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Abstract—Developing a universal design method to construct
different multi-scroll/wing chaotic systems (MS/WCSs) has been
challenging. This paper proposes a general design method for
MS/WCSs called the universal variable extension method (UVEM).
It is a simple but effective approach that generates 1-direction (1-
D) and 2-D multi-scroll/wing chaotic attractors. Using any double-
scroll/wing chaotic system as the basic system, the UVEM is able to
construct different MS/WCSs. Employing Chua’s chaotic system and
Lorenz chaotic system as two examples, we construct two MSCSs
(including 1-D and 2-D) and two MWCSs (including 1-D and 2-
D), respectively. Theoretical analysis and numerical simulation show
that the constructed MS/WCSs not only can generate 1-D and 2-D
multi-scroll/wing chaotic attractors but also have 1-D and 2-D initial
boosting behaviors. This means that the MS/WCSs designed by the
UVEM are very sensitive to their initial states, and have better
unpredictability and more complex chaotic behaviors. To show the
simplicity of UVEM in hardware implementation, we develop a field-
programmable gate array (FPGA)-based digital hardware platform
to implement the designed MS/WCSs. Finally, a new pseudo-random
number generator is proposed to investigate the application of the
MS/WCSs. All P-values obtained by the NIST SP800-22 test are
larger than 0.01, which indicates that the MS/WCSs designed by
UVEM have high randomness.

Index Terms—Chaotic system, multi-scroll/wing chaotic attrac-
tors, initial boosting behavior, FPGA implementation, PRNG.

I. INTRODUCTION

AS chaotic systems are widely used in nonlinear system
control, secure communication, and many other applica-

tions, designing chaotic systems with complex dynamics has
gained significant attention in recent decades [1, 2]. Among the
research works, the design of multi-scroll/wing chaotic systems
(MS/WCSs) with high complexity and adjustability has attracted
particular interests [3]. Numerous researchers have devoted to
their system modeling and dynamic characteristics [4, 5]. A lot
of design methods of the MS/WCSs have been proposed [6, 7],
however they still encounter some drawbacks and challenges. A
dominant problem is that there is no universal method to construct
MSCSs and MWCSs. This problem restricts the flexibility of
the generation of multi-scroll/wing chaotic attractors (MS/WCAs)
and makes MS/WCS application difficult. Therefore, finding a
novel design method that can be applied to construct both MSCSs
and MWCSs is still challenging and significant work.

Over the past decades, much research has been published on
the design methods of MS/WCSs. As the pioneering research,
Suykens and Vandewalle [8] constructed the first MSCS by using
a quasilinear approach in 1991. Since then, the construction of
MS/WCSs has attracted many researchers’. Particularly, Yu et
al. [9] put forward many key theories on the construction of
MS/WCSs, and successively proposed a series of control methods
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of nonlinear functions including stair function [10], sawtooth
wave function [11], piecewise-linear function [12], switching
function [13]. The basic theory is that the MS/WCAs can be
generated by using the nonlinear functions to increase the number
of unstable saddle focus equilibrium points in double-scroll/wing
chaotic systems (DS/WCSs). In the last ten years, according to
this basic theory, various nonlinear functions have been applied to
design MS/WCSs based on different DS/WCSs such as Lorenz-
like systems [14, 15], Chua-like systems [16, 17], Sprott-like
systems [18, 19], Jerk-like systems [20, 21], and so on [22, 23].
In recent years, with the development of the research, some
MS/WCSs have been proposed by adopting non-function control
methods. For example, Hong et al. [24, 25] constructed a series
of MWCSs by using multilevel pulses to replace the original
variables of the basic double-wing chaotic systems. Wang et al.
[26] realized an MSCS by using a piecewise-linear Chua’s diode
to replace the nonlinear resistor of the Chua’s circuit. Zhang et al.
[3, 27] proposed an MSCS and an MWCS by coupling a multi-
piecewise linear memristor into a Jerk system and a Sprott system,
respectively. Moreover, some other approaches like symmetry
conversion [28], fractal transformation [29], and neural networks
[30, 31] have also been reported.

The above review shows that to obtain different MS/WCSs
a large number of design methods have been developed. How-
ever, no matter which method is used, there exist three serious
drawbacks: (i) Different design methods are needed for design-
ing different MSCSs and MWCSs, and a universal method is
not available. (ii) Different nonlinear functions are required to
construct different MS/WCSs, and there is no unified control
function. (iii) The realization process is complex, as the basic
DS/WCSs must be changed. Clearly, the implementation of
different MS/WCSs is very complex and difficult. For a class
of practical dynamic systems, a unified nonlinear control is
significant [32, 33]. Consequently, a universal method is attractive
to design different MS/WCSs, but it is a challenging task, as the
basic double-scroll/wing systems and control functions are not
universal.

To solve the above issues, this paper proposes a simple
universal variable extension method (UVEM). The UVEM has
four advantages: (a) By using UVEM, not only the MSCSs can be
constructed based on any double-scroll chaotic systems but also
the MWCSs can be constructed based on any double-wing chaotic
systems; (b) It only needs to adopt the same steps and the same
control functions no matter whether to design MSCSs or MWCSs;
(c) Design of both 1-D MS/WCSs and 2-D MS/WCSs has the
same methods and the same control functions; (d) The UVEM
does not change basic DS/WCSs. Undoubtedly, the constructed
MS/WCSs by using UVEM have very simple algorithms, system
models, and circuits. Therefore, the design, implementation and
maintenance of the MS/WCSs have a lower cost. For different
requirements, the double-scroll/wing systems can be flexibly
replaced. Besides, due to their versatility, they have a wider
range of applications in practical engineering scenarios including
computers, digital signatures, communication, and information
encryption. The main contributions of this paper are summarized
as follows.
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1) An universal variable extension method is proposed to
design different multi-scroll/wing chaotic systems.

2) Based on the UVEM, two MSCSs (1-D and 2-D) and two
MWCSs (1-D and 2-D) are designed, and their chaos mechanism,
as well as dynamics characteristics, are revealed.

3) An FPGA-based experiment platform is developed to im-
plement the designed MS/WCSs in hardware devices.

The rest of this paper is arranged as follows. Section II
introduces the UVEM and discusses its characteristics. Section III
provides two examples of MSCSs designed by UVEM. Section
IV provides two examples of MWCSs designed by UVEM.
Section V implements them in the hardware platform. Section
VI presents a comparison and application in PRNGs. Section VII
concludes this paper.

II. UNIVERSAL VARIABLE EXTENSION METHOD

In this section, the design flow of the UVEM is proposed firstly.
Then, its characteristics are analyzed theoretically.
A. Design Flow

Generally speaking, the construction of MS/WCSs must be
based on basic DS/WCSs and nonlinear control functions. The
standard model of the 3-dimensional basic DS/WCS can be
expressed as {

ẋ = f1(x,y,z)
ẏ = f2(x,y,z)
ż = f3(x,y,z)

(1)

Where x, y, and z are three state variables. f1, f2, and f3 are
three corresponding state equations. Here, we introduce a unified
nonlinear multi-piecewise-linear function as follows

F(ϕ)=



ϕ,N = 0

ϕ −
N
∑

i=1
(sgn(ϕ +(2i−1))+ sgn(ϕ − (2i−1))),N = 1,2,3, . . .

ϕ − sgn(ϕ),M = 0

ϕ − sgn(ϕ)−
M
∑

j=1
(sgn(ϕ +2 j)+ sgn(ϕ −2 j)),M = 1,2,3, . . .

(2)
where sgn(.) is a sign function. As we can see, F(ϕ) can be
adjusted by selecting integer control parameters N and M. To
visually understand F(ϕ), Fig.1 gives the corresponding curves of
F(ϕ) with N=0, M=0, N=1, and M=1, respectively. From Fig.1,
with the increase of control parameters, the function curves can
be extended along two opposite directions at the ϕ-axis. That is
to say, the proposed F(ϕ) has an extension function. Especially,
the odd (blue points) or even (red points) number of the points
of intersection with the ϕ-axis can be obtained with the increase
of control parameters N and M. That is to say, any number of
extension multiples can be realized by adjusting N and M, as
shown in Table I, thus generating odd numbers and even numbers
of scrolls/wings by selecting different values of N or M.
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Fig. 1: Curves of control function F(ϕ) with N=0, M=0, N=1, and
M=1.

TABLE I: EXTENSION MULTIPLES DEPENDENT ON CONTROL PA-
RAMETERS.

N Extension multiples M Extension multiples
0 1 0 2
1 3 1 4
2 5 2 6

. . . . . . . . . . . .
N 2N+1 M 2M+2

Next, a UVEM to design 1-D and 2-D MS/WCSs is proposed
based on the basic system (1). Most of the existing design

methods of MS/WCSs must modify the basic systems by us-
ing different nonlinear control functions to replace or couple
original variables. As a result, its electronic circuit realization
is complicated due to the use of multiple control functions. Also,
both the basic systems and variables are destroyed, which is
not conducive to its implementation. Therefore, a simple UVEM
without changing basic systems is presented. The realization
process has only one step for constructing 1-D MS/WCSs. By
extending one state variable ϕ and adding one extended state
equation ϕ̇=cx+dF(ϕ) to the basic system (1), a 1-D MS/WCS
can be constructed as follows

ẋ = f1(x,y,z)
ẏ = f2(x,y,z)
ż = f3(x,y,z)
ϕ̇ = cx−dF(ϕ)

(3)

where ϕ is the extension variable, F(ϕ) is the nonlinear control
function, and c and d are defined as non-zero relevant parameters
and extension coefficients, respectively. Similarly, by extending
two state variables ϕ1 and ϕ2 and adding two extended state
equations ϕ̇1=c1x+d1F1(ϕ1) and ϕ̇2=c2x+d2F2(ϕ2) to the basic
system (1), a 2-D MS/WCS can be constructed as follows

ẋ = f1(x,y,z)
ẏ = f2(x,y,z)
ż = f3(x,y,z)
ϕ̇1 = c1x−d1F1(ϕ1)
ϕ̇2 = c2y−d2F2(ϕ2)

(4)

where ϕ1 and ϕ2 are two extension variables, and F1 and F2 are
nonlinear control functions. c1, c2, d1, and d2 are defined as non-
zero relevant parameters and extension coefficients, respectively.
It can be seen from systems (3) and (4) that the basic system
(1) has not been changed, and only extended state equations are
needed. There is no doubt that the implementation process of
the UVEM is very simple. In addition, this method only needs
a unified nonlinear control function, which largely simplifies the
system model, algorithm, and circuit of the MS/WCSs.

Moreover, to better understand and apply this design method,
a design flow graph based on the proposed UVEM is given
in Fig.2. From Fig.2, the UVEM can be easily realized by
expanding new state variables. 1-D MS/WCAs can be generated
by expending one new variable, and 2-D MS/WCAs can be
obtained by expending two new variables. More importantly, the
two steps only require the same control function. Therefore, the
UVEM only requires one step to realize 1-D MS/WCSs and two
steps to realize 2-D MS/WCSs. Also, no matter whether MSCSs
or MWCSs, only the same steps and the same nonlinear control
function are needed.
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Fig. 2: Design flow graph of the UVEM.

B. Theoretical Analysis

In this subsection, the symmetry, divergence, and stability of
the 1-D and 2-D MS/WCSs designed by UVEM are studied.
According to equation (2), there is F(ϕ)=-F(ϕ). Therefore, from
systems (3) and (4), we can have the following inference:
Inference 1: The 1-D MS/WCS in system (3) is of inversion
symmetry about ϕ . The 2-D MS/WCS in system (4) is of
inversion symmetry about ϕ1 and ϕ2.
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The super volume shrinkage rate of systems (3) and (4) can
be calculated by

∇V1 =
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂ z

+
∂ ϕ̇

∂ϕ
=

(
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂ z

)
−d = ε −d (5)

∇V2 =
∂ ẋ
∂x +

∂ ẏ
∂y +

∂ ż
∂ z +

∂ ϕ̇1
∂ϕ1

+ ∂ ϕ̇2
∂ϕ2

=
(

∂ ẋ
∂x +

∂ ẏ
∂y +

∂ ż
∂ z

)
−d1 −d2

= ε − (d1 +d2)
(6)

where ε denotes the super volume shrinkage rate of the original
double-scroll/wing chaotic systems. Since ε is always less than
0, the shrinkage rate depends on the evolution of extension
coefficients d, d1, and d2. Therefore, we can get the following
inference:
Inference 2: When d > 0, ▽V1=ε − d < 0, system (3) is dis-
sipative. 1-D MS/WCS satisfies the necessary conditions for
generating chaos. When d1 + d2 > 0, ▽V2=ε − (d1 + d2) < 0,
system (4) is dissipative. 2-D MS/WCS satisfies the necessary
conditions for generating chaos.

The stability of the 1-D and 2-D MS/WCSs is investigated by
analyzing the equilibrium points of systems (3) and (4). Firstly,
letting ẋ = ẏ = ż = ϕ̇ = 0, the equilibrium equation of the system
(3) can be described as

f1(x,y,z) = 0
f2(x,y,z) = 0
f3(x,y,z) = 0
cx−dF(ϕ) = 0

(7)

Solving equation (7), the equilibrium points of system (3) can be
obtained by

E(x,y,z,ϕ) = (x∗,y∗,z∗,F(ϕ) = cx∗/d) (8)

where x∗, y∗, and z∗ are the equilibrium points of the original
double-scroll/wing chaotic systems. Obviously, the equilibrium
point on the ϕ phase depends on the parameters c, d, and the
original equilibrium point x∗. Combined with the features of
F(ϕ), it can be found that the equilibrium points of the system in
the x direction are extended along the ϕ direction. The Jacobian
matrix of system (3) can be calculated by

J =


∂ ẋ
∂x

∂ ẋ
∂y

∂ ẋ
∂ z

∂ ẋ
∂ϕ

∂ ẏ
∂x

∂ ẏ
∂y

∂ ẏ
∂ z

∂ ẏ
∂ϕ

∂ ż
∂x

∂ ż
∂y

∂ ż
∂ z

∂ ż
∂ϕ

∂ ϕ̇

∂x
∂ ϕ̇

∂y
∂ ϕ̇

∂ z
∂ ϕ̇

∂ϕ

=


∂ ẋ
∂x

∂ ẋ
∂y

∂ ẋ
∂ z 0

∂ ẏ
∂x

∂ ẏ
∂y

∂ ẏ
∂ z 0

∂ ż
∂x

∂ ż
∂y

∂ ż
∂ z 0

c 0 0 −d

 (9)

For the equilibrium points E, the characteristic equation can be
written by

P1(λ ) = det |λ I − J|= (λ +d)Po(λ ) (10)

where Po(λ ) is the characteristic equation of the original double-
scroll/wing chaotic systems. Obviously, when d > 0, there is an
additional characteristic value λ4 =−d < 0. Thus the stability of
the 1-D MS/WCSs can be derived as follows:
Inference 3: If d > 0, the 1-D MS/WCS has the same stability
as the original double-scroll/wing chaotic systems, otherwise it
is unstable.

By using a similar method, the characteristic equation of
system (4) can be deduced as

P2(λ ) = (λ +d1)(λ +d2)Po(λ ) (11)

When both d1 > 0 and d2 > 0, there are two additional character-
istic values λ4 =−d1 < 0 and λ5 =−d2 < 0. Thus, the stability
of the 2-D MS/WCSs can be stated as below:
Inference 4: If d1 > 0 and d2 > 0, the 2-D MS/WCS has the
same stability as the original double-scroll/wing chaotic systems,
otherwise it is unstable.

Next, two examples using UVEM are given based on double-
scroll Chua’s system and double-wing Lorenz system, respec-
tively.

III. MSCSS BASED ON CHUA’S SYSTEM

This section designs Chua’s system-based 1-D and 2-D MSCSs
using UVEM, discusses their chaos mechanisms, and analyzes
their dynamical behaviors.
A. Brief Introduction of Chua’s system

The classical model of Chua’s chaotic system can be expressed
as [34] {

ẋ = a(y− f )
ẏ = x− y+ z
ż = by

(12)

where f is the piecewise-linear function m1x+0.5(m0−m1)(|x+
1|−|x−1|). When parameters a=9, b=-14.286, m0=-1/7, m1=2/7,
and initial states (0.1, 0.1, 0.1), the equilibrium points (red) and
attractors (blue) of the system (12) are given in Fig.3. Clearly, the
Chua’s system generates a standard double-scroll chaotic attractor
with one index-1 saddle-focus (P2) and two index-2 saddle-focus
(P1 and P3). The mapping results on x− y phase plane and x− z
phase plane are plotted in Fig.3(a) and Fig.3(b), respectively.
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Fig. 3: Double-scroll attractor of system (1). (a) x-y plane. (b) x-z plane.

B. Designing 1-D MSCS Via Extending One State Variable

According to the proposed UVEM, a 1-D MSCS based on
Chua’s system (12) can be constructed as follows

ẋ = a(y− f )
ẏ = x− y+ z
ż = by
ϕ̇ = cx−dF(ϕ)

(13)

where c and d are relevant parameters and extension coefficients,
respectively. Firstly, the dynamical behavior related to the two
parameters (c and d) is investigated by using bifurcation diagrams
and Lyapunov exponents. We set one of the parameters c, d,
to a fixed value and use the other as a variable to investigate
the dynamical behaviors of the 1-D MSCS. Taking M=1 as
an example, Fig.4 shows two bifurcation plots and the corre-
sponding Lyapunov exponents. As illustrated in Fig.4(a), when
fixing d=21.8 and increasing c in the region (8, 14), the 1-D
MSCS shows the chaos bifurcation scenario within the whole
parameter interval. Surprisingly, as the parameter c increases,
the motion trajectory starts from chaos with one double-scroll
structure (s1 ∈(8, 9.8)), goes into chaos with four double-scroll
structures (s2 ∈(9.8, 10.4)), and finally settles down to chaos
with two double-scroll structures (s3 ∈(10.4, 14)). Similarly, such
dynamical characteristic occurs in Fig.4(b). Namely, the double-
scroll attractor in 1-D MSCS can be extended only under certain
parameter conditions. Obviously, the two parameters play a key
role in the generation of multiple double-scroll structures.
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Fig. 4: Bifurcation diagram and first three Lyapunov exponents. (a)
Dynamical behaviors related to parameter c. (b) Dynamical behaviors
related to parameter d.
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Next, the generation mechanism of 1-D MSCAs is analyzed.
First, by letting ẋ = ẏ = ż = ϕ̇ = 0, the equilibrium points can be
solved by 

a(y− f ) = 0
x− y+ z = 0
by = 0
cx−dF = 0

(14)

When keeping the original parameters a, b, m0, and m1 un-
changed, setting relevant parameter c=10 and extension coeffi-
cient d=21.8, the solution of equilibrium equation (14) is obtained
as

E = (x,y,z,ϕ) =

{
E1 = (0,0,0,F(ϕ) = 0)
E2 = (1.5,0,−1.5,F(ϕ) = 0.6881)
E3 = (−1.5,0,1.5,F(ϕ) =−0.6881)

(15)

Based on the above results, we can find that the equilibrium
points in the x-, y-, and z-axis are unchanged compared with
the basic Chua’s system. In other words, the basic double-scroll
attractor in phase space x-y-z is unchanged in this case. However,
the original equilibrium points at the ϕ-axis are extended along
three different functions including F(ϕ)=0, F(ϕ)=0.6881, and
F(ϕ)=-0.6881, which results in the extension of the basic double-
scroll attractor in the x-ϕ , y-ϕ , and z-ϕ planes, respectively. It
should be particularly pointed out that the stability of all exten-
sion equilibrium points is identical with corresponding original
equilibrium points since d > 0. Taking M=1 as an example,
the distribution of the equilibrium points on the ϕ-x, ϕ-y, and
ϕ-z planes are given in Fig.5(a1), (a2), and (a3), respectively.
As we can see, under this case, the original equilibrium points
are synchronously extended along the two opposite directions
at the ϕ-axis with F(ϕ)=0, F(ϕ)=0.6881, and F(ϕ)=-0.6881.
Meanwhile, the whole phase of the basic double-scroll in x-y-z
space is also synchronously extended along the ϕ-axis, resulting
in a 4-double-scroll chaotic attractor in x-ϕ , y-ϕ , and z-ϕ planes,
as shown in Fig.5(a2), (b2), and (c2), respectively. To further
verify the above analysis, the different numbers of double-scroll
attractors are realized by setting N=2, 3, and M=2, 3, as shown in
Fig.6. Clearly, arbitrary number ((odd number 2N+1) and (even
number 2M+2)) of double-scroll attractors can be generated by
choosing a suitable control parameter N/M.
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In addition, the constructed 1-D MSCS (13) can exhibit com-
plex 1-D initial boosting behavior that is a complex dynamical
behavior highly sensitive to initial states [35, 36]. For example,
keeping the above parameter values unchanged except for c=8,
M=3, and the initial value ϕ0 ∈[-8, 8], Fig.7(a) shows the system
produces continuously robust chaos because it has an invariant
positive Lyapunov exponent. More important, the bifurcation
diagram related to ϕ0 in Fig.7(b) shows a typical initial boosting
bifurcation phenomenon with stair-stepping diagram. In this case,
each of the stair regions can evolve to be an attractor. That is
to say, the system can generate a series of coexisting attractors
with the same topology structure but different positions, which
means the initial boosting behavior occurs. To further verify this
characteristic, with ϕ0=±7, ±5, ±3, ±1, the phase portraits of
coexisting eight chaotic double-scroll attractors can be generated
along the ϕ-axis, as shown in Fig.7(c). A large number of
simulations show that infinitely many coexisting double-scroll
attractors can be obtained as N and M increase. This property is
very significant in engineering applications because it can provide
numerous nondestructive and robust chaotic signals with different
offset amplitudes.

C. Designing 2-D MSCS Via Extending Two State Variables

Based on the UVEM, the system model of the 2-D MSCS can
be described as 

ẋ = a(y− f )
ẏ = x− y+ z
ż = by
ϕ̇1 = c1x−d1F1(ϕ1)
ϕ̇2 = c2y−d2F2(ϕ2)

(16)

where c1, c2, and d1, d2 are two sets of relevant parameters and
extension coefficients, respectively. Next, the generation mecha-
nism of 2-D MSCAs is analyzed. Letting ẋ= ẏ= ż= ϕ̇1 = ϕ̇2 = 0,
the equilibrium points can be solved by

a(y− f ) = 0
x− y+ z = 0
by = 0
c1x−d1F1 = 0
c2y−d2F2 = 0

(17)

When keeping the original parameters a, b, m0, and m1 un-
changed, and setting c1=10, d1=21.8, c2=24, and d2=9, the
solution of equation (17) is given as

E = (x,y,z,ϕ1,ϕ2)

=

 E1 = (0,0,0,F1(ϕ1) = 0,F2(ϕ2) = 0)
E2 = (1.5,0,−1.5,F1(ϕ1) = 0.6881,F2(ϕ2) = 0)
E3 = (−1.5,0,1.5,F1(ϕ1) =−0.6881,F2(ϕ2) = 0)

(18)

The equilibrium points in (18) show that the original equilibrium
points in x-y-z space are still unchanged. However, they are
simultaneously extended at the ϕ1- and ϕ2-axis along four dif-
ferent functions including F1(ϕ1) = F2(ϕ2) = 0, F1(ϕ1)=0.6881,
and F1(ϕ1)=-0.6881, which results in the extension of the basic
double-scroll attractor in the ϕ1-ϕ2 plane. Similarly, the stability
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of all extension equilibrium points is identical to that of the corre-
sponding basic equilibrium points since d1 > 0 and d2 > 0. Taking
N1=N2=1 as an example, the distribution of the equilibrium points
on the ϕ1-ϕ2 plane is given in Fig.8. As we can see in this case,
the basic equilibrium points are synchronously extended along
the two opposite directions at ϕ1-axis and ϕ2-axis with F1(ϕ1)=
F2(ϕ2)=0, F1(ϕ1)=0.6881, and F1(ϕ1)=-0.6881. Meanwhile, the
whole phase of the basic double-scroll attractor in x-y-z space is
also simultaneously extended along ϕ1- and ϕ2-axis, resulting in a
3×3-double-scroll attractor in ϕ1-ϕ2 plane, as shown in Fig.9(a).
Evidently, as the control parameters Ni/Mi (i=1, 2) increase, the
basic double-scroll attractor is extended in the ϕ1-ϕ2 plane. To
further verify the above analysis, 4×2-double-scroll and 3×4-
double-scroll attractors are produced by setting (M1=1, M2=0) and
(N1=1, M2=1), as shown in Fig.9(b) and (c), respectively. There-
fore, arbitrary number ((2N1+1)/(2M1+2)×(2N2+1)/(2M2+2)) of
2-D MSCA can be generated by choosing suitable control pa-
rameters Ni/Mi.

Interestingly, the constructed 2-D MSCS (16) can exhibit
complicated 2-D initial boosting behavior, which has not been
reported in previous MSCSs. For example, when keeping the
previous parameters unchanged except for c1=8, c2=20, N1=N2=3,
the first three Lyapunov exponents and corresponding bifurcation
diagrams with ϕ10 ∈(-7,7) and ϕ20 ∈(-7,7) are plotted in Fig.10(a)
and (b), respectively. As we can see, both Fig.10(a) and Fig.10(b)
show typical initial boosting bifurcation phenomena with stair-
stepping diagram. In other words, system (16) simultaneously
generates initial boosting behaviors along ϕ10- and ϕ20-directions,
respectively, which means that 2-D initial boosting behavior
occurs. For further verifying this feature, setting nine sets of
different initial states (ϕ10, ϕ20)=(-2/0/2, -2/0/2), the phase por-
traits of coexisting nine chaotic double-scroll attractors can be
produced on the ϕ1-ϕ2 plane, as shown in Fig.11. It should
be pointed that only partial coexisting attractors are given. In
fact, infinitely many coexisting double-scroll attractors can be
generated on ϕ1-ϕ2 plane as Ni and Mi increase. This property is
very important in engineering applications since it can generate a
series of nondestructive and robust chaotic signals with different
offset amplitudes along two different directions.

IV. MWCSS BASED ON LORENZ SYSTEM

This section designs Lorenz system-based 1-D and 2-D
MWCSs using UVEM, discusses their chaos mechanisms and
analyzes their dynamical behaviors.
A. Brief Description of the Lorenz system
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Fig. 10: 2-D initial boosting behavior in the system (16). (a) Lyapunov
exponents and bifurcation diagram related to ϕ10. (b) Lyapunov expo-
nents and bifurcation diagram related to ϕ20.
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The original model of the Lorenz system can be expressed as
[37] {

ẋ = α(y− x)
ẏ = βx− y− xz
ż = xy− γz

(19)

When the parameters α=10, β=28, γ=8/3, and initial states are
(0.1, 0.1, 0.1), the system (19) can generate typical double-wing
chaotic attractors with one unstable saddle point (P2) and two
indexe-2 saddle-focus (P1 and P3), as shown in Fig.12.
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Fig. 12: Double-wing attractor of the system (19). (a) x-y plane. (b) x-z
plane.

B. Designing 1-D MWCS Via Extending One State Variable

According to the UVEM, a 1-D MWCS is constructed as
follows 

ẋ = α(y− x)
ẏ = βx− y− xz
ż = xy− γz
ϕ̇ = cx−dF

(20)

Letting ẋ= ẏ= ż= ϕ̇=0, the relevant parameter c=1, the extension
coefficient d=15.4, the equilibrium points can be solved as
follows

E = (x,y,z,ϕ) =

{ E1 = (0,0,0,F(ϕ) = 0)
E2 = (6

√
2,6

√
2,27,F(ϕ) = 0.551)

E3 = (−6
√

2,−6
√

2,27,F(ϕ) =−0.551)
(21)

From equation (21), the original equilibrium points in the x-, y-,
and z-axis are unchanged. Nevertheless, the equilibrium points are
extended along the ϕ-axis with three different functions including
F(ϕ)=0, F(ϕ)=0.551, and F(ϕ)=-0.551, which results in the
extension of the basic double-wing attractor in the x-ϕ , y-ϕ ,
and z-ϕ planes, respectively. Taking M=1 as an example, the
distribution of equilibrium points in x-ϕ , y-ϕ , and z-ϕ planes
is given in Fig.13(a1), (b1), and (c1), respectively. Clearly, the
whole phase of the basic double-wing attractor is extended in
x-ϕ , y-ϕ , and z-ϕ planes, resulting in the generation of a 4-
double-wing attractor, as shown in Fig.13(a2), (b2), and (c2),
respectively. That is to say, as N/M increases, the basic double-
wing attractor is extended along the two opposite directions at
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the ϕ-axis. To further verify the above analysis, Fig.14 gives the
phase portrait of 5-, 6-, 7-, and 8-double-wing chaotic attractors
with control parameters N=2, M=2, N=3, and M=3, respectively.

Similarly, the presented 1-D MWCS (20) can exhibit 1-D initial
boosting behavior. To better display this coexisting behavior
distributed on the initial plane, the local basin of attraction for
c=0.8, d=15.4, and M=3 on the x0-ϕ0 plane is plotted in Fig.15(a).
As can be seen, the basin of attraction has eight different regions
painted with different colors. Here each region stands for the at-
traction regions of chaotic attractors with different positions. That
is to say, the 1-D MWCS (20) can generate a series of coexisting
chaotic attractors with different positions under different values
of ϕ0. To further verify this characteristic, with ϕ0=±7, ±5, ±3,
±1, coexisting eight chaotic double-wing attractors are generated
along the ϕ-axis, as shown in Fig.15(b). Numerous simulations
show that infinitely many coexisting double-wing attractors can
be obtained with N/M → ∞. Therefore, the 1-D MWCS (20)
exhibits significant 1-D initial boosting behavior.
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Fig. 15: Initial boosting behavior in the system (20). (a) Basin of
attraction related to ϕ0 and x0 values. (b) Coexisting eight double-wing
attractors in ϕ-x-z phase space.

C. Designing 2-D MWCS Via Extending Two State Variables

Based on the UVEM, the 2-D MWCS can be constructed as
ẋ = α(y− x)
ẏ = βx− y− xz
ż = xy− γz
ϕ̇1 = c1x−d1F1
ϕ̇2 = c2y−d2F2

(22)

Letting c1=1, d1=15.4, c2=1, d2=22, ẋ = ẏ = ż = ϕ̇1 = ϕ̇2 = 0, the
equilibrium points can be solved as follows

E = (x,y,z,ϕ1,ϕ2) =
E1 = (0,0,0,F(ϕ1) = 0,F(ϕ2) = 0)
E2 = (6

√
2,6

√
2,27,F(ϕ1) = 0.551,F(ϕ2) = 0.3857)

E3 = (−6
√

2,−6
√

2,27,F(ϕ1) =−0.551,F(ϕ2) =−0.3857)

(23)

From Equation (23), the basic equilibrium points are still un-
changed in this case. However, they are synchronously extended
at ϕ1- and ϕ1-axis, respectively, along six different functions
F(ϕ1)=0, F(ϕ2)=0, F(ϕ1)=0.551, F(ϕ1)=-0.551, F(ϕ2)=0.3857,
and F(ϕ2)=-0.3857. Such behavior causes the extension of phase
space of the basic double-wing attractor in the ϕ1-ϕ2 plane. For
example, when N1=N2=1, the distribution of equilibrium points
of system (22) is plotted in Fig.16. Obviously, the original equi-
librium points are synchronously extended along the two opposite
directions of the ϕ1-axis and ϕ2-axis. Meanwhile, the whole phase
space of the basic double-wing is also simultaneously extended
along ϕ1- and ϕ2-axis, resulting in a 3×3-double-wing chaotic
attractor in the ϕ1-ϕ2 plane, as shown in Fig.17(a). Therefore, the
system (22) can generate an arbitrary number of 2-D MWCAs,
as shown in Fig.17.
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Fig. 16: Distribution of equilibrium points in the system (22) with
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Similarly, the 2-D MWCS (22) can exhibit 2-D initial boosting
behavior, which has not been reported in previous MWCSs. To
verify this property, we plot the local basin of attraction for
c1=0.8, d1=15.4, c2=0.8, d2=22, and N1=N2=1 in the ϕ10-ϕ20
plane and show the results in Fig.18(a). It can be seen that the
basin of attraction has nine different regions painted with different
colors. Clearly, the initial boosting behavior occurs along ϕ1
and ϕ2 directions, simultaneously, which shows the 2-D initial
boosting behavior occurs. Thus, the system (22) can generate a
series of coexisting chaotic attractors with different positions in
the ϕ1-ϕ2 plane. Taking (ϕ10, ϕ20)=(-2/0/2, -2/0/2) as an example,
coexisting nine chaotic double-wing attractors can be obtained in
the ϕ1-ϕ2 plane, as shown in Fig.18(b). Therefore, the constructed
2-D MWCS (22) has complex 2-D initial boosting behavior.

V. HARDWARE IMPLEMENTATION

Recently, FPGA-based chaotic circuit implementation has at-
tracted much attention due to its high stability, fast calculation,
and ease of changing system parameters and initial values [38]. To
demonstrate the simplicity of UVEM in hardware implemention,
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this section implements the designed 1-D and 2-D MS/WCSs
using FPGA technology. Usually, the FPGA-based realization of
chaotic systems mainly includes three parts: algorithm design,
hardware planning, and experimental measurement.
A. Algorithm Design

First, in this subsection, the designed MS/WCSs are discretized
by using numerical algorithms. At present, many numerical
algorithms such as the Runge-Kuntta algorithm, Euler algorithm,
and the Heun algorithm can be used to solve the nonlinear
differential equations of chaotic systems [39]. In this paper, a
fourth-order Runge-Kutta (RK-4) algorithm is adopted due to its
high accuracy and easy realization. Taking the 1-D MSCS in
system (13) as an example, discretization is presented by using
the RK-4 method. Based on chaotic system (13), we can deduce

Kx1 = a(y(n)− f (x(n)))
Ky1 = x(n)− y(n)+ z(n)
Kz1 = by(n)
Kϕ1 = cx(n)−dF(ϕ(n))

(24)

where x(n), y(n), z(n), and ϕ(n) are the n-th sampling values of
state variables x, y, z, and ϕ , respectively. We then have

Kx2 = a((y(n)+0.5∆hKy1)− f (x(n)+0.5∆hKx1))
Ky2 = (x(n)+0.5∆hKx1)− (y(n)+0.5∆hKy1)+(z(n)+0.5∆hKz1)
Kz2 = b(y(n)+0.5∆hKy1)
Kϕ2 = c(x(n)+0.5∆hKx1)−dF(ϕ(n)+0.5∆hKϕ1)

(25)
Further we get

Kx3 = a((y(n)+0.5∆hKy2)− f (x(n)+0.5∆hKx2))
Ky3 = (x(n)+0.5∆hKx2)− (y(n)+0.5∆hKy2)+(z(n)+0.5∆hKz2)
Kz3 = b(y(n)+0.5∆hKy2)
Kϕ3 = c(x(n)+0.5∆hKx2)−dF(ϕ(n)+0.5∆hKϕ2)

(26)
Finally we have

Kx4 = a((y(n)+∆hKy3)− f (x(n)+∆hKx3))
Ky4 = (x(n)+∆hKx3)− (y(n)+∆hKy3)+(z(n)+∆hKz3)
Kz4 = b(y(n)+∆hKy3)
Kϕ4 = c(x(n)+∆hKx3)−dF(ϕ(n)+∆hKϕ3)

(27)

By combining equations (24)-(27), the discrete system of the 1-D
MSCS can be established as

x(n+1) = x(n)+∆h(Kx1 +2Kx2 +2Kx3 +Kx4)/6
y(n+1) = y(n)+∆h(Ky1 +2Ky2 +2Ky3 +Ky4)/6
z(n+1) = z(n)+∆h(Kz1 +2Kz2 +2Kz3 +Kz4)/6
ϕ(n+1) = ϕ(n)+∆h(Kϕ1 +2Kϕ2 +2Kϕ3 +Kϕ4)/6

(28)

where x(n+1), y(n+1), z(n+1), and ϕ(n+1) are the (n+1)-th
sampling values of state variables x, y, z, and ϕ , respectively.
∆h is the sampling step, Kxi, Kyi, Kzi, and Kϕi (i=1,2,3,4) are the
temporary variables.
B. Hardware Planning

Next, in this subsection, the discrete MS/WCSs are imple-
mented by using FPGA technology. Fig.19(a) gives the basic
block diagram of the hardware experiment based on FPGA, where
the Vivado 2018.3 tool is used as the design and simulation plat-
form, the Xilinx ZYNQ-XC7Z020 chip is adopted in FPGA, the

Algorithm Design 
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Fig. 19: FPGA-based digital circuit implementation. (a) The block
diagram of the hardware experiment. (b) The flow diagram of the chaotic
system implementation.

AN9767 is used as the digital-to-analog converter (DAC) module
and a dual-channel digital oscilloscope GWINSTEK GDS-1102-
AU is employed to observe and capture the experimental results.

The discretized MS/WCSs are realized in the Vivado design
suite using the Verilog HDL language. Where the discretization
step △h is 0.001 and the IEEE 754-1985 high precision 32-bit
floating point standard is adopted. The key flow diagram of the
algorithm implementation in FPGA is shown in Fig.19(b). As can
be seen, there are three modules: chaotic oscillator, floating-to-
fixed unit, and DAC unit. The chaotic oscillator module mainly
uses the RK-4 algorithm to solve the MS/WCSs. It contains four
input signals and five output signals, where the system clock
”CLK” and the reset signal ”RST” are two 1-bit control signals,
△h and the initial values (x0, y0, z0, ϕ0) are both 32-bit input
signals. The four 32-bit output signals (xn out, yn out, zn out,
ϕn out) are used as the initial values of the next iteration of the
chaotic oscillator. These signals are equivalent to the x, y, z, and
ϕ variables of the 1-D MSCS. Meanwhile, they are also input to
the floating to fixed unit and are further converted into a 14-bit
fixed-point number. In particular, considering the phase portraits
on ϕ-y planes and to save hardware resources, only two 14-bit
output signals are implemented.

Additionally, to better exhibit their connected relationship,
Fig.20 gives a hierarchical structure of the Verilog HDL program
for the FPGA-based implementation of the 1-D MSCS. First, the
discretized differential equations of chaotic systems are described
by using various intellectual property (IP) cores including adder,
subtractor, multiplier, exponent, and absolute value in the Vivado
compilation environment. The entire logic circuits are initialized
by the main controller when the experiment board is turned on,
and they begin iterating over the initial states of x(n), y(n), z(n),
and ϕ(n). Then, the discretized equations (four function units Fx,
Fy, Fz, Fϕ) are constructed using the IP instances. The main
controller carries out the four-time loading sequences of F=[Fx,
Fy, Fz, Fϕ] and switches the subsequences of Ki=[Kxi, Kyi, Kzi,
Kϕi] (i=1,2,3,4) using the cycle counter. By weighing the results
of the calculation, Y (n+1)=[x(n+1), y(n+1), z(n+1), ϕ(n+1)]
can then be obtained. Finally, the floating-point numbers are
converted into 14-bit integers and further converted into analog
signals through the DAC module. The output analog signals can
be observed via an oscilloscope.
C. Experimental Measurement

According to the above design process, the MS/WCSs includ-
ing systems (13), (16), (20), and (22) are physically implemented.
The hardware experimental devices including a Lenovo laptop
E490 with Intel CoreTM i7 CPU 2.500GHz, an FPGA devel-
opment board, and a digital oscilloscope are shown in Fig.21.
Fig.22 gives 1-D- and 2-D-MS/WCAs captured by the digital
oscilloscope. It is worth noting that the experimentally captured
results are in agreement with those of Fig.6, Fig.9, Fig.14,
and Fig.17 obtained from the Matlab platform. This shows the
correctness and feasibility of the hardware design based on FPGA
and also provides proof of the proposed UVEM.
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VI. COMPARISION AND APPLICATION

A. Comparison analysis

It should be particularly noted that the UVEM is a universal
one and can be applied in arbitrary double-scroll/wing chaotic
systems. For instance, the generation of 1-D and 2-D MS/WCSs
from the Jerk system [9], Sprott system [40], and Chen system
[41] is shown in Table II. It is noted that in the table the
abbreviations ”Sytem” and ”Para.” show the words ”Systems”
and ”Parameters”, respectively. In Table II, the first column is the
original double-scroll/wing systems. By adopting the UVEM, the
corresponding 1-D MS/WCSs can be implemented as shown in
the second column. The fourth column shows the corresponding
chaotic attractors under fixed parameter values given in the third
column. Similarly, the 2-D MS/WCSs can be constructed by using
UVEM as shown in the fifth column. And the corresponding
chaotic attractors are given in the last column. Obviously, by
using UVEM, both 1-D MS/WCSs and 2-D MS/WCSs can be
realized easily.

Table III compares the UVEM with current existing design
methods of MS/WCSs. As observed from Table III, all of the
existing methods can only be applied to construct MSCSs or

MWCSs. That is to say, they are not universal. Unlike these
traditional design methods, the UVEM has universality. By using
the same steps and the same nonlinear control functions, both
MSCSs and MWCSs can be constructed. Moreover, the UVEM
enjoys some advantages in terms of basic systems, control pa-
rameters, and dynamical behaviors. For example, in traditional
methods, the basic double-scroll/wing systems must be changed.
In most existing methods [4, 18, 24, 29], the control parameters
are non-integral, which makes it very difficult to adjust chaotic
attractors. on the contrary, the UVEM is no need to change the
original basic systems and only requires integer parameters. More
importantly, the MS/WCSs designed by UVEM can exhibit both
1-D and 2-D initial boosting behaviors. The one small pity is
that the UVEM can not apply to generate 3-D MS/WCAs. To
sum up, the UVEM has the characteristic of universality, simple
implementation, easy control, and complex dynamcis. Arbitrary
customized MS/WCSs with different attractors can be obtained
to meet the different application requirements.
B. Application in PRNG

In engineering applications, chaotic systems are usually applied
to design pseudorandom number generators (PRNGs) [42]. The
PRNG is widely applied in various industrial fields such as
computers, digital signatures, communication, and information
encryption [7, 36, 43]. Since the MS/WCSs can generate chaotic
sequences with complex dynamics, they can achieve good per-
formance in this application. Here, we design random number
generators using the multi-scroll/wing chaotic sequences, which
are produced by the 1-D and 2-D MS/WCSs in (13), (16),
(20), and (22). Firstly, a chaotic sequence S=(s1, s2, . . . , sn,
. . . ) is generated by the MS/WCSs. Then, each value sn in S
is transformed into a 32-bit stream according to the IEEE 754
standard. Finally, the 17th-32nd bits from the bit stream are
truncated as pseudorandom numbers. The designed PRNG can
be described as

Pi = B(sn)17:32 (29)

where B(.) is to transform a value into a 32-bit float number obey-
ing the IEEE floating point standard, and P is the obtained random
number sequence. Hence, sixteen bits numbers are produced for
each output of the chaotic sequence. The random numbers are
expected to have high randomness. The NIST SP800-22 is used
to test the random numbers [44]. It is a convinced and all-side
test standard that contains 15 sub-tests. According to the setting
and requirements, we set the significance level as 0.01, and the
test binary sequences are of length 106 bits. Then a total number
of 152 binary sequences are generated and tested.

In our experiments, we first generate four chaotic sequences
with length 107 from the four different MS/WCSs, and then
produce 160 binary sequences with 106 bits. To obtain more
neutral test results, the first 8 binary sequences are discarded
and the remaining 152 binary sequences are used for testing. The
value of a P-valueT larger than 0.01 is considered to pass the
related sub-test. Table IV lists the test results of the four sets of
chaotic sequences generated by the MS/WCSs. We can see that
they can pass all the sub-tests of the NIST SP800-22 test suite.
This means that the MS/WCSs produce random numbers with
high randomness.

VII. CONCLUSION

In this paper, we have proposed a novel UVEM to construct
MS/WCSs. It is a simple and universal construction method and
can generate 1-D and 2-D MS/WCSs with multi-scroll/wing
attractors. Theoretical analysis shows that the UVEM can be
applied to any double-scroll/wing chaotic system, which is
obviously different from the existing methods. Furthermore, the
UVEM does not change the original double-scroll/wing chaotic
systems and only requires extending new state variables. Based
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TABLE II: DESIGN OF 1D- AND 2D-MS/WCSs BASED DS/WCS FAMILY

Sytem 1-D MS/WCSs Para. 1-D MS/WCAs 2-D MS/WCAs2-D MS/WCSs Para.

TABLE III: COMPARISON OF DIFFERENT MS/WCS DESIGN METHODS.
References. Methods Universality Changing

basic system Control parameters Attractor dimension Initial
boosting behavior

2019 (MWCS) [24] Pulse control No Yes Non-integer 1-, 2-, 3-D No
2020 (MSCS) [4] nonlinear function control No Yes Non-integer 1-D No

2021 (MWCS) [18] Sinusoidal function control No Yes Non-integer 1-D 1-D
2021 (MSCS) [3] Memristor coupling No Yes Integer 1-D 1-D
2022 (MSCS) [29] Fractal transformation No Yes Non-integer 1-D No

This work(MS/WCSs) UVEM Yes No Integer 1-, 2-D 1-, 2-D

TABLE IV: NIST STATISTICAL TEST RESULTS OF THE DESIGNED PRNG
P-valueT

No. Sub-tests 1-D
MSCS

2-D
MSCS

1-D
MWCS

2-D
MWCS

01 Frequency 0.1321 0.6440 0.2622 0.5169
02 Block Frequency 0.4325 0.5157 0.7129 0.8729

Cum.Sums*(F) 0.7399 0.9428 0.9891 0.171803 Cum.Sums*(R) 0.3613 0.1986 0.8165 0.2803
04 Runs 0.1596 0.9934 0.2368 0.9934
05 Longest Runs 0.6993 0.6579 0.5075 0.9558
06 Rank 0.3397 0.5612 0.3293 0.9615
07 FFT 0.1916 0.1537 0.6855 0.4140
08 Non-Ovla.Temp.* 0.3814 0.5476 0.3838 0.3725
09 Ovla.Temp. 0.0855 0.5075 0.7918 0.5886
10 Universal 0.7399 0.0891 0.9280 0.4190
11 Appr.Entropy 0.4559 0.0497 0.1005 0.0456
12 Ran.Exc.* 0.4392 0.7273 0.4580 0.6267
13 Ran.Exc.Var.* 0.3972 0.5216 0.3241 0.6059

Serial (1st) 0.6163 0.9199 0.4814 0.547614 Serial (2nd) 0.9280 0.4190 0.1782 0.8400
15 Linear Complexity 0.6579 0.4685 0.1596 0.6301

on Chua’s system and Lorenz system, two examples of designing
MS/WCSs are studied to demonstrate the effectiveness and uni-
versality of UVEM. The chaos mechanism and dynamical behav-
ior of the designed MS/WCSs are analyzed using basic dynamics
methods. The research results show that multi-scroll/wing chaotic
attractors can be obtained and their number can be controlled by
a few integer parameters. Moreover, the MS/WCSs designed by
UVEM exhibit 1-D and 2-D initial boosting behaviors. FPGA-
based hardware experiment is further given to prove the simplicity
of UVEM in physical implementation. Finally, to show the appli-
cation of MS/WCSs, we designed a PRNG based on the proposed
MS/WCSs. The test results demonstrate that the designed PRNG
has high randomness. Undoubtedly, this work provides a perfect
solution to construct different MS/WCSs, which may further
reduce their design cost and promote their application in different
fields. Besides, part of 3-D MS/WCSs can also be implemented
by UVEM, which is what we need to further investigate in the
future.
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[9] S. Yu, J. Lü, H. Leung, et al, “Design and implementation of n-scroll chaotic
attractors from a general jerk circuit,” IEEE Trans. Circuits Syst. I-Regul.
Pap., vol. 52, no. 7, pp. 1459-1476, 2005.
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[13] S. Yu, J. Lü, X. Yu, et al, “Design and implementation of grid multiwing
hyperchaotic Lorenz system family via switching control and constructing
super-heteroclinic loops,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 59,
no. 5, pp. 1015-1028, 2012.

[14] Y. Huang, P. Zhang, W. Zhao, “Novel grid multiwing butterfly chaotic
attractors and their circuit design,” IEEE Trans. Circuits Syst. II-Express
Briefs., vol. 62, no. 5, pp. 496-500, 2015.

[15] F. R. Tahir, S. Jafari, V. T. Pham, et al, “A novel no-equilibrium chaotic
system with multiwing butterfly attractors,” Int. J. Bifurcation Chaos., vol.
25, no. 04, p. 1550056, 2015.

[16] C. Wang, X. Liu, H. Xia, “Multi-piecewise quadratic nonlinearity memristor
and its 2N-scroll and 2N+1-scroll chaotic attractors system,” Chaos., vol. 27,
no. 3, p. 033114, 2017.
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