

LBP-CA: A Short-term Scheduler with Criticality Arithmetic

Sajid Fadlelseed1*, Raimund Kirner2, and Catherine Menon3

1Department of Computer Science, University of Hertfordshire, Hatfield, UK
*Corresponding author: {q.fadlelseed, r.kirner, c.menon}@herts.ac.uk

In safety-critical systems a smooth degradation of services is a way to deal with resource shortages. Criticality arithmetic

is a technique to implement services of higher criticality by several tasks of lower criticality. In this paper, we present

LBP-CA, a mixed-criticality scheduling protocol with smooth degradation based on criticality arithmetic. In the

experiments we show that LPB-CA can schedule more tasks than related scheduling protocols (BP and LBP) in case of

resource shortage, minimising the negative effect on low-criticality services. This is achieved by considering information

about criticality arithmetic of services.

Keywords: real-time systems; safety integrity level; scheduling; mixed-criticality

Introduction

Criticality Arithmetic (CA) or SIL-arithmetic as termed in [1], is a Mixed-criticality (MC) model that assembles a

number of replicated tasks with low criticality levels, to implement a service of higher criticality level. The

Adaptive Tolerance-based Mixed-criticality Protocol - Criticality Arithmetic (ATMP-CA) [4] is CA-aware mid-term

scheduler that optimises the utility of individual tasks when permanent fault occurs e.g., core-failure, to

maximise the overall system utility, here we present a novel CA-aware short-term scheduler (LBP-CA) which

assures return to Normal-mode from Critical-mode, much earlier than reference schedulers that do not take the

use of criticality arithmetic into account. MC systems enter the Critical-mode whenever a transient fault e.g.,

task overrun occurs, which results in abandoning release of Low-criticality tasks to avoid their interference on

High-criticality tasks during the Critical-mode [5].

Reference schedulers are Bailout Protocol (BP) [3] and Lazy Bailout Protocol (LBP) [2]. BP and LBP define three

criticality modes to schedule the execution of tasks with different criticality levels: Normal-mode, Bailout-mode

and Recovery-mode. Bailout-mode represents the Critical-mode explained above, and Recovery-mode is used

to ensure that the last High-criticality task with Low-priority is executed before returning to Normal-mode. LBP

differs from BP in that instead of dropping Low-criticality tasks during Bailout and Recovery modes, they are

added to a Low-priority queue for possible execution when the system returns to Normal-mode. Though LBP

may drop less tasks than classic BP, it doesn’t improve the BP functionality that operates the process of returning

to Normal mode.

System Model: We assume a single processor mixed-criticality system, which consists of multiple services that

could have different levels of criticality. A service can be implemented by one task or multiple tasks using

criticality arithmetic [1]. Each service is identified by the tuple: 𝒔 = ⟨𝒊𝒅, 𝒍, 𝑻⟩, where 𝒊𝒅 is the service identifier,

𝒍 is the service criticality and 𝑻 is the set of tasks implementing the service. Each individual task () is defined by

the tuple 𝝉 = ⟨𝒊𝒅, 𝒑, 𝒅, 𝒄𝟏, 𝒄𝟐, 𝑳, 𝒔⟩, where 𝒊𝒅 is the task identifier, 𝒑 is the task period, 𝒅 the task deadline, 𝒄𝟏

optimistic worst-case execution time estimate (WCET1), 𝒄𝟐 pessimistic worst-case execution time estimate

(WCET2), task criticality is defined by 𝑳 and 𝒔 is the service that is implemented by the task.

Experimental Setup

We have implemented a short-term scheduling simulator which is configured to simulate mixed-criticality

services on a single processor system. The simulator has also implemented the underlying scheduling algorithm

(deadline-monotonic) and the references mixed-criticality protocols (BP and LBP) and the novel mixed-criticality

protocol (LBP-CA).

We have generated a task-set with random parameters for task periods and worst-case execution time and mix

of implicit and constrained deadlines. The criticality of a task or service is either High or Low, which corresponds

to the criticality level of the task. We have constrained the task generation such that it includes a single High

criticality CA-aware service (S2). The complete structure of tasks and services is implemented in the following

task-set in Table 1.

PECS 2022 59

(a) BP protocol (3 dropped jobs, 10 completed jobs)

(a) LBP protocol (2 dropped jobs, 11 completed jobs)

(a) LBP-CA protocol (1 dropped job, 12 completed jobs)

Figure 1. Comparison of scheduling mixed-criticality tasks between BP, LBP and LBP-CA

t.id t.p t.d t.c1 t.c2 t.L s.id s.l

A 24 12 8 8 Low S1 Low

B 26 12 4 4 Low S2 High

C 48 24 4 10 High S3 High

D 32 32 8 8 High S2 High
Table 1. Set of Services and Tasks (only S2 use Criticality Arithmetic)

Results and discussion (Section heading, Calibri 12 pt)

The purpose of our experiment was to show that the LBP-CA returns to Normal-mode with the least number of

abandoned Low-critical tasks compared to reference protocols. Figure 3 shows the schedule for the task-set

presented in Table 1. In Figures 3 (a), (b) and (c), we can observe that job 𝑪𝟎 overruns its 𝒄𝟏 estimates, which

results in entering Critical-mode. As per Figures 3 (a), (b) and (c), in BP and LBP protocols we can observe that

the overrun caused the system to enter the Bailout-mode and abandon the Low-Criticality jobs (𝑨𝟏 and 𝑩𝟏), to

avoid possible interference with High-Criticality jobs. However, the LBP protocol (Figure 3 (b)) shows the

successful allocation for the job 𝑩𝟏 using its lazy execution mechanism. In contrast, our LBP-CA protocol (as

shown in Figure 3 (c)) scheduled all jobs successfully except job 𝑫𝟏. This is because the first instance of its replica

B has been executed successfully. Hence entering Recovery-Mode has been mitigated. Overall, the collected

simulation results indicate that the LBP-CA drops a smaller number of Low-Criticality jobs and efficient

management for the system run-time modes in comparison to reference schedulers (BP and LBP protocols).

Conclusion

Integrating CA to Mixed-criticality schedulers as in (LBP-CA), allows efficient mode-change management

between Normal-mode and Critical-mode/s due to transient faults. LBP-CA can access information about

criticality arithmetic (CA) via task redundancy compared to referenced scheduling protocols (BP and LBP) which

are CA-agnostic. Our simulation data shows that even at/after resource shortage, LBP-CA returned to the normal

state prior to BP and LBP, providing a smoother service degradation.

References

[1] Menon, C., Iacovelli, S. and Kirner, R., 2020, May. ODRE Workshop: Using SIL Arithmetic to Design Safe and Secure
Systems. In 2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC) (pp. 213-218). IEEE
[2] Iacovelli, S. and Kirner, R., 2019. A lazy bailout approach for dual-criticality systems on uniprocessor platforms. Designs,
3(1), p.10.
[3] Bate, I., Burns, A. and Davis, R.I., 2015, July. A bailout protocol for mixed criticality systems. In 2015 27th Euromicro
Conference on Real-Time Systems (pp. 259-268). IEEE.
[4] Fadlelseed, S., Kirner, R. and Menon, C., 2021. ATMP-CA: Optimising Mixed-Criticality Systems Considering Criticality
Arithmetic. Electronics, 10(11), p.1352.
[5] Vestal, S., 2007, December. Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In 28th IEEE international real-time systems symposium (RTSS 2007) (pp. 239-243). IEEE.

