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1 Introduction

Topological string theory has proven to be a powerful tool in our understanding of both the
physical and mathematical aspects of string theory geometries, particularly in the context
of type II string theories and Calabi-Yau compactifications. Following the seminal paper
of Witten [1], topological sectors of string theory have led to deep implications in both
mathematics and physics, including surprising geometric correspondences such as mirror
symmetry [2, 3], Gopakumar-Vafa invariants and counting BPS states [4, 5], topological
open strings [6] and Donaldson-Thomas invariants [7, 8], and invariants for symplectic
manifolds [9].

Many of these works have focused on a worldsheet or sigma-model approach, with
topological string theory obtained by coupling a twisted worldsheet superconformal field
theory to two-dimensional gravity. In the most well-known set-up, the worldsheet theory
has (2, 2) supersymmetry, and the two choices of twist lead to the A-model and B-model [10].
In the A-model case, correlation functions are sensitive only to the Kähler class of the
target space X of the theory and count the number of rational curves in X. In the B-
model, correlation functions are sensitive only to the complex structure of the target space.
Classical mirror symmetry at genus zero then states that the counting of rational curves on
a Calabi-Yau threefold (computed by the A-model) is equivalent to analysing variations of
Hodge structure on its mirror Calabi-Yau (computed by the B-model). This correspondence
extends to higher-genus worldsheets too. For example, in the A-model, the counting of
rational curves is generalised by Gromov-Witten theory to the counting of higher-genus
curves. Historically, the higher-genus B-model was less straightforward to understand, as
there was no immediate generalisation of variations of Hodge structure to higher genus.
However, a worldsheet theory was eventually described by Bershadsky, Cecotti, Ooguri and
Vafa (BCOV) in [11].

Rather than working solely on the worldsheet of the string, topological theories can also
be analysed from the target space of the string. For example, BCOV, put forward a proposal
for the target-space theory of the topological B-model, which has come to be known as
Kodaira-Spencer theory (or Kodaira-Spencer gravity). Kodaira-Spencer theory characterises
the behaviour of complex manifolds and their cohomology under infinitesimal variations.
In the context of the worldsheet topological B-model with a Calabi-Yau target space X,
this is a gauge and gravitational anomaly-free theory which captures crucial aspects of the
complex structure moduli space of the string. For example, the periods of the holomorphic
(n, 0)-form on the Calabi-Yau provide a natural set of coordinates on the complex structure
moduli space, with infinitesimal changes in these coordinates (variations of Hodge structure)
governed by Kodaira-Spencer theory. Put this way, it is clear this target-space theory is
best thought of as quasi-topological, since it depends on the complex structure of the target
space but not the symplectic structure, and so does not depend on a choice of metric on
X. Furthermore, classically the theory depends on only holomorphic data of the complex
structure, though this holomorphicity does not hold after quantum corrections. Continuing
this target-space point of view, in the context of the type II string, Pestun and Witten [12]
showed that the one-loop partition function of the topological A- and B-models, which

– 1 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
0

agree in the large-volume limit [11, 13, 14], can be computed from a quadratic target-space
action derived from the Hitchin functional for a generalised Calabi-Yau structure [15].

In this paper, we analyse a similar target-space theory in the context of the heterotic
string. Our set-up is compactifications to four-dimensional Minkowski space preserving
minimal supersymmetry. The resulting four-dimensional theories are governed by a su-
perpotential [16–19] and a Kähler potential [20–25]. Crucially, the superpotential is a
holomorphic functional of the geometry of the compact six-dimensional internal space.
Expanding in fluctuations around a given supersymmetric background, the superpotential
gives a holomorphic field theory for the moduli of the background.1 We shall refer to this
theory as heterotic Kodaira-Spencer and study its classical and quantum properties. At
the classical level, we find that the action can be made independent of the background
metric and gauge connection. In particular, it depends only on the holomorphic structure
of the manifold and gauge bundle, and the fluxes. We find that our action can be written
naturally in the language of [25, 28, 29], in which case the theory depends only on the
holomorphic structure of the Courant algebroid (Q, D̄), and not on the associated metric.
By expanding to quadratic order in fluctuations, we calculate the one-loop contribution
to the partition function for this holomorphic field theory. Focusing on the case where
the background geometry is Calabi-Yau, we compute this using both traditional operator
methods and Batalin-Vilkovisky (BV) quantisation, finding agreement between them, with
the answer given in terms of Ray-Singer torsions associated to (Q, D̄).

One might wonder about whether this theory is well-defined at the quantum level as,
since the theory is (classically) holomorphic, it resembles a chiral theory in six dimensions
and so may be anomalous. In particular, the theory may suffer from local anomalies: the
classical action governing the fluctuations is invariant under diffeomorphisms and gauge
transformations, but the partition function may transform with an anomalous phase. If this
cannot be cancelled by local counter-terms, it indicates a fatal breakdown of gauge invariance
and means the quantum theory is ill-defined. There is also a second kind of anomaly, similar
to the holomorphic anomaly in Kodaira-Spencer theory: the classical theory is metric-
independent, but quantisation requires a choice of background metric. The partition function
of the theory may then depend on this background metric. If this dependence cannot be
cancelled by local counter-terms, as happens for the topological anomaly in Chern-Simons
theory,2 it indicates that the theory depends on extra data, not present in the classical
theory. This is undesirable if one is hoping for a quasi-topological theory, but not fatal.
Indeed, a dependence of the one-loop partition function on the background structure might
even be desirable, as it may shed light on higher loop corrections through e.g. holomorphic
anomaly equations [11, 14].

We analyse both kinds of anomalies and study when they can be cancelled by the
addition of (local) counter-terms and/or by altering the theory using a Green-Schwarz-

1While the critical points of the superpotential directly correspond to the F-term supersymmetry
conditions, the quotient of this space by complexified gauge equivalence in fact equals the moduli space
including the D-terms conditions. See [25–27] for how this works.

2As we comment on later, the topological anomaly in Chern-Simons theory can be removed almost
entirely, leaving dependence only on a choice of “framing”.
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like mechanism. We find that the only local anomalies which can occur are gravitational
anomalies. We show that these can always be cancelled through a Green-Schwarz mechanism.
Interestingly, if we relax some of the conditions one puts into the construction of our theory,
we obtain a theory which has gauge, gravitational and mixed anomalies. The cancellation
of these requires extra constraints on the topology of the gauge bundles, which we study
this in section 4.3. We also find a non-trivial dependence of the partition function on
the background metric and gauge connection. Naively, this breaks the topological nature
of the classical theory. However, we find that it can be restored through the addition of
counter terms, provided one relates the second Chern characters of the manifold and gauge
bundle. We comment on how this relates to the usual constraints on the Chern characters
of heterotic backgrounds coming from the Bianchi identity. In particular, the anomaly
cancellation relies on the anomaly polynomial factorising in nice ways. To achieve this
factorisation it is crucial to include extra fields in the action which can be decoupled from
the on-shell moduli problem [26]. These fields include the axio-dilation and a component of
the Kalb-Ramond B-field. Understanding how these fields correct the L∞-structure of the
moduli problem when included is left for future work.

As our theory is an example of a holomorphic field theory (in the case of vanishing
fluxes), we go on to show how our approach to its quantisation can be applied to a more
general class of theories of this type, and is closer in spirit to the approach of [7, 30]. The
field content of a holomorphic field theory is specified by a complex of spaces of holomorphic
sections of holomorphic bundles, with holomorphic differential operators providing the
differentials [31]. The BV complex is then given as the total complex of the Dolbeault
resolution of this. The one-loop partition function is thus expressed in terms of the analytic
torsion of this total complex. Under mild assumptions, which are fulfilled by a large class
of holomorphic field theories on compact Kähler manifolds, we show that this analytic
torsion in fact decomposes into an alternating product of the holomorphic torsions of the
holomorphic bundles in the original complex being resolved. Thus, in these cases, the
one-loop partition function can be read-off from the field content alone and does not depend
on the form of the holomorphic differential appearing in the kinetic terms. Further, it will
automatically be given in terms of holomorphic torsions, so that one could then perform
the anomaly analysis using the formulae for the variations of these holomorphic torsions as
we have done for our heterotic theory.

The paper is organised as follows. We begin in section 2 by introducing the relevant
holomorphic field theory, derived from the heterotic superpotential, and then give a compu-
tation of the one-loop partition function of this theory using formal path-integral methods
and BV quantisation in the cases of both vanishing and non-vanishing flux. In section 3,
we give an overview of both local and “topological” anomalies focusing on the examples
of Chern-Simons theory and the B-model. In section 4, we discuss local anomalies for the
holomorphic field theory governing the moduli of a supersymmetric heterotic background.
Analysing the cases of vanishing and non-vanishing flux, we find that the theory is generically
anomalous, but the anomalies can be cancelled by a Green-Schwarz mechanism. As an aside,
we also discuss a slightly different holomorphic field theory which does not come from the
heterotic string. In sections 5, we check whether our theory is quasi-topological by analysing
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the dependence of the one-loop partition function on the background metric and gauge
bundle. For particular choices of gauge sector, we find that independence of the background
metric and gauge connection can be restored by the addition of local counter-terms. In
section 6, we discuss how one can understand the previous sections in terms of general
properties of holomorphic field theories, finding that the one-loop partition function can be
expressed in terms of the Ray-Singer torsions of certain holomorphic bundles. We finish in
section 7 with some discussion of future directions.

2 Heterotic Kodaira-Spencer theory

We begin by introducing the theory in question, derived from the heterotic superpotential.
As we will see, this theory governs supersymmetric deformations of heterotic string theory on
a complex threefold, and is closely related to Kodaira-Spencer gravity [11], and holomorphic
Chern-Simons theory [7, 8].

2.1 The superpotential, deformations and Maurer-Cartan

Our starting point is to consider deformations of the Hull-Strominger system, which describes
N = 1 supersymmetric reductions of heterotic theory on a six-dimensional manifold with an
SU3 structure. A heterotic Kodaira-Spencer theory should, at the classical level, reproduce
the Maurer-Cartan equations of on-shell, or “integrable”, deformations and hence can be
considered the heterotic analogue of Kodaira-Spencer theory for deformations of complex
structures [11].3 Such a theory was written down in [26], where it was found to be described
by an L∞-algebra associated to the underlying gauge structure. We will review this work and
extend it to allow for deformations which include rescalings of the holomorphic three-form Ω.

Supersymmetric compactifications of heterotic string theory on a six-dimensional
manifold X require that the internal geometry admits an SU3 structure [32, 33]. The SU3-
invariant tensors (ω,Ω) and the gauge field A must satisfy certain differential conditions for
the background to preserve supersymmetry:

dΩ = 0 , dJω = H := dB + 1
4α′ (ωCS(A)− ωCS(Θ)) , F0,2 = R0,2 = 0 , (2.1)

d(e−2φω ∧ ω) = 0 , ω⌟F = ω⌟R = 0 , (2.2)

where J is the complex structure associated to (ω,Ω). These equations imply that the
background is complex with a hermitian metric that is generically not Kähler, but only
conformally balanced. Both the tangent bundle and gauge bundle must be holomorphic
bundles equipped with hermitian Yang-Mills connections. The three-form flux H is defined
in terms of the Chern-Simons three-form associated to the gauge connection A and the
spin connection Θ. This ensures that H satisfies the usual non-trivial Bianchi identity for
heterotic backgrounds. Due to the difficulty of working with the spin connection explicitly,4

we will ignore it and consider only the contribution of the gauge field A to H. This is a
3Here we use integrable in the sense of [25] to mean deformations preserving supersymmetry. This is

somewhat non-standard compared with the literature on G-structures.
4See e.g. [27].
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toy model for heterotic backgrounds which is frequently employed [22, 25, 26, 34]. One
could assume that the gauge group has an SU3 factor and impose by hand at the end of
the calculation that the associated gauge connection aligns with the spin connection of the
manifold.5 However, one needs to be careful about spurious degrees of freedom arising from
treating the gauge field as independent from the hermitian metric, particularly when doing
1-loop calculations. We shall ignore this subtlety here.

The four-dimensional N = 1 effective theory one obtains after compactifying on such
a background is controlled by a Kähler potential and a superpotential. If one keeps full
dependence on the internal geometry (rather than truncating to a finite set of modes), these
N = 1 potentials are functionals of the internal geometry. Explicitly, the superpotential
functional W is given by [16, 17]

W =
∫

X
(H + i dω) ∧ Ω . (2.3)

This functional is properly identified as “the” superpotential by noting that W = δW = 0
is equivalent to the F-term conditions of the Hull-Strominger system [16, 18, 19]. These are
the conditions appearing in (2.1), while those appearing in (2.2) are the D-terms. We will
often refer to field configurations that satisfy the F-term conditions, W = δW = 0, as being
“on-shell”. Though one also needs to solve the D-term conditions to have a solution to the
equations of motion, the space of solutions to the F-term equations modulo complexified
gauge transformations (which are included in our construction below) provides the physical
moduli space [25, 26], so that our “on-shell” states are in one-to-one correspondence to the
truly supersymmetric states.

In analogy to Kodaira-Spencer theory, we now look for an action whose equations of
motion describe on-shell deformations of the background. To do so, we expand (2.3) for
a generic deformation of the background degrees of freedom (Ω, ω, B, A). For now, we
will ignore the gauge fields6 and consider deformations of the geometry alone. We can
parametrise deformations of the complex structure by a complex scalar k and a Beltrami
differential µ ∈ Ω0,1(T 1,0). Here our notation is that Ωp,q(V ) is the space of V -valued
(p, q)-forms on X. Combining the deformations of ω and B into complex objects, one finds
finite deformations of (Ω, ω, B) can be expressed as

Ω+∆Ω = (1 + k)(Ω + ıµΩ+ 1
2 ıµıµΩ+ 1

3! ıµıµıµΩ) ,

(∆B + i∆ω)1,1 = x ,

(∆B + i∆ω)0,2 = b .

(2.4)

Here ∆ is an off-shell holomorphic deformation in parameter space,7 and ıµ denotes
contraction with the vector index of µ and antisymmetrising with the form index as usual.
Note that it was shown in [21, 26] that one can always set (∆B + i∆ω)2,0 = 0. Also, the

5One also should take care about the relative sign between the gauge sector and the spin connection in
the definition of H.

6Or equivalently, work in the large-volume limit where α′ corrections are suppressed.
7Note that since the superpotential is holomorphic and only the combination B + iω appears there, we

do not get any ∆B − i∆ω terms in the holomorphic parameter space.
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reader might be concerned with the unfamiliar off-shell field k associated to rescalings of Ω
by an arbitrary function. This is related to deformations of the axio-dilaton as Ω = e−2ϕΨ,
where ϕ is the dilaton and Ψ is the (3, 0)-form of the heterotic SU(3) structure. While this
can be neglected in the classical moduli calculations, it is an important off-shell parameter
which plays a role in anomaly cancelation, as we will see in sections 4 and 5.

The heterotic Kodaira-Spencer theory we consider is then given by

S ≡ W +∆W =
∫

X

1
2(H + i dω) ∧ ıµıµΩ+ (∂̄x + ∂b) ∧ ıµΩ+ ∂̄b ∧ kΩ

+
∫

X

1
2(H + i dω) ∧ kıµıµΩ+ (∂̄x + ∂b) ∧ kıµΩ+ 1

2∂x ∧ ıµıµΩ

+
∫

X

1
2∂x ∧ kıµıµΩ ,

(2.5)

where in the second equality we have used the fact that we are deforming around an on-shell
background to remove the terms at zeroth- and first-order in the deformations. The first,
second and third lines correspond to the terms in the action which are quadratic, cubic and
quartic in the deformations. As shown in [18, 26], the resulting equations of motion of this
action give the moduli equations for the Hull-Strominger system.

We can package the deformations in a way that reflects the underlying L∞ structure of
the moduli problem. We first define the spaces Ap as

Ap = Ω0,p(Q)⊕ Ω0,p+1 ⊕ Ω0,p−1 , Q = T 1,0 ⊕ T ∗1,0 , (2.6)

for p = 0, the last summand is not present, while for p = −1, only the middle summand
appears. Writing y = (µ, x, b, k), we see that elements y ∈ A1 capture deformations of
the background, as in (2.4). There is then a natural (holomorphic) pairing ⟨·, ·⟩ and a
differential D on the complex A ≡

⊕
p Ap:

⟨·, ·⟩ : Ap × A3−p → Ω0,3 , D : Ap → Ap+1 . (2.7)

Explicitly, for y ∈ Ap, y′ ∈ A3−p, these are given by

⟨y, y′⟩ = −ıµx′ + ıµ′x + k ∧ b′ − k′ ∧ b ,

Dy =
(
∂̄µ, ∂̄x + ∂b + (−1)p ıµH̃, ∂̄b, ∂̄k + (−1)p∂ · µ

)
,

(2.8)

where H̃ ≡ H + i dω ∈ Ω2,1, and ∂ · µ denotes the holomorphic divergence defined using the
holomorphic volume form Ω on X. It is then straightforward to check that D is nilpotent
and (graded) self-adjoint with respect to the pairing:

D2 = 0 ,

∫
X
⟨Dy, y′⟩ ∧ Ω = (−1)p

∫
X
⟨y,Dy′⟩ ∧ Ω , (2.9)

where y ∈ Ap.
Using this repacking of the deformations, the quadratic part of the action (2.5) can be

written as
S2 = 1

2

∫
X
⟨y,Dy⟩ ∧ Ω , y ∈ A1 . (2.10)

– 6 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
0

It is clear from this expression that this theory is independent of a choice of background
metric. It only depends on a choice of H̃ which defines the extension structure of Q. In
principle, one can find higher order brackets l2, l3, . . . such that A admits an L∞ structure,
with the full action then written in terms of (D, l2, l3, . . . ). In this paper, however, we will be
interested only in the one-loop partition function of the theory controlling the deformations.
This requires only the quadratic action, so we will leave the derivation of the full L∞ algebra
for future work.8 Finally, we note that the quadratic action (2.10) has a gauge symmetry
given by9

δy = Dy0 , y0 = (µ0, x0, b0, 0) ∈ A0 , (2.11)

and a gauge-for-gauge symmetry

δy0 = Dy−1 , y−1 = (0, 0, b−1, 0) ∈ A−1 . (2.12)

2.2 The one-loop partition function

Given the heterotic Kodaira-Spencer action (2.5), we would like to understand its quantisa-
tion. The procedure we will follow is similar to what one does in conventional Chern-Simons
theory on a three-manifold. There, instead of trying to compute the path integral by gauge
fixing the action globally, one fixes a critical point of the Chern-Simons functional and then
gauge fixes the theory around it. In a little more detail, critical points correspond to flat
connections, dA0 +A0 ∧A0 = 0. One then writes the Chern-Simons field A as a fluctuation
a around such a flat connection, A = A0 + a. The action can then be written as

SCS[A] = SCS[A0] +
∫

tr
(
a ∧ dA0a + 2

3a ∧ a ∧ a
)
≡ SCS[A0] + SA0

CS[a] . (2.13)

The partition function of this theory factorises as [35]

ZCS =
∫

dA0 Zback Zfree Zpert, (2.14)

where Zback = exp(−SCS[A0]), Zfree is the partition function for the quadratic part of
SA0

CS[a], and Zpert is the contribution from treating the cubic term in SA0
CS[a] perturbatively.

We have also included an explicit integral over the zero-modes of the field. The terms
Zback and Zfree are usually called the zero- and one-loop parts of the partition function
respectively. To properly quantise the action, one needs to gauge fix which requires the
introduction of a background metric g on the underlying three-manifold. The topological
nature of the classical theory is then naively broken in the quantum theory, though this
can be restored up to a choice of framing [36]. We will discuss this in a little more detail in
the following sections when we consider anomalies. At the free level, the absolute value of
the partition function can be expressed in terms of the Ray-Singer torsion [37], while the
phase is determined by the (twisted) η-invariant [38–40] of the three-manifold and gauge
bundle for A.

8As mentioned already, the L∞ algebra for deformations not including rescalings of Ω was derived in [26].
9Note that these are gauge transformations of the holomorphic fields in our theory, not of the real fields

in the physical heterotic theory.
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Heterotic Kodaira-Spencer. For us, the analogue of A0 is a choice of on-shell back-
ground geometry (Ω, ω, B). Since the zeroth-order action is the superpotential functional,
and this vanishes for on-shell backgrounds, the background contribution to the partition
function is trivial, Zback = 1. The one-loop partition function Zfree is the contribution from
the quadratic action (2.10). That is, it is the partition function of the free theory viewed as
a perturbation around some fixed on-shell background. When evaluated, one expects it will
give a geometric invariant of the background geometry (Ω, ω, B). In fact, as we will see in
section 5, any dependence on the hermitian structure can be removed through appropriate
counter-terms and hence Zfree calculates complex invariants of the background.

For the rest of this work, we will not consider the interaction terms which lead to
Zpert. We will also ignore the contribution from D-harmonic modes. These zero-modes
correspond to classical moduli, i.e. changes in the background geometry, and give Zfree
the interpretation of a measure on Mhet. Note that the analogue of (2.14) for heterotic
Kodaira-Spencer will include an integral of Zfree over the zero-modes, i.e. the moduli space
Mhet. This should promote the complex invariants Zfree to topological invariants of X.
We do not attempt this and instead focus on calculating Zfree without zero-modes.10 As
stated in the introduction, since our action is complex, the partition function as stated is
ill-defined. We shall discuss this issue and its resolution at the end of this section.

2.3 Computing Zfree for H = 0

Let us, for now, set H = 0 which implies that X is Calabi-Yau. In this case, it is easier
to redefine our variables to absorb the factor of Ω. In particular, we will define χ = ıµΩ,
κ = k Ω. We simultaneously redefine A, D and the pairing ⟨·, ·⟩ such that

Ap = Ω2,p ⊕ Ω1,p ⊕ Ω0,p+1 ⊕ Ω3,p−1 ,

Dy = (∂̄χ, ∂̄x + ∂b, ∂̄b, ∂̄κ + ∂χ) ,

⟨y,y
′⟩ = x ∧ χ′ − x′ ∧ χ + b ∧ κ′ − b′ ∧ κ ,

(2.15)

where y ∈ Ap, y′ ∈ A3−p. We are then looking to quantise the action

S2 = 1
2

∫
X
⟨y,Dy⟩ =

∫
X

(
(∂̄x + ∂b) ∧ χ + ∂̄b ∧ κ

)
. (2.16)

Before performing full BV quantisation, we give a formal calculation of the partition
function, which is useful for intuition. Following the approach of Schwarz [41, 42], formally,
we can write

Zfree =
1

Vol(G)

∫
Dy e−S2[y] = 1

Vol(G)
Vol(DA0)

det(D|A1)1/2 , (2.17)

where Vol(G) is the formal volume of the gauge group. We then note the identity

Vol(DA0) = det(D|A0)Vol(A0)
Vol(DA−1) = det(D|A0)Vol(A0)

det(D|A−1)Vol(A−1) , (2.18)

10We cannot completely neglect the zero-modes as these give rise to potential gauge anomalies. We will
discuss this further in the next section.
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and hence, provided we define Vol(G) = Vol(A0)/Vol(A−1), the one-loop partition function
is simply

Zfree =
det(D|A0)

det(D|A−1) det(D|A1)1/2 . (2.19)

Since D is not an endomorphism on Ap, a definition of det(D|Ap) is given by11

det(D|Ap) = eiϕ(D) det(D†D|Ap)1/2 , (2.20)

for some phase ϕ(D) which we will return to later. Thus, we need to define the adjoint
operator D†, which in turn requires an inner product (·, ·) on A. We do so by introducing
a conventional metric g on X which we take to coincide with the Kähler metric of the
background.12 The inner product on y, y′ ∈ Ap is then given by

(y, y′) = ⟨y, ∗y′⟩ = (χ, χ′) + (x, x′) + (b, b′) + (κ, κ′) , (2.21)

where, on the right-hand side, we have used (·, ·) to denote the usual inner product on
differential forms. One can then calculate the adjoint operator D† via

(Dy, y′) = (∂̄χ, χ′) + (∂̄x + ∂b, x′) + (∂̄b, b′) + (∂̄κ + ∂χ, κ′)
= (χ, ∂̄†χ′ + ∂†κ′) + (x, ∂̄†x′) + (b, ∂̄†b′ + ∂†x′) + (κ, ∂̄†κ′)
= (y,D†y′) ,

(2.22)

where now y ∈ Ap and y′ ∈ Ap+1, which results in

D†y =
(
∂̄†χ + ∂†κ, ∂̄†x, ∂̄†b + ∂†x, ∂̄†κ

)
. (2.23)

With this, we can evaluate (2.19) in terms of determinants of conventional Laplacians.13

To do so, we rely on the fact that the inner product on A defines a Hodge decomposition

Ap = Hp ⊕DAp−1 ⊕D†Ap+1 , (2.24)

where H is the space of D-harmonic modes, which we ignore for this calculation. The
Laplacian L = DD† +D†D acting on Ap then splits into DD† acting on DAp−1 and D†D
acting on D†Ap+1. Hence, the determinant of the Laplacian can be formally expressed as

det(L) = det(DD†) det(D†D) . (2.25)

A further calculation also shows that

det(DD†|Ap) = det(D†D|Ap−1) . (2.26)
11See, for instance, the discussion in [12].
12This seems like the natural choice, although we note that it need not be the case. For example, one

could consider using a more general metric on the bundle Q = T 1,0 ⊕ T ∗1,0.
13Here and throughout the paper, we will work with ζ-regularised determinants. In addition, all determi-

nants are assumed to be computed with any zero-modes removed.
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From this, we can rewrite the one-loop partition function (2.19) in terms of determinants
of Laplacians as

|Zfree| =
det(L|A0)3/4

det(L|A−1)5/4 det(L|A1)1/4 . (2.27)

Finally, we can use the definition of D† from (2.23) and the equality of the Dolbeault
Laplacians on a Kähler manifold, ∆∂̄ = ∆∂ = 1

2∆, to simplify the D-Laplacian as

L = 2∂†∂ + ∂∂† ⇒ det(L) = det(2∂†∂) det(∂∂†) . (2.28)

Rescaling an operator by a constant just multiplies the determinant by a constant.14 Hence,
up to some constant factor which can be absorbed into the definition of Zfree, we have

det(L) = det(∆) . (2.29)

Plugging this into (2.27), decomposing the bundles Ap according to (2.15), and using the
results in appendix A, one finds

|Zfree| =
det(∆1,0)2

det(∆0,0)3/2 det(∆1,1)1/2 = B

C1/2 . (2.30)

In the first equality, we have used ∆p,q to denote the conventional de Rham Laplacian
restricted to Ωp,q, and in the second equality, we have introduced the quantities B and C,
defined in appendix A, which are the restriction of det(∆) to certain subspaces within the
Hodge diamond of X. (See figure 1 for details.)

Ray-Singer torsion and the partition function. One may worry at this point whether
the path-integral expression in (2.17) is well-defined as, naively, any path integral with a
complex action appears to be divergent. To highlight this issue, we take as a toy example
the one-dimensional integral

I = 1√
π

∫
C

e−λz2dz , (2.31)

with λ ∈ R>0. This integral is defined only once we prescribe a contour C. Taking C = C0 to
be the real line, we find the familiar result I0 = λ−1/2. If, however, we rotate the contour
C = Cϕ to have a phase eiϕ for ϕ ∈ (−π

4 , π
4 ), we find that I also picks up a phase:

Iϕ = e−iϕλ−1/2 . (2.32)

If we take ϕ to be outside of this range, the integral may no longer converge. However,
even in this case, we can use (2.32) as a definition of the value of the integral for all ϕ.15

Note that, with this definition, the absolute value of the integral is independent of the
14In the ζ-function regularisation scheme we have chosen, provided rescaling does not change the domain

of an operator (which is true in the cases we consider), for any constant a we have

det(aO) = aζ(0) detO .

15See, for example, [7, appendix A].
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contour and is given by λ−1/2. We can make a similar definition for the infinite-dimensional
integral (2.17) which defines Zfree. After decomposing into eigenstates of D, we have an
infinite product of integrals of the form (2.31), where now λ can be positive or negative.
This integral is well-defined only after choosing some real slice of the complex field space
over which to integrate. Despite this, the absolute value of the integral, given by the product
of determinants of Laplacians as in (2.30), should be well-defined and independent of the
choice of contour.

The particular combination of Laplacians appearing in (2.30) is significant because the
absolute value of Zfree can be written as a product of holomorphic Ray-Singer torsions [43–45].
Given a holomorphic bundle V → X with hermitian metric h, one defines the holomorphic
Ray-Singer torsion of V to be

I(V ) =
3∏

p=0

(
det(∆V

p )(−1)p+1p
)1/2

, (2.33)

where ∆V
p is the Dolbeault Laplacian defined with respect to the Chern connection of h

on Λ0,p(V ). With this, on a Calabi-Yau background, the absolute value of the one-loop
partition function is

|Zfree| =
I(Q)1/2

I(Λ0,0) , (2.34)

where, as in (2.6), Q = T 1,0 ⊕ T ∗1,0. It is interesting to note that this is the same as the
value of the one-loop partition function of the SL3, C Hitchin functional, as found in [12].
This is indicative of the fact that Zfree calculates holomorphic invariants of the background.

The phase of the partition function is difficult to calculate as it will be highly sensitive
to the real slice we choose, as in the one-dimensional example above. For this reason, we
will mostly focus on the absolute value of Zfree. However, we note briefly that if we change
the real slice by a phase, we pick up an overall phase in the partition function which is
proportional to the sum of the signs of the eigenvalues of the operator /D = ∗D +D∗. After
regularising, this sum is simply the η-invariant for /D. That is, under a field redefinition one
has

y → eiϕy ⇒ Zfree → e−iϕ(η( /D)+ζ(0))Zfree , (2.35)

where the ζ(0) term comes from the ghost sector in the BV quantisation. In the case
studied where H = 0, this becomes the η-invariant of the operator ∗∂̄ + ∂̄∗, which has nice
properties on Kähler manifolds. It is interesting that we find a relationship between the
phase of the partition function and an η-invariant. We view the ambiguity in the choice
of real slice much like how the frame ambiguity is viewed in Chern-Simons [36]. Provided
we define the partition function and how it changes under a change of phase, we say the
partition function is well-defined.

Finally, we note that, much like in Chern-Simons theory, quantisation required the
introduction of a metric. Despite the fact that the classical action (2.10) depends only
on the complex structure, the quantum theory naively has metric dependence, and hence
we may have an anomaly associated to the topological symmetry. We will see this metric
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appearing also when we BV quantise the theory. We will analyse the metric dependence of
the theory in section 5.

BV quantisation. For completeness, we also compute the partition function using the
Batalin-Vilkovisky (BV) formalism [46]. To obtain the BV action, we take the quadratic
action (2.16) and construct the corresponding master action. To do this, we introduce the
ghosts (y0, y−1) and antighosts (y2, y3, y4), where yi ∈ Ai with statistics (−1)i+1.

The gauge symmetries of the theory fix the action of the BRST operator Q

Qyi = Dyi−1 . (2.36)

The master action is then given by

SBV = S2 +
∫

X

(
⟨y2,Qy1⟩+ ⟨y3,Qy0⟩

)
=
∫

X

(1
2⟨y1,Dy1⟩+ ⟨y2,Dy0⟩+ ⟨y3,Dy−1⟩

)
.

(2.37)

The next step is to choose a Lagrangian submanifold L in the space of fields. It is convenient
to pick this by projecting every field to a subspace orthogonal to its gauge variation:

L = {y | D†y = 0}. (2.38)

Assuming that the cohomology associated to D vanishes, the Lagrangian subspace is spanned
by y = D†u. Since D has a standard Hodge decomposition, the operator D has no kernel on
this subspace. Thanks to this, and noting that y1 and y−1 are bosonic and y0 is fermionic,
the partition function of the theory is (up to constant factors)

|Zfree| =
det(D|A0)

det(D|A1)1/2 det(D|A−1)
. (2.39)

This agrees with our earlier calculation of Zfree in (2.19).

2.4 Including the gauge fields

We now consider the action when we include the gauge sector of the heterotic string. We
will also drop any assumptions on the flux H, so in particular, our background may no
longer be Kähler. Upon turning on the gauge fields, we add a Chern-Simons term ωCS(A)
to the definition of H. Varying the action, one finds an additional term which depends on
the gauge fields, given by

Sgauge =
∫

X
∆ωCS(A) ∧ (1 + k)(Ω + ıµΩ+ 1

2 ıµıµΩ+ 1
3! ıµıµıµΩ) . (2.40)

Taking ∆A = α ∈ Ω0,1(End(V )), the variation of the Chern-Simons term is simply [26]

∆ωCS(A) = 2 tr(F ∧ α) + d tr(α ∧ A) + tr(α ∧ dAα) + 2
3 tr(α ∧ α ∧ α) , (2.41)

and hence the quadratic part of the action is given by

Sgauge
2 =

∫
X
tr
[
k ∂̄(α ∧ A)− ıµ

(
2F ∧ α + d(α ∧ A)

)
+ α ∧ ∂̄Aα

]
∧ Ω . (2.42)
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We can then redefine x and b to absorb the d(α ∧ A) term via

x → x + tr(α ∧ A1,0) , b → b + tr(α ∧ A0,1) . (2.43)

The result of this is that the sum of the action in equation (2.10) and the new contribution
from the gauge fields can be written as

S2 + Sgauge
2 =

∫
X

[
ıµ
(1

2 ıµH̃ − (∂̄x + ∂b)− 2 tr(F ∧ α)
)
+ k ∂̄b + tr(α ∧ ∂̄Aα)

]
∧ Ω

≡ 1
2

∫
X
⟨y,Dy⟩ ∧ Ω ,

(2.44)

where in the second equality, we have are using notation similar to (2.10). From the above
expression, we can see that if we choose the Chern connection, then the theory does not
depend explicitly on A. It depends only on the curvature F which, along with H̃, defines
the extension structure of the bundle Q below. We can again build a BRST complex Ap as
in the previous section, where now the Ap pick up terms depending on the gauge bundle

Ap = Ω0,p(Q)⊕ Ω0,p+1 ⊕ Ω0,p−1 , Q = T 1,0 ⊕ End(V )⊕ T ∗1,0 . (2.45)

As in (2.11), the physical fields are y ∈ A1, while the gauge parameters are y0 ∈ A0 with the
gauge transformations generated by δy = Dy0. The pairing ⟨·, ·⟩ and differential D also pick
up extra terms from the gauge sector. For y ∈ Ap and y′ ∈ A3−p we get the inner product

⟨y, y′⟩ = −ıµx′ + ıµ′x + k ∧ b′ − k′ ∧ b + 2 tr(α ∧ α′) , (2.46)

and the differential is given by

Dy =
(
∂̄µ, ∂̄x + ∂b − 2(−1)p tr(F ∧ α) + (−1)pıµH̃, ∂̄Aα + (−1)pıµF, ∂̄b, ∂̄k + (−1)p∂ · µ

)
. (2.47)

Note that, upon restricting to (µ, x, α, b), we recover the differential D̄ of [26, 28, 47, 48].
In addition, D2 = 0 provided that the Heterotic Bianchi identity holds.

The differential operators that appear in D are related to ∂̄, except for the terms which
generate ıµ∂b in the action (2.44). In fact, assuming the relevant (2, 0) cohomology vanishes,
this can be absorbed in a redefinition of the other fields. To see how this works, let us
Hodge decompose b as

b = ∂̄γ(0,1) + ∂̄†γ(0,3) , (2.48)

where, as always, we are ignoring any harmonic modes. The term ∂̄γ(0,1) can then be
absorbed by a redefinition of x, while the remaining ∂̄†γ(0,3) term couples only to the ∂̄-
exact part of χ = ıµΩ.16 By an elementary integration by parts, this term can be absorbed
in a redefinition of κ = k Ω.

In the new field basis, the full action can be written as

S ≡ S2 + Sgauge
2 =

∫
X
⟨ŷ, D̄ŷ⟩Q ∧ Ω+ ∂̄b ∧ κ , (2.49)

16This observation requires us to note that ∂ anti-commutes with ∂̄† when acting on purely anti-holomorphic
forms. This is also true in the non-Kähler case.
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where ŷ ∈ Ω0,1(Q), D̄ : Ω0,p(Q) → Ω0,p+1(Q), and ⟨·, ·⟩Q is a pairing on Ω0,•(Q). We see
that with this redefinition, the action decomposes into a term involving the differential
structure D̄ found in [28], and a term coupling b and κ. We give more details on the
connection D̄ in appendix B. Crucially, even with arbitrary flux, D̄ can be interpreted as
a Chern connection on the bundle Q viewed as an extension bundle defined by the fluxes
(H, F ) [49–51]. This means that the absolute value of the partition function takes the form

|Zfree| =
I(Q)1/2

I(Λ0,0) , (2.50)

which is precisely what we found in (2.34), except that Q now includes an End(V ) summand.
The reader may wonder if the non-local field redefinitions we have used could introduce extra
Jacobian factors in the path integral. This will not be the case for any of the holomorphic
field redefinitions given above, including (2.43), as we have simply shifted the fields by
appropriate translations. This is an infinite-dimensional analog of multiplying by an upper
triangular matrix with unity along the diagonal, whose Jacobian is one. The system and
associated field redefinitions we present here are a special case of the more general discussion
of section 6.3, where we provide a systematic demonstration that the possible Jacobian
factors are trivial in the more general cases also. Finally, we note that the form of (2.50)
also holds when the various cohomologies that we have assumed to be trivial do not vanish,
as long as the definition of the analytic torsion is extended to include the volumes of the
relevant cohomologies.

3 Anomalies

At this point, we have introduced a heterotic version of Kodaira-Spencer theory, derived from
the heterotic superpotential, which controls deformations of the Hull-Strominger system
(or, more precisely, F-term deformations). We have discussed how to define the one-loop
partition function of this quasi-topological field theory and computed it for both H = 0,
and non-vanishing gauge fields. In the next three sections, we discuss the anomalies that
may be present in this theory and their resolutions. To make full use of the mathematical
machinery surrounding anomalies, we will from here onward assume the existence of a
background Kähler metric, even though the geometry may be torsional and the flux need
not vanish. This background metric can be thought of as the first term in an α′ expansion
of the metric. We will focus on gauge and gravitational anomalies in section 4, and an
anomaly under changes of a background metric in section 5. That is, a non-topological
dependence of the partition function on a choice of background metric. First, however, we
give a general discussion of anomalies for field theories on non-trivial backgrounds.

For the purposes of this paper, it will be useful to distinguish between two different
types of anomalies. The first of these are conventional gauge anomalies which are captured
by anomaly polynomials. Given a classical gauge-invariant action, the presence of these
anomalies indicates that the partition function of a theory is not gauge invariant, and so
the quantum theory is inconsistent. An example of this is a theory with charged chiral
fermions where both axial and vector U(1)’s are gauged. The second kind of anomaly that
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we will come across is when a quantum theory depends on more data than the classical
theory would suggest. An example of this is Chern-Simons theory, where the theory is
classically topological — independent of a choice of metric — but the partition function
of the theory is not; instead, it depends on a choice of framing for the three-manifold on
which the theory is placed [36]. Despite this, the partition function has a well-defined
behaviour under changes of framing; thus, the quantum theory is consistent and should
be thought of as computing invariants of framed three-manifolds. These anomalies are
closer in spirit to ‘t Hooft anomalies for a global symmetry. Upon coupling the current
for a global symmetry with a ‘t Hooft anomaly to a background gauge field, the partition
function — which now depends on a choice of background field — will not be invariant
under gauge transformations of the background field. This is an obstruction to gauging the
global symmetry; one wants gauge-equivalent field configurations to contribute equally to
the path integral, however the ‘t Hooft anomaly implies that this is not the case. In the case
of Chern-Simons theory, the classical theory does not depend on a choice of metric for the
three-manifold, but the quantum theory does depend on a background metric via a choice
of framing. If one tried to ‘gauge’ the classical topological symmetry by summing over only
topologically inequivalent geometries, this would be inconsistent due to the transformation
of the partition function under changes of framing. It is in this sense that Chern-Simons
theory has a ‘t Hooft anomaly for its classical topological symmetry.

The holomorphic anomaly of Kodaira-Spencer theory, discussed at length in [11, 14], is
similar. This anomaly comes from that fact that the action of the theory depends only on
the holomorphic data of the complex structure moduli space, but the partition function
actually has an anomalous dependence on the anti-holomorphic data, and so it is not a
holomorphic function on the space of complex structures. In addition, since the theory
is defined on a six-manifold, one might also find conventional gauge anomalies, such as
the non-invariance of the partition function under gauge transformations of fluctuations
of the complex structure. (Though Kodaira-Spencer has no chiral fermions, holomorphic
field theories behave in many respects like chiral theories.) We shall return to this question
later and see that while Kodaira-Spencer theory has a gauge anomaly, the honest B-model
does not.

The holomorphic field theory that we are studying is in many respects a generalisation
of Kodaira-Spencer coupled to holomorphic Chern-Simons, as it describes the fluctuations
of a complex structure coupled to a hermitian metric and a gauge field. As is the case for
Kodaira-Spencer theory, we might expect to find both kinds of anomalies outlined above.
In other words, the corresponding quantum theory may depend on more parameters of
the on-shell background about which we expand than the classical theory, signalling the
presence of a topological or holomorphic anomaly. Furthermore, the theory itself may not be
well-defined due to a gauge or gravitational anomaly.17 The calculation of these anomalies
is somewhat distinct, so we shall go through each in turn.

17As a note of caution, like KS theory, the theory we consider is power-counting non-renormalizable. This
means that gauge anomalies (and counter-terms) are not restricted to one-loop and can appear at any order
in the loop expansion. In previous examples, cancelling the one-loop anomalies has been enough to ensure
cancellation to all loop orders [30, 52, 53], so we are hopeful that the same will be true here.
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First, an anomaly indicating that the theory depends on more parameters than initially
thought is in principle checked by computing the partition function of the theory. In
practice, this is a difficult (often impossible) task to accomplish to all-loop order. Instead,
we focus on computing the one-loop partition function, which depends on the quadratic
part of the action. The formal answer for the partition function is then given in terms
of determinants of operators which appear in the kinetic terms of the theory, with the
determinants regularised in a gauge-invariant manner. As we saw in section 2.2, one usually
computes only the absolute value of the determinants, with the phase determined by a
generalisation of the η-invariant. One can then study whether the absolute value of the
one-loop partition function depends on more parameters than the classical action would
suggest. In this paper, we focus on whether the modulus of the partition function remains
independent of the background hermitian metric used for quantisation. We often refer to
this as a “metric anomaly”.

Second, and more importantly, we should also ask whether the theory has any gauge or
gravitational anomalies. If these are present, the quantum theory is inconsistent. Generally,
a partition function Z will depend on some parameters and should be interpreted as
a section of a certain determinant line bundle over the configuration space of on-shell
backgrounds. Let us denote this bundle by Det. In practice, the absolute value of the
partition function |Z| is given by ratios of determinants of elliptic operators. This is an
infinite sum over the eigenvalues of the relevant operators and, using a gauge-invariant
regulator, will automatically be gauge invariant. The phase of the partition function has no
such guarantee. Though one often cannot compute the phase of Z explicitly, one can check
whether or not the phase is gauge invariant.

Since |Z| is gauge invariant, the bundle Det has a natural hermitian metric and so an
associated Chern connection. If this connection has non-zero curvature FDet, the phase
of Z will not come back to itself when one traverses a closed loop in the space of on-shell
backgrounds. The phase of Z then does not depend only on the gauge-invariant data of
a point in the configuration space (a gauge orbit) and is in fact gauge variant, indicating
a gauge anomaly. In our case, one might wonder whether such a change in phase is fatal
given the discussion around (2.35). However, the point is that once we pick a convention
for the phase, it should be well defined under a change of gauge. In the case of a smooth
base manifold X where the kinetic terms in the action are Dirac operators, a formula for
the curvature FDet was given by Bismut-Freed in [54, 55, Theorem 1.21]. In the case where
X is Kähler and the kinetic operators are complex differentials, the corresponding formula
was given by Bismut-Gillet-Soulé in [43–45, Theorem 1.27]. Let us see how this works for
the examples of holomorphic Chern-Simons theory [6, 52, 53], Kodaira-Spencer and the
B-model on a Calabi-Yau threefold X [11].18

The action of holomorphic Chern-Simons theory on a complex three-fold X with
c1(X) = 0 and a hermitian vector bundle E with gauge group G is

S[A] =
∫

X
Ω ∧ tr

(
A ∧ ∂̄A + 2

3A ∧ A ∧ A
)

, (3.1)

18For a nice review of this material, see [56].
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where A ∈ Ω0,1(End(E)) is a Lie algebra-valued (0, 1)-form on X with respect to the complex
structure associated to the holomorphic three-form Ω. The local invariances of this theory
include gauge transformations ∂̄ → k−1∂̄k, where k is a complex gauge transformation of
the frame for the vector bundle E, and local (complex) coordinate changes that preserve Ω.
In particular, the action is invariant under the infinitesimal gauge transformation

δA = ∂̄c + [A, c] , c ∈ Ω0(End(E)) . (3.2)

The equations of motion that follow from the action are simply

∂̄A + A ∧ A = 0 . (3.3)

This says that ∂̄+A defines a new (0, 1) connection whose curvature has no (0, 2) component,
which is equivalent to a holomorphic structure on vector bundles associated to E. Solutions
to the linearised equations of motion modulo the gauge freedom are inequivalent holomorphic
structures on E, parametrised by elements of H1(X,End(E)).

This theory is most easily quantised in the Batalin-Vilkovisky (BV) formalism [46]
by adding a ghost field in Ω0,0(End(E)), and antifields for both A and the ghost field.
These can be collected in a single field A living in Ω0,•(End(E)), where the component
in Ω0,p(End(E)) has ghost number 1 − p. As is the case for conventional Chern-Simons
theory [35], the BV action takes the same form as (3.1) with A replaced by A, and gauge
fixing the action requires the introduction of a hermitian metric on X compatible with the
complex structure defined by Ω.

Upon quantising this theory around an on-shell configuration A0 which solves (3.3),
one finds that the absolute value of the one-loop partition function simplifies to [7]

|Z|2 = I(Λ0,0(End(E))) , (3.4)

where the relevant Laplacian is defined by the differential D̄ = ∂̄+[A0, ·] and I(Λp,0(End(E)))
is the Ray-Singer analytic torsion for D̄ acting on a complex of End(E)-valued (p, 0)-
forms [57]. This answer will depend on the classical data of Ω (which also defines a complex
structure) and the hermitian metric used in gauge fixing the BV action. In particular, though
the classical action (3.1) is quasi-topological (depending only on the complex structure
and gauge field), the quantum theory also depends on the choice of background metric on
X. This is the analogue of the topological anomaly seen in conventional Chern-Simons.
In principle, the phase of Z may (and is likely to) depend on the metric as well via a
generalisation of the η-invariant, though this is more difficult to understand.19

Now we ask whether the theory has any gauge anomalies. The partition function Z

should be interpreted as a section of a certain holomorphic determinant line bundle Det over
the (complex) configuration space M of holomorphic structures on E and holomorphic three-
forms on X. In order to appeal to the results of [43–45], we assume that the background
metric on X is actually Kähler. If the Chern connection associated to |Z| has non-zero
curvature FDet, the phase of Z does not depend only on the gauge-invariant data of a

19For a discussion of how this works for four-folds, see [7].
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point in the configuration space (a gauge orbit in the space of holomorphic structures or
holomorphic three-forms). The phase of Z is thus not gauge invariant, indicating a gauge
anomaly. In our case, the expression for the curvature of Det is given by20

FDet =
1
2

[∫
X
td(X) ∧ ch(End(E))

]
(1,1)

, (3.5)

where td and ch are the total Todd class and Chern character, and one picks out the
(4, 4)-component of the integrand to give a (1, 1)-form on M after integration. Expanding
this out and using c1(X) = 0 (since X admits a nowhere-vanishing three-form Ω), one finds

FDet =
1
2

[∫
X
ch4(End(E)) + 1

20 dimG ch4(X)− 1
12 ch2(X) ∧ ch2(End(E))

]
(1,1)

. (3.6)

The first term is the pure gauge anomaly for holomorphic Chern-Simons theory. The second
term is the gravitational anomaly associated to local coordinate changes that preserve Ω.
The final term is a mixed gauge-gravitational anomaly. Since in holomorphic Chern-Simons
theory it is the gauge field A that is dynamical, while Ω is viewed as a classical background
field, the second and third terms should be interpreted as ’t Hooft anomalies which are not
fatal for the theory.21 The problematic term is the first one. Writing this in terms of the
background field A0 as

1
2

∫
X
ch4(End(E)) = 1

2
1
4!

( i
2π

)4 ∫
X
tr(∂A0)4 , (3.7)

the usual descent procedure implies that the one-loop box diagram with only the gauge
field appearing is not gauge invariant. The gauge transformation of this diagram is then
proportional to ∫

X
tr
(
c(∂A)3

)
, (3.8)

in agreement with the gauge anomaly found in [52, 53, 56].
Similarly, we can use the formula for FDet to compute the anomalies of the theories

that come from the SL(3, C) and generalised Hitchin functionals on X [12]. At one-loop,
the latter agrees with the topological B-model on a Kähler manifold with c1(X) = 0 [11].
In both cases, the one-loop partition function takes the form

|Z| = I(Λ1,0)
I(Λ0,0)α

, (3.9)

where α = 1 for the SL(3, C) theory and α = 3 for the generalised Hitchin / B-model [11, 12].
The curvature on Det is then

FDet =
1
2

[∫
X
td(X) ∧ ch(Ω1,0)− α td(X)

]
(1,1)

. (3.10)

20As discussed in [30], the anomaly polynomial is actually defined in terms of characteristic classes of
bundles over the total space of X → M, where M is the configuration space of the on-shell background and
the fibres of X are X.

21If one tried to integrate over choices of Ω up to gauge equivalence, the ’t Hooft anomaly would be
promoted to a gravitational anomaly for Ω-preserving diffeomorphisms.
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Expanding this out using c1(X) = 0 and the identities in [58], one finds

FDet =
3− α

20

∫
X
ch4(X) . (3.11)

This indicates the presence of a gravitational anomaly for Ω-preserving diffeomorphisms.
Unlike holomorphic Chern-Simons where Ω is viewed as a classical background field, the
SL(3, C) and B-model theories contain degrees of freedom which describe fluctuations of
Ω. Thus, (3.11) is not a ‘t Hooft anomaly and is fatal if not cancelled. Fortunately, the
curvature, and hence the gravitational anomaly, vanishes if α = 3 but not generically for
α = 1. This is consistent with the fact that the B-model is a well-defined quantum theory
on Calabi-Yau manifolds, while the SL(3, C) theory alone is not.22

In the next section, we analyse the gauge, gravitational and mixed anomalies for our
holomorphic field theory. Following this, in section 5, we study how the one-loop partition
function depends on the choice of the background metric introduced by quantisation. We
will leave the study of a potential holomorphic anomaly to future work.

4 Gauge and gravitational anomalies

Our theory is classically invariant under gauge transformations by D-exact shifts of the
form (2.47). These gauge invariances may not persist in the quantum theory, indicating
the presence of an anomaly. Unlike a holomorphic or topological anomaly, these gauge and
gravitational anomalies render the theory ill-defined if they are not cancelled.

Given the form of the partition function in (2.50), the curvature of the connection on
Det which captures anomalies is given by

FDet =
1
2

[∫
X
td(X) ∧ ch(Q)

]
(1,1)

−
[∫

X
td(X)

]
(1,1)

, (4.1)

where we have used ch(Λ0,0) = 1 in the second term.23 It should be noted that the last
term in (4.1), coming from the coupling between the off-shell modes b and κ in (2.49),
will be important when we come to factorise the anomaly polynomial and the subsequent
cancellation of certain anomalies.

Focusing on the case where X is Calabi-Yau, recall that the Todd class of X simplifies
for c1(X) = 0 to

td(X) = 1 + 1
12c2(X) + 1

240c2(X)2 + · · · = 1− 1
12 ch2(X) + 1

20 ch4(X) + . . . (4.2)

where c4(X) and higher vanish as TX is a rank-three bundle, and we do not need any
further terms, since these are sufficient to fix the (1, 1)-component of (4.1) on the moduli
space. Similarly, the Chern character of Q can be expanded as

ch(Q) = rk(Q) + ch1(Q) + ch2(Q) + ch3(Q) + ch4(Q) + . . . (4.3)
22If one does not assume c1 = 0, one finds that even for α = 3, FDet receives contributions from terms of

the form c2
1c2 and c1c3, indicating that the B-model is not consistent when c1 ̸= 0.

23Recall that, formally, Q and T X are extended to be bundles over the total space formed by fibring
X over the moduli space. Thus, for example, ch(Q) can have an eight-form component, but cr(Q) = 0
for r > rk Q.

– 19 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
0

Putting these together, FDet simplifies to

FDet =
1
2

[∫
X
ch4(Q) + 1

20
(
rk(Q)− 2

) ∫
X
ch4(X)− 1

12

∫
X
ch2(X) ∧ ch2(Q)

]
(1,1)

. (4.4)

Finally, since we assume X is Calabi-Yau, the curvature of the Chern connection on TX

transforms in the fundamental representation of SU3, which implies that the four- and
eight-form components of the Chern character are related by

ch4(X) = 1
12 ch2(X)2 . (4.5)

Thus, on a Calabi-Yau, the anomaly of our heterotic version of Kodaira-Spencer theory is
determined by

FDet =
1
2

[∫
X
ch4(Q) + 1

240(rk(Q)− 2)
∫

X
ch2(X)2 − 1

12

∫
X
ch2(X) ∧ ch2(Q)

]
(1,1)

. (4.6)

In the remainder of this section, we analyse how this anomaly constrains the background
geometry and gauge sector.

4.1 Special case: Q = T 1,0 ⊕ T ∗1,0

We first consider the special case where, in addition to X being Calabi-Yau, the gauge
bundle is trivial, so that Q splits as a direct sum of bundles, Q = T 1,0 ⊕ T ∗1,0. In this case,
the Chern character of Q is related to that of X by

chn(Q) = 2 chn(X) , (4.7)

for n even, while it vanishes for n odd. The contribution to the curvature polynomial due
to the Chern character reduces to just the rank, and the expression (4.6) becomes

FDet =
1
120

[∫
X
ch2(X)2

]
(1,1)

. (4.8)

In this simple case, we see there will naively be a gravitational anomaly unless ch2(X) = 0.
In fact, with a trivial gauge bundle and no H-flux, this is equivalent to the Bianchi identity
for H restricted to X.

Through the descent procedure, a change in frame given by a local rotation γ = ∇v0,
where v0 ∈ Γ(T 1,0) ⊂ A0 is the vector component of the corresponding gauge parameter
and ∇ is the covariant derivative associated to the background metric g, gives a change in
the phase of the partition function proportional to∫

X
ch2(X) tr(Rγ) . (4.9)

We have written R = i
2π R, where R is the Ricci scalar associated to the background metric

on X. This clearly vanishes if ch2(X) = 0, but it can also be cancelled via an appropriate
Green-Schwarz mechanism even if we do not assume the Bianchi identity. To do so, we
include a counter-term in the Lagrangian of the form

Scounter =
1
240

∫
X
ch2(X) ∧ x , (4.10)
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and give an anomalous gauge transformation to x:24

δx = ∂̄x0 − ℏ tr(Rγ)
= ∂̄x0 − ℏ tr(R∇v0) ,

(4.11)

where x0 ∈ Ω1,0 ⊂ A0 is the original gauge parameter for x. We have also included an
explicit ℏ in the gauge transformations to indicate that the anomalous gauge transformation
is to a cancel one-loop effect.25

4.2 Including the gauge fields

We now reinstate the gauge sector. To study the possible anomalies associated to this,
we note that gauge transformations of A are equivalent to rotations of the frame for the
vector bundle V . Thanks to this, we can collectively consider the gauge and gravitational
anomalies as anomalies associated to frame rotations of Q = T 1,0X ⊕ End(V ) ⊕ T ∗1,0X.
We therefore have

chn(Q) = 2 chn(X) + chn(End(V )) (4.12)

for n even. The expression (4.6) for the curvature on Det which determines the anomalies
associated with such background rotations is now

FDet =
1
2

[∫
X
ch4(End(V ))− 1

12 ch2(X) ∧ ch2(End(V )) + 4 + dimG

240 ch2(X)2
]

(1,1)
. (4.13)

Note that one should be careful with this expression. If the gauge field flux F is non-
vanishing, then the bundle Q is really an extension bundle with the various summands
non-trivially twisted [28, 29, 48]. The relation (4.12) then holds only at the level of
cohomology, and hence the expression above holds only up to some d-exact terms. However,
we need only check that we can twist the line bundle, of which Zfree is a section, through
the addition of counter terms to the action such that a flat connection exists. If this is the
case, then there is vanishing holonomy and so Zfree is constant around contractible loops.26

The only relevant information for cancelling local anomalies is therefore the cohomology
class of FDet.

With this in mind, the curvature (4.13) does not vanish for generic choices of gauge
group G. As in the holomorphic Chern-Simons case, the first term can be identified as a
gauge anomaly, while the final term can be interpreted as a gravitational anomaly. Naively,
we also expect a mixed anomaly from the middle term. This, however, vanishes in our case
since the operator D̄ on Q, which is used to define the Ray-Singer torsion I(Q), satisfies27

D̄2 = 0 ⇒ ch2(End(V )) = 0 . (4.14)
24Note that we are working in the redefined theory in which ∂b drops out of the action, and hence the

gauge transformation for x does not contain a ∂b0 term.
25To be precise, we expand a given field Φ in ℏ, where the leading term is classical, i.e. solves the

equations of motion. Modulo higher-loop O(ℏ2) effects, the classical action then remains invariant under the
Green-Schwarz transformation.

26There can be discrete holonomy of a flat bundle around non-contractible loops. The d-exact terms may
then play a role in the study of such global anomalies, which we do not consider.

27This and other properties of D̄ are reviewed in appendix B.
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Even with this, we still have gauge and gravitational anomalies to contend with, and so we
are led to introduce a Green-Schwarz type mechanism to cancel them. To do so, we require
the anomaly polynomial to factorise for which we need to constrain the form of the gauge
group. The simplest constraints to put on the gauge group are

ch4(End(V )) ∝ ch2(End(V ))2 . (4.15)

A list of simple groups which satisfy the above constraint, along with useful trace identities,
are listed in appendix C.1. The previous discussion implies that the gauge anomaly vanishes
for these groups.

Given such a choice of gauge group, we are left with the gravitational anomaly to cancel.
One might expect that we could use the same anomaly cancelling term as in the previous
subsection. However, once the gauge sector is turned on, the flux F appears in the gauge
transformation of x by D-exact terms, as in (2.47), and so the counter-term given in (4.10)
is no longer gauge invariant. Instead, we can use the fact that, locally, ch2(X) ∼ ∂ω

(1,2)
CS for

some (1, 2)-form which we can take to be gauge invariant and ∂̄-closed. We can then add
the local counter-term28

Scounter =
4 + dimG

480

∫
X

ω
(1,2)
CS ∧ χ , (4.16)

provided we give χ an anomalous gauge transformation29

δχ = ∂̄χ0 − ℏ ∂ tr(Rγ) , (4.17)

where χ0 ∈ Ω2,0 ⊂ A0 is the original gauge parameter of χ = ıµΩ. Of course, the counter-
term (4.16) is only locally well-defined in general. A more thorough treatment would
require extending the theory to some X̃ which is bounded by X, as in the Green-Schwarz
mechanism in, for example, six-dimensional supergravity [63]. Such considerations can
have interesting consequences for global anomalies. For the local anomaly, however, (4.16)
is sufficient.

4.3 Aside — a different, untwisted model

We pause for a moment to consider a slightly different model which arises from considering
Q = T 1,0 ⊕ End(V ) ⊕ T ∗1,0 as simply a direct sum of bundles, and not as an extension
structure. This bundle comes equipped with a differential

D̄ =

∂̄ 0 0
0 ∂̄A 0
0 0 ∂̄

 , (4.18)

28The anomaly in the previous section can also be cancelled by such a counter-term. However, only in the
previous case can we cancel the anomaly with a global counter-term, as given in (4.10).

29The transformation of the two-form x in (4.11) is similar to the usual Green-Schwarz mechanism [59],
while the transformation of χ resembles more the Green-Schwarz type transformations introduced when
cancelling anomalies in holomorphic gauge theories coupled to gravity, see for example [30, 31, 53, 56, 60–62].
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which squares to zero if and only if X is a complex manifold and End(V ) is a holomorphic
bundle on X. In particular, nilpotency of D̄ imposes no constraints on the Chern characters
of End(V ). We can then consider the theory as in (2.49), but with D̄ as above. It is worth
noting that this theory does not arise from perturbations of the superpotential with generic
gauge fields and so does not correspond to a Kodaira-Spencer-like theory. Instead, we view
this as a toy model of a holomorphic field theory and then study its associated anomalies.
Given that the Chern characters of the bundles are no longer constrained, we will instead
use the heterotic Bianchi identity to restrict anomaly cancellation.

The curvature which determines the anomalies is again given by (4.13), but now the
mixed anomaly does not cancel automatically. Instead, it must also be cancelled by a
Green-Schwarz mechanism. To do so, we require that the gauge group is such that (4.13)
factorises. This is most easily done by again imposing

ch4(End(V )) ∝ ch2(End(V ))2 . (4.19)

A quick calculation shows that if G is simple then, even with the above constraint, the
anomaly polynomial does not factorise. However, we can make progress if we also impose
the heterotic Bianchi identity. We demonstrate this with an example.

G = SO(8). For the gauge group G = SO(8), the identities

ch4(End(V )) = 1
2 ch2(V )2 , ch2(End(V )) = 6 ch2(V ) , (4.20)

which are derived from the formulae in appendix C.1, can be used to rewrite the curvature
of Det as

FDet =
1
2

[∫
X

1
2 ch2(V )2 − 1

2 ch2(X) ∧ ch2(V ) + 2
15 ch2(X)2

]
(1,1)

. (4.21)

It is clear that this does not factorise as it stands. However, the heterotic Bianchi identity
is equivalent to the identity

ch2(X) = ch2(V ) , (4.22)

which holds in cohomology. Ignoring any exact terms, as in the discussion after equa-
tion (4.13), we have

FDet =
1
15

[∫
X
ch2(X)2

]
(1,1)

. (4.23)

We can then cancel this anomaly using the counter-term in (4.10), exactly as in the case
without gauge fields. This counter-term is gauge invariant in this case, since the form of D̄

implies that the fluxes do not appear in the gauge transformation of x.
This procedure can be used to cancel the gauge, gravitational and mixed anomalies for

any simple group G satisfying (4.15). A natural extension is to consider product groups of
the form G = G1 × G2, with each Gi simple. Remarkably, we find that any combination of
groups satisfying (4.15) leads to factorisation of the anomaly polynomial. A full list of such
factorisations is given in appendix C.1. We shall give one example of this, as the procedure
holds, mutatis mutandis, for the other cases.

– 23 –



J
H
E
P
1
0
(
2
0
2
3
)
1
3
0

G = SU(3) × E6. As an example, we consider the case where V is an SU(3)×E6 bundle.
Using the trace identities found in appendix C.1, the curvature on Det becomes30

FDet =
1
2

[∫
X
ch4(End(V1))−

1
12 ch2(X) ∧ ch2(End(V1)) +

3
8 ch2(X)2

+ch4(End(V2))−
1
12 ch2(X) ∧ ch2(End(V2))

]
(1,1)

= 1
2

[∫
X

1
24 (ch2(X)− 6 ch2(V1))2 + 1

12 (2 ch2(X)− ch2(V2))2
]

(1,1)
.

(4.24)

Via the descent procedure, the anomalous change in the phase of the partition function is
proportional to ∫

X

1
48
(
ch2(X)− 6 ch2(V1)

)(
tr(Rγ)− 6 tr(F1ϵ1)

)
+
∫

X

1
24
(
2 ch2(X)− ch2(V2)

)(
2 tr(Rγ)− tr(F2ϵ2)

)
,

(4.25)

where R = i
2π R and Fi = i

2π Fi, and we have set δR = γ and δFi = ϵi, where γ is an
infinitesimal frame rotation for T 1,0 and ϵi, i = 1, 2, are infinitesimal background gauge
transformations.

To cancel these anomalies, we assume that one of the two terms is trivial in cohomology.
For example, we can assume that, as cohomology classes, we have

2 ch2(X) = ch2(V2) . (4.26)

This trivialises the second term in FDet, and so it can be neglected for local anomaly
cancellation. The anomaly that arises from the other term can then be cancelled by the
counter-term

Scounter =
1
48

∫
X

(
ch2(X)− 6 ch2(V1)

)
∧ x , (4.27)

together with an anomalous gauge transformation for x:

δx = ∂̄x0 −
ℏ
48
(
tr(Rγ)− 6 tr(F1ϵ1)

)
. (4.28)

We point out that cancelling the anomaly required a triviality constraint on the second
Chern character of the bundles involved, though the choice of constraint was somewhat
arbitrary. For example, we could instead impose

ch2(X) = 6 ch2(V1) , (4.29)

and then construct a counter-term containing 2 ch2(X) − ch2(V2), with an appropriate
anomalous transformation for x. Other triviality constraints could also be considered,
leading to different choices of counter-terms and anomalous transformations of the fields.

30To go from the first to the second line, we have moved from ch2(End(V )) = 1
2 Tr(F2) to ch2(V ) =

1
2 tr(F2), where Tr and tr denote the trace in the adjoint and fundamental representations respectively. The
relation between these two traces is given in appendix C.1 for various groups.
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In particular, it is interesting to note that for some choices of gauge bundle, namely
SO(8)×SO(8) and SU(3)×E6, we need to assume only the triviality of the ten-dimensional
anomaly constraint / Bianchi identity for H in order to cancel these anomalies. This imposes
a linear relationship between ch2(X) and ch2(Vi), which are, at the level of cohomology31

SU(3)× E6 : 1
2 ch2(X)− ch2(V1)− 1

6 ch2(V2) = 0 ,

SO(8)× SO(8) : 1
2 ch2(X)− 1

2 ch2(V1)− 1
2 ch2(V2) = 0 .

(4.30)

Using this for G = SU(3)× E6, the curvature simplifies, up to d-exact terms, to

FDet =
1
16

[∫
X

(
2 ch2(X)− ch2(V1)

)2]
(1,1)

, (4.31)

which can again be cancelled with a counter-term exactly as in (4.27). It is interesting to
note that if we identify the SU(3) part of the gauge group with the structure group of the
Calabi-Yau, as is done in the standard embedding [64], then this is also consistent as a
six-dimensional quantum theory.

5 A metric anomaly

As we mentioned in section 2, the quadratic action derived from the superpotential is
manifestly independent of the hermitian metric on X. However, when computing the
partition function, we were forced to introduce a background metric in order to define
the adjoint operators, the Laplace operators and ultimately the analytic torsion. This
can introduce an anomalous dependence on the background metric in the quantum theory,
similar to that discussed in [36] for Chern-Simons theory and [12] for the generalised Hitchin
functional. The holomorphic anomaly discussed in [11, 14] is also of this type — the
classical theory depends only on the holomorphic data of the complex structure, µ, but
the partition function picks up an anomalous dependence on anti-holomorphic data, µ̄. In
our case, we will refer to this as a “metric anomaly” to distinguish it from the previous
section’s gravitational anomaly (which signalled loss of invariance under local coordinate
changes). Unlike the local anomalies analysed in the previous section, the presence of
this metric anomaly does not render the theory inconsistent, but instead may break the
quasi-topological nature of the partition function. That is, though the classical quadratic
action appears to depend on only the complex structure data on X, the quantised theory
may depend also on the choice of background metric. Interestingly, given certain topological
constraints, we will find that we can cancel this metric anomaly.

In principle, one can check whether a metric anomaly is present by computing the
partition function and then examining whether it depends on a choice of background metric.
In practice, one cannot compute the partition function in generality. Instead, we will
appeal to the analysis of Bismut et al. [43–45] which describes how the analytic torsion
varies under a change of metric on a Kähler manifold (and a change of hermitian metric

31The difference in coefficients comes from the fact that we want 1
2 trR2 = t̂rF2

total, where t̂r is the inner
product normalised such that the long roots have weight two. The relative factor between that and the
trace tr in the fundamental representation is given by the coefficients in the constraints.
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on a vector bundle over it). This will allow us to check whether the absolute value of
the one-loop partition function — expressed in terms of Ray-Singer torsions — depends
on these background fields, and to understand whether the anomalous variation can be
cancelled by local counter-terms.

To begin, we recall that the variation of the analytic torsion of a holomorphic bundle V

under a change in the Kähler metric g on the manifold and the hermitian metric h on the
fibres of V takes a similar form to the curvature associated to the gauge and gravitational
anomalies [43–45, Theorem 1.22]:32

1
2π

∂

∂t
log I(V ) = 1

2

∫
X

∂t

[
td
( 1
2π

(iR + t g−1δg)
)
∧ ch

( 1
2π

(iF + t h−1δh)
)]

4
, (5.1)

where R and F are the curvatures of the Chern connections on the holomorphic tangent
bundle and V respectively, and the total Todd class and Chern character are expanded in
terms of the indicated arguments. The subscript 4 means that we take the component that
is degree 4 in the curvatures R, F and their variations.

For a completely arbitrary complex three-dimensional background X, we can express
the Todd classes in terms of the Chern classes via

td(X)0 = 1,

td(X)1 = 1
2 ch1(X),

td(X)2 = 1
8 ch1(X)2 − 1

12 ch2(X),

td(X)3 = 1
48
(
ch1(X)3 − 2 ch2(X) ch1(X)

)
,

td(X)4 = 1
1440

(
5 ch1(X)4 − 30 ch2(X) ch1(X)2 + 60 ch3(X) ch1(X)

+ 20 ch2(X)2 − 168 ch4(X)
)
,

(5.2)

where chk(X) = 1
k! tr(R

k) and R = i
2π R. Therefore, we find

[td(X) ch(Q)]4 = rk(Q)
1440

(
5 ch1(X)4 − 30 ch2(X) ch1(X)2 + 60 ch3(X) ch1(X)

+ 20 ch2(X)2 − 168 ch4(X)
)
+ 1

48 ch1(X)3 ch1(Q)

− 1
24 ch2(X) ch1(X) ch1(Q) + 1

8 ch1(X)2 ch2(Q)

− 1
12 ch2(X) ch2(Q) + 1

2 ch1(X) ch3(Q) + ch4(Q) .

(5.3)

There are further simplifications to this polynomial when we remember that Q is defined as
an extension. In particular, since the groups we consider are semisimple and compact, the
bundles End(V ) and hence the bundle Q are self-dual, we can drop all traces of odd-powers

32Once again, we ignore the zero-modes. A more detailed analysis of the variation including the contribution
from zero-modes can be found in [65]. Also, as per our comment at the beginning of section 3, we will
assume that we are working around a Calabi-Yau metric g, at least to leading order in α′.
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of the curvature F . Note also that R and F are trace-less, though their variations may not
be. Hence, we can drop any powers of ch1(X) and ch1(Q) beyond linear order. Putting
this together, the above expression simplifies to

(td(X) ch(Q))4 = rk(Q)
1440

(
60 ch3(X) ch1(X) + 20 ch2(X)2 − 168 ch4(X)

)
− 1
12 ch2(X) ch2(Q) + ch4(Q) .

(5.4)

5.1 Special case: Q = T 1,0 ⊕ T ∗1,0

Let us again consider the special case where X is Calabi-Yau and Q = T 1,0 ⊕ T ∗1,0 is the
trivial direct sum of bundles. In this case33

chn(Q) = 2 chn(X) (5.5)

for n even, while it vanishes for n odd. We also have that rk(Q) = 6.
To analyse the metric anomaly, we vary the curvature as δR = 1

2π g−1δg = γ
2π . We may

write γ as
γ = 1

3 tr(γ)1 + γ1 = γ0 + γ1 , (5.6)

where γ1 is trace-less and thus becomes an element in the adjoint of SU(3). Recalling the
expression for the partition function,

|Zfree|2 = I(Q)
I(Λ0,0)2 , (5.7)

we see that a variation of the free energy with respect to the background metric g can be
written as

δ log |Z| = π

2

∫
X

δP4(R) , (5.8)

where the fourth-order curvature polynomial is

P4(R) = rk(Q)− 2
1440

(
60 ch3(X) ch1(X) + 20 ch2(X)2 − 168 ch4(X)

)
− 1
12 ch2(X) ch2(Q) + ch4(Q) ,

(5.9)

and the −2 in the prefactor comes from the contribution of I(Λ0,0) in the partition function.
Consider first the metric variation due to γ0. One finds34

δ0 log |Z| = 61
360

∫
X
ch3(X) tr(γ) . (5.10)

Using the SU(3) trace identity given in appendix C.1, ch4(X) = 1
12 ch2(X)2, one finds the

trace-free variation of the free energy, due to γ1, is

δ1 log |Z| = 1
120

∫
X
ch2(X) tr(Rγ1) . (5.11)

33The observant reader may worry that even though the bundle Q splits for the background geometry, the
variation of the metric δh will not respect this. However, it turns out that the offending deformations of δh

appear only off-diagonally in h−1δh, and thus do not contribute when we take the trace.
34The reader might object to the slightly strange pre-factor in the expression. This factor becomes a bit

more reasonable when gauge fields are included.
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The first of these, δ0 log |Z|, contributes to the standard Euler-class anomaly present in
type IIB string theory or Kodaira-Spencer gravity [11, 12, 14]. In particular, when δg

corresponds to an on-shell Ricci-flat deformation, tr(γ0) = tr(g−1δg) is constant and (5.10)
is proportional to the Euler class of X, χ(X).

As in Chern-Simons theory [36], one can cancel this non-trivial dependence on the
background metric by adding appropriate local counter-terms. However, it seems that one
cannot do this without imposing certain topological constraints. As an example, consider
imposing the constraint that ch2(X) is trivial. On a ∂∂̄-manifold, we then have

ch2(X) = ∂∂̄ω2
CS , (5.12)

for a global Chern-Simons two-form ω2
CS ∈ Ω1,1(X), which we may take to be gauge invariant.

The metric anomaly (5.11) due to γ1 may then be cancelled by adding the following purely
background-dependent local counter-term to the action:

S1,ct =
πi
120

∫
X
ch2(X) ∧ ω2

CS . (5.13)

This is equivalent to multiplying the (absolute value of) the one-loop partition function
with a purely background-dependent factor. As we want the partition function to be
well-defined when traversing closed loops in the space of background metrics, it is natural
to require the integrand of (5.13) to be globally defined. Hence the need for the topological
constraint (5.12). The variation of (5.13) is

δS1,ct = − 1
120

∫
X
tr
(
∂̄∂∇(γ) ∧R

)
∧ ω2

CS

= 1
120

∫
X
ch2(X) ∧ tr(Rγ1) , (5.14)

which exactly cancels the term (5.11).
In addition, if the Euler number of X vanishes, so that is ch3(X) is exact, the anomalous

transformation (5.10) due to γ0 may be cancelled in a similar fashion. Indeed, we then have

ch3(X) = ∂∂̄ω4
CS , (5.15)

for some globally well-defined Chern-Simons four-form ω4
CS ∈ Ω2,2(X). We can then add a

counter-term

S0,ct =
61πi
180

∫
X

ω4
CS ∧ ch1(X) , (5.16)

whose variation with respect to the background metric will cancel against (5.10). Alterna-
tively, for non-vanishing Euler number, this part of the metric anomaly may be cancelled
by multiplying the partition function by an appropriate volume factor, as was done in [12].
This however requires that we stick to on-shell Ricci-flat deformations of the metric, where
tr(γ) is constant.
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5.2 Including gauge fields

We now consider the metric anomaly when we turn on gauge fields in our theory. This also
means that we should study the twisted differential with fluxes D̄ on Q. This complicates
the metric anomaly quite a bit. It however turns out that if one re-introduces α′ in the
operator D̄, the flux terms become higher order in the metric anomaly as they both appear
at one-loop and are of order α′. We show this explicitly in appendix B.1. This means
that their contribution to the variation of the Ray-Singer torsions, and hence the one-loop
partition function, will be at next order in the α′, ℏ expansion. We will therefore ignore
these terms for the remainder of this paper. We will leave the case of non-trivial flux for
future work. Modulo higher orders, to get the metric anomaly it is therefore sufficient take
the theory after the field redefinitions of section 2.4 to be the untwisted model of section 4.3

S =
∫

X

(
x ∧ ∂̄χ + κ ∧ ∂̄b

)
+
∫

X
tr(α ∂̄Aα) ∧ Ω , (5.17)

where A denotes the background gauge connection. Note also that as the operator D̄ is
nilpotent, the corresponding Lagrangian, even with fluxes, can an always locally be put in
this form, modulo a local gauge transformation η ∈ Ω0,0(End(Q)) such that D̄ = η−1 ◦ ∂̄ ◦ η.

The partition function then becomes

|Zfree|2 = I
(
T 1,0 ⊕ T ∗1,0) I(End(V ))

I(Λ0,0)2 . (5.18)

Varying the metric on T 1,0 ⊕ T ∗1,0 still corresponds to a choice of background metric on the
Calabi-Yau manifold, while a choice of hermitian metric on the fibres of the gauge bundle
V is equivalent to a choice of Chern connection A = h−1∂h. Hence, the metric anomaly for
the gauge bundle V can be identified with a background anomaly associated to a choice in
background gauge field A. We note that the presence of such an anomaly does not mean
the theory is ill, but merely indicates some background dependence of h for the quantum
theory. Nonetheless, we find that we can cancel this anomaly in special cases by introducing
counter-terms, which we now show.

Including gauge fields, the metric anomaly polynomial now reads

P4(R,F) = 4 + dimG

1440
(
60 ch3(X) ch1(X) + 20 ch2(X)2 − 168 ch4(X)

)
− 1
12 ch2(X) ch2(End(V )) + ch4(End(V )) ,

(5.19)

where F = i
2π F is given by the curvature of the Chern connection on the gauge bundle. As

for the metric anomaly associated to T 1,0 ⊕ T ∗1,0, we find that we can cancel the anomaly
due to variation of the metric on the gauge bundle given certain topological constraints.
In particular, we can cancel the anomaly via a background-dependent local counter-term
as above if the background gauge group satisfies (4.15). A full list of simple Lie groups
satisfying this constraint is given in appendix C.1, along with useful other trace identities.

Furthermore, as for the variation of the Calabi-Yau metric, we can also include a singlet
in the variation of the hermitian metric δh. However, this variation affects only the last two
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terms in (5.19), and it drops out completely of the anomaly if the gauge bundle is self-dual.
For more exotic gauge bundles, one can also imagine more exotic representations occurring
in δh (other than the singlet and the adjoint). This was not possible for the Calabi-Yau
metric g as in that case

δg ∈ 3 × 3̄ = 1 + 8 . (5.20)

However, if we again restrict to on-shell deformations, in that they preserve the Yang-Mills
constraint

ω ∧ ω ∧ F = 0 , (5.21)

we find that such more exotic representations must correspond to holomorphic sections of
the given exotic representation of the bundle. Under suitable stability assumptions, there
are no such sections. We will not consider these deformations for the remainder of the
paper, and from now on take h−1δh to be adjoint valued. Let us now consider an example.

G = SO(8) × SO(8). For SO(8), the standard normalisation of the trace in the adjoint
and fundamental representations implies that the Chern characters of End(V ) and V are
related by

ch2(End(V )) = 6 ch2(V ) , ch4(End(V )) = 1
2 ch2(V )2 . (5.22)

However, as we saw above, one copy of SO(8) is not enough for the metric anomaly
polynomial to factorise. This then makes it difficult to cancel the metric anomaly unless
the second Chern character of both the tangent bundle and gauge bundle vanish separately.

If we instead use two SO(8) groups, the anomaly polynomial reads

P4(R,F1,F2) =
19
9 ch3(X) ch1(X) + 1

8
(
ch2(X)− 2 ch2(V1)

)2
+1
8
(
ch2(X)− 2 ch2(V2))

)2
,

(5.23)

where subscripts 1 and 2 refer to the two SO(8) bundles. We note again that, although they
decouple from the heterotic moduli problem, in order for the factorisation to work it was
crucial to include the off-shell (0, 2)-field b and the (3, 0)-field κ, related to a component
of the Kalb-Ramond field and the axio-dilaton respectively. The anomaly can then be
cancelled if both SO(8) bundles have a second Chern character equalling half that of the
tangent bundle of X. Note also then that the second Chern character of V1 ⊕ V2 must
equal that of the tangent bundle, which agrees with the triviality of the heterotic Bianchi
identity in ten dimensions. If we further impose the constraint coming from the flux twisted
differential D̄, i.e. that the bundle V1 ⊕ V2 has vanishing second Chern class, we return to
requiring that the second Chern class of X vanishes. This is however not the case if we
consider the untwisted theory of section 4.3 instead.

One can consider other choices of product groups G. One finds that, modulo the term
proportional to the Euler class of X, the polynomials take a form similar to those given in
appendix C.2. However, of all the combinations of gauge groups considered there, it is only
SO(8)× SO(8) and SU(3)× E6 that automatically satisfy the ten-dimensional constraint
that the second Chern class of the manifold equals the second Chern class of the gauge
bundle, after imposing only the metric anomaly constraints on each individual bundle.
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6 Relation to holomorphic field theories

The expansion of the heterotic superpotential around a Calabi-Yau background provides
an example of a holomorphic field theory [31]. As we have shown, the one-loop partition
function of this heterotic Kodaira-Spencer theory can be written as a product of holomorphic
Ray-Singer torsions, giving a convenient way of analysing the anomaly structure in the
case that the flux vanishes. We now discuss how to extend this to generic holomorphic
field theories. We will employ the path-integral formalism which is commonly found in
the physics literature (and the previous sections of this article), rather than the precise
mathematical constructions of [31], leaving a more rigorous construction for future study.

6.1 One-loop quantisation in the BV formalism

General Lagrangian field theories have a (background-dependent) perturbative description
in terms of L∞ algebras (see [66, 67]). This result follows from the deformation theory of
the equations of motion, which necessarily give an L∞ structure [68–70]. These algebras are
characterised by a Z-graded vector space A with a collection of n-fold graded-symmetric
brackets ln : A⊗n → A, with intrinsic degree 2− n, which satisfy Jacobi-like identities (see
e.g. [66] for details). In particular, the identities for the l1 ≡ d bracket state that

d2 = 0 , (6.1)

and hence A forms a differential complex:

A : . . .
d−→ A0 d−→ A1 d−→ A2 d−→ . . . (6.2)

Note that d may not be a first-order differential operator in general. The Z-grading coincides
with the BRST grading of the underlying theory. For example, the fields live in A1, the
gauge parameters live in A0, and so on. The equations of motion live in A2 and can be
written as

0 = dy + l2(y, y) + l3(y, y, y) + . . . with y ∈ A1 . (6.3)

Working at the one-loop level, we can restrict to the linearised theory. We can therefore
drop all of the higher brackets and consider simply the differential complex (6.2). For
Lagrangian theories, one can find a natural pairing ⟨·, ·⟩ on A such that the classical action
can be expressed as

S = ⟨y, dy⟩ ∼
∫

y dy with y ∈ A1 . (6.4)

In general, this pairing is required to satisfy identities which correspond to “invariance”
under L∞ bracket operations (usually referred to as a cyclic structure). In the linearised
case, this simply translates into integration by parts. When the equations of motion are
those solved by a deformation of a solution to some fixed theory, as was the case for our
heterotic superpotential theory, one can derive this pairing from the original action.
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Introducing ghosts, antifields and so on, as in the BV formalism, we find that they lie
in the remaining vector spaces An. The minimal solution to the master action can then be
written in the same form but now with A a generic element of (6.2) [67]:

S = ⟨y, dy⟩ ∼
∫

y dy with y ∈ A . (6.5)

To quantise the theory, one introduces a Hodge star-like operator ∗ such that the new inner
product

(y, y) = ⟨y, ∗y⟩ (6.6)

is positive definite.35 Using this, one can define the adjoint of d such that the resulting
Laplacian is elliptic and choose a gauge-fixing condition d†y = 0. The modulus of the
one-loop partition function of the theory defined by (6.5) is then given in terms of the
analytic torsion of the differential complex (6.2) [41, 42]. For simplicity, let us assume that
the field A1 is bosonic and that the gauge symmetry is finitely reducible. We can then
express the partition function concisely as:

|ZA|2 = T (−1)(N+2)/2
, (6.7)

where N is the number of non-trivial terms in the complex A and

T =
(∏

p

(det∆p)(−1)pp
)1/2

(6.8)

is the analytic torsion of A. Note that in (6.8) we have introduced a shifted grading p on
the complex A defined such that the lowest-degree vector space in A now has label p = 0.

6.2 Analytic torsion and Dolbeault resolution

Holomorphic field theories are a particular type of field theory whose BRST complex A is
in fact the total complex of a double complex of a certain type. This double complex is,
in particular, the Dolbeault resolution of a single holomorphic complex. That is, we have
some complex C• which consists of holomorphic sections of some vector bundles C•, with a
holomorphic differential operator D which squares to zero:

0 −→ C0 D−→ C1 D−→ C2 D−→ . . . (6.9)

A natural example of such a D is the Dolbeault differential ∂ — this is the holomorphic
differential appearing in (2.15), which thus underlies the heterotic superpotential theory we
have been studying.

35In the case of complex fields, this star operator includes complex conjugation so as to ensure positivity.
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Sheaves of holomorphic sections always have a Dolbeault resolution, and hence in
general we can picture the double complex as

0 0 0 0

0 C0 Ω0,0(C0) Ω0,1(C0) Ω0,2(C0)

0 C1 Ω0,0(C1) Ω0,1(C1) Ω0,2(C1)

0 C2 Ω0,0(C2) Ω0,1(C2) Ω0,2(C2)

ι ∂̄ ∂̄ ∂̄

ι ∂̄ ∂̄ ∂̄

ι ∂̄ ∂̄ ∂̄

D D D D

D D D D

D D D D

(6.10)

The left-most column here consists of the sheaves of holomorphic sections in (6.9) that are
being resolved.

Writing Bp,q = Ω0,p(Cq), we say that our theory is a holomorphic theory if the BRST
complex A decomposes into a double complex as

An =
⊕

p+q=n

Bp,q =
⊕

p+q=n

Ω0,p(Cq) . (6.11)

The claim is that under certain circumstances, the analytic torsion of A, and hence the
one-loop partition function of the theory, can then be expressed in terms of the holomorphic
torsions36 of the holomorphic bundles Cq.

In order to define Laplacians, we introduce a positive-definite inner product on (6.10),
similar to that in (2.21). Writing the differential on the total complex as dT = ∂̄ + D , we
use this inner product to define its adjoint d†

T and a Laplacian ∆T = dT d†
T + d†

T dT . In the
case that the Laplacian preserves the individual spaces Bp,q, which is the case for D = ∂

on a Kähler manifold, let ∆p,q
T denote the Laplacian acting on Bp,q. The analytic torsion of

A can then be written as37

T =
(∏

p,q

(det∆p,q
T )(−1)p+q(p+q)

)1/2
. (6.12)

The total analytic torsion of the Dolbeault resolution of the bundle Cq is

Tq =
(∏

p

(det∆p,q
T )p (−1)p

)1/2
, (6.13)

36To be clear, we write analytic torsion for an arbitrary comblex (A, d), while the holomorphic torsion is
reserved for the analytic torsion of the Dolbeault complex of a holomorphic vector bundle (Ω0,•(C), ∂̄).

37Note that the exponent here is different to the definition in [71] due to a difference in the grading of the
total complex.
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and we define the total analytic torsion of the Ω0,p-twisted complex (Ω0,p(C•), D) to be

Sp =
(∏

q

(det∆p,q
T )q(−1)q

)1/2
. (6.14)

It is then simple to check that the total torsion factorises into products of torsions Tq and
Sp as follows:

T =
(∏

q

T (−1)q

q

)(∏
p

S(−1)p

p

)
. (6.15)

We observe that if ∆T commutes with ∂̄ and ∂̄†, then it preserves the decomposition38

Bp,q = ∂̄Bp−1,q ⊕ ∂̄†Bp+1,q . (6.16)

In particular, this holds if ∂̄ and D satisfy certain Kähler-like identities. If this is the case,
then, in line with [12, 71], we can define operators •∆T and ∆T • which are the restrictions
of ∆T to the first and second subspaces respectively in the decomposition (6.16). Moreover,
since we have

∆p,q
T = •∆p,q

T +∆p,q
T

• ,

•∆p,q
T ∂̄α = ∆p,q

T ∂̄α = ∂̄∆p−1,q
T α = ∂̄(∆p−1,q

T
•α) ,

(6.17)

the determinant of the total Laplacian can be expressed as

det∆p,q
T = (det •∆p,q

T )(det∆p,q
T

•) , det •∆p,q
T = det∆p−1,q

T
• . (6.18)

It is then a quick calculation to check

∏
p

S(−1)p

p = 1 . (6.19)

We therefore find that the total torsion of A, i.e. the one-loop partition function, is the
alternating product of the total analytic torsions of the Dolbeault resolutions of each of the
Cq. That is, we have

T =
∏
q

T (−1)q

q . (6.20)

We emphasise, though, that in this formula the torsions Tq are those defined in (6.13),
featuring the determinants of the Laplacian ∆T for the total complex, and not those with
determinants of the standard Dolbeault Laplacians ∆∂̄ that would give the holomorphic
Ray-Singer torsions I(Cq). It would thus appear that in order to relate the quantity (6.13) to
these holomorphic Ray-Singer torsions we need to assume a further direct relation between
det∆p,q

T and det∆p,q

∂̄
, as we found for the heterotic superpotential in equation (2.29).

However, as we will see below, remarkably, the overall expression for T is equal to that
with I(Cq) in place of Tq provided some considerably milder assumptions hold.

38In considering the one-loop partition function, we always remove the zero-modes.
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6.3 Alternative approach to the holomorphic torsion

We will now show that the analytic torsion (6.20) is equal to the alternating product of holo-
morphic Ray-Singer torsions I(Cq) for certain free holomorphic field theories [31] (specified
below) by implementing a field redefinition which generalises that used in section 2.4.

Consider a free holomorphic field theory with BV complex (6.10) (minus the left-most
column). In this subsection, we will need the following assumptions which restrict both the
choice of theory and the underlying complex manifold. First, we assume that

[∂̄, D ] = 0 and [∂̄†, D ] = 0 . (6.21)

This would be true, for example, in the case where D is a holomorphic Dolbeault operator
acting on differential forms and the manifold is Kähler. We also assume that we have a
Hodge decomposition for the operator ∂̄, which is guaranteed if the manifold is compact.
We will consider the theory absent of zero-modes, though this could be weakened simply to
assuming that D annihilates the zero-modes of ∆∂̄ .

Denoting a general element of the BV complex by y and the inner product as ⟨·, ·⟩, the
BV master action takes the same form as above,

S = ⟨y, dy⟩ = ⟨y, ∂̄y⟩+ ⟨y, Dy⟩ , (6.22)

where d = ∂̄ + D is the natural derivative on the total complex of (6.10). Let us now apply
the Hodge decomposition for ∂̄ to the field y by writing

y = ∂̄b + ∂̄†c . (6.23)

Note that b and c can also be thought of as elements of the double complex.
Via (anti-)commutation relations of operators and integration by parts, the action then

becomes, schematically (up to irrelevant signs which depend on the (p, q) degree of y),

S = ⟨y, ∂̄y⟩+ ⟨y, D ∂̄b⟩+ ⟨y, D ∂̄†c⟩
= ⟨y, ∂̄y⟩+ ⟨y, D ∂̄b⟩+ ⟨∂̄b, D ∂̄†c⟩
= ⟨y, ∂̄y⟩+ ⟨y, D ∂̄b⟩+ ⟨∂̄b, Dy⟩
= ⟨y, ∂̄y⟩+ 2⟨y, D ∂̄b⟩
= ⟨y + Db, ∂̄(y + Db)⟩
= ⟨y′, ∂̄y′⟩ where y′ = y + Db .

(6.24)

For each component of definite bi-degree (p, q) of the field y, the corresponding component
of the field b has bi-degree (p, q − 1), while Db has bi-degree (p + 1, q − 1). Therefore, in
the shift y′ = y +Db each component of y of bi-degree (p, q) is shifted by a term depending
only on the component of y of bi-degree (p − 1, q + 1). The shift of the total field y is thus
upper triangular if decomposed with respect to an overall q − p grading. Therefore, the
(non-local) field redefinition from y to y′ will have trivial Jacobian in the path integral.

This result implies that the free holomorphic field theory is equivalent to one with the
same field content but D = 0, even at one loop. In particular, this should be true for any
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free holomorphic field theory on a compact Kähler n-fold where the fields live in vector
bundles associated to the U(n) structure principal bundle and the operator D is constructed
from Levi-Civita connections and U(n) invariant tensors.

An immediate corollary of this statement is that the analytic torsion T (and thus
the modulus of the partition function by (6.7)) is given by the alternating product of
holomorphic Ray-Singer torsions of the holomorphic bundles Cp, as in equation (6.20), but
with Tp replaced by I(Cp):

|ZA|2 = T (−1)(N+2)/2
, where T =

∏
q

I(Cq)(−1)q
. (6.25)

As claimed, we have arrived at this result utilising only the assumptions detailed at the
start of this subsection, which are considerably weaker than those needed in section 6.2.

6.4 Application to heterotic superpotential

The BV gauge-complex for the heterotic superpotential theory is:

0 0 0 0 0

0 O Ω0,0 Ω0,1 Ω0,2 Ω0,3 0

0 Q Ω0,0(Q) Ω0,1(Q) Ω0,2(Q) Ω0,3(Q) 0

0 O Ω3,0 Ω3,1 Ω3,2 Ω3,3 0

0 0 0 0 0

ι ∂̄ ∂̄ ∂̄

ι D̄ D̄ D̄

ι ∂̄ ∂̄ ∂̄

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂

(6.26)

When we perturb around a background where the fluxes vanish, the operator D̄ ≡ ∂̄ and
the system has precisely the form outlined in the previous subsections. We also have the
stronger condition that the determinant of the total Laplacian is proportional to that of
the Dolbeault Laplacian, which implies det∆p,q

T ∝ det∆p,q

∂̄
. In particular, this implies that

the total analytic torsion of the Dolbeault resolution of Cp is the holomorphic Ray-Singer
torsion of Cp:

Tp = I(Cp) . (6.27)

Therefore, either by using this together with (6.20) or by directly applying the more general
formula (6.25), we arrive at the expected result:

|Zfree|2 =
∏
p

T (−1)p

p = I(Q)
I(Λ0,0)I(Λ3,0) = I(Q)

I(Λ0,0)2 . (6.28)

We find it suggestive that, provided the BRST complex satisfies certain Kähler-like
identities, the one-loop partition function of a holomorphic field theory can be written as a
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product of holomorphic Ray-Singer torsions, and that these conditions precisely arise for
the heterotic superpotential theory. This means that the anomalies of such field theories,
both background and gravitational/gauge anomalies, can be analysed very easily using the
same methods we have used in this paper.

7 Conclusions

In this work, we have studied a topological theory whose equations of motion give the
Maurer-Cartan equation associated to the Hull-Strominger system at O(α′) [26]. It effectively
describes Kodaira-Spencer theory coupled to hermitian and gauge bundle deformations,
and hence can be considered as the heterotic extension of Kodaira-Spencer theory [11].
Our work extends that of [26] by including rescalings of the holomorphic three-form Ω, or
deformations associated to the dilaton.

Working at quadratic order, we were able to find the one-loop partition function in
terms of holomorphic Ray-Singer torsions of holomorphic bundles [43–45]. We analysed
the anomalies of the background to first order in α′, and were able to identify two different
kinds — background metric anomalies and gravitational/gauge anomalies. Background
anomalies are associated to a change of the background geometry one is perturbing. Their
presence does not signify an inconsistent theory, just that the quantum theory depends on
more data than one expected. Nonetheless, provided the second Chern class of the manifold
and the gauge bundle are correlated in a way depending on the gauge group, we found that
we could cancel the dependence on a choice of hermitian bundle metrics, and hence the
theory retains its topological nature at one-loop.

The gauge/gravitational anomalies on the other hand are associated to a change in
local frame and they do signify an inconsistent theory. We found that only gravitational
anomalies could arise and that these can be cancelled through a Green-Schwarz type
mechanism. We also defined a slightly different holomorphic field theory with somewhat
weaker constraints on the construction. In doing so, we found that this model had gauge,
gravitational and mixed anomalies. Again, these can be cancelled assuming that the
Chern characters of the gauge bundle and background are correlated, as in the background
anomaly calculation. Particularly interesting were the cases where the gauge group was
SO(8)× SO(8) or SU(3)× E6, where the anomaly cancellation constraint coincided with
that of the ten-dimensional heterotic string. The gauge group SU(3)× E6 is interesting as
it corresponds to the internal gauge group of the standard embedding [64].

In the final part of the paper, we made some observations on the link between this
heterotic Kodaira-Spencer theory and holomorphic field theories [31]. In particular, we
noted that when the flux vanishes, the action defines a holomorphic theory, and we gave
a novel derivation of the fact that the one-loop partition function should be given by the
product of holomorphic Ray-Singer torsions.

Our work leads to many natural and interesting questions. Firstly, one should hope
to be able to define the theory in other complex dimensions, as for the original Kodaira-
Spencer theory [72]. Indeed, there is a clear path to doing so on SUN -structure manifolds
in 2N dimensions as follows. Under SUN , one can identify chiral spinors with even or
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odd anti-holomorphic forms. One can then easily see that the fermionic fields of heterotic
supergravity (plus the corresponding antifields) fill out a complex similar to that of our
theory given in (6.26). One should thus expect that these will provide the higher-degree
form fields needed to write a BV master action of Chern-Simons or BF type which will
include the degrees of freedom for the deformations of the complex / Kähler structures and
gauge fields at lower degrees. This is what happens in Kodaira-Spencer theory [72] and
also twisted super Yang-Mills in ten dimensions [73] — one should expect our case to go
through similarly.

Next, in the regime where the fluxes have been turned off, the bundle Q = T 1,0 ⊕
End(V )⊕ T ∗1,0 is a direct sum of bundles. When the fluxes are reintroduced, the bundle Q

takes this form locally, but globally has an interesting extension structure. Alternatively,
one can view the differential D̄ as no-longer being diagonal but instead upper triangular.
Crucially though, Q remains a holomorphic vector bundle. Thus, one can build the analogue
of the Dolbeault resolution (6.26), but now with the full anti-holomorphic differential D̄

rather than ∂̄ for the terms involving Q. Because of this, it no longer strictly fits into
the definition of a holomorphic field theory in [31], though it is clearly very similar in
spirit. It can be shown that the construction of section 6.3 otherwise goes through without
modification in this setting, leaving the same form for the absolute value of the partition
function, but now defining the holomorphic torsion of Q using the operator D̄. One could
then go on to examine its anomalies, though this is likely to be less straightforward as
some ingredients of the theorems providing the variations of the torsions would then be
absent. One could hope, however, that the theory would remain well-defined with non-zero
background flux.

Further, including the fluxes also leads us to consider other anomalies of both background
and gauge type. In particular, there may be anomalies associated to the choice of B-field,
which can be combined with the metric anomaly to define a generalised metric anomaly.
The robust nature of anomalies lead to the identification of the conventional anomaly
polynomial with the index of the Dirac operator on the manifold. In the case of the
B-field, it does not define a conventional connection but instead a connective structure on
a gerbe, and hence the natural anomaly may be in terms of indices for gerbe connections.
A modern physical interpretation of the B-field is the gauge field for a U(1) one-form
symmetry. This theory may be an interesting arena to probe the link between higher-form
gauge anomalies and gerbes. The authors expect that finding a covariant form of the
anomaly-cancelling counter-terms in section 5 that respect the structure of Q would provide
insight into this question.

In this paper, we restricted to studying the one-loop partition function of the theory, or
equivalently the free theory. Including the higher-order interactions would then give a new
interacting holomorphic field theory. One could try to find the associated L∞ algebra and
the associated BV action, extending the work of [26] to include the dilaton. Calculating
higher loop partition functions including these interactions may lead to new invariants of the
holomorphic Courant algebroids. This is similar to what happens for the topological A/B
model and holomorphic Chern-Simons. In practice, however, this may prove to be difficult
as the higher interaction contain holomorphic derivatives. Understanding the holomorphic
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anomaly in this context may allow us to make progress in calculating the higher loop
partition functions.

It is possible to reinterpret the topological action in this paper in terms of the language
of exceptional complex structures in O(6, 6+n) generalised geometry [25, 74]. In this picture,
the tensors defining the Hull-Strominger system can combine to define a complex vector
bundle L within the (complexified) generalised tangent bundle EC. The F-terms, i.e. the
vanishing of W and δW , are equivalent to involutivity of L under the Dorfman derivative
plus a additional mild condition related to the dilaton. The Maurer-Cartan equation given
in [26] is then precisely the Maurer-Cartan equation associated to deformations of L which
preserve involutivity. This makes the relationship to Kodaira-Spencer theory even more
obvious. The exceptional complex structure has associated to it a generalised Dolbeault
complex, whose second cohomology computes its infinitesimal moduli. In fact, this can be
defined for any generalised G-structure, in perfect analogy to the usual Dolbeault complexes
associated to torsion-free G-structures, as in [75]. For generalised metric compatible G-
structures, it becomes a double complex, as in [71]. A small extension of this double complex
to account for the dilaton (which can be motivated by requiring a cyclic structure and hence
an action), then provides a generalised geometric construction of the double complex (6.26).
Further details of this construction will be reported elsewhere.

As was shown in [76, 77], analogous structures appear generically in M-theory and
type II compactifications. We can repeat the analysis done here to define and study a
Kodaira-Spencer theory coupled to RR degrees of freedom for type II, or a Kodaira-Spencer
theory for G2 backgrounds in M-theory, each derived from an N = 1 superpotential. These
constructions will also be reported elsewhere.

Finally, it would be interesting to investigate the connection between our topological
theory and a topological heterotic string. Given the link between Kodaira-Spencer and
the topological B-model [11],39 it is natural to suppose that our heterotic Kodaira-Spencer
theory could be the target-space theory of such a topological heterotic string. Candidates
for this topological string include analogues of Witten’s open string [6], holomorphically
twisted (0, 2)-models [78–80], or analogues of the well-studied βγ-system [81–83]. In fact, a
recent paper studied a duality of Lie algebras of the chiral sector of the βγ-system and a
ten-dimensional target space theory of similar flavour to ours [61].

A first statement in this direction could be a version of the conjecture of Costello and
Li that the “minimal” BCOV theory is in fact a twisted version of type IIB supergravity on
C5 [84], where the larger set of fields considered there provides a candidate for the twist of
the full type IIB string field theory. In our context, one could guess that the superpotential
theory describes the six-dimensional part of a twisted version of heterotic supergravity
on the background R4 × CY3. Establishing this would provide a stepping stone towards
grander statements concerning the full string theory.

39In fact it was shown in [12] that Kodaira-Spencer theory fails to match the B-model at one-loop. Instead,
the B-model is more accurately described by a theory of generalised complex structures. [71] found a similar
result for the conjectural G2 and Spin(7) topological strings. The fact that our action is already related to
deformations of exceptional complex structures lends greater evidence to our claim.
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Related to this is the question of holomorphic anomalies. While we did not highlight it
in this paper, the one-loop partition function suffers from a holomorphic anomaly which can
be calculated following [11, 43–45]. In [11], such anomalies for the topological B-model were
shown to arise due to boundaries in complex structure moduli space, and they used this to
find a recursion relation for the partition function at different loop orders. One might ask
whether our holomorphic anomaly arises similarly and can be used to determine higher-order
partition functions of the topological heterotic string. Given that the topological A- and
B-models played a great role in formulating and testing Kontsevich’s homological mirror
symmetry conjecture, it is likely that further study of the topological heterotic theory will
have important applications to the study of (0,2)-mirror symmetry, a subject of considerable
interest in both physics [85–95] and mathematics [96–101] over the past few decades.
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A Hodge diamond

In the calculations of the partition function in the main text, we used certain properties
of the Hodge diamond and the determinants on Calabi-Yau manifolds, first discussed by
Pestun and Witten [12]. In this appendix, we give a quick review of this material. When
working on a Kähler threefold, the space of differential forms decomposes into subspaces
Ωp,q, where p, q ∈ {0, 1, 2, 3}. On a three-fold, this leads to nine possible subspaces. Since
these manifolds also come equipped with the operators ∂ and ∂̄, these spaces fit into a
double complex known as the Hodge diamond, illustrated in figure 1. We see that ∂ and
∂̄ act along diagonal edges, and their respective adjoint operators, ∂† and ∂̄†, act in the
opposite directions. Each of the nine diamond faces are labelled by A, B or C. As we will
see, these can be associated to certain products of determinants of the Laplacian restricted
to (p, q)-forms.
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Figure 1. Figure adapted from [12]. Complex conjugation, Hodge duality and contraction with the
holomorphic three-form Ω leave only three independent determinants. For example, det∆0,0 = A

and det∆1,1 = AB2C.

•Ω Ω•

•
Ω

Ω
•

Figure 2. Subspaces at each vertex.

In figure 1, we have also drawn smaller squares at each of the vertices. These are to
depict the decomposition of the space of differential forms at each vertex, following from

Ω = H ⊕
•
Ω⊕ Ω

•
⊕ •Ω⊕ Ω• . (A.1)

Here H denotes the set of harmonic forms (which we have ignored in our computations),
while the spaces

•
Ω, Ω

•
, •Ω, and Ω• are orthogonal subspaces of (p, q)-forms which are in the

image of certain combinations of ∂, ∂† and their conjugates. For instance, for (1, 1)-forms,
the subspace

•
Ω1,1 is the image of ∂∂̄ acting on Ω0,0. The subspace Ω•1,1 is given by the

image of ∂∂̄† acting on Ω0,2, and so on. We represent the subspaces by the small squares
associated with each vertex in the Hodge diamond, as depicted in figure 2.40 To each vertex
and face, one can associate certain determinants of Laplacians. Since ∆ commutes with the
relevant operators, the Laplacian on (p, q)-forms can also be decomposed as in (A.1).

Due to symmetry under complex conjugation and the Hodge star, not all of the face
and vertex Laplacians are independent. Furthermore, if the threefold is Calabi-Yau, the

40As we have mentioned, we ignore harmonic forms, but for completeness we can imagine that the harmonic
forms live at centre of each vertex. If these are reintroduced, the determinants that appear in this appendix
should be properly denoted by det ′, indicating that the zero-modes are removed.
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Laplacian commutes with multiplication by the holomorphic three-form Ω. Taken together,
only three of the face Laplacians in the Hodge diamond are independent. The three
independent faces are the four corner faces, the four edge-centred faces, and the central
face. These Laplacians are denoted by ∆A, ∆B and ∆C , with their respective determinants
A, B, and C shown on figure 1. Finally, the determinants of the vertex Laplacians (i.e.
those acting on standard (p, q)-forms) can be expressed in terms of A, B and C as

det∆00 = det∆33 = det∆30 = det∆03 = A , (A.2)

det∆10 = det∆01 = det∆32 = det∆23 = det∆20 = det∆02

= det∆13 = det∆31 = AB ,
(A.3)

det∆11 = det∆21 = det∆12 = det∆22 = AB2C . (A.4)

B The heterotic differential

In this appendix we describe the heterotic twisted differential D̄ on Q = T 1,0⊕End(V )⊕T ∗1,0

which has appeared in [18, 26–28, 47, 48]. We will follow the approach taken in those
works and neglect the subtleties regarding the extra connection on End(T ) appearing in the
heterotic Bianchi identity. The operator (including α′ to get the correct heterotic Bianchi
identity) reads

D̄ =

∂̄ F∗ H̃

0 ∂̄A F
0 0 ∂̄

 T ∗(1,0)X

End(V )
T (1,0)X

, (B.1)

where the maps F , F∗ and H̃ are given by

µ ∈ Ω(0,p)(T ∗(1,0)X) : F(µ) = Fab̄ dzb̄ ∧ µa , H̃b(µ) = µa ∧ H̃abc̄dzc̄

α ∈ Ω(0,p)(End(V )) : F∗
b (α) = α′

4 tr(Fbc̄ dzc̄ ∧ α) ,
(B.2)

where F is the curvature of the holomorphic gauge connection, and H̃ is a ∂-closed (2, 1)-
form. The ∂-closure is required for the higher order L∞-structure to work, which will not be
covered here (see [26] for further details). For on-shell heterotic Hull-Strominger solutions,
H̃ = H(2,1) = i∂ω, and requiring that the operator D̄ is nilpotent leads to the heterotic
Bianchi identity

dH = −2i∂∂̄ω = α′

4 tr(F ∧ F ) . (B.3)

B.1 Curvature polynomials on Q

As is relevant for the current paper, the operator D̄ forms part of a Chern-connection Dc

on Q. We write
Dc = D̄ + D . (B.4)

Let us compute the curvature of Dc. This is most compactly done by using the metric
to combine the holomorphic tangent and cotangent bundles into the complexified tangent
bundle

TC
∼= T ∗1,0 ⊕ T 1,0 , (B.5)
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on which the Chern connection takes the form [49–51]

Dc =
(

dA F
F∗ d∇−

)
, (B.6)

where dA is the gauge connection and d∇− is the Hull connection [32], given by

∇± = ∇LC ± 1
2H , (B.7)

where ∇+ is the supersymmetry preserving Bismut connection. As noted in [49–51], the
full Hull-Strominger system requires Dc to be hermitian Yang-Mills, though the F-term
constraints coming from the superpotential only impose holomorphy. The curvature is then
given by

D2
c =

(
F + FF∗ dA,∇−F
dA,∇−F∗ R∇− + F∗F

)
. (B.8)

Note that F∗ ∼ O(α′). Hence, Dc becomes upper-triangular at zeroth order. Furthermore,
assuming we are on a Calabi-Yau background at zeroth order in α′, R∇− = R + O(α′)
where R is the curvature tensor of the Calabi-Yau background metric. Modulo higher order
corrections, any curvature polynomial in Dc is thus also upper-triangular. Hence, if we
restrict to a diagonal metric on Q, modulo higher orders the metric anomaly therefore
becomes the same as using the diagonal Chern connection on Q, where the tangent bundle
connection is given by the Chern connection of the Calabi-Yau metric.

C Some group theory

C.1 Trace identities for some groups

SO(8) : Tr(T 2) = 6 tr(T 2) , (C.1)
Tr(T 4) = 3 tr(T 2)2 ,

SU(3) : tr(T 2) = 1
2 , (C.2)

tr(T 4) = 1
2 tr(T

2)2 ,

Tr(T 2) = 6 tr(T 2) ,

Tr(T 4) = 9 tr(T 2)2 ,

SU(5) : tr(T 2) = 1
2 , (C.3)

Tr(T 2) = 10 tr(T 2) ,

Tr(T 4) = 10 tr(T 4) + 6 tr(T 2)2 ,

G2 : tr(T 2) = 1 , (C.4)
tr(T 4) = 1

4 tr(T
2)2 ,

Tr(T 2) = 4 tr(T 2) ,

Tr(T 4) = 5
2 tr(T

2)2 ,
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F4 : tr(T 2) = 3 , (C.5)
tr(T 4) = 1

12 tr(T
2)2 ,

Tr(T 2) = 3 tr(T 2) ,

Tr(T 4) = 5
12 tr(T

2)2 ,

E6 : tr(T 2) = 3 , (C.6)
tr(T 4) = 1

12 tr(T
2)2 ,

Tr(T 2) = 4 tr(T 2) ,

Tr(T 4) = 1
2 tr(T

2)2 ,

E7 : tr(T 2) = 6 , (C.7)
tr(T 4) = 1

24 tr(T
2)2 ,

Tr(T 2) = 3 tr(T 2) ,

Tr(T 4) = 1
6 tr(T

2)2 ,

E8 : Tr(T 2) = 30 , (C.8)
Tr(T 4) = 1

100 Tr(T
2)2 .

C.2 Anomaly polynomial factorisation

Here are the factorised anomaly polynomials for the gauge groups G1 × G2 using (4.13).

SU(3)×SU(3) :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

48(ch2(X)−6ch2(V2))2 , (C.9)

SU(3)×G2 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

120(2ch2(X)−5ch2(V2))2 , (C.10)

SU(3)×SO(8) :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

16(ch2(X)−2ch2(V2))2 , (C.11)

SU(3)×F4 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

720(9ch2(X)−5ch2(V2))2 , (C.12)

SU(3)×E6 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.13)

SU(3)×E6 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.14)

SU(3)×E7 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.15)

SU(3)×E8 :
∫

X

1
48(ch2(X)−6ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.16)

G2×G2 :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

120(2ch2(X)−5ch2(V2))2 , (C.17)

G2×SO(8) :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

16(ch2(X)−2ch2(V2))2 , (C.18)

G2×F4 :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

720(9ch2(X)−5ch2(V2))2 , (C.19)
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G2×E6 :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.20)

G2×E7 :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.21)

G2×E8 :
∫

X

1
120(2ch2(X)−5ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.22)

SO(8)×SO(8) :
∫

X

1
16(ch2(X)−2ch2(V1))2+ 1

16(ch2(X)−2ch2(V2))2 , (C.23)

SO(8)×F4 :
∫

X

1
16(ch2(X)−2ch2(V1))2+ 1

720(9ch2(X)−5ch2(V2))2 , (C.24)

SO(8)×E6 :
∫

X

1
16(ch2(X)−2ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.25)

SO(8)×E7 :
∫

X

1
16(ch2(X)−2ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.26)

SO(8)×E8 :
∫

X

1
16(ch2(X)−2ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.27)

F4×F4 :
∫

X

1
720(9ch2(X)−5ch2(V1))2+ 1

720(9ch2(X)−5ch2(V2))2 , (C.28)

F4×E6 :
∫

X

1
720(9ch2(X)−5ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.29)

F4×E7 :
∫

X

1
720(9ch2(X)−5ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.30)

F4×E8 :
∫

X

1
720(9ch2(X)−5ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.31)

E6×E6 :
∫

X

1
24(2ch2(X)−ch2(V1))2+ 1

24(2ch2(X)−ch2(V2))2 , (C.32)

E6×E7 :
∫

X

1
24(2ch2(X)−ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.33)

E6×E8 :
∫

X

1
24(2ch2(X)−ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.34)

E7×E7 :
∫

X

1
288(9ch2(X)−2ch2(V1))2+ 1

288(9ch2(X)−2ch2(V2))2 , (C.35)

E7×E8 :
∫

X

1
288(9ch2(X)−2ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 , (C.36)

E8×E8 :
∫

X

1
1200(25ch2(X)−ch2(V1))2+ 1

1200(25ch2(X)−ch2(V2))2 . (C.37)
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