 1, lp

lmin

)
if 0 < lp < lmin

(ξ+1)2

lmin

√
π

4

( lp
lmin

)ξ Γ
(
−
ξ
2−

1
2

)
Γ
(
−
ξ
2 +1

) if lp ≥ lmin.

(A.9)

where

I (a, b) :=
∫ ∞

1

ηa dη√
η2 − b2

for a < 0, |b| < 1. (A.10)

Significantly, for lp > lmin, the projected length distribution fol-
lows a power law in lp with the same exponent as the power law
for the intrinsic length distribution: fLp ∝ lξp (just as fL ∝ lξ).23

We compare fL and fLp in Fig. 1.

A.2.2. Distribution for giants

To derive the projected length distribution for giants, we consider
the distribution of the conditioned RV Lp | Lp > lp,GRG:

FLp | Lp>lp,GRG

(
lp
)

:=P
(
Lp ≤ lp | Lp > lp,GRG

)
=1 − P

(
Lp > lp | Lp > lp,GRG

)
=1 −

P
(
Lp > lp, Lp > lp,GRG

)
P
(
Lp > lp,GRG

) . (A.11)

For lp > lp,GRG, this reduces to

FLp | Lp>lp,GRG

(
lp
)

=1 −
1 − FLp

(
lp
)

1 − FLp

(
lp,GRG

) . (A.12)

Furthermore assuming lp,GRG > lmin, we twice use the bottom
expression of Eq. A.8 to obtain the final CDF expression. As
before, the corresponding PDF follows through differentation.
We find

FLp | Lp>lp,GRG

(
lp
)

=


0 if lp ≤ lp,GRG

1 −
(

lp
lp,GRG

)ξ+1
if lp > lp,GRG.

(A.13)

fLp | Lp>lp,GRG

(
lp
)

=

0 if lp ≤ lp,GRG

−
ξ+1

lp,GRG

(
lp

lp,GRG

)ξ
if lp > lp,GRG.

(A.14)

Thus, the associated survival function is

P
(
Lp > lp | Lp > lp,GRG

)
=

(
lp

lp,GRG

)ξ+1

. (A.15)

The mean projected proper length of giants follows from the
PDF by direct computation:

E[Lp | Lp > lp,GRG] :=
∫ ∞

−∞

fLp | Lp>lp,GRG

(
lp
)
· lp dlp

=lp,GRG
ξ + 1
ξ + 2

. (A.16)

23 For lmax < ∞, this statement does not hold exactly.

A.3. Deprojection factor

Consider a radio galaxy (RG) with a projected proper length lp.
Let the inclination angle θ denote the angle between the RG’s
central axis and the line of sight. The RG’s inclination angle,
projected proper length and intrinsic proper length l relate via
lp = l sin θ. Switching to random variable (RV) notation by using
capital letters, the intrinsic proper length (which is the most
physically relevant quantity) follows from the projected proper
length (which can be measured) and the inclination angle (which
is typically unknown), according to

L =
1

sin Θ
Lp. (A.17)

A.3.1. Without lobes

Calling the deprojection factor D := (sin Θ)−1, we now calculate
the distribution of D for fΘ (θ) = 1

2 sin θ; θ ∈ [0, π]. The result is a
continuous univariate distribution without parameters supported
on the semi-infinite interval (1,∞). Let FD : R → [0, 1] be the
cumulative density function (CDF) of D. Then, for d > 1,

FD (d) := P (D ≤ d) = P

(
sin Θ ≥

1
d

)
= P

(
arcsin

1
d
≤ Θ ≤ π − arcsin

1
d

)
= FΘ

(
π − arcsin

1
d

)
− FΘ

(
arcsin

1
d

)
= cos arcsin

1
d

=

√
1 −

1
d2 . (A.18)

Meanwhile, FD (d) = 0 for d ≤ 1. The quantile function F−1
D :

[0, 1]→ [1,∞) follows from solving FD (d) = p for d:

F−1
D (p) =

1√
1 − p2

. (A.19)

Thus, the minimum factor is F−1
D (p = 0) = 1, the median

F−1
D

(
p = 1

2

)
= 2
√

3
, F−1

D

(
p = 1

2

√
2
)

=
√

2, F−1
D

(
p = 1

2

√
3
)

= 2,
and factors can grow arbitrarily large: F−1

D (p) → ∞ as p → 1.
We conclude that half of all RGs have an intrinsic proper length
more than 2

√
3

their projected proper length.
By differentiating FD to d we obtain fD : R → R≥0, the

probability density function (PDF) of D:

fD (d) =

 1
d2
√

d2−1
ifd > 1;

0 ifd ≤ 1.
(A.20)

The mean of D is E (D) = π
2 ; the variance of D is undefined, as

the corresponding integral diverges. Because fD (d) has no max-
imum, the mode is undefined too. The PDF and CDF of D are
shown in the upper left and right panels of Fig. A.1, respectively.

A.3.2. With lobes

The simplest model that includes a pair of lobes approximates
them as spheres of radius R, whose centres are connected by a
line segment of length L. Regardless of the viewing angle, the
spheres retain their size, in contrast to the line segment connect-
ing them. Calling η := 2R

L ∈ R≥0, we have

D :=
L + 2R

L sin Θ + 2R
=

1 + η

sin Θ + η
. (A.21)

A163, page 29 of 41



Oei, M. S. S. L., et al.: A&A 672, A163 (2023)

1 2 3 4 5 6 7 8

deprojection factor d (1)

10−3

10−2

10−1

100

101

pr
ob

ab
ili

ty
de

ns
it

y
f D

(d
)

(1
)

median: d = 2√
3

mean: d = π
2

1 2 3 4 5 6 7 8

deprojection factor d (1)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
F
D

(d
)

(1
)

median: d = 2√
3

mean: d = π
2

1 2 3 4 5 6 7 8

deprojection factor d (1)

10−3

10−2

10−1

100

101

pr
ob

ab
ili

ty
de

ns
it

y
f D

(d
)

(1
) η = 0.5

η = 0.4

η = 0.3

η = 0.2

η = 0.1

η = 0.05

1 2 3 4 5 6 7 8

deprojection factor d (1)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
F
D

(d
)

(1
)

η = 0.5

η = 0.4

η = 0.3

η = 0.2

η = 0.1

η = 0.05

Fig. A.1. PDFs (left column) and CDFs (right column) of the deprojection factor RV D. These functions quantify how much longer RGs are than
their projected lengths suggest. Top row: model without lobes. Of the three canonical measures of central tendency, only the median and mean
exist (and equal 2

√
3

and π
2 , respectively). Bottom row: model with spherical lobes. The distribution of D now depends on a parameter: the ratio η

between the lobe diameter 2R and the distance between the lobe centres L. The model without lobes is recovered in the limit η→ 0.

Again assuming fΘ (θ) = 1
2 sin θ; θ ∈ [0, π], we repeat the deriva-

tion and find

FD (d) =


0 ifd ≤ 1;√

1 −
(

1+η
d − η

)2
if1 < d < 1

η
+ 1;

1 ifd ≥ 1
η

+ 1.

(A.22)

fD (d) =


0 ifd ≤ 1;

(1+η)(1+η−ηd)

d2
√

d2−(1+η−ηd)2
if1 < d < 1

η
+ 1;

0 ifd ≥ 1
η

+ 1.

(A.23)

The quantile function becomes

F−1
D (p) =

1 + η√
1 − p2 + η

. (A.24)

The minimum factor remains F−1
D (p = 0) = 1, but a maximum

factor now exists: F−1
D (p = 1) = 1

η
+ 1. The median of D is

F−1
D

(
p =

1
2

)
=

1 + η
1
2

√
3 + η

, (A.25)

which tends to 2
√

3
for η → 0 (as before), and to 1 for η → ∞:

projection ceases to be an appreciable effect when the lobes are
much larger than the line segment connecting their centres. If
η , 0, D has finite support, and thus the mean, variance and
higher moments exist. The n-th non-central moment is

E
[
Dn] = (1 + η)2 In−2 (η) − η (1 + η) In−1 (η) , (A.26)

where

In (η) :=
∫ 1

η+1

1

dn dd√
d2 − (1 + η − ηd)2

. (A.27)

In particular,

I−1 (η) =
π

2 (1 + η)
, I0 (η) =

ln
( √

1 − η2 + 1
)
− ln η√

1 − η2
,

I1 (η) =
1

(1 − η) η

1 −
2η2arcsinh

√
1−η
2η√

1 − η2

 . (A.28)

The expectation value of D is

E [D] = (1 + η)2 I−1 (η) − η (1 + η) I0 (η)

= (1 + η)

π2 − η√
1 − η2

ln

 √
1 − η2

η
+

1
η

 . (A.29)

The variance of D follows from combining

E
[
D2

]
= (1 + η)2 I0 (η) − η (1 + η) I1 (η) (A.30)

and the identity V [D] = E
[
D2

]
− E2 [D]. The mode remains

undefined. For typical values of η, we show the PDF and CDF
of D in the bottom left and right panels of Fig. A.1, respectively.
Figure A.2 shows the median, mean and standard deviation of D
as a function of η.

A.4. Intrinsic proper length posterior and its moments

Our next objective is to find the posterior PDF fL|Lp=lp (l) through
Bayes’ theorem:

fL|Lp=lp (l) =
fLp |L=l

(
lp
)

fL (l)

fLp

(
lp
) . (A.31)
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Fig. A.2. Summary statistics for the deprojection factor RV D under
the spherical lobe model. Top: the η-dependency of two measures of
central tendency of D. For η = 0, the mean E [D] = π

2 and the median
F−1

D

(
1
2

)
= 2

√
3
. Bottom: the η-dependency of the standard deviation of

D. As η→ 0+,
√
V [D]→ ∞.

Our line of attack will be to first calculate the likelihood CDF
FLp |L=l(lp), and then through differentiation the likelihood PDF
fLp |L=l(lp). Of course, we always consider l > 0, and

FLp |L=l

(
lp
)

:= P
(
Lp ≤ lp | L = l

)
= P

(
l sin Θ ≤ lp

)
=


0 if lp ≤ 0
2 P

(
Θ ≤ arcsin lp

l

)
if 0 < lp ≤ l

1 if lp > l,
(A.32)

where we have invoked Eq. A.17 and the fact that fΘ (θ) is sym-
metric in θ = π

2 for the case 0 < lp < l. Concretising this case
further yields

FLp |L=l

(
lp
)

= 2 FΘ

(
arcsin

lp
l

)
= 1 − cos arcsin

lp
l

= 1 −

√
1 −

(
lp
l

)2

. (A.33)

Through differentiation,

fLp |L=l

(
lp
)

=


0 if lp ≤ 0
lp
l2

1√
1−

(
lp
l

)2
if 0 < lp < l

0 if lp ≥ l.

(A.34)

Having found the likelihood, the posterior PDF follows directly
through Bayes’ theorem and the PDFs computed hitherto.

In concreto, when 0 < lp ≤ lmin,

fL|Lp=lp (l) =


0 if l ≤ lmin

1

I
(
ξ−1,

lp
lmin

) 1
lp

1√(
l

lp

)2
−1

(
l

lmin

)ξ−1
if l > lmin. (A.35)

whereas for lp > lmin,

fL|Lp=lp (l) =


0 if l ≤ lp

−
ξ

21+ξπ

Γ2
(
−
ξ
2

)
Γ(−ξ)

1
lp

1√(
l

lp

)2
−1

(
l
lp

)ξ−1
if l > lp. (A.36)

We note that in both cases, for l � lp, fL|Lp=lp (l) ∝
(

l
lp

)ξ−2
:

the posterior probability density follows a power law in l with
exponent ξ − 2.

For lp ≤ lmin, the posterior mean is

E
[
L | Lp = lp

]
= lmin

I
(
ξ,

lp
lmin

)
I
(
ξ − 1, lp

lmin

) . (A.37)

The posterior variance V
[
L | Lp = lp

]
follows from considering

the second non-central moment:

E
[
L2 | Lp = lp

]
= l2min

I
(
ξ + 1, lp

lmin

)
I
(
ξ − 1, lp

lmin

) , (A.38)

so that

V
[
L | Lp = lp

]
= E

[
L2 | Lp = lp

]
− E2

[
L | Lp = lp

]
= l2min

 I
(
ξ + 1, lp

lmin

)
I
(
ξ − 1, lp

lmin

) − I2
(
ξ,

lp
lmin

)
I2

(
ξ − 1, lp

lmin

)  . (A.39)

For lp > lmin,

E
[
L | Lp = lp

]
= lp ·

−ξ

2ξ+1π

Γ2
(
−
ξ
2

)
Γ (−ξ)

∫ ∞

1

ηξ dη√
η2 − 1

= lp ·
−ξ

22ξ+3π

Γ4
(
−
ξ
2

)
Γ2 (−ξ)

. (A.40)

Proceeding analogously,

E
[
L2 | Lp = lp

]
= l2p

ξ

ξ + 1
, (A.41)

so that

V
[
L | Lp = lp

]
= l2p

 ξ

ξ + 1
−

ξ2

24ξ+6π2

Γ8
(
−
ξ
2

)
Γ4 (−ξ)

 . (A.42)

In this case, both the mean and standard deviation of L | Lp = lp
are proportional to lp. In the table below, we list the mean and
standard deviation in multiples of lp for several values of ξ. Since
we assume ξ < −1, the mean and variance are guaranteed to
exist. The existence of higher-order moments is ξ-dependent; in
concreto, the highest defined order is d−ξe.

We prove that Lp and D are not independent by contradiction.
If we assume that Lp and D are independent, then E[LpD] =
E[Lp]E[D], or E[L] = E[L]E[sin Θ]E[D] by the independence
of L and sin Θ. In other words, if Lp and D are independent,
then 1 = E[sin Θ]E[D]. However, E[sin Θ] = π

4 and E[D] = π
2 ;

because 1 , π2

8 , the initial assertion must be wrong.
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A.5. GRG inclination angle

We derive the inclination angle distribution for giants. The prob-
ability that a GRG has inclination angle θ is

fΘ | Lp>lp,GRG (θ) dθ =
P
(
Θ = θ, L sin Θ > lp,GRG

)
P
(
Lp > lp,GRG

)
=

fΘ(θ) dθ · P
(
L >

lp,GRG

sin θ

)
P
(
Lp > lp,GRG

) , (A.43)

where we make use of the fact that the numerator’s joint proba-
bility factorises because L and Θ are independent RVs. We thus
find

fΘ | Lp>lp,GRG (θ) =

(
1 − FL

( lp,GRG

sin θ

))
fΘ (θ)

1 − FLp (lp,GRG)
. (A.44)

Under the Paretian assumption for L, we have

fΘ | Lp>lp,GRG (θ) =
2

−(ξ + 1)
√
π

Γ
(
−
ξ
2 + 1

)
Γ
(
−
ξ
2 −

1
2

) sin−ξ θ. (A.45)

A.6. GRG angular length

The GRG angular length RV Φ | Lp > lp,GRG relates to the GRG
projected proper length RV Lp | Lp > lp,GRG and the comoving
distance RV R as

Φ | Lp > lp,GRG = Lp | Lp > lp,GRG ·
1 + z (R)

R
. (A.46)

The model predicts the distribution of GRG angular lengths in
the Local Universe up to comoving distance rmax. If the GRG
number density is constant in the Local Universe,

FR (r) =


0 if r ≤ 0(

r
rmax

)3
if 0 < r < rmax

1 if r ≥ rmax

(A.47)

fR (r) =


0 if r ≤ 0

3
rmax

(
r

rmax

)2
if 0 < r < rmax

0 if r ≥ rmax.

(A.48)

Because GRG life cycles are shorter than the age of the Universe,
Lp | Lp > lp,GRG and R are independent RVs. In a non-expanding
universe, z(R) = 0, and the distribution of Φ | Lp > lp,GRG can
be calculated analytically. From a well-known ratio distribution
identity,

fΦ | Lp>lp,GRG (φ) =

∫ ∞

−∞

|r| · fLp | Lp>lp,GRG (φr) · fR(r) dr

=

∫ rmax

0
fLp | Lp>lp,GRG (φr) · 3

(
r

rmax

)3

dr. (A.49)

The integrand is non-zero only when φr ≥ lp,GRG, suggesting
a lower integration limit of lp,GRG

φ
. The integral vanishes alto-

gether when lp,GRG

φ
≥ rmax. Calling φGRG := lp,GRG

rmax
, we have

fΦ | Lp>lp,GRG (φ) = 0 for φ ≤ φGRG. For φ > φGRG,

fΦ | Lp>lp,GRG (φ) =

∫ rmax

lp,GRG
φ

−
ξ + 1
lp,GRG

(
φr

lp,GRG

)ξ
· 3

(
r

rmax

)3

dr

= −3
ξ + 1
ξ + 4

·
1

φGRG

( φ

φGRG

)ξ
−

(
φ

φGRG

)−4 ,
(A.50)

where we assume ξ , −4. This PDF depends on ξ, lp,GRG, and
rmax only. The CDF follows from direct integration:

FΦ | Lp>lp,GRG (φ) =0 if φ ≤ φGRG

1 + 1
ξ+4

(
−3

(
φ

φGRG

)ξ+1
− (ξ + 1)

(
φ

φGRG

)−3
)

if φ > φGRG,

(A.51)

just as the mean:

E
[
Φ | Lp > lp,GRG

]
= 3

ξ + 1
ξ + 4

(
1

ξ + 2
+

1
2

)
· φGRG, (A.52)

which exists only for ξ < −2. By solving

d fΦ | Lp > lp,GRG

dφ
(φmode) = 0 (A.53)

for the GRG angular length mode φmode, we find

φmode =

(
−4
ξ

) 1
ξ+4

· φGRG. (A.54)

There is no explicit expression for the associated median.
For a general non-Euclidean universe, no simple analytic

form for the GRG angular length PDF appears to exist. We
find an approximation valid at low redshifts by considering the
Maclaurin polynomial of degree 1 for z(r), the relation between
comoving distance and cosmological redshift. One finds z(r) ≈
H0
c r. As a result, for the Local Universe, Eq. A.46 becomes

Φ | Lp > lp,GRG ≈ Lp | Lp > lp,GRG ·
1 +

H0
c R

R

= Lp | Lp > lp,GRG ·

(
1
R

+
1

dH

)
, (A.55)

where we use that the Hubble distance dH := c
H0

. From a well-
known inverse distribution identity,

f 1
R
(k) =

0 if k ≤ 1
rmax

3
r3

maxk4 if k > 1
rmax

,
(A.56)

so that

f 1
R + 1

dH
(k) =


0 if k ≤ 1

rmax
+ 1

dH
3

r3
max

(
k− 1

dH

)4 if k > 1
rmax

+ 1
dH
. (A.57)

Combining a well-known product distribution identity with the
fact that Lp | Lp > lp,GRG and 1

R + 1
dH

are independent RVs, we
find

fΦ | Lp>lp,GRG (φ) =
−3 (ξ + 1) φξ

r3
maxlξ+1

p,GRG

∫ φ
lp,GRG

1
rmax

+ 1
dH

dk

kξ+1
(
k − 1

dH

)4 (A.58)

when φ > φGRG +
lp,GRG

dH
. When φ ≤ φGRG +

lp,GRG

dH
, fΦ | Lp>lp,GRG (φ) =

0. It is easy to verify that in the Euclidean limit, 1
dH
→ 0, this

expression reduces to that of Eq. A.50.
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A.7. Maximum likelihood estimation of the tail index

How can we estimate ξ from a sample of N giants? Let ξMLE
be the maximum likelihood estimate (MLE) of ξ. This RV is a
function of N IID RVs {Lp,1, ..., Lp,N} ∼ Lp | Lp > lp,GRG. Define
the following likelihood and log-likelihood functions:

L (ξ) :=
N∏

i=1

fLp | Lp>lp,GRG

(
Lp,i

)
(A.59)

L̃ (ξ) := ln
(
L (ξ) lN

p,GRG

)
= N ln (− (ξ + 1)) + ξ

N∑
i=1

ln
Lp,i

lp,GRG
. (A.60)

We note the necessity to include a factor lN
p,GRG in the definition

of the log-likelihood to avoid a dimensionality error. The second
derivative of L̃ to ξ is

d2L̃

dξ2 = −
N

(ξ + 1)2 < 0. (A.61)

Thus, if there exists a solution to the equation dL̃
dξ = 0, it

must correspond to a global maximum of the likelihood and log-
likelihood functions:

dL̃
dξ

(ξ = ξMLE) = 0, or ξMLE = −
N∑N

i=1 ln Lp,i

lp,GRG

− 1. (A.62)

A.8. Observed projected proper length

A.8.1. General considerations

The model can be extended to incorporate observational selec-
tion effects. The relevant effects to consider vary from RG
search campaign to RG search campaign, although some formu-
lae apply in all cases. We derive these here.

To keep our extensions simple, we assume that the survey
sensitivity is sufficient to detect RGs up to some redshift zmax
only. In addition we assume that the projected proper length
distribution does not evolve between z = zmax and z = 0. We
let pobs(lp, z) denote the probability that an RG of projected
proper length lp at cosmological redshift z is detected during
the campaign. Also, r is the radial comoving distance and n is
the total RG number density, counting the intrinsic number of
RGs (irrespective of length) per unit of comoving volume. The
observed number of RGs with projected proper length between
lp and lp + dlp throughout a survey covering a solid angle Ω is
dNLp,obs

(
lp,Ω

)
, where

dNLp,obs

(
lp,Ω

)
=

Ω

4π

∫ zmax

0
n · fLp

(
lp
)

dlp · pobs

(
lp, z

)
4πr2 (z)

dr
dz

dz. (A.63)

The total number of RGs with projected proper length between lp
and lp+dlp throughout a survey with solid angle Ω is dNLp

(
lp,Ω

)
,

where

dNLp

(
lp,Ω

)
=

Ω

4π

∫ zmax

0
n · fLp

(
lp
)

dlp · 4πr2 (z)
dr
dz

dz. (A.64)

We define the completeness C(lp, zmax) to be

C(lp, zmax) :=
dNLp,obs

(
lp,Ω

)
dNLp

(
lp,Ω

)
=

∫ zmax

0 pobs

(
lp, z

)
r2 (z) E−1 (z) dz∫ zmax

0 r2 (z) E−1 (z) dz
. (A.65)

The completeness only depends on the function pobs(lp, z) and
our choice of zmax.

Let the RV O denote whether an RG picked at random within
z < zmax is detected during the search campaign. We have
O ∼ Bernoulli

(
C(Lp, zmax)

)
; the parameter that determines the

distribution of O is itself an RV. It immediately follows that
P
(
O = 1 | Lp = lp

)
= C(lp, zmax).

If Lp would be discrete,

P
(
Lp = lp | O = 1

)
=
P
(
O = 1 , Lp = lp

)
P (O = 1)

=
P
(
O = 1 | Lp = lp

)
P
(
Lp = lp

)
∑

lp P
(
O = 1 | Lp = lp

)
P
(
Lp = lp

) . (A.66)

Let Lp,obs be the observed projected proper length RV; that is
Lp,obs := Lp | O = 1. Its PDF is given by the continuous analogon
of the preceding equation:

fLp,obs

(
lp
)

=
C

(
lp, zmax

)
fLp

(
lp
)

∫ ∞
0 C

(
lp, zmax

)
fLp

(
lp
)

dlp
. (A.67)

Obviously, FLp,obs

(
lp
)

=
∫ lp

0 fLp,obs

(
l′p
)

dl′p. The CDF

FLp,obs |Lp,obs>lp,GRG

(
lp
)

follows from an analogon of Eq. A.12.
We note that multiplying pobs(lp, z) with an lp- and z-

independent factor changes C(lp, zmax) by the same factor, but
leaves fLp,obs unaltered.

A.8.2. Fuzzy angular length threshold

Here we illustrate a simple extension. When performing visual
searches for GRG candidates, a natural criterion is to only
inspect sources with an angular length that is larger than some
threshold. Researchers determine the threshold based on the
amount of time available to them: lower thresholds will lead to
more complete samples, but will take more time to collect. For
humans, it is hard to estimate a source’s angular length precisely
by eye; as a result, some of the GRG candidates included in the
project’s GRG candidate catalogue will be sources with an angu-
lar length below the threshold, whilst others will be sources with
an angular length above the threshold. We idealise this situation
by asserting that sources with angular length φmin or below are
included in the catalogue with probability 0 (i.e. never), and that
sources with an angular length φmax or above are included in the
catalogue with probability 1 (i.e. always). We assume a linear
increase in probability as a function of φ for intermediate angu-
lar lengths: a source with angular length φmin < φ < φmax is
included in the catalogue with probability

pobs

(
lp, z

)
= min

max

φ
(
lp, z

)
− φmin

φmax − φmin
, 0

, 1
. (A.68)
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In a flat Friedmann–Lemaître–Robertson–Walker (FLRW) uni-
verse, the angular length of an RG with projected proper length
lp at cosmological redshift z is

φ
(
lp, z

)
=

lp (1 + z)
r (z)

. (A.69)

A.8.3. Surface brightness limitations

Fanaroff–Riley class II If the surface brightness Bν of the lobes
is proportional to some negative power ζ of the GRG’s proper
length L, that is

Bν = bν,ref

(
L

lref

)ζ
, (A.70)

then Bν is Pareto distributed — just like L:

FBν (b) =


0 if b ≤ 0(

b
bν,ref

) ξ+1
ζ if 0 < b < bν,ref

1 if b ≥ bν,ref ,

(A.71)

fBν (b) =


0 if b ≤ 0
ξ+1
ζ

1
bν,ref

(
b

bν,ref

) ξ+1
ζ −1

if 0 < b < bν,ref

0 if b ≥ bν,ref .

(A.72)

If RGs are self-similar in shape, then their lobe volumes are pro-
portional to L3. RGs appear to retain constant lobe luminosity
density over most of their lifetime, so that their lobe monochro-
matic emission coefficients (Rybicki & Lightman 1986) are pro-
portional to L−3. As line-of-sight lengths through the lobes are
proportional to L, surface brightness is proportional to L−2.
These arguments thus suggest ζ = −2.

It is a poor approximation to assume that all giants of proper
length lref have the same surface brightness bν,ref : observations
suggest a variability of several orders of magnitude. A better
description is

Bν = bν,ref

(
L

lref

)ζ
S , (A.73)

where S is a lognormal RV whose median is 1. The PDF of S is
then determined by parameter σref :

fS (s) =
1

√
2πσref s

exp
− ln2 s

2σ2
ref

. (A.74)

The surface brightness CDF and PDF now become

FBν (b) =


0 if b ≤ 0

FS

(
b

bν,ref

)
+

(
b

bν,ref

) ξ+1
ζ

∫ ∞
b

bν,ref

s−
ξ+1
ζ fS (s) ds if b > 0,

(A.75)

fBν (b) =


0 if b ≤ 0
ξ+1
ζ

1
bν,ref

(
b

bν,ref

) ξ+1
ζ −1 ∫ ∞

b
bν,ref

s−
ξ+1
ζ fS (s) ds if b > 0.

We note that Bν is not exactly Pareto distributed anymore.
In a relativistic rather than Euclidean universe, surface

brightness is not constant with distance. To describe RGs beyond
z = 0, we introduce a final model refinement:

Bν =
bν,ref · S

(1 + Z)3−α

(
L

lref

)ζ
, (A.76)

where the RV Z denotes cosmological redshift and α is the spec-
tral index of the lobes. We interpret bν,ref · S as the (lognormally
distributed) lobe surface brightness for RGs of intrinsic proper
length lref at z = 0. In this case, the CDF and PDF of Bν are most
easily determined through sampling. To sample Z, we can first
sample the comoving distance RV R instead, and subsequently
use Z = zM (R). We stress that this conversion depends on cos-
mological parametersM.

To forward model a survey’s surface brightness selection
effect, we must compute

pobs

(
lp, z

)
= P

(
Bν > bν,th | Lp = lp, Z = z

)
= 1 − FBν | Lp=lp, Z=z

(
bν,th

)
, (A.77)

where bν,th > 0 is the surface brightness threshold. Typi-
cally, bν,th is comparable to the survey’s RMS noise. What is
FBν | Lp=lp, Z=z (b)? In the simplest case, devoid of S - and Z-
dependence,

FBν | Lp=lp, Z=z (b) = P

bν,ref

(
Lp

sin Θ · lref

)ζ
≤ b | Lp = lp


= P

sin−ζ Θ ≤
b

bν,ref

(
lp
lref

)−ζ
= P

(
sin Θ ≤ s̃−

1
ζ

)

=


0 if b ≤ 0

2FΘ

(
arcsin

(
s̃−

1
ζ

))
if 0 < b < bν,ref

( lp
lref

)ζ
1 if b ≥ bν,ref

( lp
lref

)ζ
= 1 −

√
1 −min

{
s̃−

2
ζ (max {b, 0}) , 1

}
, (A.78)

where

s̃ = s̃ (b) :=
b

bν,ref

(
lp
lref

)−ζ
. (A.79)

Therefore,

pobs

(
lp, z

)
=

√
1 −min

{
s̃−

2
ζ
(
bν,th

)
, 1

}
. (A.80)

In the most refined case, for b > 0,

FBν | Lp=lp, Z=z (b)

= P

 bν,ref · S

(1 + Z)3−α

(
Lp

sin Θ · lref

)ζ
≤ b | Lp = lp, Z = z


= P

sin−ζ Θ · S ≤
b

bν,ref

(
lp
lref

)−ζ
(1 + z)3−α


=

∫ ∞

0
P

sin−ζ Θ ≤
b

bν,ref

1
s

(
lp
lref

)−ζ
(1 + z)3−α

 fS (s) ds

=

∫ ∞

0
P

sin Θ ≤

( s̃
s

)− 1
ζ

 fS (s) ds

=

∫ s̃

0
fS (s) ds +

∫ ∞

s̃
2FΘ

arcsin
( s̃

s

)− 1
ζ

 fS (s) ds

=

∫ s̃

0
fS (s) ds +

∫ ∞

s̃
fS (s) ds
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−

∫ ∞

s̃
cos arcsin

( s̃
s

)− 1
ζ

 fS (s) ds

= 1 −
∫ ∞

s̃

√
1 −

( s̃
s

)− 2
ζ

fS (s) ds, (A.81)

where

s̃ = s̃ (b) :=
b

bν,ref

(
lp
lref

)−ζ
(1 + z)3−α . (A.82)

The minimum value of S for which an RG of projected length lp
at redshift z is detectable, is smin(lp, z) := s̃(bν,th). For brevity, we
simply write smin instead. We find

pobs

(
lp, z

)
=

∫ ∞

smin

√
1 −

( smin

s

)− 2
ζ

fS (s) ds. (A.83)

The following approximation might facilitate the numerical eval-
uation of this integral. We note that for s � smin, the square root
factor in the integral approaches 1. Now split up the original inte-
gral in two parts, where η governs the approximation’s accuracy:

pobs ≈ p̂obs (A.84)

=

∫ ηsmin

smin

√
1 −

( smin

s

)− 2
ζ

fS (s) ds +

∫ ∞

ηsmin

fS (s) ds

=

∫ ηsmin

smin

√
1 −

( smin

s

)− 2
ζ

fS (s) ds + 1 − FS (ηsmin) ,

where we substitute numerically integrating to infinity for an
evaluation of the CDF of the lognormally distributed RV S . The
approximation error is bounded from above:

p̂obs − pobs =

∫ ∞

ηsmin

1 −
√

1 −
( smin

s

)− 2
ζ

 fS (s) ds

<

1 −
√

1 −
(

smin

ηsmin

)− 2
ζ


∫ ∞

ηsmin

fS (s) ds

=

(
1 −

√
1 − η

2
ζ

)
(1 − FS (ηsmin))

< 1 −
√

1 − η
2
ζ . (A.85)

Let us assume ζ = −2. For η = 100, the approximation error is
at most 0.005, and for η = 1000, the approximation error is at
most 0.0005.

Fanaroff–Riley class I The simplest correction in which FRI
RGs retain a well-defined notion of length assumes a linearly
decreasing surface brightness, from some value bν(0) at the core
to zero at the RG’s two endpoints. For a symmetric FRI RG, the
surface brightness profile along one of the jets is bν : R≥0 → R≥0,
and depends on the projected proper distance from the core rp as

bν(rp) =

bν(0)
(
1 − 2rp

lp

)
if 0 ≤ rp <

lp
2

0 if rp ≥
lp
2 .

(A.86)

Now we consider an FRI GRG, whose projected proper length
lp > lp,GRG would only be observed in full in the absence of

noise. In actual observations, this GRG is detected as a GRG if
and only if

bν

(
lp,GRG

2

)
> bν,th, or bν(0)

(
1 −

lp,GRG

lp

)
> bν,th. (A.87)

Under our assumption of a linear surface brightness profile, the
mean surface brightness along the jet axis 〈bν〉 = bν

(
1
2 ·

lp
2

)
. As

this must be half of the surface brightness at the core,

〈bν〉 = bν

(
lp
4

)
=

bν(0)
2

. (A.88)

Combining Eqs. A.87 and A.88, we find that the GRG is detected
as such if

〈bν〉 >
bν,th

2
(
1 − lp,GRG

lp

) . (A.89)

Now regarding 〈bν〉 as an RV and recognising that it might
behave exactly as in Eq. A.76, we find that the surface bright-
ness selection effect for FRI giants may be modelled as

pobs(lp, z) = P

Bν >
bν,th

2
(
1 − lp,GRG

lp

) | Lp = lp,Z = z

 . (A.90)

We see that the full formulaic structure of pobs(lp, z) is the same
for FRI and FRII giants, except that for FRI giants a change

bν,th →
bν,th

2
(
1 − lp,GRG

lp

) (A.91)

is necessary. There is no change for lp = 2lp,GRG.

A.9. GRG number density

A statistic of major interest is the number density of giants in the
contemporary Universe. Let nGRG be the comoving GRG number
density, so that

nGRG = n P
(
Lp > lp,GRG

)
= n

(
1 − FLp

(
lp,GRG

))
. (A.92)

NGRG,obs (Ω, zmax) :=
∫ ∞

lp,GRG

dNLp,obs

(
lp,Ω

)
. (A.93)

After invoking Eq. A.63 and isolating n, we obtain

n =

4π
Ω

NGRG,obs (Ω, zmax)∫ ∞
lp,GRG

∫ zmax

0 fLp

(
lp
)

pobs

(
lp, z

)
4πr2 (z) dr

dz dz dlp
. (A.94)

Combining Eqs. A.8, A.9, A.92 and A.94 for lp,GRG > lmin, we
arrive at

nGRG

= −
lξ+1
p,GRG

ξ + 1
·

4π
Ω

NGRG,obs (Ω, zmax)∫ ∞
lp,GRG

lξp
∫ zmax

0 pobs

(
lp, z

)
4πr2 (z) dr

dz dz dlp
. (A.95)

From observations, we know Ω and can — for a given zmax —
simply count NGRG,obs (Ω, zmax). Moreover, we can fit ξ and the
parameters that occur in pobs(lp, z) (e.g. 1

2 (φmax − φmin), bν,ref ,
and σref) to the ECDF of Lp,obs | Lp,obs > lp,GRG. We note that
nGRG does not depend on lmin, which drops out through the divi-
sion. However, nGRG does depend on cosmological parameters
through the relation between cosmological redshift z and radial
comoving distance r.
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A.10. GRG lobe volume-filling fraction

Assuming self-similar growth, the combined proper volume V
of an RG’s lobes and its intrinsic proper length l obey V ∝ l3.
The constant of proportionality varies per RG and depends on
the shape of the lobes; we treat it as an RV Υ := V

L3 . Then the
proper VFF of GRG lobes VFFGRG(z) = VFFGRG(z = 0)·(1+z)3,
where

VFFGRG(z = 0) := nGRG · E[V | Lp > lp,GRG]

= nGRG · E[
V
L3 · L

3 | Lp > lp,GRG]

= nGRG · E[Υ · L3 | Lp > lp,GRG]. (A.96)

Assuming that RGs grow self-similarly, so that shape does not
reveal length, Υ and L3 are conditionally independent given Lp >

lp,GRG: Υ y L3 | Lp > lp,GRG. As a result,

VFFGRG(z = 0) = nGRG · E[Υ | Lp > lp,GRG] · E[L3 | Lp > lp,GRG]

= nGRG · E[Υ] · E[L3 | Lp > lp,GRG]. (A.97)

To obtain this last line, we once more exploit self-similarity:
Υ | (Lp > lp,GRG) = Υ. We can approximate E[Υ] by taking the
mean of some V

l3 deduced from observations. A technical com-
plication arises from the fact that E[L3 | Lp > lp,GRG] does not
exist for ξ ≥ −4 under our model. This is an artefact of the Pareto
distribution assumption for L, which unrealistically features sup-
port over an infinitely long part of the real line: {l ∈ R | l > lmin}.
This causes the expectation value integral to diverge for ξ ≥ −4.
An approximation to VFFGRG(z = 0) that works for all ξ is the
lower bound

VFFGRG(z = 0) > nGRG · E[Υ] · E3[L | Lp > lp,GRG], (A.98)

which follows from Jensen’s inequality. Here

E[L | Lp > lp,GRG] = lp,GRG

Γ
(
−
ξ
2 − 1

)
Γ
(
−
ξ
2 + 1

)
Γ
(
−
ξ
2 −

1
2

)
Γ
(
−
ξ
2 + 1

2

) . (A.99)

Alternative approximation formulae, which use Υp := V
L3

p
, are

VFFGRG(z = 0) > nGRG · E[Υp] · E3[Lp | Lp > lp,GRG] (A.100)

and

VFFGRG(z = 0) > nGRG · E[Υp] · mL3
p | Lp>lp,GRG

, (A.101)

where

mL3
p | Lp>lp,GRG

= l3p,GRG · 2
3

−(ξ+1) (A.102)

is the median of the cubed projected proper length for giants.
An advantage of these latter expressions is that there are more
data available to estimate E[Υp] than there are to estimate
E[Υ].

A.11. Unification model constraints from quasar and
non-quasar giants

The quasar GRG probability pQ is

pQ :=
P
(
Lp,obs ≥ lp,GRG, sin Θ ≤ sin θmax

)
P
(
Lp,obs ≥ lp,GRG

)
=P

(
sin Θ ≤ sin θmax | Lp,obs ≥ lp,GRG

)
=

∫ sin θmax

0

P
(
Lp,obs ≥ lp,GRG | sin Θ = x

)
fsin Θ(x) dx

P
(
Lp,obs ≥ lp,GRG

)
=

∫ sin θmax

0

P
(
Lp ≥ lp,GRG | sin Θ = x

)
fsin Θ(x) dx

P
(
Lp ≥ lp,GRG

)
=

∫ sin θmax

0

(
1 − FL

( lp,GRG

x

))
fsin Θ(x) dx

1 − FLp (lp,GRG)
. (A.103)

Now using Eqs. A.3 and A.8 and fsin Θ(x) = x
√

1−x2
over the

domain of integration,

pQ =
4Γ

(
−
ξ
2 + 1

)
− (ξ + 1)

√
π Γ

(
−
ξ
2 −

1
2

) ∫ sin θmax

0

x−ξ dx
√

1 − x2
. (A.104)

A.12. Extreme giants in a sample

An interesting feature of the model is its ability to predict the
occurrence of giants with extreme projected proper lengths in
a GRG sample of, say, size N. Now consider some lp > lp,GRG
— what is the probability p>lp that an observed GRG will have
a projected proper length exceeding lp? Proceeding as in the
derivation of Eq. A.12, we find

p>lp

(
lp
)

:=P
(
Lp,obs > lp | Lp,obs > lp,GRG

)
=

1 − FLp,obs

(
lp
)

1 − FLp,obs

(
lp,GRG

) . (A.105)

In the absence of selection effects, p>lp

(
lp
)

is given by Eq. A.15.
The number of giants with extreme projected proper lengths
N>lp ∼ Binom(N, p>lp (lp)).

Interesting questions can be answered readily. For example,
the probability that the sample contains at least one GRG with
projected proper length lp or larger, is

P
(
N>lp ≥ 1

)
= 1 − P

(
N>lp = 0

)
= 1 −

(
1 − p>lp

(
lp
))N

. (A.106)

Appendix B: Additional images

In this appendix, as in Fig. 12, we show newly discovered giants.
These cover the projected length range lp ∈ [0.7 Mpc, 4 Mpc).
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Fig. B.1. Details of the LoTSS DR2–estimated specific intensity function Iν (r̂) at central observing frequency νobs = 144 MHz and resolutions
θFWHM ∈ {6′′, 20′′ 90′′}, centred around the hosts of newly discovered giants. Row-wise from left to right, from top to bottom, the projected proper
length lp is 3.9 Mpc, 3.5 Mpc, 3.3 Mpc, 3.3 Mpc, 3.3 Mpc, and 3.2 Mpc; in the same order, θFWHM is 90′′, 20′′, 20′′, 6′′, 6′′, and 20′′. The giants in
the top-left and middle-left panels appear larger in the sky than the Moon. Contours signify 3, 5 and 10 sigma-clipped standard deviations above
the sigma-clipped median. For scale, we show the stellar Milky Way disk (with a diameter of 50 kpc) generated using the Ringermacher & Mead
(2009) formula, alongside a 5 or 10 times inflated version.
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Fig. B.2. Details of the LoTSS DR2–estimated specific intensity function Iν (r̂) at central observing frequency νobs = 144 MHz and resolutions
θFWHM ∈ {6′′, 20′′}, centred around the hosts of newly discovered giants. Row-wise from left to right, from top to bottom, the projected proper
length lp is 2.8 Mpc, 2.6 Mpc, 2.6 Mpc, 2.2 Mpc, 2.1 Mpc, and 2.1 Mpc; in the same order, θFWHM is 6′′, 20′′, 6′′, 20′′, 20′′, and 6′′. The GRG in the
bottom-left panel appears larger in the sky than the Moon. Contours signify 3, 5, and 10 sigma-clipped standard deviations above the sigma-clipped
median. For scale, we show the stellar Milky Way disk (with a diameter of 50 kpc) generated using the Ringermacher & Mead (2009) formula,
alongside a 5 or 10 times inflated version.
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Fig. B.3. Details of the LoTSS DR2–estimated specific intensity function Iν (r̂) at central observing frequency νobs = 144 MHz and resolutions
θFWHM ∈ {6′′, 20′′}, centred around the hosts of newly discovered giants. Row-wise from left to right, from top to bottom, the projected proper
length lp is 1.6 Mpc, 1.5 Mpc, 1.3 Mpc, 1.2 Mpc, 1.1 Mpc, and 0.7 Mpc; in the same order, θFWHM is 6′′, 6′′, 20′′, 6′′, 6′′ and 6′′. Contours signify
3, 5, and 10 sigma-clipped standard deviations above the sigma-clipped median. For scale, we show the stellar Milky Way disk (with a diameter
of 50 kpc) generated using the Ringermacher & Mead (2009) formula, alongside a 3 or 5 times inflated version.
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Appendix C: Stellar and supermassive black hole
masses

In Fig. C.1, we present the SDSS-derived relations between
host stellar mass and projected proper length, and between host
supermassive black hole mass and projected proper length, for
all giants in our final catalogue. We obtained the data as in
Section 3.7 of Oei et al. (2022a).

Fig. C.1. Observed relations between host stellar mass M? and GRG
projected length lp (top) and between host SMBH mass M• and GRG
projected length lp (bottom). Our LoTSS DR2 sample confirms that
luminous giants typically have M? ∈ 1011–1012 M� and M• ∈ 108–
1010 M�. The sample effects an almost fivefold increase in the number
of giants with SDSS-derived host stellar masses and SMBH masses.
We do not show or count giants for which only a nearest host candidate
could be determined.

Appendix D: Surface brightness prior

Consider a radio galaxy at cosmological redshift z of intrinsic
proper length l bounded by spherical lobes of radius R and spec-
tral index α. If a fraction fl of the radio galaxy’s central axis lies
within the lobes, then

R =
1
4

fl · l. (D.1)

If a fraction fLν of the radio galaxy’s total luminosity density Lν
comes from the lobes, then the monochromatic emission coeffi-
cient

jν =
Lν
4π

fLν

2
1
V
, (D.2)

where the lobe volume V = 4
3πR3. A formula of practical

value features projected proper length lp instead of l. Given the
approximate nature of our approach, we therefore simply assume
l ≈ E[D](η( fl)) · lp, with the deprojection factor expectation E[D]
given in Eq. A.29; η( fl) =

fl
2− fl

. The maximum surface brightness
of the lobes as seen by an observer is

bν,max =
3 fLν · Lν

π2 · E[D](η( fl)) · f 2
l · l

2
p · (1 + z)3−α

, (D.3)

valid for the line of sight that pierces through a lobe along a
diameter. The average line of sight length d within a lobe is
smaller than dmax = 2R, though, and given by

〈d〉 :=

∫ R
0 2
√

R2 − x22πx dx

πR2 =
4
3

R. (D.4)

Therefore, the mean surface brightness of the lobes as seen by
an observer is

〈bν〉 =
〈d〉

dmax
bν,max =

2
3

bν,max. (D.5)

Appendix E: Likelihood function

In Table E.1, we present maximum likelihood and likeli-
hood mean and standard deviation estimates for the inference
described in Section 4.1.4; one may compare the results to those
in Table 4. In Fig. E.1, we visually summarise the likelihood
function; one may compare to Fig. 16.

The strong degeneracy between ξ and bν,ref , directly apparent
from the central two-parameter marginal in the leftmost column
of Fig. E.1, translates to a ridge of essentially constant likeli-
hood that extends from ξ ≈ −4 to ξ ≈ −2. Compared to a non-
degenerate case, this makes the maximum likelihood parameters
both intrinsically less meaningful and more prone to numerical
approximation errors.

Table E.1. Maximum likelihood estimate (MLE) and likelihood mean
and standard deviation (SD) estimates of the free parameters in intrinsic
GRG length distribution inference.1

zmax = 0.5
parameter MLE likelihood mean and SD

ξ −2.15 −3.4 ± 0.5
1
2 (φmax − φmin) 1.7′ 1.9 ± 0.3′

bν,ref 90 Jy deg−2 660 ± 400 Jy deg−2

σref 1.35 1.2 ± 0.2
zmax = 0.25

parameter MLE likelihood mean and SD
ξ −2.2 −3.5 ± 0.4

1
2 (φmax − φmin) 2.25′ 1.7 ± 0.3′

bν,ref 150 Jy deg−2 1050 ± 560 Jy deg−2

σref 1.25 1.4 ± 0.4

1 The model assumes ξ is constant for z ∈ [0, zmax]. We determined the
likelihood function twice: for zmax = 0.5, using 1473 giants, and for
zmax = 0.25, using 811 giants. We caution that, in this case, the MLE
parameters are a poor measure of central tendency.
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Fig. E.1. Joint likelihood function over ξ — the parameter of interest — and 1
2 (φmax − φmin), bν,ref and σref — the selection effect parameters, based

on 1473 projected lengths of LoTSS DR2 giants up to zmax = 0.5. We show all two-parameter marginals of the likelihood function, with contours
enclosing 30% and 70% of total probability. We mark the maximum likelihood parameters (white circle) and the likelihood mean parameters
(white cross). The single-parameter marginals again show the estimated mean, now marked by a vertical line, alongside shaded median-centred
80% credible intervals. The likelihood function is the posterior for a uniform prior. To compare the likelihood function to the posterior actually
chosen, see Fig. 16.

Appendix F: Properties of newly discovered giants

Table 2 provides properties of the 50 projectively longest giants
discovered during this work’s LoTSS DR2 search campaign.
We share these data, alongside those for the other 2010 (98%)

giants in our sample, in Flexible Image Transport System (FITS)
format through the Centre de Données astronomiques de Stras-
bourg (CDS).

For our final catalogue, which also includes literature giants,
please contact the authors.
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