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A B S T R A C T

Human motivations are an important factor in influencing human movement. However, most existing studies
on passenger travel demand prediction focus on external characteristics of movement, but neglect the influence
of activities and the motivations behind them, on the citizen’s trip decisions. In this study, we proposed
an agent-based model, to predict passengers’ travel behaviour over a period of time, particularly when the
urban structure changes. The model includes passenger characteristics, transitions in travel demands between
activities over time, and their movement in space and time. In addition, we innovatively calibrated the agent-
based model locally using Geographically Weighted Regression (GWR) to account for geographical variations
in the parameters of destination attractiveness and travel cost in the agent-based model. We conducted a case
study in Ningbo, China, using trip diaries, census data, and over 1.5 million taxi trip records. Our agent-based
model showed superior performance in predicting citizens’ movements and activities after a new shopping area
in Ningbo was built, compared with a model without local calibration. The results also revealed the geographic
sensitivity to destinations and the effects of a passenger’s motivations that underpin human movement.
1. Introduction

Human mobility prediction is an increasingly important research
topic (Wang et al., 2019; Shi et al., 2021). The accurate prediction of
human movements could be beneficial to many applications, such as
urban planning (Wang et al., 2019; Yin and Chi, 2022), traffic fore-
casting (Zhao et al., 2019; Wang et al., 2022), and location-based rec-
ommender system (Lim et al., 2019). However, most previous research
only focuses on historical trajectories and external context information
(such as traffic condition and weather) but neglects the driving force
(activity) behind the trips, which could make it even more difficult
to predict travel demands after changes in urban design (Gong et al.,
2023; Zhao et al., 2022; Zhou et al., 2017; Cheng et al., 2011; Song
et al., 2010). Some recent studies explored the possibility of integrating
the purpose of travel into the prediction process (Xu et al., 2023), but
how to appropriately estimate citizens’ daily movements, and explore
the interactions between human behaviour and city planning remains
an important challenge.
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Activity is defined as the internal reason for passenger travel
(Koushik et al., 2020; Miller, 2021). In particular, citizens’ daily visits
and schedule could be estimated from activity-based analysis (Yang
et al., 2014; Yin et al., 2017). Instead of a trip-based approach, activity-
based analysis could describe the relationships between predecessor
trips and successor trips, and ultimately, predict passengers’ travel
demand over a period of time (Gong et al., 2020b). With considerable
assumptions (such as modelling of the relationship between activities
and the human movements), activity-based analysis is able to be
applied on travel behaviour analysis (Liu et al., 2012).

Agent-based modelling (ABM) can achieve good qualitative perfor-
mance when used for a principled approach to activity-based analy-
sis (Liu et al., 2012; Wu et al., 2014; Gong et al., 2020a), as well
as the modelling of urban transportation (Chowell et al., 2003), daily
commuting routines (Balaraman et al., 2015), travel demand (Auld
et al., 2016), economy studies (Platt, 2020), spatial epidemics (Simoes,
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2012), etc. An agent-based model can extract micro-scale patterns by
simulating each agent’s behaviour. In particular, it can discover the
interactions among the agents, as well as the interactions between the
agents and the environment (Saeedi, 2018; Crooks and Heppenstall,
2012). Although agent-based models perform well on aggregating the
activity of simulated individuals, it faces strong criticisms due to the
inadequacy of current validation and calibration practices (Grazzini
and Richiardi, 2015). More specifically, there is insufficient research
emerging on agent-based model validation with empirically-observed
data, and what there is usually ignores the design of calibration meth-
ods (Grazzini et al., 2017). With effective calibration, agent-based
models can achieve excellent levels of performances in various case
studies (Rodrigue et al., 2012).

Traditionally, researchers utilised questionnaires or interviews for
model calibration, which are labour-intensive, and time-consuming.
Meanwhile, these data are largely dependent on the participants’ per-
ceptions (Gong et al., 2021). In recent years, GPS trajectory data has
been widely used for model calibration. Unlike traditional data sources,
large GPS data sets can be collected automatically. However, since most
GPS data do not include activity information, few researchers have
utilised GPS data on activity-based model calibration. As a result, how
to fit and validate the agent-based models precisely is a challenging
issue.

Focusing on this research gap, we proposed an agent-based model
to estimate passengers’ activity transitions (such as work, residence,
and dining) between predecessor trips and successor trips. We sim-
ulate individual behavioural activities across a city. Furthermore, a
geographically weighted calibration method is proposed to fit the
parameters in an agent-based model, using the Huff model, Geograph-
ically Weighted Regression (GWR), and Monte Carlo Simulation. In
particular, for each area that the agent is located in, the agent-based
model would have a set of specific parameters for the agent to make
trip decisions.

Our major contributions can be summarised as follows:

• We propose a Destination-aware Activity Simulation (DAS) model
to simulate intra-urban activities based on agent-based modelling
using taxi data, trip diaries, and census data. It is worth noting
that this paper only explores the activity behaviour of taxis in
cities.

• Inspired by the Huff model, we introduce the parameters of desti-
nation attractiveness and travel cost for the ABM, and propose a
novel geographically weighted calibration method for ABM based
on GWR, which can explicitly account for geographical variations.

• To address model validation issues, we propose two ways to
validate the effectiveness of the ABM model based on isolated POI
(IPOI)-based validation and a scenario test which examines the
impact of introducing a new infrastructure to the simulation.

• Extensive experiments have been performed on a case study in
Ningbo, China, demonstrating the effectiveness and superiority of
the proposed method.

The rest of the paper is organised as follows. In Section 2, we
summarise the related works on activity-based analysis, and method-
ologies for agent-based model calibration and validation. In Section 3,
we introduce the proposed methodology in this study. In Section 4, we
conducted a case study in Ningbo, China. Finally, Section 5 concludes
the paper.

2. Literature review

2.1. Activity-based analysis

Although urban travel demand prediction has been well-researched,
the internal motivations of most journeys are hidden (Rasouli and
Timmermans, 2014). To explore passengers’ travelling motivations,
activity-based analysis is a good way to explain the capabilities of the
2

forecasting (Kaelbling et al., 1996; Yang et al., 2014). Programming
the internal goals of the agents, rather than the desired outcome has
been shown to lead to realistic behaviour, both in a quantitative and
qualitative manner (Roadknight et al., 2012).

Traditionally, the two types of methodologies that are commonly
undertaken for activity-based analysis are econometric modelling and
computational modelling (Koushik et al., 2020). Econometric models
assume that individuals are trying to maximise their utility when mak-
ing active travel decisions. However, the approach has been criticised
for ignoring the imperfect selection behaviour of individuals (Koushik
et al., 2020; Bowman and Ben-Akiva, 2001). Computational models
define rules to explore the impact of passengers’ attributes on their
travel behaviours. Therefore, complex nonlinear relationships can be
effectively modelled (Koushik et al., 2020). The Huff model is one of the
most widely used computational models that estimates the customers’
visiting probabilities to one shopping area. It considers two factors:
the destination attractiveness and the travel cost (Huff, 1964). With
good calibration, the Huff model can be used to predict passengers’
travel behaviour. However, the Huff model is limited in several aspects:
(i) the model can only analyse shopping behaviour, trips for other
activities are not considered; (ii) previous work calibrated Huff model
with one pair of parameters, which assumes that all passengers have
similar attitude for the destination attractiveness and the travel cost. It
is clearly not same as the real situation; (iii) traditional activity-based
travel demand analysis cannot model the complex interactions between
individuals and the environment (Yamamoto et al., 2002).

2.2. Agent-based model calibration

Agent-based modelling adopts bottom-up modelling and can be
modelled at the micro-scale (Crooks and Heppenstall, 2012). Recent
research mainly focuses on modelling urban flows and human be-
haviour to analyse behaviour–environment interactions (Walsh et al.,
2013). Due to its high dimensional and hierarchical structure, cali-
bration is always one of the most important problems in agent-based
modelling (Platt, 2020). One common calibration methodology for
agent-based modelling is using observation data. In particular, Sturley
et al. (2018) utilised the observed number of visits to stores to calibrate
the agents’ shopping choice behaviour in an agent-based model; Gong
et al. (2020a) filtered over 6000 trip diaries from the questionnaire data
in New York to calibrate passengers’ activities schedule and utilised a
distance decay function to estimate the destination choices. However,
calibration process in previous work often need large questionnaire
data to support the real situations, which may lead to high labour cost.

2.3. GPS data-based model validation

With appropriate validation, the models can be evaluated on the
prediction accuracy or their effectiveness (Gong et al., 2020b). It has
also been demonstrated that GPS data can be utilised as ground truth
for travel behaviour forecasting (Wang et al., 2018). For example, Gong
et al. (2021) utilised taxi origin–destination (OD) data to filter all trips
for shopping centres, in order to evaluate the accuracy of the Huff
model on predicting the number of shopping areas visited. Liu et al.
(2014) proposed a validation method using mobile phone GPS data to
validate activity-based transportation models. However, since most GPS
data did not include activity information, it could be challenging to
validate the activity-based model using GPS data.

3. Methodology

3.1. Overview of the Destination-aware Activity Simulation (DAS) model

The overview flow chart of the proposed Destination-aware Activity

Simulation (DAS) model is shown in Fig. 1. The model takes trip diaries,
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Fig. 1. Overview of the proposed Destination-aware Activity Simulation (DAS) model.
Table 1
Questions in trip diaries.
No. Question Example answer

1 Which district did you live in? Beilun
2 Where is the location that you participated in this survey? Yinzhou park
3 Where did you work at? Shounan street
4 Was that day a weekday or a weekend? Weekday
5 How many trips did you have planned for that day? 3
6 What was the aim of your trip? Work
7 How long did you stay at your destination? Over 4 h
8 If you had another trip, where did you go after your last trip? Residence
map data (including POIs and road networks), and taxi GPS data as
input.

We utilised trip diaries to estimate citizens’ daily movements. More
specifically, the trip diaries recorded passengers’ one day trips with ac-
tivities. To collect the trip diaries, all the participants are asked to write
down all their trips in one day, which could be either a weekday, or a
weekend day. The questions utilised in this study are shown in Table 1.
For each trip of each participant, the interviews record the number of
trips in that day, trip start time, end time, related activity, origin and
destination location, and activity duration. The trip data is categorised
into eight activity types: residence, work, shopping, dining, schooling,
recreation, transport, and others. In our model, 𝐴𝑝 represents the prior
activity, 𝐴𝑠′ signifies a specific subsequent activity, 𝐴𝑠 encompasses all
feasible subsequent activities, and the agent begins the next activity
with a defined probability after finishing a single activity. From trip
records, we calculated the activity transition probabilities (see Eq. (1))

𝑃 (𝐴𝑝, 𝐴𝑠′ ) =
𝑁𝑢𝑚(𝐴𝑝, 𝐴𝑠′ )

∑

𝑠 𝑁𝑢𝑚(𝐴𝑝, 𝐴𝑠)
(1)

where 𝑃 (𝐴𝑝, 𝐴𝑠′ ) means the transition probability from previous activ-
ity 𝐴𝑝 to successor activity 𝐴𝑠′ . 𝑁𝑢𝑚(𝐴𝑝, 𝐴𝑠′ ) represents the observation
number of the trips moving from activity 𝑝 into successor activity 𝑠′.
Based on Eq. (1), we designed the activity transition matrix, to display
the correlation between the previous activity and the successor activity.
We input the activity transition matrix to the agent-based model to
simulate the activity-schedule of the agents, which are introduced in
Section 3.2 with details.

Combining trip diaries with census data, we could obtain passen-
gers’ characteristics (see Fig. 2), which includes each agent’s residential
location, whether they are at work or not, workplace, and working
time (such as 8 am to 5 pm) in several steps: (i) after collecting trip
diaries, we statistically gathered samples of citizens’ residences and
working areas; (ii) from census data, we accurately gathered citizens’
3

residential distributions; (iii) finally, the residential and working places
of urban residents in the model are estimated through the proportion
of the distribution of residents’ residences in the census data and the
relationship between the residents’ residences and working places in
the trip diaries.

Besides citizens’ characteristics, we also import POI data and road
networks into the agent-based model, in order to simulate agents’
movement. The POI data include the POIs’ locations, related activi-
ties, and opening times. The road network data is used to calculate
passengers travel route. The detail is introduced in Section 3.2.

Moreover, we utilised taxi data to calibrate the agent-based model.
Specifically, we firstly extracted individual OD taxi trips from taxi
GPS data, including pick-up point (PUP) and drop-off point (DOP),
with both location and time. The variables destination attractiveness
and travel cost (as indicated in Eq. (3)) are subsequently calibrated
in a geographically weighted manner for the agent-based model. The
calibration process is introduced in Section 3.3. With proper calibra-
tion, the agent-based model could simulate passengers’ daily trips with
activities, from which we could understand the human interaction as
well as the activity patterns.

Furthermore, to examine the effectiveness of the ABM model, we
propose two approaches, namely IPOI-based validation and scenario
testing, as detailed in Section 3.4.

3.2. The agent-based model design

The agent-based model is the core of the proposed DAS model,
which aims to simulate daily movements and activities of passengers
as agents. The flow chart of the agent-based model is presented in
Fig. 2. We imported three types of information into the agent-based
model, including time system (from 5 am to 11 pm), map information
(including POIs and road networks), and agent characteristics.

Observed from trip diaries, the activities can be further classified
into two categories: (i) recurrent activity and (ii) temporary activity.
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Fig. 2. Structure of the proposed agent-based model.
The recurrent activity includes residential activity, work-related activ-
ity, and school-related activity. Since in real situations, each citizen
has its own permanent residential location, work location, permanent
time schedule of the work, permanent school location, and permanent
time schedule for school in a long time period. Therefore, we consider
home, work and school activities as recurrent activity, and has been
arranged as characteristics of each agent in the agent-based model.
These arrangements had been statistically estimated from trip diaries
and census data (introduced in Section 4). Temporary activity means
agents have flexible arrangement on other activities based on their
spare capacity. Passengers’ activity transitions are estimated from trip
diaries, while their spatial choice for destination is predicted using the
Huff model, GWR, and Monte Carlo simulations.

We constrained the agent’s behaviour with a series of assumptions,
which are based on the agent characteristics. For each agent, we define
ten attributes: (i) residential location (we initially locate all agents in
their residential area and each agent has its own permanent residence),
(ii) current activity (citizens’ activity schedule is calculated from the
activity transition matrix), (iii) activity end time (it is estimated from
the trip diaries), (iv) current time, (v) current location, (vi) working
time, (vii) working locations, (viii) school time, (ix) school location,
and (x) trip number.

In ABM, every time step represents 15 min, from 5 am to 11 pm,
we excluded the data beyond this time range since the number of night
trips is relatively low and their frequency is less regular. In total, the
agent-based model simulates 72 time steps, equivalent to 18 h. During
every time step, the ABM estimates each agent’s next activity. If the
agent’s previous activity has not yet completed, the agent’s status will
not change. Meanwhile, the ABM also checks if the current time meets
the agents’ schedule. If the time meets the working or schooling time,
the agent will end the current activity, and head for its work place
or school. Otherwise, the agent-based model will generate a successor
activity, which is based on the activity transition probabilities in DAS.

3.2.1. Next activity type estimation
In the ABM, we estimate each passenger’s total trip number by

statistically calculating the probabilities of each trip number from
4

Algorithm 1 Monte Carlo simulation
Input: a set of trip number
Output: one trip number
1: for each number do

2: the probability to trip numbers 𝑁 are 𝑝1, 𝑝2,… , 𝑝𝑁 ⊳
𝑁
∑

𝑛
𝑝𝑛 = 1

3: set 𝑝0 = 0
4: generate random value, 𝑟 ∈ [0, 1]
5: for 𝑛 = 0 to 𝑁 − 1 do ⊳ decide target number

6: if
𝑛
∑

𝑗=0
𝑝𝑗 ≤ 𝑟 <

𝑛+1
∑

𝑗=0
𝑝𝑗 then

7: result = number[𝑛 + 1]
8: end if
9: end for

10: end for
11: return result

trip diaries. Once trip number is determined, we utilised Monte Carlo
simulation to estimate the agent’s next activity, which is shown in
Algorithm 1. By calculating the proportion of the current activity 𝑝
to the next specific activity 𝑠 in 𝑁 activity categories. The activity
transition probability 𝑃 (𝐴𝑝, 𝐴𝑠) with the sum of 1. On this basis, we
used a random decimal 𝑟 in [0,1] to estimate the next activity. If there
is no further trips, the ABM keep the agent at home until the end of the
day.

The next activity is estimated using activity transition matrix (Sec-
tion 3.1):

𝑃 (𝐴𝑡
𝑝, 𝐴

𝑡+1
𝑠 ) =

{

𝑃 (𝐴𝑝, 𝐴𝑠), (𝑡 + 1) ∈ 𝐴𝑜𝑝𝑒𝑛𝑡𝑖𝑚𝑒
𝑠

0, (𝑡 + 1) ∉ 𝐴𝑜𝑝𝑒𝑛𝑡𝑖𝑚𝑒
𝑠

(2)

where 𝑡 means the current time, 𝑡+1 means the next time step, 𝑃 (𝐴𝑝, 𝐴𝑠)
means the probability that the agent’s next trip is activity 𝑠 when its
previous activity is 𝑝, which could be calculated from Eq. (1). The
probability is directly collected from trip diaries. 𝐴𝑜𝑝𝑒𝑛𝑡𝑖𝑚𝑒

𝑠 means the
open time range of activity 𝑠.
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3.2.2. Next destination estimation
For temporary activities to complete (except home and work), the

agent-based model will estimate the next geographic destination for the
activity. The estimation is based on the Huff model. The Huff model
states that the attractiveness of various conditions of trading areas to
citizens and the cost of the distance between passengers and trading
areas determines the law of the size of business circles. The formula is
described as follows:

𝑃𝑠𝑖𝑗 =
𝑆𝛼
𝑗 𝐶

𝛽
𝑖𝑗

∑𝑚𝑠
𝑗=1 𝑆

𝛼
𝑗 𝐶

𝛽
𝑖𝑗

(3)

where 𝑃𝑠𝑖𝑗 represents the probability that a citizen from origin location
𝑖 to visit the area 𝑗 for activity 𝑠; 𝐶𝑖𝑗 means the travel cost for agents
from location 𝑖 to area 𝑗; 𝑆𝑗 is the attractiveness of 𝑗; 𝛼 and 𝛽 are,
respectively, the parameters of 𝑆 and 𝐶 at each origin location 𝑖; and

is the total number of areas for activity 𝑠. In this study, we utilised
he area’s visiting volumes to estimate its attractiveness 𝑆, which is
alculated from taxi data. Moreover, we consider the trip length from
to 𝑗 as the travel cost 𝐶𝑖𝑗 .

.3. Agent-based model calibration

In this study, we fit two parameters in an agent-based model, des-
ination attractiveness (𝛼) and travel cost (𝛽), as introduced in Eq. (3).

To estimate the Huff model parameters (in particular 𝛼 and 𝛽), four
attraction and cost function combinations were introduced (O’Kelly,
1999), as in Eq. (4):

𝐾1 ∶ 𝑃𝑖𝑗 = 𝑒𝑥𝑝(𝛼𝑆𝑗 − 𝛽𝐶𝑖𝑗 )

𝐾2 ∶ 𝑃𝑖𝑗 = 𝑒𝑥𝑝(𝛼𝑆𝑗 − 𝛽𝐿𝑛𝐶𝑖𝑗 )

𝐾3 ∶ 𝑃𝑖𝑗 = 𝑒𝑥𝑝(𝛼𝐿𝑛𝑆𝑗 − 𝛽𝐶𝑖𝑗 )

𝐾4 ∶ 𝑃𝑖𝑗 = 𝑒𝑥𝑝(𝛼𝐿𝑛𝑆𝑗 − 𝛽𝐿𝑛𝐶𝑖𝑗 )

(4)

Moreover, Nakanishi and Cooper (1982) calibrated the model using
a log-transformed-centred form of Ordinary Least Squares (OLS):

𝑂𝐿𝑆 ∶ 𝐿𝑛(𝑃𝑖𝑗∕𝑃𝑖) = 𝛼𝑖𝐿𝑛(𝑆𝑗∕�̄�) + 𝛽𝑖𝐿𝑛(𝐶𝑖𝑗∕�̄�𝑖) (5)

where 𝑃𝑖, �̄� and �̄�𝑖 are the geometric means of 𝑃𝑖𝑗 , 𝑆𝑗 and 𝐶𝑖𝑗 over 𝑗.
To enable comparisons with the literature, we use all the five

estimation methods (Eqs. (4) and (5)) to fit one pair of DAS param-
eters (𝛼 and 𝛽) and make comparisons between different time periods.
Considering the heterogeneity of different locations, we innovatively
propose to estimate 𝛼 and 𝛽 using GWR model.

GWR models are extensions of general linear regression models
and are widely used to analyse changes in urban travel demand (Tu
et al., 2018). Different from linear regression, the parameters estimated
from GWR vary spatially, instead of remaining constant across space.
Therefore, GWR models are suitable for exploring spatial heterogeneity.
The GWR model can be formulated as follows:

𝑦𝑖 = 𝛽𝑖0(𝑢𝑖, 𝑣𝑖) +
𝑚
∑

𝑘=1
𝛽𝑖𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘 + 𝜀𝑖 (6)

where 𝑦𝑖 is the dependent variable at location 𝑖; 𝑥𝑖𝑘 is the 𝑘th indepen-
dent variable at location 𝑖; 𝑚 is the number of independent variables;
𝛽𝑖0 is the intercept parameter at location 𝑖; 𝛽𝑖𝑘 is the local regression
coefficient for the 𝑘th independent variable at location 𝑖; and 𝜀𝑖 is the
random error at location 𝑖. Since there are two parameters in DAS to
estimate, 𝑘 = 2, and 𝛽𝑖𝑘 in Eq. (6) corresponds to 𝛼 and 𝛽 for each 𝑖.

3.4. Model validation

In this study, we propose two approaches to validate the perfor-
mance of the proposed DAS model based on taxi trip data, i.e., IPOI-
based validation and scenario testing.

3.4.1. IPOI-based validation
The key idea of the first approach is to compare the difference
5

between the temporal arrival distributions for each activity within
the agent-based model with temporal drop-off distributions for each
activity captured from taxi trips. However, the challenge lies in the fact
that raw taxi trips data lack labels of activity types.

To address the issue, we propose to use isolated POIs (IPOIs) to
connect taxi trips with related trip purposes (activity types). We defined
an IPOI as a special POI where there are no other POIs located within
500 m, measured by network distance. Previous work has demonstrated
that passengers usually walk up to 500 meters for the destination (Yue
et al., 2012). This suggests that, when a taxi trip DOP is located within
the buffer zone of a POI, such as a large shopping area, a park, or
workplace, with no other POIs located nearby, we can confidently
assume that the trip destination is that POI, and the trip purpose
(activity type) can be connected to the POI type. By quantitatively
estimating the difference between the results of agent-based model and
the taxi data, we can calculate the accuracy of the proposed DAS model.

3.4.2. Scenario testing
The second approach to validate the agent-based model is a scenario

test, i.e., comparing the simulation results with the real-world data.
Specifically, we first simulate the DAS model before and after a new
infrastructure opened in the area. Then, we compare the output of the
ABM with observed changes in activity patterns from taxi trips data
(ground truth) to validate the performance of ABM. The differences
between the simulated results and real-world observations can reliably
evaluate the effectiveness of our proposed DAS model.

4. Case study

We took Ningbo, China as our study area. Ningbo, located in the
east of China’s Zhejiang province, is a rapid developing city with 7.6
million residents. It also has one of the major ports in China and is one
of the leading container ports in the world. Ningbo consists of five main
districts in downtown: Haishu, Yinzhou, Zhenhai, Jiangbei, and Beilun.

4.1. Study data

4.1.1. POI data
The distributions of the POIs are presented in Fig. 3. In the study,

we selected 459 general POIs, which includes most of the popular areas
in Ningbo. More specifically, 200 residential areas, 22 workplaces, 20
schools, 28 restaurants, 27 hospitals, 28 banks, 33 recreation areas, 29
shopping areas, 2 inter-urban transport stations, and 70 locations re-
lated to other activities. For buildings with multiple POIs, we extracted
their main activity characteristics. To prove the faithfulness of the POI
selection, we utilised taxi data in Ningbo from March 9 to July 25, 2017
to statistically estimate the proportion of trips that drop-off near these
POIs. The results show that for each activity, the proportion of the taxi
trips that aimed for the selected POIs takes up over 70% of journeys
(72.5% in weekday, and 72.1% in weekend). Based on previous work,
around 70% trips have strong regulations (Zhang et al., 2019; Yue et al.,
2011). We therefore demonstrated the selected POIs are representative
and could be simulated for most of the daily destinations.

4.1.2. Taxi data
As for taxi data, we used 1.5 million taxi OD data in Ningbo from

9th March to 6th August in 2017. The trip data includes pick-up lo-
cation (longitude, latitude), pick-up time, drop-off location (longitude,
latitude), and drop-off time. To verify the prediction accuracy of the
proposed DAS model, we split the data into three subsets: training data
in normal days (from March 9 to 18), training data in vacation (from
July 21 to 27), testing data for verification (from August 3 to 6).

We exploited taxi training data to fit two parameters in the ABM:
(i) destination attractiveness 𝛼 and (ii) travel cost 𝛽. To estimate the
attractiveness of the POI, we first define 500 m as the buffer radius of

the POI. Based on previous studies, all the taxi trips that drop-off within



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103368S. Gong et al.
Fig. 3. The spatial distribution of POIs in Ningbo, with eight activity categories.
the buffer radius are possibly attracted by the POI (Yue et al., 2012). We
statistically estimate the number of taxi trips within 500 m of the POI as
the POI’s attractiveness. The cost (measured in terms of both time and
financial cost) of taxi data travel exhibits a positive correlation with
the route distance. As a result, we considered the route distance as the
travel cost of the trip. The route distances are directly collected from
Baidu Map API.

We further segmented the training data into two subsets: weekdays
and weekends. For each subset, we fitted the parameters as follows: (i)
For each activity, we statistically gathered the trips, and estimate the
probabilities to each POI of the activity. The probabilities are calculated
from Eq. (7).

𝑃𝑠𝑖𝑗 =
𝑁𝑢𝑚𝑖𝑗

∑

𝑗 𝑁𝑢𝑚𝑖
(7)

where 𝑃𝑠𝑖𝑗 means the probabilities of the citizens from location 𝑖 to POI
𝑗 for activity 𝑠; 𝑁𝑢𝑚𝑖𝑗 represents the number of the taxi trips that pick-
up in 𝑖 and drop-off within 500 m of POI 𝑗; ∑𝑗 𝑁𝑢𝑚𝑖 means the number
of the taxi trips that pick-up in location 𝑖 and drop-off within 500 m
of all POIs that related to activity 𝑠. (ii) After that, we calibrate ABM
model based on Eqs. (4) to (6), to fit the parameters geographically.

We validated the ABM model by comparing the taxi drop-off dis-
tribution for each IPOI from the test data with the simulated activity
drop-off distribution from 5 am to 12 am. Furthermore, we took a
scenario test to validate the ABM model on 28th July, 2017, a new wing
of In-time shopping centre opened in Yinzhou district. By comparing
the ABM outcomes and the observed changes of taxi trips data in
activity patterns before and after the shopping centre built, we can
validate the effectiveness of the ABM.

4.1.3. Trip diaries
In the study, we also collected trip diaries in 2019 in Ningbo to

calibrate the ABM model (4.59% of the selected POIs closed in 2019). In
order to ensure that the trip diaries are representative, we designed the
questionnaire questions according to the residents’ residence, whether
they work, where they work, whether they go to school, and where
schools locate, so that the relevant distribution meets the data of
Ningbo Municipal Bureau of Statistics (GOV.CN, 2021a). We finally ob-
tained one day’s movements for 178 participants and activities based on
their memories. The day was noted as a weekday or a weekend day. The
trip diaries include trip information and participants’ characteristics.
Trip information described the citizens’ one day movements as well as
their activities in every hour. There are 625 trip records in total.

From trip diaries, we capture the activity-transition probabilities
from each predecessor activity to each successor activity (based on
Eq. (1)). The matrix is displayed in Fig. 8(a). The activity-transition
matrix is directly applied in the agent-based model to simulate passen-
gers’ daily activity schedule. Moreover, combining with census data,
we estimated the citizens’ residential locations and their workplace.
6

4.1.4. Census data
To further investigate the residents’ characteristics, we collected

census data from Ningbo Bureau of Statistics (GOV.CN, 2021a). More
specifically, we explored the distributions of citizens’ residential areas,
as well as the proportion of current students in different areas. This
information is used to generate the agents’ characteristics in agent-
based model (introduced in Section 3.2). Fig. 4 represents the statistical
characteristics of the collected census data. We see that Yinzhou has the
highest proportion of inhabitants (36%), while only a small percentage
of citizens choose to live in Zhenhai (10%) or Beilun (11%). Since
Yinzhou and Haishu are the city centre in Ningbo, the results are in
line with expectations. We also noticed that most current students in
Ningbo are junior high school students (35.6%) and primary school
students (28.8%), while the numbers of college students are relatively
small (only 15.2%). Additionally, we found that these percentages are
similar to the education level of residents in Ningbo.

In addition, in order to determine critical parameters in the model,
we referred to the legal provisions laid down by the Chinese govern-
ment regarding work and study hours. Specifically, the working hours
have been set between 7 to 9 h (GOV.CN, 2019), and the studying hours
between 6 to 8 h (GOV.CN, 2021b).

4.2. Calibration results

We first perform a global calibration of the ABM model for three
temporary activities (dining, shopping, and recreation) in both normal
days and vacation. We defined 1 km × 1 km as a grid for model
calibration. The K4 from Eq. (4) gives the best performance (with
lowest Std.Error, 𝑃 -value, and highest absolute T-value), we thus report
the results in Table 2. It can be seen that all the estimated values of
𝛼 are positive while the values of 𝛽 negative; this is in line with their
implications, i.e., destination attractiveness and travel cost. In addition,
we can see that for shopping and recreation, the absolute values of 𝛼
and 𝛽 are much lower in vacation than in normal days. One interpre-
tation is that most students do not go to school on summer vacation,
they would have more time to spend in shopping and recreation areas,
without considering much about travel cost. Meanwhile, Most students
do not have income, they are less sensitive to the expensive goods than
adults.

For every activity, the values of 𝛼 are much lower at weekdays than
at weekends. This implies that passengers pay more attention to the
destination attractiveness at weekends. On the other hand, the absolute
values of 𝛽 are higher at weekdays than weekends for dining and
shopping trips. This result is consistent with our experience that since
people need to work and have less spare time on weekdays, they would
select closer restaurants and shopping malls, in order to cut down travel
times. For journeys for recreation (parks, gyms, etc.), the absolute
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Fig. 4. The distribution of residents and current students in five districts in Ningbo.
Table 2
Global parameter calibration on taxi data using best estimators K4 (Eq. (4)).

Type Time 𝛼 𝛽 Std.error |T-value| P-value

Dining
Normal day Weekday 0.373 −0.482 0.020 22.310 2e−16

Weekend 0.427 −0.103 0.018 14.350 −1.53e−16

Vacation Weekday 0.117 −0.480 0.021 13.790 2e−16
Weekend 0.199 −0.586 0.024 13.558 2.6e−16

Shopping
Normal day Weekday 0.353 −0.879 0.036 11.810 2e−16

Weekend 0.396 −0.810 0.042 14.640 2e−16

Vacation Weekday 0.218 −0.591 0.023 15.191 2e−16
Weekend 0.175 −0.538 0.024 10.799 2e−16

Recreation
Normal day Weekday 0.256 −0.769 0.027 17.770 2e−16

Weekend 0.349 −0.811 0.033 17.260 2e−16

Vacation Weekday 0.162 −0.560 0.019 15.725 2e−16
Weekend 0.194 −0.499 0.022 12.070 2e−16
values of 𝛼 and 𝛽 are lower at weekdays than at weekends, which are
consistent with trip diaries, where the number of trips for recreations in
weekdays (5.1%) are much less than on weekends (10.4%). The results
imply that the calibration results are reasonable.

4.2.1. Spatial distributions of 𝛼 and 𝛽
Figs. 5 and 6 present the results of GWR calibration in normal

days. The five downtown districts are mapped. Fig. 5 shows significant
geographic variation of 𝛼 for shopping, dining, and recreation activities.
We see that most of the time, 𝛼 takes the highest positive values (red)
in Yinzhou and Haishu districts, and lower positive value, or even high
negative values (green) in Zhenhai. This suggests people who live or
work in Yinzhou and Haishu are more likely to prefer attractive destina-
tions, whereas people from Zhenhai care least about the attractiveness
of the destination. Moreover, we see that in Beilun, the values of 𝛼 are
positively high for shopping and dining activity, but negatively high for
recreation-related activity. The result indicates that people in Beilun are
very likely to select highly attractive shopping areas and restaurants,
while they care much less about the attractiveness of the recreation
areas, and even prefer an unattractive recreation place. Since we have
previously defined attractive areas, which means it attracted more
citizens historically. On the contrary, unattractive recreation areas tend
to be located far from city centre, and the business competition is
relatively low. However, these areas may locate close to suburban
population centres (such as Beilun). Therefore, it is unsurprising that
in Beilun, people prefer to select relatively unattractive parks or gyms
in return for the convenience of shorter travel costs.

Fig. 6 shows the geographic variation of 𝛽. Generally, in most of the
areas, the values of 𝛽 are negative. In weekends, we see the absolute
values of 𝛽 are much lower (yellow) in the east of Haishu, and Beilun
for dining activity. This suggest that passengers who live in these areas
pay less attention on the travel costs to the restaurant. Combining with
the 𝛼 values in these areas in Fig. 5(e) (red), it is interesting to find
that residents in the east of Haishu and Beilun are willing to travel far
to attractive restaurants.
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4.3. ABM simulation results

We use the agent-based model with five thousand agents to simulate
one weekday and one weekend day. For the weekend day, we did
not consider work and school related journeys. The agents’ residential
distributions are shown in Fig. 7. We can see that most citizens live in
the east of Haishu and the north of Yinzhou.

4.3.1. Activity-transition analysis
Fig. 8 presents the activity-transition probabilities across Ningbo,

i.e., the probabilities that citizens transfer from one activity to another
in normal days (during summer vacation, the activity transitions are
very similar, except that the schooling activity are not considered).
To validate the performance of agent-based model, we first compare
the activity-transition probabilities between the matrix from simulation
(Figs. 8(b) and 8(c)) with the matrix from trip diaries as ground truth
(Fig. 8(a)). Since there is only one matrix in trip diaries considering
trips in both weekdays and weekends, we statistically regenerated the
activity-transition matrix from simulations by considering both trips
in weekdays and weekends. Mean Absolute Error (MAE) is used to
measure the difference between the activity transition probabilities
from simulation and the trip diaries. To be more specific, it is calculated
as the MAE between the corresponding probabilities in the matrices of
Fig. 8(a) and the weighted sum of which in Figs. 8(b) and 8(c) with a
ratio of 5:2 since there are five weekdays and two weekend days in one
week. The results show very low error (MAE = 0.015), indicating that
the agent-based model accurately captures these transitions.

There are also some findings that we could capture from Fig. 8(c):
(i) we see that passengers in weekends prefer to travel for recreation,
shopping and dining. Most of these trips are closely related to residence
(arrive from home, or leave for home); (ii) we also noticed that pas-
sengers in Ningbo have very little chance to transfer between school
and work activities. Since most people can only take one job (work
or study), we believe this phenomenon is reasonable and within our
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Fig. 5. The spatial distribution of 𝛼 in normal days, fitted by GWR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
expectation; (iii) after schooling activity, about 28% of the passengers
would continue schooling. We interpret it as some students may take
a break (such as lunch break) on the way before continuing to study
at school. (iv) in Ningbo, about 27% of people will choose to work
overtime after the end of the working day.

4.3.2. Activity schedule analysis
Here, we extracted some travel patterns from the DAS results.

Fig. 9 presents the citizens’ activities per hour from 5 am to 11 pm
in normal days. It should be noted that, since most people do not go to
work/school on weekends, we did not simulate work and school-related
trips at weekends.

It can be seen from Fig. 9 that (i) most people prefer staying at
home at noon (around 12 pm) and at night (from 8 pm to 6 am), which
is in line with real situation. (ii) The shopping and dining behaviours
are similar. More specifically, only a small proportion of trips from
1 pm to 2 pm are aimed for shopping areas or restaurant. On the
contrary, citizens for these destinations are quite active around 11 am,
from 3 pm to 4 pm, and from 5 pm to 7 pm. It provided an evidence
that it is reasonable for some trading areas adding both shopping and
dining infrastructures to attract customers. We therefore suggested the
business strategies could be improved based on this finding. (iii) The
trips aimed for inter-urban transport (e.g., railway station and airplane
station) take a large proportion from 8:30 to 12:00, and 14:00 to
19:30. (iv) We also discover that most trips for temporary activities at
weekends significantly outnumber that at weekdays. One interpretation
is that most people need to work or go to school at weekday, and they
8

could have more time at weekends for entertainment or other personal
activities. In particular, for shopping and dining activities, more trips
start before 12 o’clock, while for transport and recreation activities,
more citizens prefer to start the trip in the afternoon, especially after 2
pm.

Furthermore, to explain inter-urban transport variability, we hy-
pothesise that passengers’ transport behaviours are largely influenced
by the departure schedule of trains and airplanes, such that when there
are more trains departure, passengers are more likely to travel by train.
To test our hypothesis, we considered the number of trains’ departure
for each hour in Ningbo as a proxy of trains’ departure arrangement,
and use Pearson’s correlation coefficient to identify whether there is
a correlation. Pearson’s correlation coefficient (PCC) is a measurement
to evaluate the relationship between two distributions, which is from
−1 to 1. The higher the absolute value of PCC is, the more the two
distributions are related.

We collect the train departure data from government website of
Haishu. The distributions of the proportions of train departure data and
the transport trips volume are shown in Fig. 10. It clearly demonstrates
a similar trend of inter-urban transport behaviour between the DAS
simulation results and the real-world data. The Pearson Correlation
between the real and simulation data is 0.757, which is significant
at the 0.01 level (sigma = 1.74 × 10−4). It indicates a very strong
relationship between passengers’ start time of inter-urban trips and the
number of available trips at the same time. It therefore suggests that the
DAS model has good performance on travel behaviour forecasting. Also,
we noticed that from 9 am to 10 am, and from 2 pm to 6 pm, there are
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Fig. 6. The spatial distribution of 𝛽 in normal days, fitted by GWR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7. Residential density in Ningbo.
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Fig. 8. The activity-transition matrix in normal days generated from (a) trip diaries, (b) simulation (weekday), and (c) simulation (weekend). The numbers of each row mean
the predecessor activities, and of each column mean the successor activities of eight categories (1: Residence; 2: Work; 3: Shopping; 4: Dining; 5: Schooling; 6: Recreation; 7:
Transport; 8: Others).
Fig. 9. Temporal variations of eight activities in normal days based on simulation. Work and school-related activities are not considered at weekend.
Fig. 10. The proportions of transport trips per hour from the real train departure data
and the simulation results from DAS in normal days.

around 1.5% difference between two distributions. One interpretation
is that some people would travel to train station not taking train, but to
pick up some people who just arrived (such as their families, friends).

4.4. IPOI-based model validation

In this study, we selected three IPOIs for validation, i.e., a restaurant
(Xiangshu Restaurant), a shopping mall (Yinzhou Wanda Shopping
Centre), and a recreation area (Ningbo Children’s Park). Despite the
limited number of IPOIs, the selected IPOIs are representative in terms
of type coverage, including dining, shopping, and recreation activities,
which ensures the reliability of the validation results. Specifically, for
model validation, we statistically calculated the taxi drop-off numbers
10
Table 3
Similarity comparisons between the real drop-off distributions of taxi trips to IPOIs and
the DAS simulation results in normal days and summer vacation.

Type Time MAE RMSE

Dining
Normal days Weekday 0.059 0.063

Weekend 0.057 0.067

Vacation Weekday 0.025 0.030
Weekend 0.016 0.023

Shopping
Normal days Weekday 0.054 0.064

Weekend 0.060 0.069

Vacation Weekday 0.022 0.025
Weekend 0.031 0.042

Recreation
Normal days Weekday 0.044 0.050

Weekend 0.045 0.051

Vacation Weekday 0.028 0.032
Weekend 0.011 0.014

per hour for each IPOI from the testing dataset (taxi trips data from
August 3 to August 6 in 2017), as the ground truth. We validated
the DAS model by comparing the ground-truth and simulated drop-off
densities for each activity in normal days (from Mar 9 to 18), and in
summer vacation (July 21 to 27). Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) are exploited to evaluate the similarities.

We compared the similarities of the temporal proportion of the
related trips among all the trips for the same activity. The results are
shown in Table 3. It can be seen that, the DAS simulation results are
reliable (with very low values of MAE and RMSE).

4.5. Scenario testing

We have demonstrated that the DAS model is able to simulate
passengers’ activity patterns. To further examine the effectiveness of
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Fig. 11. Simulation and ground truth of activity volumes in weekday across Ningbo before and after a new wing of In-time shopping mall is opened in Yinzhou (marked by a
black dot). DAS simulation: (a) before, (c) after, (e) change. Ground truth taxi data of drop-off volumes: (b) before, (d) after, (f) change.
Table 4
Statistical comparisons of real vs. simulated distributions of taxi trip times as a result
of a new POI.

Time MAE RMSE

Weekday 0.164 0.271
Weekend 0.139 0.236

DAS model, we use real-world data for scenario test. On July 28, 2017,
a new wing of In-time shopping centre opened in Yinzhou, Ningbo. We
collect the taxi GPS data for the period before (from July 21 to 27)
and after (from August 3 to August 6) the shopping centre opened. By
comparing the simulation results and the taxi trips in the change of
travel behaviours before and after the opening of the new shopping
centre, we can validate the effectiveness of DAS. We utilised MAE and
RMSE to test the accuracy of the scenario test. The results are shown in
Table 4. We see that the scenario test has good performance with low
value of MAE and RMSE.

Fig. 11 shows the scenario test results of weekday. Specifically,
Figs. 11(b)–11(d) shows the spatial distribution of normalisation of taxi
11
drop-off volumes (ground truth) in Ningbo, before (Fig. 11(b)) and after
(Fig. 11(d)) the new In-time shopping centre is opened. We present
the difference as percentage in Fig. 11(f). Output of the agent-based
model simulation of this scenario is presented in Figs. 11(a)–11(e).
Generally, the result of the agent-based model is similar to reality.
In particular, we see that the visiting densities are clearly increased
around the new shopping mall (located in black dot). Meanwhile, we
also noticed that the opening of the In-time in Yinzhou results in an
increase in activity in some areas in the west of Yinzhou and in the
east of Beilun, which are far from the In-time shopping mall. Although
this observation is somewhat counter-intuitive, the agent-based model
simulation (Fig. 11(e)) can still well predict this increase in activity,
which further shows the effectiveness of our proposed method.

Fig. 12 shows the scenario test results of weekend. We also see simi-
lar distributions between DAS simulation results and the reality, which
demonstrates that DAS can accurately describe citizens’ movements in
temporary activities (shopping, dining, etc.). Moreover, we also noticed
that the opening of the in-time in Yinzhou results in an increase in
activity in the area in the south west of Haishu, which is not the same
as the pattern on a weekday. It is different to what we usually expect,
since a new shopping centre usually attracts more customers around it
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Fig. 12. Simulation and ground truth of activity volumes in a weekend across Ningbo before and after a new wing of In-time shopping mall is opened in Yinzhou (marked by a
black dot). DAS simulation: (a) before, (c) after, (e) change. Ground truth taxi data of drop-off volumes: (b) before, (d) after, (f) change.
in the weekend; however, the agent-based model simulation can still
capture this change. This further shows the powerful performance of
ABM model.

While the real-world taxi data are not able to reveal why activities
increase in the west of Yinzhou, the DAS can enable us to query this
kind of detail. Specifically, we extracted visiting journeys for each
activity, and discovered that the recreational activities dramatically
increased during weekdays in the west of Yinzhou after the new wing
of In-time shopping mall is developed. By analysing the simulation re-
sults, we surprisingly discovered that there exists business competitions
between recreation areas and shopping centres. In particular, when a
new shopping area has been built, some citizens who used to travel
to a nearest park (30% in weekend, and 18% in weekday) would be
attracted by the new shopping area, and not travel to the previous
recreation area. One interpretation is that although the shopping malls
can basically meet the citizens’ daily necessities, most shopping centres
in metropolitan city have entertainment facilities, such as cinema, KTV,
etc. Since both activities (shopping, recreation) have an entertainment
feature, it could be reasonable that the recreation areas could be
influenced by the opening of a closely located shopping area. Search-
ing on the unique hot spot in west of Haishu in weekend, we can
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attribute the pattern to the habit that people in the east of Haishu are
willing to travel far to attractive restaurants according to the result
of calibrated parameters. Of particular interest, we found that the
increase in activities there was attributed to medical activities from
categorising the change of activities in the east of Beilun. Thus it can
be inferred that a newly opened shopping mall in Yinzhou can cause an
increase of medical activities in Beilun, an area far away from Yinzhou.
Similar situations have been documented in other literature (Gong
et al., 2020a), which implies a latent correlation between medical and
shopping activities that cannot be discerned solely through intuition.

The capability of examining details of human activities further
demonstrates the great potential of our proposed model.

5. Conclusion

In this paper, we have introduced a Destination-aware Activity
Simulation (DAS) model to map the state transitions between successive
activities commonly found in cities in a probabilistic manner. An agent-
based model with parameters of destination attractiveness and travel
cost is core to the DAS model to simulate individual behavioural
activities across city. We proposed a novel geographical calibration
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method for the agent-based model using GWR model to accommodate
spatial variations of parameters. We calibrated the agent-based model
for Ningbo, China, using 625 trip diaries and over 1.5 million taxi trips
from March to August in 2017. Results demonstrated that the proposed
DAS model with spatial-aware calibration achieved good performance
on passengers’ daily activity patterns simulation.

Furthermore, we presented a scenario test to validate the DAS model
on simulating the impact of a new shopping mall developed in Yinzhou;
and the simulation results are compared with the real travel behaviours
change during the period before and after the new shopping mall was
opened for validation observed from taxi trips. The agent-based model
predicted not only intuitive outputs, such as the increased volume
of shopping activities in weekday around the new infrastructure, but
also counter-intuitive outputs, such as increased volume of recreation
activities in weekday on the west of Yinzhou. Although some outcomes
are unexpected, it is compelling to see that the DAS model could
capture these changes and demonstrate accurate prediction capabilities.
The results also demonstrated that there is a strong correlation between
recreation activity and shopping activity. More specifically, there exists
business competitions between recreation areas and the shopping malls,
probably due to the fact that both shopping and recreation areas have
an entertainment function.

This study has a wide range of applications. Firstly, our DAS model
could provide good descriptions of the interactions between citizens
and urban design. Therefore, it could provide suggestions for govern-
ments on locating new infrastructure. Secondly, with the support of
road networks, DAS could predict the traffic conditions, as well as
the traffic volume changes when the road design has been changed.
Moreover, by using the DAS model, we have quantified the competitive
relationship between shopping centres and recreation areas, this could
serve as guidance for the governments in future urban design.

In the future, we consider to extend the DAS model to a framework,
which would help governments locate new infrastructures, in order
to reduce traffic congestion and shorten passengers’ trip distances.
Moreover, with the support of medical data, the DAS model could
simulate and predict large scale transmission of epidemics. It is also
worth developing an automatic-calibration method for the DAS model
that could be widely used for different cities.
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