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Abstract: Wind energy conversion systems have become an important part of renewable energy
history due to their accessibility and cost-effectiveness. Offshore wind farms are seen as the future
of wind energy, but they can be very expensive to maintain if faults occur. To achieve a reliable
and consistent performance, modern wind turbines require advanced fault detection and diagnosis
methods. The current research introduces a proposed active fault-tolerant control (AFTC) system
that uses backstepping active disturbance rejection theory (BADRC) and an adaptive neurofuzzy
system (ANFIS) detector in combination with principal component analysis (PCA) to compensate for
system disturbances and maintain performance even when a generator actuator fault occurs. The
simulation outcomes demonstrate that the suggested method successfully addresses the actuator
generator torque failure problem by isolating the faulty actuator, providing a reliable and robust
solution to prevent further damage. The neurofuzzy detector demonstrates outstanding performance
in detecting false data in torque, achieving a precision of 90.20% for real data and 100% for false data.
With a recall of 100%, no false negatives were observed. The overall accuracy of 95.10% highlights the
detector’s ability to reliably classify data as true or false. These findings underscore the robustness of
the detector in detecting false data, ensuring the accuracy and reliability of the application presented.
Overall, the study concludes that BADRC and ANFIS detection and isolation can improve the
reliability of offshore wind farms and address the issue of actuator generator torque failure.

Keywords: active fault-tolerant control; backstepping; active disturbance rejection control; adaptive
neurofuzzy inference system; principal component analysis

1. Introduction

The global community’s focus on environmental issues and clean energy has inten-
sified significantly, resulting in substantial progress and notable achievements. These
efforts align harmoniously with global initiatives such as the Sustainable Development
Goals (SDGs) and the pursuit of net zero targets, reaffirming the unwavering commitment
to global sustainability objectives. One prominent renewable energy source is wind.
Harvested for thousands of years already, wind-driven electric generation systems are
securing the use of that form of energy for many years in the future. It is clean, secure,
and abundant. This implies that making wind turbines as fault tolerant as possible is a
profitable long-term endeavour. However, wind power is sporadic and unpredictable. It
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is also challenging to use wind turbines to their full potential because of their nonlinear
properties. The power fluctuations produced by wind turbines are caused by random
fluctuations in wind speed [1], although it was proven in [2] that slotted airfoil profiles
are effective in improving the efficiency of wind turbines. The term MPPT (Maximum
Power Point Tracking) control refers to a variety of research techniques used to monitor
the wind turbine’s peak output [3]. On the other hand, one of the key problems with wind
power generation systems is wind turbine failure [4]. These failures are a result of faults
that develop in the wind turbine and may be directly attributable to sensors, actuators, or
the system itself [5]. Applying novel fault-tolerant control (FTC) methods to contemporary
wind turbines has the potential to improve efficiency [6].

In recent years, numerous writers have put forward schemes for fault detection and
isolation (FDI) that rely on the measurements derived from data sensors. This development
has sparked significant interest in data-driven approaches, where the primary focus lies on
feature extraction and classification techniques. Two methods were employed in study [7]
to isolate faults at different locations. Support Vector Machines (SVMs) utilise data and
feature vectors to effectively identify and isolate most faults, and use a Kalman filter
observer for high varying dynamics. Another study [8] proposed an FDI method that
employs an FDI benchmark model for wind turbines that combines multiple SVMs with
kernels of radius basis functions to detect and identify sensor stuck faults and offset. In [9],
deep neural networks (DNN) and principal component analysis (PCA) are utilised to
address the challenges posed by big data, inaccurate fault diagnosis, and incorrect fault
detection in wind farms. The PCA algorithm is used to reduce data dimensions, focusing
primarily on minimising redundancy and improving the accuracy of fault diagnosis. In [10],
a model-based fault diagnosis and isolation methodology was developed for wind turbines
using a set of analytical redundancy relations (ARRs) acquired from a fault signature
matrix that considers the correlation between ARRs and faults and the structural analysis
of the wind turbine model. In [11], a DNN was used to adjust the parameters of linear
active disturbance rejection control to regulate the control parameters of the wind turbine
according to the measured states. In [12], a sensor fault detection and isolation strategy is
developed using convex state observers to generate residuals. The fault diagnosis method
employs an ANFIS method to derive a collection of polytopic-based linear representations
and membership functions to interpolate the linear models of the convex Takagi–Sugeno
model. A prediction model using three artificial intelligence techniques based on the
application of a new fault detection methodology combined with ADRC was used in [13],
which is used to control the system and nullify the effects of disturbances generated by
the fault. In [14], a hybrid methodology was developed to detect and isolate fault-based
quasi-Linear Parameter Varying (qLPV) zonotopic observers and ANFIS. FDI is based on
the residual generation obtained by a bank of zonotopic observers of qLPV of the identified
models; also, in [15], a bank of observers of sliding mode was designed to create an FDI
system for actuator faults. However, this method was not integrated into an FTC system
and it is observed that the chattering was evident in the results of this method.

In the work presented in [16], the discrepancy is detected indirectly, using the residual
generated between the measured and estimated power value to design an FDI and FTC for
the failure of the generator actuator.

The novelty of this work lies in its ability to detect discrepancies between direct torque
values and their data-driven neurofuzzy models that facilitate early and precise detection
and isolation. Furthermore, the incorporation of backstepping control, a linear observer
of active disturbance rejection control, and neurofuzzy techniques enhance robustness,
enabling an active fault tolerance control (AFTC) approach for wind turbines. This research
demonstrates how the AFTC approach can be employed effectively for fault detection and
isolation in real wind turbine systems.

In order to achieve the greatest power point tracking of the wind turbine, a robust
backstepping based on an active disturbance rejection controller was presented under
actuator failure. First, the backstepping term was used to handle both external and internal
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system disturbances due to its robustness and synthesis, which is based on a stability
study of the overall system. Then, for linear ADRC, a Luenberger observer is employed
for estimating the value of the generator torque to counteract the influence of the torque
actuator failure that decreases the extraction of power. Lastly, for the diagnosis and isolation
process, an ANFIS algorithm based on PCA was used to detect and manage the situation
between the measured and the observed value of the generator torque. The subsequent
parts of this manuscript outline the structure as the following. In Section 2, which follows
the introduction, a wind turbine, gearbox, shaft and generator are modeled as well as
the properties that are involved throughout the paper with a discussion about the MPPT.
The synthesis and design of the proposed AFTC law are presented in Section 3, with a
demonstration analysis of the robustness of the suggested FTC and the architecture of
the FDI based on the neurofuzzy system. Section 4 summarises the results achieved with
the strategy employed for fault detection and diagnosis in wind turbines. A comparative
analysis has been included to establish the potential advantages of the proposed approach
in relation to existing methods. Additionally, a subsection that discusses the limitations
and challenges of the proposed method has been included. Finally, the main conclusions
are provided in Section 5.

2. Wind Power System Modeling
2.1. Wind Turbine Model

The wind turbine aerodynamic power has a nonlinear expression that is a function
relating to the radius of the rotor R, the speed of the wind Vw, the density of air ρair and the
power coefficient Cp [17],

Paer =
1
2

Cp(λ, β)ρairπR2Vw
3 (1)

where Cp denotes the power coefficient, and Cp is related to two parameters, the blade
pitch angle β and the tip-speed ratio λ [18].

Cp = 0.5 + 0.0167(3− β) sin (λi)+0.00184(3− λi) (2)

λi =
(0.1 + λ)π

14.8 + 0.3(2− β)
(3)

The ratio λ is a function of the shaft’s angular velocity ωt, wind speed Vw and the
rotor radius R [19].

λ =
ωtR
Vw

(4)

where ωt is the turbine speed.
The highest value of Cpmax and a specified value of λ are used to describe the most

favourable value of the ratio λopt, which is the optimal speed ratio, and those are the
circumstances that allow the employment of MPPT control [20].

The highest speed of the turbine extracted from the wind is provided by,

ωtopt =
λoptVw

R
(5)

2.2. Model Gearbox

The high-speed and low-speed shafts (HSS/LSS) of the generator ωg and the turbine
ωt are coupled by the gearbox. Assuming that the multiplier is perfect, i.e., the mechanical
losses are insignificant, the multiplier can be represented by a gain Ng, where Ng is a simple
constant [21].

ωt =
ωg

Ng
(6)
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τg =
τt

Ng
(7)

where τg and τt are torques of the generator and turbine, respectively.

2.3. Dynamic Model of Shaft

The shaft consists of the rotor’s inertia-matched mass that also houses the hub, blades
and the generator’s rotor with a small additional inertia. Total inertia J is the aggregate of
the turbine’s rotational inertia Jt and the inertia of the generator Jg brought backward to
the turbine’s rotor [22].

J =
Jt

N2
g
+ Jg (8)

In general, the shaft’s mechanical equation, incorporating the masses of the generator
and turbine, is given by [23],

J
dωg

dt
+ f ωg = τg − τem (9)

where τem, ωg and f are the electromagnetic torque, the mechanical speed and the generator
viscous friction coefficient, respectively.

The correlation between the speed of the generator ωg, power Pg and the torque τg is
given by,

τgNg =
Pg

ωg
(10)

2.4. Generator Model

The wind turbine is connected to a double fed induction generator (DFIG) through a
gearbox. The given equations describe the voltage equations of the generator’s stator and
rotor model in the d-q axis [24],

Vsd = Rs Isd +
dφsd

dt −ωsφsq

Vsq = Rs Isq +
dφsq

dt + ωsφsd

Vrd = Rr Ird +
dφrd

dt −ωrφrq

Vrq = Rr Irq +
dφrq
dt + ωrφrd

(11)

The equations provided represent the flux equations of the generator rotor and stator
model, specifically in the d-q axis,

φsd = Ls Isd + MIrd
φsq = Ls Isq + MIrq
φrd = Lr Ird + MIsd
φrq = Lr Ird + MIsq

(12)

2.5. Maximum Power Point Tracking

In response to how fast the wind is blowing, the turbine can work in two different
modes: nominal power and maximum power point tracking (MPPT). As demonstrated
in Figure 1, when the speed of the wind lies between the nominal speed and the cut-in
speed, the turbine will work in MPPT mode, which requires the highest power conversion
coefficient Cp. When the speed of wind falls under the predetermined cut-in speed, the
wind turbine ceases its operation due to insufficient energy to initiate rotor movement.
Similarly, if the speed of wind goes beyond the designated nominal threshold, the wind
turbine shuts down as a precautionary measure to prevent any potential damage to the
blades [25].
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The key aim of the MPPT control technique is to get the most power from the wind,
and the generator is operated at its highest possible speed. This is done by changing the
wind turbine rotation speed when the wind speed is less than the value rated. This ideal
speed is reached when the ratio λ is most effective. To reach this ideal λ, the electromagnetic
torque has to be adjusted and approximated using the MPPT strategy [26].

Figure 1. Characteristic of the power curve versus the speed of wind.

3. Design of the AFTC Based on the BADRC and ANFIS
3.1. Design of FTC Based on the Backstepping ADRC Technique

Our aim is to design a robust backstepping control system based on the ADRC ap-
proach, which is able to approximate an unidentified understanding of the actuator torque
of the generator (event of a generator/converter fault) and avoid its impact on the control-
ling law, with the objective of accomplishing a precise tracking of the intended trajectory
and providing an effective FTC.

Let us introduce x1 = ωmes and x2 = τg, the state variables, Equation (9) could be
reformulated as, {

ẋ1 = 1
J (x2 − f x1 − u)

˙x2 = z
(13)

where the system’s input is u(t) = τem and z is an unknown input. A state space representa-
tion of the affected system represented by Equation (13) is required to derive the estimator,

(
˙x1 (t)

ẋ2(t)

)
=

(
− f

J
1
J

0 0

)
︸ ︷︷ ︸

A

.
(

x1(t)
x2(t)

)
+

(
−1

J
0

)
︸ ︷︷ ︸

B

u(t) +
(

0
1

)
z

y(t) = (1 0)︸︷︷︸
C

(
x1(t)
x2(t)

) (14)

Due to the fact that the virtual input z is unable to be measured, a state observer
is only capable of being built using an input from the system u(t) and y(t) an output
from the system. On the contrary, a rough estimate of state x2(t) will offer an accurate
approximation of τg, i.e., τ̂g, if the actual value of the generalised disturbance is identical
to τg(t), which can be thought of as a piecewise constant. The mathematical formulas
that describe the extended state observer (a generalised disturbance extends the integrator
process) are provided in Equation (15). It should be noted that a Luenberger observer is
utilised for linear ADRC [27].( ˙̂x1 (t)

˙̂x2(t)

)
=

(
− f

J
1
J

0 0

)
.
(

x̂1 (t)
x̂2 (t)

)
+

(
−1

J
0

)
.u(t) +

(
l1
l2

)
.C
(

e1(t)
e2(t)

)
︸ ︷︷ ︸

e

(15)
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with C.e = e1 = ωmes− ω̂ = x1− x̂1 and l1, l2 > 0 must be chosen for a desired error dynamic.
Let the error dynamic be given by,(

˙e1 (t)
ė2(t)

)
= A.

(
e1(t)
e2(t)

)
−
(

l1
l2

)
.Ce +

(
0
1

)
z (16)

(
˙e1 (t)

ė2(t)

)
= (A− LC)e +

(
0
1

)
z (17)

Combining Equations (16) and (17) with our BADRC theory, the proposed controller
is presented as,

τemre f = −Jω̇re f − f ω̂ + τ̂g − k
(

ωre f − ω̂
)

(18)

Assuming that z is bounded |z| < max
(
δτg
)

and the Hurwitz matrix is A− LC, the
erroneous dynamics exhibit exponential stability [28].

To facilitate tuning simplicity, the whole set of observer poles is positioned at −ωo
with ωo being the observer bandwidth.

The parameters l1 and l2 are calculated in a manner that ensures that the matrix A− LC
is Hurwitz, where the genuine parts of their eigenvalues are negative.

The observer bandwidth ought to be carefully chosen as a compromise between the
performance in tracking and noise resilience since a greater widening of the observer
bandwidth estimates the precision while also increasing the sensitivity to noise [28].

3.2. Discussion of Overall Closed-Loop Stability

The exponential stability of extended observers allows us to use a separation principle
in the study of overall closed-loop stability [29,30].

Let the tracking speed global error,

eg = ωre f − ω̂ (19)

eg = ωre f −ωmes︸ ︷︷ ︸
e(ω)

+ωmes − ω̂︸ ︷︷ ︸
e1

(20)

where ωre f and ω̂ are a reference and the estimated speed.

eg = e(ω) + e1 =⇒ e(ω) = eg − e1 (21)

If eg → 0 and e1 → 0, then e(ω) → 0. So, with this control, we achieve the best tracking
of the intended trajectory. For this, we reformulate the backstepping control procedure
with eg instead of e(ω).

The derivative of Equation (19) error is,

ėg = ω̇re f − ˙̂ω (22)

Considering the positive definite Lyapunov function V
(
eg
)
,

V
(
eg
)
=

1
2

eg
2 (23)

The time derivative of Lyapunov function is,

V̇
(
eg
)
= eg ėg (24)

and substituting Equation (22) into Equation (24), we get

V̇
(
eg
)
= eg(ω̇re f − ˙̂ω ) (25)
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The estimated time derivative speed from Equation (15) is

˙̂ω =
1
J
(
τ̂g − τem − f ω̂

)
+ l1 e1 (26)

and by replacing Equation (26) into Equation (25), we obtain

V̇ = eg

(
ω̇re f −

1
J
(
τ̂g − τem − f ω̂

)
− l1 e1

)
(27)

The stabilisation of eg can be produced by using a virtual control,

τemre f = −Jω̇re f − f ω̂ + τ̂g − keg (28)

where k ∈ R+ is a real positive constant.
The control law given in Equation (18).
By substituting Equation (28) into Equation (27):

V̇ = −keg
2 − egl1 e1 (29)

Since e1 → 0 exponentially, the term
(
egl1 e1

)
vanishes after a short time, consequently,

V̇ = −keg
2 < 0 (30)

By Equation (30), we show that eg → 0, in this case e(ω) → 0.
We conclude that the control law given by Equation (28) attains accurate tracking of

the intended trajectory and gives an effective FTC.

3.3. Actuator Fault Detection and Isolation

AFTC is concerned with reconfigurable control systems, which alter the control action
in response to system component faults, based on real-time data on the system’s current
state as established by an FDI scheme. Due to their capacity to approximate any function,
fuzzy inference systems (FISs) are employed to approximate nonlinear functions, uncertain
or unknown.

In this study, a neurofuzzy detector and a linear transition function are used to build an
FDI system to detect and isolate faulty actuators. The structure of the neurofuzzy detector
is formed by integrating multiple TS FISs, by projecting data onto the components of a
principal component analysis.

To isolate the actuator fault, a linear transition function is used, the linear function
being a combination function between the measured torque τg and the estimated torque τ̂g.

U = Sτg − (S− 1)τ̂g (31)

where S represents the state of the torque actuator, and also is the result of a neurofuzzy
detector who represents the status of the actuator and can take one of the two variables F
or H. F represents the faulty status of the actuator and H represents the healthy status of
the actuator, where H = 1 and F = 0.

3.3.1. Neurofuzzy Detector Based on PCA Projections

The neurofuzzy detector proposed combines principal component analysis (PCA) with
an adaptive neurofuzzy inference system (ANFIS). The ANFIS combines the advantages of
fuzzy logic to represent knowledge in an interpretable rule-based form with linguistic labels
of human language with the learning advantages of adaptive neural networks (ANNs) to
optimise the antecedents and consequent parameters of fuzzy rules. With both techniques,
a neurofuzzy detector is developed, which is based on two FISs to detect fault data in
generator torque.
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Initially, a correlation analysis of the system data is performed according to [31]. Thus,
the correlation coefficient matrix of the wind turbine data was obtained WTR ∈ <9×9

with M = 9 variables, respectively. This analysis indicates that the variables that most
interrelated with (τg), which is the variable of interest, are those with a Pearson’s correlation
coefficient of ρ ≥ 0.98. Figure 2 depicts the matrix of correlation coefficients of the wind
turbine data.
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Figure 2. Correlation coefficient matrix of the wind turbine.

The neurofuzzy detector uses the input variables shown in Figure 3, which are the
result of the analysis presented previously: wind speed (Vw), generator torque (τg), aero-
generator torque (τaer), and electromagnetic torque (τem).

Figure 3. Structure of the neurofuzzy detector.

3.3.2. Projection of Data on Principal Components

Subsequently, data groups are formed in normal operation (Normal), faulty operation
(Fault) that contains fault data on τg, and a total group (Total) grouping the normal and
faulty operation data.

As presented in [32], a PCA is implemented offline for each data set, acquiring a covari-
ance matrix PCAs generally referred to as the load matrix, that contains the eigenvectors
vr of the eigenvalues λr and indicates the orientation of the updated principal component
(PC) space. It is used to reduce the dimensional of the variable space by projecting the
original data using Equation (32).
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NormTs = ZNorm × PCAs (32a)
FaultTs = ZFault × PCAs (32b)
TotalTs = Zs × PCATotal (32c)

where Zs is a matrix that contains normalised data for each group s→
{

Norm, Fault
}

and
Ts is the matrix of scores for each s, which consists of a new component mapped on its
corresponding PC.

Typically, the matrix of data is mapped onto the element that consists of the greatest
variation, and the new projected variables exhibit no correlation, as noted in [33]. In this
case, for normal operation data, the first PC represents a variability of 99.61%, for faulty
operation data the first PC represents a variability of 95.61%, and for both groups the
first PC represent a variability of 96.87%. Therefore, the projection of each data group is
performed on the first PC and these projections are used in the learning process of the
ANFIS. The learning data set (80%) and validation data set (20%) are created with the
projected data. In addition, training (70%) and checking (30%) sets are formed from the
learning data as follows:

NormTrn =
[

NormTNorm NormTFault TotalTNorm
]
, (33a)

FaultTrn =
[

FaultTNorm FaultTFault TotalTFault
]
, (33b)

As can be appreciated, the projection of each group on the other groups forms the
training set. The checking and validation sets were obtained following the same procedure.

3.3.3. Learning Process of the Detector

The structure of the neuro-fuzzy detector is composed of two FISs, which were ob-
tained from the training procedure of two ANFIS networks. Each ANFIS network [34] uses
training and checking sets to capture the behaviour of the fault in the learning process. In
this process, the ANFIS looks at the normalised RMSE of the training set and the check set
to not overfit only the first set, which would cause the obtained FIS to output inappropriate
values for values that have not been seen in the learning process. In this way, it seeks a
middle ground where learning is general in both groups according to [32].

The training of each ANFIS is executed by first employing the method based on
clustering (subtractive grouping) [35] to estimate both the quantity and initial centers of the
Gaussian membership functions (MF) utilised in the fuzzy rules. Afterward, the elements
of each ANFIS layer are refreshed employing a hybrid training method, which combines
gradient descent to acquire the elements that determine the MF of each fuzzy set antecedent
parameters and minimises the squared difference to determine the coefficients of every
first-order polynomial function, referred to as the resulting linear parameters for each
epoch or sweep. The elements of the ANFIS structure are shown in Table 1.

Table 1. ANFIS parameters

Description ANFIS

Type of MF Gaussian
Method of optimisation: Hybrid
Type of MF output: Linear

FIS Norm Fault

MFs number: 3 3
Rules number: 3 3
The range of influence 0.7 0.7
The number of the epoch: 1500 1500
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Once the ANFIS learning process has been completed, FISNorm and FISFault are ob-
tained, which estimate the behaviour of faults in τg. Both FIS contains three Takagi–Sugeno
type rules as the following:

IF x1 is F1j and x2 is F2j and xi is Fij ,

THEN : f j(x) = g0j + g1jx1 + · · ·+ gijxi

where the description of each of the parameters that make up the rule is extensively
described in [31].

The failure in τg is determined through the output of each FISs which is the projection
of the detector input data set Din = [Vw τg τaer τem] onto the first PC in the total group
(TotalTs). A comparator block, as shown in Figure 3, is then used, which consists of an
Exhaustive Search Algorithm (ESA) and a rule. The ESA is composed of a cost function that
defines which FISs attains the actual projection TotalT∗real of a new incoming data set by
direct evaluation, choosing the FIS that minimises the cost function. The FISs that presents
the minimum Js →

{
JNorm ∈ 1, JFault ∈ 2

}
sets the group to which the updated data set

(Din) is associated.

Js =
∥∥∥TotalT∗real − TotalTs

∥∥∥2

2
(34)

Finally, the rule determines if τg fails or not in the follows

IF Js = 1 THEN S = 0 ELSE S = 1

where S = 0 represents the healthy status of the actuator and S = 1 represents the faulty
status of the actuator.

3.3.4. Evaluation of the Detector

The evaluation process consists of testing the neurofuzzy detector with validation
data. Both FISs are evaluated with the data of each group. If new input data (Din) do not
contain a fault in τg, the output of FISNorm is closer to the actual projection TotalT∗real . On
the other hand, if Din contains failures in τg, the output of FISFault is closer to the actual
projection (TotalT∗real).

The evaluation process compares the output of FISs with the validation data set, that
is, the new data set’s input–output samples. Thus, the error indexes were used to compare
the FISs outputs (TotalTs) with the actual output data (TotalT∗real) according to [33]. The
arithmetic error mean (Ē), standard deviation (Std), Root Mean Square Error (RMSE), and
the coefficient of determination R2 provide information about precision, i.e., how much the
error is dispersed, and are presented in Table 2.

Table 2. Validation index of FISs.

Error Neurofuzzy Models

Indexes FISNorm FISFault

Ē 0.18× 10−6 0.034× 10−6

Std ±1.28× 10−6 ±21.02× 10−6

RMSE 1.30× 10−6 21.01× 10−6

R2 0.9999 0.9999

The proposed comparator block determines if there is a failure or not in τg. In this block,
ESA conducts a direct evaluation by comparing the cost function Js with the estimate pro-
jection value (TotalTs) of each FISs and allocates the value of the tag

{
JNorm ∈ 1, JFault ∈ 2

}
that minimises this function. Subsequently, the rule determines the fault and assigns the
corresponding value to S.
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If the evaluated data (Din) are of normal operation, the FISNorm will minimise the cost
function and that group is assigned to the data, while the rule will determine the existence
of a fault, as shown in Figure 4.
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-1
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2

Figure 4. NF detector testing with normal operation data. (a) Error obtained from direct comparison
in the ESA between TotalTNorm and TotalT∗real . (b) Fault detection process.

Figure 5 shows that when (Din) has a faulty operation, the FISFault will minimise the
cost function and that group is allocated to the data. In the same way, the rule determine
the existence of a fault.

0 500 1000 1500
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1
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0 500 1000 1500

-1

0
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2

Figure 5. NF detector testing with faulty operation data. (a) Error obtained from direct comparison
in the ESA between TotalTFault and TotalT∗real . (b) Fault detection process.

Furthermore, a confusion matrix (see Table 3) has been constructed to evaluate the
proposed detector; this matrix shows the dispersion of the groups attributed to the predicted
data, assigned to their true groups.
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Table 3. Confusion matrix τg.

Predicted

Normal Fault

Actual

Normal 1471 42

Fault 10 1503

Precision 97.22% 99.34%

Recall 99.33%

Accuracy 98.28%

4. Simulation Result

In order to evaluate the efficacy of the proposed technique, we developed a wind tur-
bine simulation with a variable power conversion system in MATLAB/Simulink software
2021b package with sampling time Ts = 10−2 s. The FTC with and without fault diagnosis
and isolation was studied introducing the actuator fault as an offset in generator torque at
t = 15 s. Table 4 contains the wind turbine and generator parameters.

Table 4. Parameters of the wind turbine and generator [36].

Wind Turbine Parameters Value

Power rate Pn (kW) 10
Density of the air ρ (kg/m3) 1.225
Number of blades 3
Rotor radius R (m) 3
Ratio of the gearbox ratio Ng 5.4
Total Inertia of the turbine J (kg·m2) 0.02
Coefficient of the total viscous friction B (Nm/s) 0.0016

Generator Parameters Value

Nominal Power Pn (kW) 10
Number of poles pair p 2
Nominal Speed (rpm) 1440
Rotor resistance Rr (Ω) 0.62
Stator resistance Rs (Ω) 0.455
Rotor inductance Lr (mH) 0.081
Stator inductance Ls (mH) 0.084
Mutual inductance Rotor/Stator M (mH) 0.02661

The wind profile is presented in Figure 6, which reveals that the speed fluctuates by
roughly 10% between 0 and 30 s.

0 5 10 15 20 25 30

sec

0

2

4

6

8

10

Figure 6. Wind profile.
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Three scenarios were considered that are discussed in the following subsections.

4.1. Scenario 1

In this scenario, a fault of 30% from the measured value was created without the FTC
controller in order to show the influence of the faulty actuator generator torque on the
wind turbine performance.

Figure 7 suggests that a fault in the actuator generator torque has a substantial in-
fluence on the performance of the mechanism. The simulation outcomes indicate that
when the fault occurred at time 15 s, a 30% loss in the nominal torque value resulted, from
23.5 Nm to 16 Nm, as depicted in Figure 7a. As a result of this fault, there was an increase
in the generator speed from 108 rd/s to 111 rd/s, as shown in Figure 7b.
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Figure 7. Wind turbine mechanical performance under a generator actuator fault without AFTC (a).
Generator torque (b) generator speed, (c) electromagnetic torque, (d) mechanical power.

The MPPTs electromagnetic torque output decreased from the nominal value of
23.5 Nm to 16 Nm, and although the backstepping controller was implemented to correct
the perturbation, there remained a 0.5 Nm difference from the nominal value, as seen in
Figure 7c. The decrease in generator actuator torque led to a reduction in mechanical power,
which dropped from the nominal value of 2.5 kW to 1.7 kW due to the relationship between
generator torque and speed, as presented in Figure 7d.

The mechanical power serves as the reference electrical power for the generator, as
demonstrated in Figure 8a,b. The fault caused a decrease in the rotor and stator currents
from the nominal values, as revealed in Figure 8c,d, due to the decrease in reference power
involved in the generator actuator fault.

Overall, the simulation results provide valuable insights into the system’s performance
under failure conditions. The results underscore the requirement for fault-tolerant control
mechanisms that can help the system maintain its performance even under fault conditions.
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Figure 8. Wind turbine electrical performance under a generator actuator fault without AFTC.
(a) Generator torque, (b) generator speed, (c). electromagnetic torque, (d) mechanical power.

4.2. Scenario 2

The aim of this scenario is to apply the FTC based on the BADRC after 5 s with a
manual isolation switch by a local operator between the failed actuator torque and the
estimated torque to show how the FTC enhances the performance of the wind turbine.

The manual transition from the failed generator actuator torque to the estimated one
delivered by the FTC controller in improving the performance of the system is shown
in Figure 9. Due to the architecture of the observer, switching between the faulty value
of torque and the observed one will improve the estimated value to join the nominal, as
illustrated in Figure 9a. As a result, the generator speed will decrease to join the nominal
value as shown in Figure 9b.
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Figure 9. Wind turbine mechanical performance under a generator actuator fault with FTC. (a) Gen-
erator torque, (b) generator speed, (c) electromagnetic torque, (d) mechanical power.
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The MPPTs electromagnetic torque outcomes increased to the nominal value, sup-
pressing the 0.5 Nm effect of the fault, as seen in Figure 9c. The FTC observer torque led to
a growth in mechanical power, which lifted to the nominal value due to the relationship
between generator torque and speed, as presented in Figure 9d.

As demonstrated in Figure 10a,b, the mechanical power is the reference electrical
power for the generator. The FTC correction caused an increase in the rotor and stator
currents to join the nominal values, as illustrated in Figure 10c,d, due to the growth in
electrical reference power involved in the FTC observed value of the generator torque.
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Figure 10. Wind turbine electrical performance under a generator actuator fault with FTC. (a) Rotor
currents, (b) stator currents, (c) electrical power, (d) mechanical and electrical power.

4.3. Scenario 3

In this scenario, the control phases of the wind turbine are managed autonomously
via the detector ANFIS isolation switch from the failed actuator torque to the observed one.

The evaluated data (Din) contain normal and faulty data. Figure 11 shows the esti-
mate projection (TotalTs) by each FIS and real projection TotalT∗real . As can be appreciated
in Figure 11a, the output of FISNorm is closer to the actual projection TotalT∗real , while
Figure 11b shows that the output of FISFault is closer to the actual projection TotalT∗real .

In the comparator block, the ESA will minimise the cost function Js and that group is
assigned to the data, while the rule will determine the existence of failure or not, as shown
in Figure 12. In addition, the results of this scenario are shown by a confusion matrix in
Table 5, which indicates good results in the detection of τg.

The results of the confusion matrix in Table 5 demonstrate the high performance of the
model in detecting false data in torque. The precision of the true class, which represents
the accuracy in detecting real data, was 90.20%, indicating that most true data samples
were correctly identified. Furthermore, the precision for the false class, which indicates
the accuracy in detecting false data, was 100%, signifying that all false data samples were
correctly identified.
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Figure 11. The output of each FIS. (a) The whole estimated values of the projection TotalTs . (b) Zoom
in of a section where the input data to the detector are not faulty. (c) Zoom in on a section where the
input data to the detector are faulty.
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Figure 12. NF detector testing with normal and faulty operation data. (a) Error obtained from direct
comparison in the ESA between TotalTs and TotalT∗real . (b) Fault detection process.

The recall, which represents the ability of the model to detect all false data, was 100%,
indicating that there were no false negatives in the detection process.

In general, the model achieved an accuracy of 95.10%, which means that 95.10% of the
data samples were correctly classified as true or false. These results demonstrate a robust
performance of the model in detecting false data in torque, which is crucial for ensuring
the accuracy and reliability of data in torque-related applications.
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Table 5. Confusion matrix τg for scenario 3.

Predicted

Normal Fault

Actual

Normal 1354 147

Fault 0 1501

Precision 90.20% 100%

Recall 100%

Accuracy 95.10%

Table 6 presents the results of the neurofuzzy false data detector. Two groups were
evaluated: “Normal” and “Fault”. For the “Normal” group, 1354 out of 1501 actual
samples were correctly predicted. However, 147 false data were erroneously classified
as faults within the “Normal” group. On the other hand, all 1501 samples in the “Fault”
group were correctly predicted, and no false data were identified. Overall, of the 3002
total samples evaluated, 147 were mistakenly classified as faults. These findings indicate
that the unreliable data detector performs well in fault detection, but there is a need for
improvement in accurately classifying normal data as nonfaults.

Table 6. Results of the NF detector.

Group
Electromagnetic Torque

Predicted Actual False Normal False Fault

Normal 1354 1501 0 147
Fault 1501 1501 0 0

Total samples 3002 3002 0 147

The entire process incurs a computational burden time of 2.6193 seconds (see Table 7),
with each individual sample demanding a remarkably brief duration of approximately
0.873× 10−3. Furthermore, the first ANFIS model achieved a training nRMSE of 8.157× 10−6

and a checking nRMSE of 8.625× 10−6, whereas the second ANFIS model exhibited even
higher precision, boasting a training nRMSE of 0.281× 10−6 and a checking nRMSE of
0.2908× 10−6 .

Table 7. Computational complexity of the algotithm.

ANFIS
Type Inputs MF

Type MFs Ant.
Param.

Total
Rules

Consq
Param.

Total
Param.

Trn
nRMSE

Chk
nRMSE

Type 3 4 Gaussian 3 9 3 12 21 8.157× 10−6 8.625× 10−6

Type 3 4 Gaussian 3 9 3 12 21 0.281× 10−6 0.2908× 10−6

Computational Burden Time per sample (s) Total Time (s)
0.873× 10−3 2.6193

Despite the negative effects of the defect, Figures 13 and 14 demonstrate that the
proposed AFTC controller based on BADRC theory and the adaptive neurofuzzy isolation
makes the process more efficient and drives the system to extract the greater amount of
power without perturbing any mechanical and electrical performances.



Energies 2023, 16, 5455 18 of 22

0 5 10 15 20 25 30

sec

0

20

40

60

80

0 5 10 15 20 25 30

sec

0

50

100

150

200

0 5 10 15 20 25 30

sec

0

20

40

60

80

0 5 10 15 20 25 30

sec

0

2

4

6

8

10

12

15 15.6
10

20

30

15 15.6

110

120

15 15.6
15

20

25

30

14.9 15
15

20

25

15 15.6

2

3

Figure 13. Wind turbine mechanical performance under generator actuator fault with AFTC. (a) Gen-
erator torque, (b) generator speed, (c) electromagnetic torque, (d) mechanical power.
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Figure 14. Wind turbine electrical performance under generator actuator fault with AFTC. (a) Rotor
currents, (b) stator currents, (c) electrical power, (d) mechanical and electrical power.

To gain insight into the effectiveness of the proposed method, a comparison is made
with various fault detection and isolation (FDI) methods. The work carried out in [14]
presents a fault detection approach of τg failure as the increasing offset in generator torque
( f9); the author defines the diagnosis time (TD) in terms of the sampling time (Ts = 12.5 ms).
The proposed method in this manuscript uses a sampling time Ts = 10 ms for a simulation
of 30 s (3002 samples), and the fault occurs at 15 s (see Figure 13). The effectiveness of
the proposed method in this manuscript is compared in the same way as in [14] and is
shown in Table 8. As we can observe, the proposed method is much faster compared to the
other methods.
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Table 8. Comparison of the proposed method with other methods in terms of diagnosis time.

Fault TD (ms)
Required

TD (ms)
Obtained

Detector qLPVZO TSIO ANNK SVMKF RSVM MBIO

τg TD < 37.5 0.873 12.5 25 225 437.5 37.5 37.5

5. Conclusions

The simulation results illustrate the efficiency of the suggested approach in addressing
the actuator generator torque failure problem while also isolating the faulty actuator. The
neurofuzzy detector demonstrates exceptional capability in identifying erroneous torque
data, exhibiting remarkable precision rates of 90.20% for real data and 100% for false data. It
achieves a perfect recall score of 100%, signifying the absence of false negatives. Moreover,
the overall precision of 95.10% serves as a testament to the detector’s consistent aptitude in
accurately categorising data as true or false. Furthermore, the computational burden time
for the entire process is 2.6193 s, with each individual sample requiring an impressively
short time of approximately 0.873× 10−3. Moreover, the first ANFIS model achieved a
training nRMSE of 8.157× 10−6 and a checking nRMSE of 8.625× 10−6, while the second
ANFIS model demonstrated even greater precision with a training nRMSE of 0.281× 10−6

and a checking nRMSE of 0.2908× 10−6. These compelling findings firmly emphasise the
resilience of the detector to detect false data, thus guaranteeing the highest accuracy and
dependability in the specific application at hand.

Furthermore, the results demonstrate that the utilisation of BADRC and neurofuzzy
isolation presents a dependable and resilient solution to tackling the problem of actuator
generator torque failure. This approach not only maximises power extraction, but also
effectively mitigates the risk of additional damage. In summary, the study emphasises the
potential of BADRC and ANFIS detection and isolation as a promising strategy to enhance
the reliability and performance of wind energy conversion systems, specifically in offshore
wind farms. As part of future work, the investigation will extend to failures that occur
under varying forces, including the exploration of simultaneous failures.

Highlighting the challenges and limitations of the proposed algorithm, the proposed
method is designed to detect only generator actuator failures and ANFIS for normal
operation; sometimes, it may misclassify data as failures. In future work, this method will
be extended and improved to detect various faults and improve the above points by using
the genetic algorithm to determine the parameters of the membership function parameters.
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Abbreviations
The following abbreviations and variables are used in this manuscript:

AFTC Active Fault Tolerant Control
BADRC Backstepping Active Disturbance Rejection Control
ANFIS Adaptive Neurofuzzy Inference System
SDGs Sustainable Development Goals
PCA Principal Component Analysis
MPPT Maximum Power Point Tracking
FTC Fault Tolerant Control
FIS Fuzzy Inference System
FDI Fault Detection and Isolating
SVM Support Vector Machine
DNN Deep Neural Networks
ARRs Analytical Redundancy Relations
TS Takagi–Sugeno
qLPV quasi-Linear Parameter Varying
HSS High Speed Shaft
LSS Low Speed Shaft
DFIG Double Fed Induction Generator
FIS Fuzzy Inference System
ESA Exhaustive Search Algorithm
ANNs Adaptive Neural Networks
RMSE Root Mean Square Error
TSIO Takagi–Sugeno Interval Observer
ANNK Artificial Neural Networks and k-Nearest Neighbors
SVMKF Support Vector Machine and Kalman Filter
RSVM Residual Support Vector Machine
MBIO Model-Based Interval Observer
Variables
Paer Aerodynamic Power
R The Rotor Radius
Vw The Wind Speed
Cp The Power Coefficient
λ The Tip Speed Ratio
β The Blade Pitch Angle
ωt The Shaft’s Angular Velocity
Cpmax The Highest Value of The Power Coefficient
λopt The Optimal Value of The Tip Speed Ratio
ωtopt The Optimal Value of The Shaft’s Angular Velocity
Ng Ratio of The Gearbox
ωg The Generator Speed
τt, τg, τem The Turbine, Generator and Electromagnetic Torque
J The Total Inertia
Jt, Jg The Turbine Inertia and The Generator Inertia
ωmes The Measured Shaft’s Angular Velocity
Vsd, Vsq The d/q Stator Voltages
Vrd, Vrq The d/q Rotor Voltages
Isd, Isq The d/q Stator Currents
Ird, Irq The d/q Rotor Currents
φsd, φsq The d/q Flux Currents
φrd, φrq The d/q Flux Currents
Rs, Rr The Stator and Rortor Resistance
Ls, Lr The Stator and Rortor Inductance
M The Magnetising Inductance
ωs, ωr The Stator and Rotor Electrical Speed
−ω0, ω0 The Observer Bandwidth.
Pg The Generator Power
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f The Generator Viscous Friction Coefficient
S The Output of The Detector
H, F The Healthy Status of The Actuator and The Faulty Status of The Actuator
f9 The Fault of Generator Torque
Ts, TD The Sampling Time and The Diagnosis Time
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