
An Efficient Low Cost FPGA MIMO Channel
Model

Andrew Slaney, Yichuang Sun and Oluyomi Simpson
School of Physics, Engineering and Computer Science

University of Hertfordshire

Hatfield, UK
andyslaney@bitronix.com.au, y.sun@herts.ac.uk and o.simpson@herts.ac.uk

Abstract—In this paper, a mathematical model for

generating AWGN and Rayleigh fading is presented and

argued based around the generation of Gaussian distributed

numbers. This paper is focused on a multiple input multiple

output (MIMO) channel model for the design and

implementation of space-time coded MIMO modem systems

such that the complexity of the design is as much as possible

pushed into the digital domain and that the architecture is

computationally efficient, driving the emphasis and complexity

of implementation into software. We present an FPGA

architecture to yield a Rayleigh fading and AWGN model for

MIMO systems requiring up to four transmit and two receive

antennas while requiring only a slight increase in logic

resource over a single input single output model. The design

entry was in VHDL and the target FPGA was the Xilinx

Spartan 3 XC3S4000.

Keywords— FPGA, MIMO, Channel, AWGN, Rayleigh

I. INTRODUCTION

There has been much attention paid to the mathematical
methods of generating Gaussian distributed numbers,
particularly for computer based simulations. Most methods
involve initially generating samples of a uniform random
variable and then applying a transformation to obtain
samples drawn from a unit variance and zero mean Gaussian
probability density function. In real hardware systems, the
environment will typically supply the noise required and so
far less attention has been paid to hardware architectures for
generating Gaussian noise, particularly to all digital
architectures. With recent advances in Field Programmable
Gate Array (FPGA) technology, hardware based simulations
are receiving more attention due to their huge performance
advantages over software based simulations [1-3][9-11]. It
can take many hours to do a computer based simulation to
obtain accurate error rate information above 10-6 for a given
signal to noise ratio, particularly when simulating a complex
Multiple Input Multiple Output (MIMO) communications
link [5]. Such error rates can be obtained within minutes for
an implemented hardware solution. Hardware based
simulations not only offer real-time simulations but enable
the designers to effectively and accurately evaluate their
hardware architectures [12-13].

The authors of [1-3] have proposed suitable digital
hardware architectures for generating Gaussian Noise, but
the design requires up to 10% of an expensive Xilinx Virtex-
II FPGA. For multiple antenna communication systems
many fading parallel coefficients as well as Additive White
Gaussian Noise (AWGN) samples are required. The
challenge is to design a channel model suitable for MIMO
communications that will consume as little logic resource as
possible. The principle contribution in this paper is the
designs of a simple Rayleigh fading and AWGN model for
MIMO systems requiring up to four transmit and two receive
antennas while requiring only a slight increase in logic
resource to that already proposed. In the rest of the paper,

Section II describes the AWGN channel. In Section III a
Rayleigh fading channel model is proposed. Section IV
presents the FPGA based generations of Gaussian noise,
AWGN and Rayleigh fading. The FPGA based 2×2 and 4×2
MIMO channel models are given in Section V. Finally,
conclusions are drawn in Section VI.

II. ADDITIVE WHITE GAUSSIAN NOISE

The Additive White Gaussian Noise (AWGN) is commonly
used as the system noise model in communications systems.
To simulate a communications system and characterise its
performance in an AWGN channel, we must add white
Gaussian noise to the transmitted signal. The complex noise
sample to be added can be defined as follows:

i t i
n A K= (1)

where Ki is a set of complex pseudorandom values of normal
distribution with mean of 0 and variance of 1, and At is a
real gain factor. In the simulations presented throughout this
paper the data is expressed in voltage, so the noise signal
must be expressed in voltage. Gaussian noise is normally
distributed equally in-phase (I) and quadrature-phase (Q)
channels, therefore the value At is defined as follows [4]:

1

2t p
A N= , .

()

p

p
bb

o

S B
N

EF

N

= (2)

where
P

S is the average signal power and
P

N is the average

noise power, B is the Bandwidth (Hz) and
b

F is the Channel

data rate (Hz), and
b o

E N is the ratio of the energy per bit
to noise power spectral density.

III. RAYLEIGH FADING

For mobile terrestrial communications systems, the channel
path between transmitter and receiver is characterised by
various obstacles and signal reflections. The receiver may
not have a direct line of sight with the transmitter. In this
type of environment, the received signal will be a
superposition consisting of several reflected, diffracted and
scattered waves all having different phase and times of
arrivals. If there are sufficient enough paths in the multi-
path environment, then the central limit theorem holds that
the channel impulse response will be well-modelled as a
Gaussian process irrespective of the distribution of the
individual components. The envelope of the channel
response is said to be Rayleigh distributed if there is no
dominant component to the scatter as such a process will
have zero mean and phase evenly distributed between 0 and
2π radians [4]. The Rayleigh fading channel model, H has
i.i.d, complex, zero mean, unit variance entries [8]:
 ij t ijh B K= (3)

where Kij is a set of complex pseudorandom values of
normal distribution with mean of 0 and variance of 1 and Bt
is a real gain factor defined as follows:

1

2
t

B
P

= (4)

where P is the number of transmit antennas.

IV. FPGA AWGN AND RALEIGH FADING GENERATORS

A. Hardware Testbed

The modem and channel model have been implemented in a
Xilinx Spartan 3 XC3S4000 FPGA. The Testbed consists of
a proprietary test card developed at BiTronix Ltd containing
a PIC micro-controller with an RS232 control interface, SPI
interface for FPGA programming and setup of internal
registers, 100MHz crystal oscillator, 100MHz voltage
controllers crystal oscillator and two 125MHz digital to
analogue converters for I and Q output monitoring. The
RS232 control interface should connect to a PC running
HyperTerminal, this allows access and control of the
internal FPGA registers. There is also a 90-bit output logic
bus which can connect to a logic analyser for internal
debugging and signal monitoring. The demodulated I and Q
outputs were outputted via the on-board DACs to be
monitored via an oscilloscope. Fig. 1 shows a block diagram
of the setup.

 Figure 1 Modem Testbed.

B. The Gaussian Noise Generator

There is little previous work on digital hardware Gaussian
noise generators [1-3]. Below we briefly introduce the
FPGA based Gaussian noise generator. The choice of
algorithm presented here is the Box-Muller method. This
method requires the approximation of nonlinear functions
which will be shown to be easily achieved within an FPGA.
 The Box-Muller algorithm generates two random
samples y1 and y2 of Gaussian distribution (with zero mean
and standard deviation σ=1) from two uniformly distributed
variables, u1 and u2, with values between the range 0 and 1
using the following set of equations [1]

1 1() ln()f u u= − ,

1 2 2() 2 sin(2)g u uπ= , 2 2 2() 2 cos(2)g u uπ= (5)

1 1 1 2() ()y f u g u= , 2 1 2 2() ()y f u g u=
This leads to an implementation architecture shown in Fig. 2
that has a four stage approach [1]:

1. Pseudorandom generation of 1u and 2u

2. Implementation of the functions f, 1g , 2g and the
subsequent multiplications.

3. Exploitation of the central limit theorem to overcome
quantisation and approximation errors using a sample
accumulation stage.

4. A multiplexer-based circuit which multiplexes noise
samples 1y and 2y to produce a single noise sample
(n) per clock cycle.

The generation of uniformly distributed realisations of u1
and u2 can be simply achieved by using linear feedback shift
registers (LFSRs). An m-bit LFSR with an irreducible
polynomial can produce an output with periodicity of 2m-1.
The required bit precisions of u1 and u2 are related to the
maximum σ value that the full system will produce. It is
shown in [1] that the maximum output is determined by f
which takes on its largest values when u1 is smallest
whereas g1 and g2 are bound by 2− and 2 . A bit
precision of 32 for u1 provides a maximum output of 6.7σ.
A bit precision of 18 for u2 is sufficient without loss of
performance [1]. Therefore, the total bit precision required
for both u1 and u2 is 50 bits. Fifty 60-bit LFSRs with an
irreducible polynomial can produce a period of over 1018,
which is more than adequate for even the most of ambitious
simulations. The polynomial used for each of the LFSRs is
x60 + x59 + 1.

Figure 2 Gaussian noise generator architecture

The function 1()f u to be produced is a nonlinear function.

The non-linearity of f is greater as 1u approaches the
extremities. The function f can be determined by the use of a
look up table, but a very large look-up table is required
given that 1u has a bit precision of 32. A more effective way
is to break up the function into linear segments, using
smaller segments for the more non-linear regions and larger
segments for the more linear regions. Segment boundaries at
locations 322n− and 1 2 n−

− , where 0 ≤ n < 32, provides 62
segments. The function f can now be determined by the
straight line graph equation:
 1 1()

a a
f u m u c= + (6)

where
a

m and
a

c are coefficients from a look-up table
corresponding to segment a. As the segments boundaries are
defined by integer powers of two, very simple logic is
required for the address decoding of 1u .
 The design presented in this paper is different from that
of the one proposed in [1]. The coefficient ma ranges from -
3.1857×108 to -1.1848, the former value requiring at least
28 bits to represent. However, it is also important to
accurately represent the lower numbers and their fractional
parts thereby requiring even higher bit precisions to cater for
all values. Multipliers within an FPGA take up a lot of logic
resource, for example a 32-bit input multiplier, yielding a
64-bit output requires 1088 look-up tables (LUTs) in a
Spartan 3 XC3S4000 device, whereas a 16-bit input

multiplier requires only 280 LUTs. In this design the
coefficients ma are scaled to maintain a bit precision of 16

bits, this leads to the requirement of storing the scaling
factor in another look-up-table so that the output can be
corrected. The coefficient

a
c is scaled by the same amount.

By ensuring the scaling factors are integer powers of two,
the outputs can be adjusted by simple bit shifts rather than
requiring a further multiplier. The block diagram for the
circuit to calculate f can be seen in Fig. 3. The output 1()f u
from the FPGA is further scaled to 10 bits, this is to provide
a 4-bit integer part and 6 bit fractional part. This yields an
output resolution of 62− .
There are many options for computing trigonometric
functions, g1 and g2, two methods lend themselves well for
FPGA implementation. The first is to make use of look-up
tables to compute the sine and cosine functions and the
second is to use a CORDIC (coordination rotation digital
computer) engine. The former will require large amounts of
block RAM when compared with the CORDIC method but
will utilise less logic area. A memory intensive approach is
not a good choice if block memory utilisation is an issue,
conversely a computationally rich technique would not be
suitable if it is desirable to conserve logic fabric resources
[6]. The authors of [1] reject the CORDIC method for
evaluating functions g1 and g2 on the basis of an execution
time that is linearly proportional to the number of bits of the
operand, thereby not suitable for applications requiring high
accuracy and speed. Instead they propose the use of look-up
tables which, as already mentioned, are memory intensive.
The CORDIC method is embraced and by pipelining the
CORDIC algorithm the speed limitations are overcome and
the accuracy determined by the number of pipelined
iterations. This eliminates the requirement for extra internal
block RAM.
 The amount of logic resource required by the CORDIC
implementation is largely determined by the number of
iterations required. A block diagram for the circuit to
calculate the sine and cosine functions can be seen in Fig. 4.
Eight pipe-lined iterations of the CORDIC engine are
sufficient to keep the required logic resource to a minimum.
The pipelining takes place within each of the
adder/subtracter components shown in the 8-iteration
CORDIC engine. Each of these components has a latency of
one clock sample. Therefore, each iteration has a latency of
one clock sample. The CORDIC engine is only capable of
calculating the sine and cosine of angles (Xa) between 0 and
π/2 radians. For values outside of this range the input angle

needs to be modified to fall within this range and then the
output values need to be corrected accordingly. The input
angle will range between 0 and 2π and can be split into one
of four quadrants:
Quadrant 1: 0 / 2

a
X π≤ <

Quadrant 2 : / 2
a

Xπ π≤ <

Quadrant 3 : 3 / 4
a

Xπ π≤ <

Quadrant 4 : 3 / 4 2
a

Xπ π≤ <
The purpose of the course quadrant mapping circuit is to
produce an output angle

b
X that falls within the range

0 / 2
b

X π≤ < using the following rules:

1) If
a

X is in Quadrant 1 then
b

X =
a

X

2) If
a

X is in Quadrant 2 then
b

X = π -
a

X

3) If
a

X is in Quadrant 3 then
b

X =
a

X - π

4) If
a

X is in Quadrant 4 then
b

X = 2π –
a

X
The course quadrant correction circuit produces outputs g1
and g2 based on the following rules:

1) If
a

X is in Quadrant 1 then 1 2(), ()
b b

g sin X g cos X= =

2) If
a

X is in Quadrant 2 then 1 2(), ()
b b

g sin X g cos X= = −

3) If
a

X is in Quadrant 3 then 1 2(), ()
b b

g sin X g cos X= − = −

4) If
a

X is in Quadrant 4 then 1 2(), ()
b b

g sin X g cos X= − =
 Since further implementation, which exploits the central
limit theorem, requires a division of √2 [1] while the
computation of 1g and 2g requires the multiplication of √2,
this term can be dispensed with, as shown above. The
outputs of g1 and g2 have been scaled to 10 bits that have 4-
bit integer value and 6-bit fractional representation, the
same as for function f.
 The output n has been scaled to 10 bits, which have 4-bit
integer value and a 6-bit fractional representation. A
histogram plot of 2 million samples of noise data with a
1000 bins is shown in Fig. 5. It is clear to see that the output
values have a Gaussian distribution.

Figure 5 Histogram plot of output n

C. The AWGN Generator

The design is adapted further by the addition of a multiplier
at the output n to adjust the amplitude of the noise samples
for different Eb/No values required. The design is further
changed to produce four Gaussian noise outputs by careful
de-multiplexing of the output of the gain stage multiplier
into four paths. However, the drawback of doing this is that
four clock samples are required per output of noise sample
on each port. Within Modem designs symbol rate
interpolation filters are typically clocked at a frequency of
four times the symbol rate. Therefore, by using the same
interpolation clock frequency to supply the AWGN
generator, four output noise samples are available for one
modulation symbol period. As will be seen, this is enough to
simulate up to two received antenna paths for complex
modulated signals (such as QPSK). A block diagram for the
modified design can be seen in Fig. 6.

Figure 3 Circuit to calculate the
function f

Figure 4 Block diagram for the
circuit to calculate functions g1 and
g2

 The AWGN gain factor
t

A is determined by (2). The
gain value is a fixed point representation with 6-bit integer
and 6-bit fraction. Histogram plots of over 500000 samples
of all four outputs from the AWGN generator are shown in
Fig. 7. It is clear to see that the output values have a
Gaussian distribution. The design occupies approximately
11% of a Xilinx Spartan-3 XC3S4000-4 FPGA, requiring
3204 logic slices and can run at a clock speed of 100MHz,
thus producing 4 noise samples every 25MHz.

Figure 6 Modified Gaussian Noise Generator design to produce a 4 output

AWGN generator

Figure 7 Histogram plots of over 500000 samples of all four outputs from

the AWGN generator

D. The Raleigh Fading Generator

The Raleigh fading generator design differs slightly from
the AWGN generator and requires very little more logic
resource. There are two primary differences; the first is that
the gain factor resolution Bt in (4) is only 6 bits, as Bt < 1,
the second difference is that there are up to 16 fading
coefficients available at the output for MIMO designs
requiring up to four transmit antennas (P=4). The design for
the 16 coefficient output is shown in Fig. 8.

Figure 8 Rayleigh Fading Generator with 16 outputs

V. THE FPGA MIMO CHANNEL MODEL

For a system with P transmit and M receive antennas as, the
receive signal can be defined as:
 y Hx n= + (7)
where y is the M x 1 received signal vector, x is the complex
P x 1 transmit signal vector and H is the M x P complex
channel gain matrix. The signal vector n consists of an M x
1 independent and identically distributed complex Gaussian
noise components of modulus variance normalised to one.
A MIMO channel model design for a 2 × 2 and a 4 × 2
system can be seen in Fig. 9 and Fig. 10, respectively. The
output latches following the fading generator are there to
allow for the synchronisation of fading coefficients to the
start of a space-time block code. This is important in
evaluating the optimum performance of the design of any
space-time block coding system as often it is assumed that
the fading coefficients will remain fixed for the length of a
block code. For example, the Alamouti transmit diversity
code [7] achieves maximum performance when the channel
fading coefficients are assumed to be constant across two
consecutive symbols. The channel simulations are
performed on the I and Q symbols of a QAM system.

)()(biaibrarpr ×+×=

)()(arbibraipi ×+×=

CBAQ ++=

Figure 9 FPGA MIMO channel model for two transmit and two receive

antennas.

)()(biaibrarpr ×+×=

)()(arbibraipi ×+×=

EDCBAQ ++++=

Figure 10 FPGA MIMO channel model for four transmit and two receive

antennas.

VI. CONCLUSION

A simple mathematical model for generating AWGN and
Rayleigh fading was presented and argued based around the
generation of Gaussian distributed numbers. Using the Box-
Muller method and with consideration to the logic
requirements of a modem design, a computationally
efficient circuit for generating numbers with a Gaussian
distribution was presented. A bit-true analysis of the design
was carried out and shown at various stages together with

the final implementation results. The design was modified
further in an area-efficient manor, to include a gain factor
and to produce non-correlated multiple outputs that all have
a Gaussian distribution. A full channel model for a 2 × 2 and
a 4 × 2 MIMO system was shown. We have demonstrated
that it is possible to produce a Rayleigh fading MIMO
channel model within a cheap Xilinx Spartan 3 FPGA.
These models can be scaled up for more antenna MIMO
channels.

REFERENCES

[1] D. –U. Lee, W. Luk, J. D. Villasenor and P. Y. K.
Cheung, “A Gaussian Noise Generator for Hardware-
Based Simulations”, IEEE Transactions on Computers,
Vol.53, No.12, pp 1523-1534, December 2004.

[2] J. –L. Danger, A. Ghazel, E. Boutillon, and H. Laamari,
“Efficient Implementation of Gaussian Noise Generator
for Communication Channel Emulation”, The 7th IEEE
International Conference on Electronics Circuits &
Systems, Lebanon, pp. 366-369, Dec 2000.

[3] D. –U. Lee, W. Luk, J. D. Villasenor and P. Y. K.
Cheung, “A Hardware Gaussian Noise Generator for
Channel Code Evaluation”, Proceedings of the 11th
Annual IEEE Symposium on Field Programmable
Custom Computing Machines, pp. 69-78, 2003.

[4] H. Harada and R. Prasad, “Simulation and Software
Radio for mobile communications”, p51, Artech House
Publishers, 2002.

[5] A. Slaney and Y. Sun, “Space-time coding for wireless
communications: an overview”, IEE Proceedings,
Communications, vol. 153, no. 4, pp. 509-518.

[6] G. J. Foschini and M. J. Gans, "On Limits of Wireless
Communications in a Fading Environment when Using
Multiple Antennas", Wireless Personal Communications,
Vol. 6, pp. 311-335, 1998.

[7] C. Dick, F. Harris, and M. Rice, “FPGA Implementation
of Carrier Synchronisation for QAM Receivers”, Journal
of VLSI Signal Processing, 36, pp. 57-71, 2004.

[8] S. M. Alamouti, “A Simple Transmit Diversity
Technique for Wireless Communications”, IEEE Journal
on Selected Areas in Communications, Vol. 16, No. 8,
pp.1451-1458, October 1998.

[9] O. Hiari, R. Mesleh and A. Alkhatib, "A Physical
Transmitter Implementation of a Quadrature Space Shift
Keying MIMO System," in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 68, no. 1,
pp. 251-255, Jan. 2021, doi:
10.1109/TCSII.2020.3006434.

[10] P. Zhang et al., "Design of Reconfigurable SDR Platform
for Antenna Selection Aided MIMO Communication
System," in IEEE Access, vol. 7, pp. 169267-169280,
2019, doi: 10.1109/ACCESS.2019.2946720.

[11] P. Huang, M. J. Tonnemacher, Y. Du, D. Rajan and J.
Camp, "Towards Massive MIMO Channel Emulation:
Channel Accuracy Versus Implementation Resources,"
in IEEE Transactions on Vehicular Technology, vol. 69,
no. 5, pp. 4635-4651, May 2020, doi:
10.1109/TVT.2020.2980583.

[12] S. F. Fard, A. Alimohammad and B. F. Cockburn, "An
FPGA-Based Simulator for High Path Count Rayleigh
and Rician Fading," in IEEE Transactions on Vehicular
Technology, vol. 59, no. 6, pp. 2725-2734, July 2010,
doi: 10.1109/TVT.2010.2046660.

[13] A. Alimohammad and S. F. Fard, "A Compact
Architecture for Simulation of Spatio-Temporally
Correlated MIMO Fading Channels," in IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 61, no. 4, pp. 1280-1288, April 2014, doi:
10.1109/TCSI.2013.2285892.

