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1 Introduction and summary of results

In recent years major progress has been made in the computation of holographic correlators,
i.e. correlators in CFT’s that admit a gravity dual. It is reasonable to hope that under-
standing the structure of these observables will shed light on the properties of quantum
gravity and its UV completion.

In the well studied case of N = 4 SYM, dual to string theory on AdS5×S5 [1], a number
of different bootstrap approaches have led to a systematic understanding of the structure
of four-point functions of half-BPS operators at various order in 1/N and 1/λ [2–23].1
Despite the apparent complexity of the intermediate steps, the end results are found to be
tremendously simple. This is no coincidence: amazingly, it turns out that N = 4 SYM
enjoys a hidden 10d conformal symmetry in the supergravity limit [26].2 This symmetry

1See [24, 25] for recent reviews on the subject.
2The symmetry has also been observed at weak coupling in N = 4 SYM [27] and, recently, extended to

higher components of the stress-tensor multiplet [28].
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allows a repackaging of all four-point correlators into a single 10d object transforming as a
four-point function of weight 4 scalars.

Away from supergravity, when α′ corrections are switched on, the hidden conformal
symmetry is broken; however, string corrections are still found to obey a 10d principle [13,
14, 29]. Specifically, the authors of [29] postulate the existence of a 10-dimensional effective
action in terms of a single scalar such that, the correlators for arbitrary Kaluza-Klein modes
computed out of the action via Witten diagrams, perfectly agree with all known results in
the literature [10, 12–14]. The underlying idea of the computation is to mimic the standard
AdS/CFT procedure, with the difference that standard AdS Witten diagrams are replaced
by generalised AdS×S versions. The method leaves a handful of free ambiguities at each
order in α′ which can be interpreted as an effect of the curvature of the background.

A natural question to ask is whether this approach can be useful in other physical the-
ories of interest.3 A promising candidate in this respect is a recently studied 4-dimensional
N = 2 theory with global group SO(8). This is the theory we consider in this paper. This
particular SCFT arises as the worldvolume of D3-branes moving near F-theory singular-
ities [34–36] and is dual to an orentifold projection of IIB string theory. In this model,
four-point functions of chiral primary operators correspond to the scattering of four super
gluons in the bulk with the higher derivative corrections representing the string completion
of the field-theory amplitude, which is an AdS5×S3 version of the Veneziano amplitude.
These correlators have already been studied in the field-theory limit in a series of papers
both at tree-level, one and two loops [37–40] but little is known for the α′ corrections.
However, given the many similarities shared by N = 4 SYM and the SCFT considered in
this paper, in particular the existence of a reduced correlator and the fact that this can
be re-organized into a single 8-dimensional object [37], we expect the methods of [29] to
naturally generalise to this background.

This motivates us to conjecture the existence of an 8d action written in terms of a
scalar field valued in the adjoint of SO(8), which encodes tree-level correlators of super
gluons with arbitrary Kaluza-Klein levels up to a small number of ambiguities. The main
result of this paper is to spell out the effectiveness of the method and compute explicitly
these correlators at the first few orders in α′.

The starting point is to conceive the (α′ expansion of the) Veneziano amplitude as
arising from an effective potential

Vopen = 1
8
π2

6 Tr[φ4]α′2 + 1
2ζ3 Tr [(∂µφ)(∂µφ)φφ]α′3+

+ 1
2
π4

720 Tr
[
14(∂µ∂νφ)(∂µ∂νφ)φ2 + (∂µ∂νφ)φ(∂µ∂νφ)φ

]
α′4−

+ 1
3 Tr

[
2
(1

6ζ3π
2 + ζ5

)
(∂µ∂ν∂ρφ)(∂µ∂ν∂ρφ)φ2+

+
(1

6ζ3π
2 − 2ζ5

)
(∂µ∂ν∂ρφ)φ(∂µ∂ν∂ρφ)φ

]
α′5 + · · · ,

(1.1)

3See also [30], where this approach has been used to compute higher-derivative corrections in AdS2×S2.
Another theory where we expect these methods to be effective are the AdS3×S3 correlators of [31–33].
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where the constants are fixed by requiring that the four-point amplitude in momentum
space at a given order in α′ matches the corresponding term in the low-energy expansion
of the flat-space Veneziano amplitude. The idea is then to uplift this potential to AdS5×S3

by replacing flat derivatives with AdS5×S3 covariant versions. The various Kaluza-Klein
correlators can eventually be computed by using a generalisation of contact Witten dia-
grams which takes into account the compact space. Nicely, we find that the end results are
simple functions of AdS and S variables. In particular, we notice that they can be written
in a very compact form in terms of a pre-amplitude which made its first appearance in
N = 4 SYM [14]. Interestingly, this said pre-amplitude shares a strong similarity with its
flat-space counterpart and it is related to the latter via a double integral transform, which
is perhaps the most natural generalisation of the integral transform defining the flat-space
limit conjectured by Penedones [41] and later proved in [42].

To give a flavour for the remarkable simplicity of the results, the order α′3 correlator
for arbitrary Kaluza-Klein correlators reads

M̃p1p2p3p4(1234)
∣∣
α′3

= ζ3 (S + T + a1) (1.2)

where M̃p1p2p3p4(1234) is a colour-ordered Mellin pre-amplitude, S, T are suitable AdS5×S3

variables, and a1 is the only ambiguity left at this order. While the notation will be
explained in full in the main body, we can already appreciate the manifest similarity with
the flat-space Veneziano amplitude which at this order reads

Vopen(1234)
∣∣
α′3

= ζ3 (s+ t) . (1.3)

where s, t are the Mandelstam variables. The compactness of these results seems to point
out the existence of an underlying structure yet to be discovered.

The remainder of the paper is organised as follows. In section 2 we describe the general
set-up for the object of study here: four-point correlation functions of half-BPS operators
dual to supergluon amplitudes on AdS5×S3. In section 3 we review the structure of the
Veneziano amplitude in flat space as well as the procedure outlined in [29] for uplifting to
AdS via viewing the correlator as arising from an 8d scalar effective action. In section 4 we
give explicit results for the α′-corrected correlators up to order α′5. In the last part of this
section we clarify the relation between the flat-space limit known in literature and some
possible generalisations. Finally, in section 5 we comment on possible future directions.

Note added. Whilst completing our paper, we were informed by the authors of [43] of
their work on a similar topic. We thank them for coordinating the release on the arXiv.

2 Generalities

In this paper we are interested in scattering of super gluons in an AdS5×S3 background. As
mentioned in the introduction, the dual SCFT is a four-dimensional N = 2 theory with a
certain global group, which plays the role of a gauge group in the bulk. This SCFT arises as
the worldvolume theory of D3-branes moving near F-theory 7-branes singularities [34–36].
In the case we are interested in, the 7-branes correspond to a Z2 orientifold point, with the
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low-energy dynamics of N D3-branes described by a USp(2N) N = 2 gauge theory with
an additional SO(8) global symmetry group, due to gauge symmetry enhancement in the
D7-brane worldvolume. Let us clarify that it is in principle possible to consider different
orientifolds, which give rise to world-volume theories with different global symmetries [35,
36]. Although, as we will see, the computations considered in this paper could be performed
without making any reference to the gauge group, all other orbifold constructions do not
have a perturbative formulation.4 In other words, the bulk theory does not have an α′

parameter (equivalently, from a CFT perspective, there is no marginal coupling) and an
α′ expansion would evidently be meaningless.5

The presence of the 7-branes breaks the SO(6) isometry group of S5 to SU(2)R ×
SU(2)L × U(1)R. From the point of view of the dual N = 2 SCFT, SU(2)R × U(1)R
becomes the R-symmetry group and SU(2)L is an additional global group.

We are interested in the (scalar component of) the N = 1 vector multiplet and its
Kaluza-Klein tower which are dual to half-BPS scalar operators of the form OIa1...ap;ā1...āp−2

p .
These operators are chargeless under U(1)R, they transform under the spin p

2 of SU(2)R,
spin p

2−1 of SU(2)L and in the adjoint of SO(8). Here I is the colour index, p is the scaling
dimension of the operator, a1, . . . , ap are symmetrised SU(2)R R-symmetry indices and
similarly āi are indices of an additional SU(2)L flavour group; these last two groups realise
the isometry group of the sphere S3. A convenient way to deal with the SU(2)R × SU(2)L
indices is by contracting them with auxiliary bosonic two-component vectors η and η̄:

OIp ≡ O
I;a1...ap;ā1...āp−2
p ηa1 . . . ηap η̄ā1 . . . η̄āp−2 . (2.1)

We will denote the four-point function of half-BPS operators by

GI1I2I3I4~p (xi, ηi, η̄i) ≡ 〈OI1p1O
I2
p2O

I3
p3O

I4
p4〉. (2.2)

Note that the correlator is a function of xi, ηi, η̄i and the charges pi. In particular, due
to the definition (2.1), it is a polynomial in the variables ηi, η̄i, whose degree is dictated
by the external charges pi. The variables ηi, η̄i are contracted via 〈ηiηj〉 = ηiaηjbε

ab and
〈η̄iη̄j〉 = η̄iāη̄jb̄ε

āb̄.
GI1I2I3I4~p is subject to the superconformal Ward identities [45]

GI1I2I3I4~p = GI1I2I3I4free,~p + I GI1I2I3I4int,~p , (2.3)

where the kinematic factor I takes the following form:

I = x2
13x

2
24〈η1η3〉2〈η2η4〉2(x− y)(x̄− y), (2.4)

and we have defined
xx̄ = x2

12x
2
34

x2
13x

2
24
, y = 〈η1η2〉〈η3η4〉

〈η1η3〉〈η1η3〉
. (2.5)

4Another possibility would be to consider a small number of flavour D7-branes in a D3 background,
following the construction in [44]. In the limit NF � N , this gives rise to a N = 2 SCFT with flavour
group SU(NF ), dual to SYM on AdS5×S3 background. As mentioned earlier, our approach is agnostic
about the flavour group, thus it can in principle be also applied to this theory. We thank an anonymous
referee for pointing this out.

5We thank Pietro Ferrero for discussion on this point.
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The non-trivial function left over, denoted by GI1I2I3I4int,~p , has two units of conformal/internal
weights less than GI1I2I3I4~p . As a consequence, GI1I2I3I4int,~p is a polynomial of the same degree
in η, η̄.

The function GI1I2I3I4int,~p admits a genus ( 1
N ) expansion. In this paper we are interested

in the O( 1
N ) order, which corresponds to a bulk tree-level amplitude. This can be further

expanded in the (square of the) string length α′.6 Our notation for the α′ expansion at
tree-level reads

GI1I2I3I4tree,~p = GI1I2I3I4YM,~p +GI1I2I3I40,~p α′2 +GI1I2I3I41,~p α′3 +GI1I2I3I42,~p α′4 +GI1I2I3I43,~p α′5 + · · · (2.6)

where GI1I2I3I4YM,~p is the field-theory amplitude, first computed in [37]. Note that, as explained
in [37], the graviton exchange is 1/N -suppressed and can be neglected at this order. Thus,
the only massless fields exchanged at tree-level are the gluons themselves. The goal of the
next sections is to outline a procedure to compute the various GI1I2I3I4i,~p order by order in
α′. We will give explicit results for the first four string corrections, i.e. up to order α′5.

The function GI1I2I3I4int,~p in general depends on the conformal variables x2
ij , the R-

symmetry variables η, the internal variables η̄, and the charges pi . However, it turns
out that GI1I2I3I4tree,~p is symmetric under η ↔ η̄ exchange [37]. As a consequence, the
SU(2)L×SU(2)R variables can be reorganized into SO(4) variables. In other words, GI1I2I3I4tree,~p
ultimately depends on the charges pi, spacetime distances x2

ij , and the SO(4) distances

y2
ij = 〈ηiηj〉〈η̄iη̄j〉. (2.7)

We will make use of this non-trivial fact7 in the next section to express GI1I2I3I4tree,~p in embed-
ding SO(2, 4) × SO(4) coordinates. Note that, unlike N = 4 SYM, the factor I — which
is entirely due to superconformal symmetry, and therefore is only a function of xi, ηi —
cannot be written in terms of embedding coordinates.

Finally, let us conclude this section by defining the generator of all correlators

〈OI1OI2OI3OI4〉 ≡
∑
{pi}

GI1I2I3I4tree,~p (2.8)

where the sum is performed over all charges pi = 2, . . . ,∞. This is a rather natural object
to consider in this formalism. In fact, as we will see, a very convenient aspect of this
method is that it automatically collects all KK correlators into a single function.

3 An 8d effective action for the Veneziano amplitude

The purpose of this section is to outline a procedure for computing the α′ expansion
of the Veneziano amplitude in AdS5×S3. As already mentioned, this method was first
proposed in the context of AdS5×S5 [29], and later applied to higher derivative corrections

6This a strong-coupling expansion in the CFT, with the Regge slope related to the Yang-Mills coupling
via R4

α′2 = g2
YMN .

7A priori, this is not guaranteed. For example, the disconnected correlator, as computed by Wick
contractions, it is not symmetric under η ↔ η̄ exchange [38, 40].
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in AdS2×S2 [30]. Perhaps not surprisingly, we find that a straightforward generalisation of
their results leads to a very concrete proposal for tree-level correlators in this background
at all orders in α′.

We should perhaps stress again that we are not considering the actual supersymmetric
AdS5×S3 action dual to the CFT we are interested in, but a bosonic version of it, thus a
priori they do not need to be related. Intuitively, the reason why we expect this simplified
bosonic action to capture the correct supersymmetric 8-dimensional Veneziano amplitude is
that the reduced correlator behaves like a bosonic object. Moreover, since string corrections
have the form of contact interactions, it is reasonable to think that they are somewhat
insensitive to superpartners.

Beyond these naive (and arguable) arguments, we will see more concretely that the
correlators so computed have the correct flat-space limit [41, 42] and large p limit [17],
providing a first check of the correctness of the results. In the conclusions we will comment
on other possible independent approaches which could help to prove the effectiveness of
the method.

3.1 The flat-space Veneziano amplitude

Let us start by recalling the form of the supersymmetric Veneziano amplitude in flat space
and some of its properties. With a slight abuse of language, with Veneziano amplitude,
we will refer, here and after, to the amplitude obtained by stripping off a kinematic factor
from the Veneziano amplitude, where the latter contains information about the polarization
of external states.8 This is best given in terms of colour-ordered amplitudes and, in our
conventions, takes the form

VI1I2I3I4open = 1
2

∑
P(2,3,4)

Tr[T I1T I2T I3T I4 ]Vopen(1234)

= Tr[T I1T I2T I3T I4 ]Vopen(1234) + Tr[T I1T I4T I2T I3 ]Vopen(1423)
+ Tr[T I1T I3T I4T I2 ]Vopen(1342),

(3.1)

where P(2, 3, 4) are permutations of points (2, 3, 4), and in the second equality we exploited
the antisymmetry of the SO(N) generators to reduce the number of independent color traces
from 6 to 3. The colour-ordered amplitude Vopen(1234) takes the form (see e.g. [46]):

Vopen(1234) = P exp

∑
m≥1

ζ2m+1M2m+1

VYM(1234), VYM(1234) = − 1
s t

(3.2)

where

P = exp

∑
m≥1

ζ2m
2mα′2m

(
s2m + t2m − u2m

) ,
M2m+1 = 1

2m+ 1α
′2m+1

(
s2m+1 + t2m+1 + u2m+1

)
, (3.3)

8The polarisation information is roughly identified with the factor I in (2.4).
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VYM(1234) is the colour-ordered Yang-Mills amplitude and s, t, u are 8-dimensional Man-
delstam variables satisfying the on-shell constraint s+ t+ u = 0. Another equivalent way
of writing the Veneziano amplitude is in terms of Γ functions:

Vopen(1234) = VYM(1234)Γ(1− α′s)Γ(1− α′t)
Γ(1 + α′u) . (3.4)

The Veneziano amplitude satisfies many interesting properties. For example, there is a
disentanglement of Riemann zeta functions with even and odd arguments, as it is most
obvious from the form in equation (3.2). This property is closely related to the well known
fact that open and closed string amplitude amplitudes are related by a kernel:

Vclosed = (Vopen(1234))2 S (3.5)

where Vclosed is the Virasoro-Shapiro amplitude, i.e. the amplitude of four closed strings,9
and the kernel S is defined by

S = 1
πα′

sin(πα′s) sin(πα′t)
sin(πα′u) = st

u
P−2. (3.6)

Notice that S provides a cancellation of all even zetas, as it should be, since the Virasoro-
Shapiro amplitude only contains odd zetas. Relations like the one above are also known
as Kawai-Lewellen-Tye (KLT) relations [47]. At low-energy, they yield a relation between
gluon and graviton amplitudes.

For completeness, let us also recall that colour-ordered amplitudes are related each
other by further relations, for example,

Vopen(1342) = sin(πα′t)
sin(πα′u)Vopen(1234), (3.7)

which can be derived from monodromy properties of the string world-sheet [48, 49]. In
the field-theory limit, i.e. α′ → 0, they reduce to the well known Bern-Carrasco-Johansson
(BCJ) relations [50] between colour-ordered amplitudes.

3.2 The AdS5×S3 effective action

The general idea is to write down an effective action starting from the Veneziano amplitude
and uplift it to AdS5×S3. Thus, let us expand the flat-space colour-ordered Veneziano
amplitude, at the first few orders in α′

Vopen(1234) =− 1
s t

+ π2

6 α
′2 + (s+ t)ζ3α

′3 + π4

720(7s2 + 7t2 + u2)α′4+

+ 1
3

((1
6ζ3π

2 + ζ5

)
(s3 + t3) +

(1
6ζ3π

2 − 2ζ5

)
u3
)
α′5 + · · · ,

(3.8)

9As for the Veneziano amplitude, with a slight abuse of language, we will refer to Virasoro-Shapiro
amplitude as to the amplitude obtained by stripping off a kinematic factor from the tree-level four-point
amplitude in type IIB string theory.
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where the even zetas have been evaluated. Excluding the field theory term the remaining
expression can be viewed as arising from a scalar effective action, with contact terms
containing an increasing number of derivatives. The first few terms take the form

Vopen = 1
8
π2

6 Tr[φ4]α′2 + 1
2ζ3 Tr [(∂µφ)(∂µφ)φφ]α′3+

+ 1
2
π4

720 Tr
[
14(∂µ∂νφ)(∂µ∂νφ)φ2 + (∂µ∂νφ)φ(∂µ∂νφ)φ

]
α′4+

+ 1
3 Tr

[
2
(1

6ζ3π
2 + ζ5

)
(∂µ∂ν∂ρφ)(∂µ∂ν∂ρφ)φ2+

+
(1

6ζ3π
2 − 2ζ5

)
(∂µ∂ν∂ρφ)φ(∂µ∂ν∂ρφ)φ

]
α′5 + · · · ,

(3.9)

where the field φ ≡ φIT I is valued in the adjoint of the gauge group SO(8). It is easy to see
that after going to momentum space these higher derivative contact terms provide polyno-
mials in the Mandelstam variables and we recover the full colour-dressed amplitude (3.1)
with the partial-ordered amplitudes as given in (3.8), order by order in α′.

Following [29], let us now uplift this potential to an AdS5×S3 background, replacing
partial flat derivatives with their AdS5×S3 covariant10 counterparts. In doing so, we should
note however that the uplift is not unique. This is essentially due to two reasons. First, the
covariant derivatives no longer commute and therefore the way of arranging the derivatives
in the action is ambiguous. Secondly, at any order in α′ there will be terms involving lower
numbers of derivatives — that appeared at previous orders — compensated by the AdS
(and S) radius R, which would vanish in the flat-space limit, i.e. the limit in which the
radius of both the non-compact and the compact space is large. These ambiguities can
only be fixed by other methods. This is a very important point which we will better clarify
later on, and that is completely analogous to the AdS5×S5 case11 [29]: the procedure can
intrinsically only access the AdS5×S3 completion of the flat amplitude, while it cannot
probe true curvature effects, that manifest themselves in the form of ambiguities. Here,
with completion we mean the largest sub-amplitude which directly descends from flat space.
As will become clear after introducing Mellin space, this notion of flat-space limit is intrin-
sically an extension — which takes into account the full AdS×S geometry — of the more
familiar flat-space limit [41, 42] and it automatically reduces to the latter when all but AdS
variables are set to zero. From now on we will use the terminology AdS5×S3 completion as
in the sense explained above, i.e. the largest AdS5×S3 sub-amplitude surviving the large
radius limit.

10Let us stress that these are AdS5×S3 covariant derivatives, they are not covariant with respect to the
gauge/global group SO(8).

11See also [14], where similar statements were found from a CFT perspective.
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In summary, the AdS5×S3 potential has the following form12

V open
AdS5×S3 = 1

8ATr[φ4]α′2 + 1
8B Tr [(∇µφ)(∇µφ)φφ]α′3+

+ 1
16 Tr

[
C(∇µ∇νφ)(∇µ∇νφ)φ2 + 1

2D(∇µ∇νφ)φ(∇µ∇νφ)φ
]
α′4+

+ Tr
[
E∇2(∇µφ)(∇µφ)φφ+ F ∇2(∇µφ)φ(∇µφ)φ

]
α′4+

+ 1
32 Tr

[
G(∇µ∇ν∇ρφ)(∇µ∇ν∇ρφ)φ2+

+ 1
32H(∇µ∇ν∇ρφ)φ(∇µ∇ν∇ρφ)φ

]
α′5 + · · · ,

(3.10)

with

A(α′) = π2

6 + a1
α′

R2 + a2

(
α′

R2

)2
+ · · ·

B(α′) = ζ3 + b1
α′

R2 + b2

(
α′

R2

)2
+ · · ·

C(α′) = π4

7207 + c1
α′

R2 + c2

(
α′

R2

)2
+ · · ·

D(α′) = π4

720 + d1
α′

R2 + d2

(
α′

R2

)2
+ · · ·

E(α′) = e1 + e2

(
α′

R2

)
+ · · ·

F (α′) = f1 + f2

(
α′

R2

)
+ · · ·

G(α′) = 1
3

(1
6ζ3π

2 + ζ5

)
+ g1

α′

R2 + g2

(
α′

R2

)2
+ · · ·

H(α′) = 1
3

(1
6ζ3π

2 − 2ζ5

)
+ h1

α′

R2 + h2

(
α′

R2

)2
+ · · · . (3.11)

Notice that the only terms which non trivially contribute to the AdS5×S3 completion are
A,B,C,D,G,H while E,F are novel AdS terms that vanish upon taking the limit. We
will refer to the latter as ambiguities. From now on, we will set R = 1.

In the next section we will compute AdS5×S3 Witten diagrams associated to this action
which will provide a prediction for the four-point function of arbitrary KK modes order by
order in α′.

3.3 AdS×S Witten diagrams in embedding space

In the remaining part of the section, we will generalise the formulae of [29], which are valid
for general AdSθ+1×Sθ+1 backgrounds, to the most general AdSθ1+1×Sθ2+1 theory. We
will keep the dimensions θ1, θ2 generic for most of the discussion. The formulae for the
AdS5×S3 case can then be recovered by taking θ1 = 4, θ2 = 2.

12The various normalisations are chosen so that the normalisation of the associated Mellin amplitudes
matches with the corresponding flat amplitude coefficient, as we will see later on.
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We will make use of the embedding space formalism. Here, bulk points in AdSθ1+1
and Sθ2+1 are defined via

X̂2 = −
(
X̂−1

)2
−
(
X̂0
)2

+
θ1∑
i=1

(
X̂i
)2

= −1,

Ŷ 2 =
θ2∑

i=−1

(
Ŷ i
)2

= 1. (3.12)

On the other hand, boundary coordinates satisfy X2 = Y 2 = 0. Here we are using a slight
abuse of language, since the sphere, being compact, does not have a boundary. However,
the condition Y 2 = 0 is still meaningful in this context and it corresponds to the statement
of tracelessness of R-symmetry indices. The boundary coordinates X,Y are related to
spacetime (x2

ij) and R-symmetry variables (y2
ij) via:

x2
ij = −2Xi ·Xj , y2

ij = −2Yi · Yj . (3.13)

In embedding coordinates the action of covariant derivatives can be conveniently de-
fined in terms of projectors. These read:

PBA = δBA + X̂AX̂
B, PJI = δJI − ŶI Ŷ J . (3.14)

Note that the bulk coordinates are in the kernel of the respective projectors:

PBA X̂A = 0, (3.15)
PJI Ŷ I = 0. (3.16)

We will be particularly interested in the covariant derivative of a rank-N tensor defined
by [41, 51]

∇ATA1A2...AN = PCAPC1
A1
. . .PCNAN ∂CP

E1
C1
. . .PENCN TE1...EN . (3.17)

In this notation, an AdS contact Witten diagram in embedding space reads

D
(θ1)
∆1∆2∆3∆4

(Xi) = 1
(−2)2Σ∆

∫
AdS

dθ1+1X̂

P∆1
1 P∆2

2 P∆3
3 P∆4

4
, Pi = X̂ ·Xi, (3.18)

where we have defined Σ∆ = (∆1 + ∆2 + ∆3 + ∆4)/2.
Analogously, one can define sphere contact diagrams as

B(θ2)
p1p2p3p4(Yi) = (−2)2Σp

∫
S
dθ2+1Ŷ Qp1

1 Q
p2
2 Q

p3
3 Q

p4
4 , Qi = Ŷ · Yi, (3.19)

where we defined Σp = (p1 + p2 + p3 + p4)/2. Note, this last integral can be explicitly
evaluated. After some combinatorics one gets [29, 52]:

B(θ2)
p1p2p3p4(Yi) = NS

∑
{dij}

∏
i<j

(Yi · Yj)dij
Γ[dij + 1] (3.20)
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where the sum runs over the set{
(d12, d13, d14, d23, d24, d34) : 0 ≤ dij = dji, dii = 0,

4∑
i=1

dij = pj

}
,

and the factor NS reads

NS = 2 · 2Σp π
θ2/2+1∏

i Γ(pi + 1)
Γ(Σp + θ2/2 + 1) . (3.21)

As we mentioned already, the main idea will be to work directly in the product geom-
etry AdS×S. In this context it is therefore natural to define

Wi ≡
1

(Pi +Qi)
, (3.22)

which is related to the generalised bulk-to-boundary propagator via [29]

G(Xi, X̂;Yi, Ŷ ) = C∆i

1
(−2)∆i

W∆i
i , (3.23)

with the normalisation given by

C∆ = Γ(∆)
2π

θ1+θ2
2 Γ(∆ + θ1+θ2

2 + 1)
. (3.24)

Note that when ∆ = (θ1 + θ2)/2 the generalised propagator obeys the following equation

∇2W∆i
i ≡ ∇

2
X̂
W∆i
i +∇2

Ŷ
W∆i
i = ∆i

θ2 − θ1
2 W∆i

i , (3.25)

therefore its “mass” is controlled by the difference between the non-compact and the com-
pact space dimensions θ1−θ2. In particular, for N = 4 SYM it satisfies a massless equation,
while in AdS5×S3 it satisfies the equation for a massive scalar field.

Starting from the generalised bulk-to-boundary propagator, we then define generalised
AdS×S contact Witten diagrams via

D
AdSθ1+1×Sθ2+1

∆1∆2∆3∆4
(Xi, Yi) = 1

(−2)2Σ∆

∫
AdSθ1+1×Sθ2+1

dθ1+1X̂dθ2+1Ŷ W∆1
1 W

∆2
2 W

∆3
3 W

∆4
4 .

(3.26)
Note that AdS×S Witten diagrams reduce to a sum of familiar AdS Witten diagrams

after Taylor-expanding the propagators. More precisely, we have:

D
AdSθ1+1×Sθ2+1

∆1∆2∆3∆4
(Xi, Yi)

=
∞∑
pi=0

4∏
i=1

(−1)pi (pi + 1)∆i−1
Γ(∆i)

D
(θ1)
p1+∆1p2+∆2p3+∆3p4+∆4

(Xi)B(θ2)
p1p2p3p4(Yi).

(3.27)
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3.4 Generalised Mellin space

We conclude the section by defining a generalised Mellin space representation. This is a very
natural generalisation of the familiar Mellin space formalism for AdS amplitudes [41, 53]
to the full AdS×S product space [17, 29]. As we will see, the correlators admit very simple
expressions when written in this formalism.

Let us first recall the Mellin transform of standard contact Witten diagrams [41]:

D
(θ1)
∆1∆2∆3∆4

(Xi) =
1
2π

θ1/2Γ(Σ∆ − θ1/2)
(−2)Σ∆

∏
i Γ(∆i)

∫
dδij

(2πi)2

∏
i<j

Γ(δij)
(Xi ·Xj)δij

,
∑
i

δij = ∆j . (3.28)

As we have seen, the sphere function B
(θ2)
p1p2p3p4(Yi) also admits a similar representation

that can be obtained by explicitly evaluating the sphere integral. Let us recall it here for
convenience:

B(θ2)
p1p2p3p4(Yi) = 2 · 2Σp π

θ2/2+1∏
i Γ(pi + 1)

Γ(Σp + θ2/2 + 1)
∑
{dij}

∏
i<j

(Yi · Yj)dij
Γ(dij + 1) ,

∑
i

dij = pj . (3.29)

Inserting the above representations into (3.27) we get

D
AdSθ1+1×Sθ2+1

∆1∆2∆3∆4
(Xi, Yi) = π

θ1+θ2
2 +1

(−2)Σ∆
∏
i Γ(∆i)

(3.30)
∞∑
pi=0

(−1)Σp
∫

dδij
(2πi)2

∑
{dij}

∏
i<j

(
(Yi · Yj)dij
(Xi ·Xj)δij

Γ(δij)
Γ(dij + 1)

)
(Σp + θ2/2 + 1)Σ∆−

θ1+θ2
2 −1.

(3.31)

This suggests to define the generalised Mellin transform M[f ] of a generic function
f(Xi, Yi) via

f(Xi, Yi) ≡

π
θ1+θ2

2 +1

(−2)Σ∆

(∏
i

C∆i

Γ(∆i)

) ∞∑
pi=0

(−1)Σp
∫

dδij
(2πi)2

∑
{dij}

∏
i<j

(
(Yi · Yj)dij
(Xi ·Xj)δij

Γ(δij)
Γ(dij + 1)

)
M[f ],

(3.32)

where we have ∑i 6=j δij = pj + ∆j and ∑i 6=j dij = pj . Using this definition, the Mellin
transform of a generalised Witten diagram reads

M
[(∏

i

C∆i

)
D
AdSθ1+1×Sθ2+1

∆1∆2∆3∆4
(Xi, Yi)

]
= (Σp + θ2/2 + 1)Σ∆−

θ1+θ2
2 −1. (3.33)

Finally, when considering higher derivative corrections it will be necessary to compute
a decorated version of (3.26) of the generic form

∏
i

C∆i

(∏
i<j(Xi ·Xj)n

X
ij (Yi · Yj)n

Y
ij

)
(−2)2Σ∆

∫
AdS×S

dθ1+1X̂dθ2+1Ŷ
4∏
i=1

P
nPi
i Q

nQi
i (∆i)ni

(W)∆i+ni
. (3.34)
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In appendix A we show that the generalised Mellin expression for this expression is given by

M[(3.34)] = (−2)ΣX (2)ΣY (−)2ΣQ

( 4∏
i=1

(
pi + nXi + ∆i

)
nPi

(pi − nQi − nYi + 1)
nQi

)
×∏

i<j

(δij)nXij (dij − n
Y
ij + 1)nYij

 (Σp − ΣY + θ2
2 + 1)Σ∆−

θ1+θ2
2 −1+ΣX+ΣY

, (3.35)

with ∑i 6=j δij = pj + ∆j and ∑i 6=j dij = pj . Here, following the conventions of [29], we
introduced the notation ΣQ for half the sum over the nQi ; ΣX , ΣY for the sum over the
nXij , nYij respectively; nXi = ∑

i 6=j n
X
ij , nYi = ∑

i 6=j n
Y
ij and ni = nXi + nYi + nPi + nQi . Now

that all main ingredients are in place we are ready to show some explicit results.

4 Explicit results at orders α′2,3,4,5

Having presented the definitions for arbitrary (θ1, θ2) we now specialise to the case at hand,
tree-level α′ correction in AdS5×S3, where we set θ1 = 4, θ2 = 2, ∆i = 3. We begin by
considering the constraints imposed on the (δij , dij) i.e.∑

i 6=j
δij = pj + 1;

∑
i 6=j

dij = pj − 2, (4.1)

where here we have employed the shift pi → pi−2 due to the lowest correlator being pi = 2.
While the correlator may be written in terms of the constrained (δij , dij), we will find it
useful to partially solve these constraints. Following analogous conventions to those in [19],
we can write

δ12 = −s+ p(12), δ34 = −s+ p(34),

δ14 = −t+ p(14), δ23 = −t+ p(23),

δ13 = −u+ p(13), δ24 = −u+ p(24),

d12 = s̃+ p(12), d34 = s̃+ p(34),

d14 = t̃+ p(14), d23 = t̃+ p(23),

d13 = ũ+ p(13), d24 = ũ+ p(24), (4.2)

where we introduced the notation p(ij) = pi+pj
2 . Having done so, we are left with only 6

variables which satisfy

s+ t+ u = Σp − 1; s̃+ t̃+ ũ = −Σp − 2. (4.3)

It follows that, at given order in α′, the correlator will depend on 8 unconstrained variables:
s, t, s̃, t̃ as well as the charges pi.

Now, the large p limit [17] suggests to trade the Mellin variables s, t, u with the bold-
face variables defined via:

s = s+ s̃, t = t+ t̃, s + t + u = −3. (4.4)
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In fact, as we will see, the various correlators will admit a natural stratification w.r.t. to the
bold-face variables s, t. In particular, as explained in [17], in the limit of large s, t, s̃, t̃, pi
variables, the correlator approaches to the flat S-matrix with the Mandelstam replaced by
the bold-face variables. In conclusion, we will express the correlators in terms of the set
(s, t, s̃, t̃, p1, p2, p3, p4).

Finally, our notation for the α′ expansion of the Mellin amplitudes will closely follow
the analogous position space expression (2.6), i.e.13

MI1I2I3I4
tree =MI1I2I3I4

YM +MI1I2I3I4
0 α′2 +MI1I2I3I4

1 α′3 +MI1I2I3I4
2 α′4 +MI1I2I3I4

3 α′5 + · · · ,
(4.5)

where the full colour-dressed amplitude MI1I2I3I4
tree admits a decomposition in terms of

colour-ordered amplitudes

MI1I2I3I4
tree = 1

2
∑
P(2,3,4)

Tr[T I1T I2T I3T I4 ]Mtree(1234) = Tr[T I1T I2T I3T I4 ]Mtree(1234)

+ Tr[T I1T I4T I2T I3 ]Mtree(1423) + Tr[T I1T I3T I4T I2 ]Mtree(1342),
(4.6)

4.1 Field-theory correlator (α′ = 0)

Before presenting our new results, for completeness let us recall the form of the correlator
in the field theory limit, first computed in [37], within this formalism. This cannot be
directly recovered from the effective action as it is not a polynomial in the Mandelstam
and it would require adding a non-local vertex to the action.

However, this is a very special case. In fact, the correlators at this order obey a hidden
8d conformal symmetry [37], which implies that the correlator for arbitrary KK modes
can be obtained from a generating function which only depends on 8d distances. This
generating function takes the form of the field-theory correlator with lowest charges:∑

~p

GYM,~p(x2
ij + y2

ij) ∝
1

(x2
12 + y2

12)3(x2
34 + y2

34)3D2321(x2
ij + y2

ij). (4.7)

Note that this object transforms as the four-point function of weight 3 (i.e. the dimension
of scalar in 8d) operators.

Let us see how to recover this from the point of view of generalised Witten diagrams.
Note that the Pochhammer in (3.33) vanishes when

Σ∆ = θ1 + θ2
2 + 1. (4.8)

It is immediate to see that, when (4.8) is satisfied — which is the case of the field theory
correlator14 — an AdS×S contact diagram (3.26) becomes proportional to a standard AdS
Witten diagram (3.28) with the replacement Xi ·Xj → Xi ·Xj + Yi · Yj . This is nothing
but (4.7) written in embedding coordinates.

13From now on, we will suppress the subscript ~p for the Mellin amplitudes as we will always be referring
to the individual correlators.

14In fact, for the field-theory correlator we have 1/2(2 + 3 + 2 + 1) = (4 + 2)/2 + 1.
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The generalised Mellin space expression is also very simple and can be written in the
form (3.32) with ∆ = 3 and the Mellin amplitude:

MYM(1234) = − 1
(δ34 − d34 − 1)(δ14 − d14 − 1) = − 1

(s + 1) (t + 1) (4.9)

which is in agreement with the expression given in [37]. In the second line we have expressed
the amplitude in terms of the bold-face variables s, t defined above, as in [40]. Nicely, these
colour-ordered amplitudes satisfy BCJ relations for all Kaluza-Klein operators completely
analogously to flat space [40]. In fact, we have

MYM(1234) = (u + 1)
(t + 1)MYM(1342) (4.10)

and similarly for other colour-ordered amplitudes.

4.2 Order α′2

The first string corrections are at order α′2. The relevant term in the effective action is

S0 = 1
8ζ2

∫
AdS5×S3

d5X̂d3Ŷ Tr
[
φ(X̂, Ŷ )4

]
. (4.11)

To obtain the correlators we just mimic the standard AdS/CFT procedure, i.e. we take
derivatives w.r.t. the boundary data for the bulk field which acts as a source for the scalar
operator O. As we stressed already, the actual difference with the common AdS/CFT
prescription is just the replacement of AdS bulk-to-boundary propagators with generalised
ones. Thus, at this order we get

〈OOOO〉|α′2(1234) = ζ2
C4

3
(−2)12

∫
AdS5×S3

d5X̂d3Ŷ

W3
1W3

2W3
3W3

4

= ζ2 C4
3 D

AdS5×S3

3333 (Xi, Yi),
(4.12)

and analogously for the other colour-ordered correlators. Thus, at this order the correlator
is just a single DAdS5×S3

3333 function. The position space expression in terms of standard
AdS Witten diagrams (D-functions) for the individual correlators can be directly read off
from (3.27). In particular, note that the correlator 〈O2O2O2O2〉 is proportional to D̄3333.
As expected, this is the same function showing up as ambiguity in the corresponding field
theory one-loop amplitude [39], and can be seen as a one-loop counterterm from the field-
theory viewpoint.

We are interested in the Mellin space expression15 which we can get from (3.33). This
is very simple and reads:

M0(1234) = ζ2 (Σp − 2)2 . (4.13)

At this point it is worth taking a break and noticing that the correlators so computed
correctly reproduce the flat-space limit as given in [41, 42], which in the following will be
referred to as AdS-type limit. In fact, Penedones formula states that the Mellin amplitude in

15Let us stress again that this is the defined for the individual correlators.
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the limit of large Mellin variables approaches the flat amplitude as a function of Mandelstam
variables:

M(δij) −−−−−→
large δij

1
Γ(Σp − 2)

∫ ∞
0

dααΣp−1 Vopen(αδij), (4.14)

where Vopen stands for any of the colour-ordered flat amplitudes. At this order in α′ we
have V = ζ2 is a constant, therefore (4.14) returns the full amplitude and we recover (4.13)
straight away.16

This fact — which represents a consistency check for our results — will be true at
all orders as can be seen directly from the Mellin transform of a generic decorated inte-
gral (3.35). In fact, note that the decorated integral at a given order produces polynomials
in Xi · Xj whose degree is dictated by the number of AdS derivatives hitting the ver-
tex, or, in other words, from the order in α′. Schematically, a vertex of the generic form
∇µ1 · · · ∇µnφ∇µ1 · · · ∇µnφφφ goes like

∇µ1 · · · ∇µnφ∇µ1 · · · ∇µnφφφ ∼
largeX

(Xi ·Xj)n ∼
Mellin

δnij . (4.15)

Thus, for large Mellin (δij) variables, (3.35) approaches17

M −−−−−→
large δij

δ
nXij
ij (Σp − 2)nXij+2 (4.16)

which is precisely the Pochhammer appearing in (4.14) after integrating (4.14) with V ∼
δ
nXij
ij . At the next orders it will become clear that the AdS-type limit turns out to be a
particular case of a more general notion of flat-space limit where the sphere variables are
set to zero.

4.3 Order α′3

The computation of higher order corrections is conceptually similar, but more computa-
tionally involved because it requires evaluating the action of the covariant derivatives on
fields. We have used a straightforward generalisation of the algorithm outlined in [29]. At
α′3, the relevant term in the action is:

Smain
1 = 1

8ζ3

∫
AdS5×S3

d5X̂d3Ŷ Tr [(∇µφ)(∇µφ)φφ] . (4.17)

Now, it is easy to see that:

(∇µW∆
1 )(∇µW∆

2 ) = ∆2 N12

W∆+1
1 W∆+1

2
(4.18)

where we have defined

Nij = Xi ·Xj + Yi · Yj + PiPj −QiQj . (4.19)
16Note that for α′ = 0 we have VYM = − 1

s t
and we correctly reproduce (4.9) in the AdS-type limit.

17We remind again that we have shifted the charges pi by two units, pi → pi − 2, and taken ∆i = 3.
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Using the above relation we get, for the colour-ordered correlators,

〈OOOOmain〉|α′3(1234) = 1
8ζ3

32 C4
3

(−2)12

∫
AdS5×S3

d5X̂d3Ŷ
1

(W1)3(W2)3(W2)3(W4)3

× 2
(

N12
W1W2

+ N34
W3W4

+ N14
W1W4

+ N23
W2W3

)
.

(4.20)

This is the generator of all correlators. From (3.34), it is straightforward to get the asso-
ciated Mellin amplitude for the individual correlators. This is given by

Mmain
1 (1234) = ζ3(Ms

1 +Mt
1 − 3(Σp − 2)2) (4.21)

where we defined the s-type Mellin amplitude

Ms
1 = (Σp − 2)3s− 3(Σp − 2)2s̃, (4.22)

withMt
1,Mu

1 related toMs
1 by crossing:

Mt
1 ≡Ms

1[s→ t, s̃→ t̃, p2 ↔ p4] = (Σp − 2)3t− 3(Σp − 2)2t̃,

Mu
1 ≡Ms

1[s→ u, s̃→ ũ, p2 ↔ p3] = (Σp − 2)3u− 3(Σp − 2)2ũ. (4.23)

Then, the full colour-ordered amplitude is the sum of the above term (the “main” ampli-
tude) and the ambiguities present at this order. In sum, we have:18

M1(1234) = ζ3(Ms
1 +Mt

1) + a1(Σp − 2)2

= ζ3
(
(Σp − 2)3(s + t)− 3(Σp − 2)2(s̃+ t̃)

)
+ a1(Σp − 2)2,

(4.24)

and similarly for the other colour-ordered amplitudes. Here a1 is a free coefficient corre-
sponding to the freedom of adding the α′2 correction to the amplitude, see (3.11). This
is the only ambiguity present at this order. The other possibility would be a term of the
form ∼ (∇2φ)φφφ but, because of (3.25), it is essentially the same as the ambiguity coming
from φ4.

Note that we have the relation

Ms
1 +Mt

1 +Mu
1 ∝ (Σ− 2)2 (4.25)

which can be identified as the AdS analogue of the flat on-shell relation s+ t+ u = 0.
Before computing the other α′ corrections, let us notice a remarkable simplification

occurring for the first two corrections which was already spotted in the AdS5×S5 case [14].
This will help to write the other α′ corrections in a more compact form. The idea is to
absorb the various Pochhammers appearing through a double integral transform. Let us
thus define the following pre-amplitude

Mn = i

2π

∫ ∞
0

dα

∫
C
dβ e−α−βαΣp−1(−β)2−Σp M̃n(S, T, S̃, T̃ ), (4.26)

18Note that we simplified the result by absorbing the constant term 3(Σp − 2)2 into the ambiguity a1.
We will use the freedom to perform such redefinitions at higher orders as well.
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where C is the Hankel contour. HereMn is any of the colour-ordered amplitudes and M̃n

is a simplified amplitude, defined in terms of the following variables,

S = αs− βs̃, S̃ = αs+ βs̃, (4.27)

and similarly for t-type and u-type variables. The integral transform (4.26) really just
provides the Γ functions needed to reconstruct the various Pochhammer. In fact, it is not
difficult to check that in the pre-amplitude M̃n all Pochhammer disappear. For example,
the pre-amplitude associated to α′2 is just

M̃0(1234) = ζ2. (4.28)

On the other hand, the pre-amplitude at order α′3 reads (4.22) is

M̃1(1234) = ζ3(S + T + a1). (4.29)

Thus, from these first two examples, we can see that the pre-amplitude is given by the
corresponding term in the flat Veneziano amplitude with the Mandelstam variables replaced
by S, T plus lower order terms in S, T, S̃, T̃ . This will be true at higher orders as well.

Note, the α integral is nothing but the Penedones integral (4.14), and the above trans-
form reduces to the latter when setting all but the Mellin variables to zero. As mentioned
previously, these non-trivial simplifications strongly suggest that the usual flat-space limit
arises as a particular case of a more general flat-space limit which involves all 8 variables
which the Mellin amplitude depends on.

4.4 Order α′4

Let us now consider α′4 corrections. The corresponding term in the action is:

Smain
2 = 1

16
π4

720

∫
AdS5×S3

d5X̂d3Ŷ Tr
[
7(∇µ∇νφ)(∇µ∇νφ)φ2 + 1

2(∇µ∇νφ)φ(∇µ∇νφ)φ
]
.

(4.30)
Let us stress again that this is the only term at this order with a flat-space counterpart.
After computing the derivatives we get

〈OOOO〉main|α′4(1234) = 1
16

π4

720
32 C4

3
(−2)12

∫
AdS5×S3

d5X̂d3Ŷ
1

(W1)3(W2)3(W3)3(W4)3×

2
[
7
(

L12
(W1)2(W2)2 + L34

(W3)2(W4)2 + L14
(W1)2(W4)2 + L23

(W2)2(W3)2

)
+ L13

(W1)2(W3)2 + L24
(W2)2(W4)2

]
,

(4.31)

where here we have defined

Lij = 16N2
ij − (PiPj −QiQj)(3PiPj − 5QiQj − PiQj − PjQi). (4.32)
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From (3.35), we get the associated colour-ordered Mellin amplitude for the individual
correlators:

Mmain
2 (1234) = π4

720(7Ms
2 + 7Mt

2 +Mu
2), (4.33)

where the s-type amplitude reads

Ms
2 = (Σp − 2)4 s2 − (Σp − 2)3 s(8s̃+ Σp + 1) + (Σp − 2)2

(
12s̃2 − 3

8P + 12s̃+ 3
2Σp

)
.

(4.34)
and analogously forMt

2,Mu
2 . Here we have defined

P ≡ p2
1 + p2

2 + p2
3 + p2

4. (4.35)

As mentioned before, the amplitude automatically stratifies w.r.t. the power of s, t. In
particular it respects the large p behaviour [17].

By using (the inverse of) (4.26), we can get the pre-amplitude associated to this ex-
pression. This is very simple and reads

M̃s
2 = S2 + SΣp −

5
2S + 3

2
(
S̃ + Σp

)
− 3

8P. (4.36)

Let us now compute the ambiguities. Through explicit calculation we verified that, on
the top of the lower-order ambiguities, there are two new independent ambiguities at this
order, which we choose to be

Tr
[
(∇2∇µφ)(∇µφ)φφ

]
, Tr

[
(∇2∇µφ)φ(∇µφ)φ

]
. (4.37)

After computing the derivatives and using the Mellin space formula (3.35) we obtain,
respectively:

M2,amb1 =Ms
2,amb +Mt

2,amb, (4.38)

and
M2,amb2 =Mu

2,amb, (4.39)

with

Ms
2,amb = (Σp − 2)3s + 3

14(Σp − 2)2(p1p2 + p3p4 + 2Σp − 2Σ2
p − 4s̃Σp − 2s̃), (4.40)

and Mt,u
2,amb related to Ms

2,amb by crossing, cf. (4.23). In terms of the associated pre-
amplitude we have

M̃s
2,amb = S + 3

8
(
2S̃ + 2Σp − 2Σ2

p + p1p2 + p3p4
)
. (4.41)

In sum, the full colour-ordered (pre-)amplitude at order α′4 is19

M̃2(1234) = π4

720(7M̃s
2 + 7M̃t

2 + M̃u
2) + a2 + b1

(
M̃s

1 + M̃t
1

)
+

+ e1(M̃s
2,amb + M̃t

2,amb) + f1M̃u
2,amb.

(4.42)

19Here we have used a slight abuse of notation, as the ambiguities here are related to those in (3.11) by
some shifts and rescaling.
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Note that this theory will generically contain more ambiguities than N = 4 SYM [14, 29],
due to the loss of some crossing symmetry.

Moreover, as anticipated, it is easy to check that for large S, T, U the amplitude is
given by the corresponding term in the expansion of the Veneziano amplitude with the
Mandelstam variables replaced by S, T, U variables:

M̃2(1234) ∼
largeS,T,U

π4

720(7S2 + 7T 2 + U2) = Vopen
∣∣
α′4

(1234). (4.43)

4.5 Order α′5

Finally, let us compute the amplitude at order α′5. The main amplitude at this order reads

Smain
3 =1

3
1
32

∫
AdS5×S3

d5X̂d3Ŷ Tr
[(1

6ζ3π
2 + ζ5

)
(∇µ∇ν∇ρφ)(∇µ∇ν∇ρφ)φ2+

+ 1
2

(1
6ζ3π

2 − 2ζ5

)
(∇µ∇ν∇ρφ)φ(∇µ∇ν∇ρφ)φ

]
.

(4.44)

In appendix B we explicitly evaluate the derivatives, along with their Mellin space expres-
sion. Instead here we just give the associated Mellin pre-amplitude, which reads

M̃main
3 = 1

3

(1
6ζ3π

2 + ζ5

)
(M̃s

3 + M̃t
3) + 1

3

(1
6ζ3π

2 − 2ζ5

)
M̃u

3 (4.45)

with20

M̃s
3 =S3 − 3S2Σp + 2SΣ2

p −
11
8 PS − 3S2 + 7SΣp + 9

2SS̃ − 3ΣpS̃ + 33
16P − 2Σ2

p

+ p1p2 + p3p4 + 45
2 S −

25
4 Σp −

19
4 S̃,

(4.46)

and M̃t
3, M̃u

3 defined analogously.
By writing down all possible ambiguities, we find that there are in total 8 independent,

and we can choose them to be the 6 associated to previous orders plus two new ones
associated to the terms

Tr
[
(∇2∇µ∇νφ)(∇ν∇µφ)φφ

]
, Tr

[
(∇2∇µ∇νφ)φ(∇ν∇µφ)φ

]
(4.47)

The pre-amplitude expressions are M̃s
3,amb + M̃t

3,amb and M̃u
3,amb respectively, with the

s-channel ambiguity given by

M̃s
3,amb =S2 − 8

5SΣ2 + 8
5Σ3 − 2

5PΣ + 2
5(p1p2 + p3p4)(2S − 2Σ + 1) + 8

5SS̃

− 8
5 S̃Σ + 3

5SΣ + 39
10S −

1
10 S̃ + 3

8P −
4
5Σ2 − 7

10Σ,
(4.48)

and M̃t,u
3 ,M̃t,u

3,amb defined accordingly.

20We remind that P ≡ p2
1 + p2

2 + p2
3 + p2

4.
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In sum, the full Mellin pre-amplitude reads

M̃3(1234) =1
3

(1
6ζ3π

2 + ζ5

)
(M̃s

3 + M̃t
3) + 1

3

(1
6ζ3π

2 − 2ζ5

)
M̃u

3+

+ a3 + b2(M̃s
1 + M̃t

1) + c1(M̃s
2 + M̃t

2) + d1M̃u
2 + e2(M̃s

2,amb + M̃t
2,amb)+

+ f2M̃u
2,amb + l1(M̃s

3,amb + M̃t
3,amb) + h1M̃u

3,amb.

(4.49)

Finally, note once again that, for large S, T, U , the amplitude reduces to the flat-
Veneziano amplitude:

M̃3(1234) ∼
largeS,T,U

1
3

(1
6ζ3π

2 + ζ5

)
(S3 + T 3) + 1

3

(1
6ζ3π

2 − 2ζ5

)
U3 = Vopen

∣∣
α′5

(1234).
(4.50)

4.6 Towards a generalised flat-space limit

We conclude this section by commenting on the various flat-space limit we encountered
along the way. We would like to address the following question:

what is the largest sub-amplitude which directly descends from flat-space?

A first answer comes from the flat-space limit worked out in [41, 42], which states that
the Mellin amplitude and the flat scattering amplitude are related by an integral transform
which, in this theory, reads

M(s, t) −−−−−→
large s,t

1
Γ(Σp − 2)

∫ ∞
0

dααΣp−1 V(αs, αt). (4.51)

Note that only AdS variables participate in this limit; the sphere variables s̃, t̃ and the
charges pi are just spectators. This does not look completely satisfactory because in this
particular theory, AdS and S factors scale in the same way for large radius, thus one would
expect a limit where variables are treated in a more symmetric way.

In fact, the authors of [17] point out that in the “large p limit”, i.e. in the limit of large
s, t, s̃, t̃, pi, the relation above gets upgraded to a more symmetric version with the Mellin
amplitude related to the corresponding flat-space scattering process via the integral

M(s, t) −−−−−−−−→
large s,t,s̃,t̃,pi

1
Γ(Σp − 2)

∫ ∞
0

dααΣp−1 V(αs, αt), (4.52)

where we recall here for convenience the definition of the bold-face variables

s = s+ s̃, t = t+ t̃, s + t + u = −3. (4.53)

Note that all Mellin amplitudes presented in this work manifestly respect the large p limit,
as they should. Note also that when s̃ = t̃ = 0 one recovers (4.51).

In this paper we have seen that an even more general version of flat-space limit seems
to hold, which was noticed already in [14] for N = 4 SYM correlators. In particular, all
Mellin amplitudes can be written in terms of a pre-amplitude defined via (4.26):

Mn = i

2π

∫ ∞
0

dα

∫
C
dβ e−α−βαΣp−1(−β)2−Σp M̃n(S, T ), (4.54)
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where
S = αs− βs̃, S̃ = αs+ βs̃. (4.55)

Quite nicely, the highest degree terms in S, T are precisely the polynomials appearing in the
expansion of the Veneziano amplitude. In other words, the pre-amplitude M̃ is given by

M̃ = Vopen(S, T ) + lower orders in S, T, S̃, T̃ . (4.56)

Note that the sub-amplitude Vopen(S, T ) automatically contains the two flat-space limits
just discussed, therefore in this sense it is a generalisation of those.

Finally, the covariantisation of the effective action suggests that the largest sub-
amplitude related to flat space is the one obtained with the replacement of the partial
derivatives with covariant ones [29], with all other limits just discussed arising as particu-
lar cases. An explicit form for this sub-amplitude at all orders in α′ is still not known, nor
is the analogous expression for the AdS5×S5 background. We hope to report on this in the
future.

5 Outlook and conclusions

In this paper we initiated the study of tree-level α′ corrections to the four-point function
of half-BPS operators in a 4d, N = 2 SCFT with flavour group SO(8), dual to string
theory on AdS5×S3 [34–36]. In particular, the strong-coupling expansion of these four-point
correlators corresponds to the low-energy expansion of an AdS version of the Veneziano
amplitude. By generalising a procedure first proposed in [29] in the context of N = 4
SYM, we conjectured that all half-BPS four-point correlators can be obtained by evaluating
generalised contact Witten diagrams whose vertices come from 8d effective potential written
in terms of a single scalar field. We then showed explicit results for the first four orders in
α′. We found that at each order in α′ the various correlators are given by a main amplitude,
which represents the covariantisation of the flat-space amplitude, plus a certain number
of ambiguities which arise as a result of curvature effects of the background and therefore
do not have a flat-space counterpart. Nicely, the end results are remarkably simple when
written in terms of an integral transform, which is perhaps the most natural generalisation
of the integral proposed by Penedones in the flat-space limit [41].

While we believe that the simplicity of these correlators and the fact that they correctly
capture the various flat-space limits present in literature are indicative of the validity of
the method, the existence of the effective action is still to be proven and it would be
interesting to find independent methods to check the conjecture or, more ambitiously, to
derive it from first principles. Another consistency check of our results could be provided by
an analysis of the spectrum of anomalous dimensions. In AdS5×S5 [13, 14], this furnished
an independent method that led to the same results as those of [29]. In particular, we
expect the α′-corrected anomalous dimensions of the exchanged double-trace operators to
induce a splitting of the residual degeneracy left in the field-theory anomalous dimensions
computed in [40], as a result of the breaking of the hidden conformal symmetry [54].
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We believe that this work can open a number of interesting directions.

• As mentioned already, these results, together with their AdS5×S5 analogous [14, 29],
suggest that there is a more general version of flat-space limit associated to the
covariantisation of the derivatives in the effective action. Finding this sub-amplitude
might shed light on new relations between flat and AdS amplitudes.

• On the other hand, it is very important to find a systematic way to (list and) compute
all the ambiguities, which represent true curvature effects. In AdS5×S5 they can be
fixed with various techniques, such as localisation [55–58], symmetry principles [29],
dispersive sum rules [22, 23] or also bootstrap approaches [14]. It would be interesting
to see whether these methods can also applied to this background [43].

• With these new correlators at hand, it is now possible to extract novel CFT data. As
we mentioned, we expect the α′-corrections of the exchanged double-trace operators
to drive a splitting of the residual degeneracy left in the field-theory anomalous di-
mensions. The splitting of this degeneracy is controlled by a characteristic polynomial
— an intrinsically non-perturbative object — that enjoys a lot of intriguing features.
It would be extremely interesting to find the form of this polynomial, perhaps also
deriving the explicit dependence on the dimension θ1, θ2.21

• It would also be interesting to compute higher genus α′ corrections. We believe
that similar results to those obtained in [19] for N = 4 SYM will find a natural
generalisation to AdS5×S3. In particular, it should be the case that the accidental
degeneracy enjoyed by certain classes of tree-level correlators gets broken at higher
loops, through a phenomenon known as sphere splitting [19].

• Finally, as mentioned already, it is well known that open and closed string amplitudes
are related by relations known as KLT relations [47]; in addition, colour-ordered
open string amplitudes are related each other through monodromy relations [48, 49].
These are the uplifted “stringy” versions of double-copy [60] of BCJ [50] relations,
respectively, and reduce to the latter in the α′ → 0 limit. It is our belief that
(a suitable generalisation of) these relations will also hold in this set-up, at least
at the level of the main amplitude, since this object is directly connected to the
flat amplitude. From this point of view, it is promising that the generalised Mellin
amplitudes in the field theory limit do satisfy double copy [61] and BCJ relations [40]
completely analogous to flat space22 and moreover the highest degree terms in the
pre-amplitude do enjoy these relations, since they literally coincide with the flat
Veneziano amplitude written in terms of S, T, U variables. We hope to report on this
in the near future.

21In fact, it should also be the case that the supergravity anomalous dimensions in AdS3×S3 [59] undergo
a similar splitting when string corrections are turned on [54].

22For recent developments on double-copy and BCJ relations in different (A)dS backgrounds, see e.g. [62–
69] and references therein.
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A Decorated Witten diagrams in Mellin space

In this appendix we fill in the details between (3.33) and (3.35) for the derivation of the
Mellin transform of the generalised Witten diagrams with decorations. The details follow
closely the original presentation of [29] and provide a slight generalisation to the case of
AdSθ1+1×Sθ2+1 where the AdS and S dimensions no longer coincide.

Our starting point is the definition of the decorated AdS×S Witten diagram which we
repeat here for convenience

∏
i

C∆i

∏
i<j(Xi ·Xj)n

X
ij (Yi · Yj)n

Y
ij

(−2)2Σ∆

∫
AdS×S

dθ1+1X̂dθ2+1Ŷ
4∏
i=1

P
nPi
i Q

nQi
i (∆i)ni

(Pi +Qi)∆i+ni
. (A.1)

The propogators in the denominator may be Taylor-expanded using

1
(Pi +Qi)∆i+ni

=
∞∑
pi=0

(−1)pi (pi + 1)∆i+ni−1
Γ(∆i + ni)

Qpii

P pi+∆i+ni
i

, (A.2)

from which we arrive at an expansion for the decorated AdS ×S Witten diagram in terms
of regular AdS diagrams and their sphere counterparts given explicitly by

∏
i

C∆i
(−2)2ΣX+2ΣY

∏
i<j

(Xi ·Xj)n
X
ij (Yi · Yj)n

Y
ij


∞∑
pi=0

4∏
i=1

(−)pi (pi + 1)∆i+ni−1
Γ(∆i)

D
(θ1)
∆i+pi+ni−nPi

B
(θ2)
pi+nQi

.

(A.3)

Substituting in the following expressions

D
(θ1)
∆i+pi+ni−nPi

=
1
2π

θ1/2Γ(Σ∆+Σp+ΣQ+ΣX+ΣY −θ1/2)
(−2)Σ∆+Σp+ΣQ+ΣX+ΣY ∏

iΓ(∆i+pi+ni−nPi )

∫
dδij

(2πi)2

∏
i<j

Γ(δij)
(Xi ·Xj)δij

,

B
(θ2)
pi+nQi

= 2·2Σp+ΣQ π
θ2/2+1∏

iΓ(pi+nQi +1)
Γ(Σp+ΣQ+θ2/2+1)

∑
{dij}

∏
i<j

(Yi ·Yj)dij
Γ(dij+1) , (A.4)

for which we have ∑
i

δij = ∆j + pj + nj − nPj ,
∑
i

dij = pj + nQj , (A.5)
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the decorated Witten diagram (A.1) is found to take the following form

π
θ1+θ2

2

(−2)Σ∆

(∏
i

C∆i

Γ(∆i)

) ∞∑
pi=0

(−)Σp
∫

dδij
(2πi)2

∑
{dij}

∏
i<j

(
(Yi · Yj)dij
(Xi ·Xj)δij

Γ(δij)
Γ(dij + 1)

)
M∆i

[(A.1)].

(A.6)

Here we have introduced the notation ΣQ for half the sum over the nQi and ΣX , ΣY for the
sum over the nXij , nYij , respectively. HereM∆i

[(A.1)] is the desired representation of (A.1)
in generalised Mellin space and is given by

M∆i
[(A.1)] = (−2)ΣX (2)ΣY (−)2ΣQ

( 4∏
i=1

(
pi + nXi + ∆i

)
nPi

(pi − nQi − nYi + 1)
nQi

)
×∏

i<j

(δij)nXi,j (dij − n
Y
ij + 1)nYij

 (Σp − ΣY + θ2
2 + 1)Σ∆−

θ1+θ2
2 −1+ΣX+ΣY

,

(A.7)

where we have the contraints ∑i dij = pj and
∑
i δij = ∆j + pj .

B Details at α′5

In this appendix we collect some explicit expression for the amplitudes at α′5. First,
the computation at this order requires the evaluation of ∇µ∇ν∇ρW3

1 ∇µ∇ν∇ρW3
2 and

∇2∇µ∇νW3
1 ∇ν∇µW3

2 . We find

∇µ∇ν∇ρW3
1 ∇µ∇ν∇ρW3

2 = 9
W6

1W6
2

(
245P 3

1P
3
2 +62P 2

1P
3
2Q1−3P1P

3
2Q

2
1+62P 3

1P
2
2Q2

−575P 2
1P

2
2Q1Q2−100P1P

2
2Q

2
1Q2−3P 2

2Q
3
1Q2−3P 3

1P2Q
2
2−100P 2

1P2Q1Q
2
2+457P1P2Q

2
1Q

2
2

+14P2Q
3
1Q

2
2−3P 2

1Q1Q
3
2+14P1Q

2
1Q

3
2−163Q3

1Q
3
2+1045P 2

1P
2
2 (X1 ·X2)+62P1P

2
2Q1(X1 ·X2)

−3P 2
2Q

2
1(X1 ·X2)+62P 2

1P2Q2(X1 ·X2)−2012P1P2Q1Q2(X1 ·X2)−114P2Q
2
1Q2(X1 ·X2)

−3P 2
1Q

2
2(X1 ·X2)−114P1Q1Q

2
2(X1 ·X2)+869Q2

1Q
2
2(X1 ·X2)+1200P1P2(X1 ·X2)2

−1200Q1Q2(X1 ·X2)2+400(X1 ·X2)3+963P 2
1P

2
2 (Y1 ·Y2)−14P1P

2
2Q1(Y1 ·Y2)+3P 2

2Q
2
1(Y1 ·Y2)

−14P 2
1P2Q2(Y1 ·Y2)−1988P1P2Q1Q2(Y1 ·Y2)−14P2Q

2
1Q2(Y1 ·Y2)+3P 2

1Q
2
2(Y1 ·Y2)

−14P1Q1Q
2
2(Y1 ·Y2)+963Q2

1Q
2
2(Y1 ·Y2)+2400P1P2(X1 ·X2)(Y1 ·Y2)−2400Q1Q2(X1 ·X2)(Y1 ·Y2)

+1200(X1 ·X2)2(Y1 ·Y2)+1200P1P2(Y1 ·Y2)2−1200Q1Q2(Y1 ·Y2)2+1200(X1 ·X2)(Y1 ·Y2)2

+400(Y1 ·Y2)3
)
≡ 9
W6

1W6
2
Z12

and

∇2∇µ∇νW3
1 ∇ν∇µW3

2 = 9
W5

1W5
2

(
31Q2

1Q
2
2−167P 2

1P
2
2 −3P1P

2
2Q1−3P 2

1P2Q2+3P1Q1Q
2
2

+3P2Q
2
1Q2+136P1P2Q1Q2−416P1P2(X1 ·X2)+160Q1Q2(X1 ·X2)−160(X1 ·X2)(Y1 ·Y2)

−160P1P2(Y1 ·Y2)−96Q1Q2(Y1 ·Y2)−208(X1 ·X2)2+48(Y1 ·Y2)2
)
.

(B.1)
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Then, the main amplitude is given by the following integral

〈OOOO〉main|α′5(1234) = 1
3

1
32

32 C4
3

(−2)12

∫
AdS5×S3

d5X̂d3Ŷ
1

(W1)3(W2)3(W3)3(W4)3[(1
6ζ3π

2 + ζ5

)
2
(

Z12
(W1)3(W2)3 + Z34

(W3)3(W4)3 + Z14
(W1)3(W4)3 + Z23

(W2)3(W3)3

)
+(1

6ζ3π
2 − 2ζ5

)
2
(

Z13
(W1)3(W3)3 + Z24

(W2)3(W4)3

)]
.

(B.2)

The associated generalised Mellin amplitude reads

Mmain
3 = 1

3

(1
6ζ3π

2 + ζ5

)
(Ms

3 +Mt
3) + 1

3

(1
6ζ3π

2 − 2ζ5

)
Mu

3 , (B.3)

where

Ms
3 = (Σp − 2)5s3 − 3

2
[
10s̃+ 2Σp − 1

]
(Σp − 2)4s2

+ 1
8
[
480s̃2 + 120(1 + Σp)s̃+ 16Σp(2 + Σp)− 11P + 142

]
(Σp − 2)3s

− 1
16
[
480(2s̃+ 3)s̃2 − 2(33P − 164Σp − 654)s̃

− 16(p1p2 + p3p4) + 4Σp(25 + 8Σp)− 33P
]
(Σp − 2)2. (B.4)

Similarly, the s-channel ambiguity is given by

Ms
3,amb = (Σp − 2)4s2 − 1

13
[
8(7 + 2Σp)s̃+ Σp(5 + 8Σp)− 4(p1p2 + p3p4)− 19

]
(Σp − 2)3s

+ 1
104

[
32(16Σp − 9)s̃2 + 32(10Σ2

p − 8Σ− 3p1p2 − 3p3p4 − 15)s̃

+ 16(p1 + p2)(p3 + p4)(2Σ− 1) + 7P − 28Σp

]
(Σp − 2)2. (B.5)

The expressions for the related pre-amplitudes are given in the main body, see (4.46)
and (4.48) for the Mellin pre-amplitudes M̃s

3, M̃s
3,amb, respectively.

All in all, the full colour-ordered Mellin amplitude (including all other ambiguities
from previous orders) reads

M3(1234) =1
3

(1
6ζ3π

2 + ζ5

)
(Ms

3 +Mt
3) + 1

3

(1
6ζ3π

2 − 2ζ5

)
Mu

3+

+ a3 + b2(Ms
1 +Mt

1) + c1(Ms
2 +Mt

2) + d1Mu
2 + e2(Ms

2,amb +Mt
2,amb)+

+ f2Mu
2,amb + l1(Ms

3,amb +Mt
3,amb) + h1Mu

3,amb.

(B.6)
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