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1 Introduction and results

It is a remarkable discovery of recent decades that a large class of natural gauge theories
feature a hidden symmetry known as color-kinematics (CK) duality [2–4], which implies a
surprising relation to gravitational theories, known as the double copy [2–4] (for reviews,
see [5–9]). When confronted with such a fundamental new feature of quantum field theory, it
is natural to examine the simplest non-trivial example of the phenomenon that nevertheless
exhibits all interesting features. A strong contender for this title is (supersymmetric)
self-dual Yang-Mills theory (SDYM; see e.g. [10] for more details) — which is even simpler
than full N = 4 supersymmetric Yang-Mills theory — and its double copy, which is
(supersymmetric) self-dual gravity (SDG; see e.g. [11] for a review).

We present a remarkably simple twistor action for maximally supersymmetric SDYM
theory that is reminiscent of the Leznov-Mukhtarov-Parkes action [12–14] on space-time.
Yet the action is Lorentz-invariant, manifests a kinematic Lie algebra and CK duality, and
is based on a straightforward gauge-fixing from twistor space. It directly double-copies to
another simple and known Lorentz-invariant twistor action for self-dual gravity [15].

Our discussion of CK duality and the double copy makes use of the algebraic framework
developed in [1, 16] and based on ideas by [17] (see also [18, 19] as well as [20] for related
work). Nevertheless, we have minimised the amount of mathematical prerequisites and
omitted a review of the formalism; for a detailed discussion of the general constructions, the
reader should consult [1]. Below, we shall only expect some familiarity with the facts that
a theory of fields taking values in a Lie algebra g and with exclusively cubic interaction
terms is encoded in a metric differential graded Lie algebra1 that factorises into a tensor
product of g and a metric differential graded commutative algebra. If the field theory comes
with a kinematic Lie algebra, the latter can be promoted to a BV■-algebra by identifying a
particular second-order differential operator b that defines the kinematic Lie bracket as a
grade-shifted derived bracket.

1‘Graded’ here always means Z-graded.

– 1 –



J
H
E
P
1
1
(
2
0
2
3
)
1
7
2

We note that SDYM theory has been studied extensively in the context of CK duality
and the double copy. In particular, the tree-level currents of SDYM theory in light-cone
gauge were shown to exhibit CK duality in [21] and to double copy to those of SDG.
In the same paper, the kinematic Lie algebra of SDYM theory in light-cone gauge was
identified with the area-preserving diffeomorphisms on C2. More recently, we showed that
holomorphic Chern-Simons theory on twistor space for (supersymmetric) SDYM theory
manifests CK duality and the action implies CK duality for loop amplitudes in the maximally
supersymmetric case [22]. The corresponding full (un-gauge-fixed) kinematic Lie algebra is
given by the Schouten-Nijenhuis-type Lie algebra of bosonic holomorphic multivector fields
on twistor space, which reduces to the area-preserving diffeomorphisms on C2, identified
in [21], upon reducing to space-time and imposing light-cone gauge. Very recently [23], a
kinematic homotopy Lie algebra up to trilinear maps (encoding violations of the Jacobi
identity up to homotopy) was derived directly from a gauge-invariant off-shell formulation
of SDYM theory on space-time and put to a test in a double-copy construction of SDG in
light-cone gauge. Again, by going to light-cone gauge, the kinematic Lie algebra of area-
preserving diffeomorphisms on C2 was also recovered. For further related work, including
the classical double copy of self-dual solutions, see also [24–36].

2 Twistors, self-dual Yang-Mills theory, and self-dual gravity

2.1 Self-dual Yang-Mills theory

Supersymmetric self-dual Yang-Mills theory. Let g be a metric Lie algebra with
basis ea, structure constants fab

c, and metric gab. We set fabc := gcdfab
d. The classical

solutions to SDYM theory on Euclidean space R4 are g-valued gauge potentials Aµ = Aa
µea

with self-dual field strength

F a
µν = 1

2εµν
κλF a

κλ with F a
µν := ∂µA

a
ν − ∂νA

a
µ + fbc

aAb
µA

c
ν , (2.1)

where we have coordinatised R4 by xµ with µ, ν, . . . = 1, . . . , 4, ∂µ := ∂
∂xµ , and εµνκλ is the

Levi-Civita symbol. An action for these configurations was given in [37], and there are
supersymmetric extensions of both the equations of motion and the action from N = 1 to
N = 4 [38].

For the twistorial description of these solutions, it is convenient to switch to spinor
notation. That is, we use the well known fact that the defining representation 4 of
Spin(4) ∼= SU(2)L×SU(2)R decomposes as 4 ∼= 2L⊗2R, and we may set xαα̇ := σαα̇

µ xµ where
σαα̇

µ are the sigma matrices with α, β, . . . = 1, 2 the chiral spinor indices and α̇, β̇, . . . = 1̇, 2̇
the anti-chiral ones. Then, the SDYM equation (2.1) translates to

εαβ(∂αα̇A
a
ββ̇

− ∂ββ̇A
a
αα̇ + fbc

aAb
αα̇A

c
ββ̇
) = 0 , (2.2)

where ∂αα̇ := ∂
∂xαα̇ with εαβ = εα̇β̇ = −εαβ = −εα̇β̇, εαβ = −εβα, and ε12 = +1, which

implies εαγε
γβ = δγ

α.
CK duality of SDYM theory is most easily identified in the Leznov-Mukhtarov-Parkes

form of the action [12–14], which is a result of adopting Leznov gauge, in which

Aα1̇ = 1
4∂α2̇ϕ and Aα2̇ = 0 (2.3)

– 2 –
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for ϕ some g-valued function on R4 also called the prepotential. In this gauge, (2.2)
reduces to

□ϕa + 1
2ε

αβfbc
a(∂α2̇ϕ

b)(∂β2̇ϕ
c) = 0 (2.4)

with ∂αα̇∂
αα̇ = 1

2∂µ∂
µ = 1

2 □. This equation follows variationally from the action

SLMP :=
∫

d4x
{

1
2gabϕ

a □ϕb + 1
3!fabcε

αβϕc(∂α2̇ϕ
a)(∂β2̇ϕ

b)
}
. (2.5)

However, the equation of motion and the action are not Lorentz-covariant and not Lorentz-
invariant, respectively.

We can generalise this action to N -extended supersymmetric SDYM theory by extending
R4 to R4|2N by supplementing fermionic coordinates ηα̇

i with i, j, . . . = 1, . . . ,N . The
extended action reads as [38]

SLMP :=
∫

d4x dη2̇
1 · · · dη2̇

N

{
1
2gabϕ

a □ϕb + 1
3!fabcε

αβϕc(∂α2̇ϕ
a)(∂β2̇ϕ

b)
}
, (2.6)

in which ϕ is a superfield on R4|2N independent of η1̇
i .

Both actions exhibit CK duality of SDYM theory, as they feature a kinematic Lie
algebra K with Lie bracket

[ϕ1, ϕ2]K := εαβ(∂α2̇ϕ1)(∂β2̇ϕ2) . (2.7)

Twistor basics. As is well-known, N -extended supersymmetric SDYM theory has a
twistorial reformulation in terms of holomorphic Chern-Simons theory [39–42]; see e.g. [43]
for a review. In the following, we summarise the underlying geometry.

The twistor space Z is the total space of the holomorphic vector bundle O(1)⊗C2|N →
CP 1. Geometrically, it parametrises all orthogonal almost-complex structures on R4.
We write (zA) = (zα, ηi) for the fibre coordinates and πα̇ for the (homogeneous) base
coordinates, where each of the indices A,B, . . . combines an α index and an i index.
Let us henceforth assume that N is even; then Z admits an anti-holomorphic involution
τ : (zA, πα̇) 7→ (ẑA, π̂α̇) with

ẑA := zBCB
A and π̂α̇ := Cα̇

β̇πβ̇ , (2.8a)

where

(CA
B) := diag(Cα

β , Ci
j) , (Cα

β) := ε , (Ci
j) := 1N

2
⊗ ε , and (Cα̇

β̇) = −ε . (2.8b)

In the following, it will be useful to introduce the notation

|π|2 := εα̇β̇πα̇π̂β̇ = πα̇π̂
α̇ . (2.9)

The anti-holomorphic exterior derivative ∂̄ on Z can now be written as

∂̄ = dẑA ∂

∂ẑA
+ êπÊπ , (2.10a)

– 3 –
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where
Êπ := |π|2πα̇

∂

∂π̂α̇
and êπ := π̂α̇dπ̂α̇

|π|4
. (2.10b)

There is a diffeomorphism between Z and R4|2N × CP 1. If we coordinatise the latter
by (xAα̇, λα̇) = (xαα̇, ηα̇

i , λα̇) with λα̇ homogeneous coordinates on CP 1 and

x̂Aα̇ := τ(xAα̇) = xAα̇ ⇔ xAα̇ = xBβ̇CB
ACβ̇

α̇ , (2.11)

then the diffeomorphism Z ∼= R4|2N × CP 1 is given by

(zA, πα̇) = (xAα̇λα̇, λα̇) and (xAα̇, λα̇) =
(
zAπ̂α̇ − ẑAπα̇

|π|2
, πα̇

)
. (2.12)

Under this diffeomorphism, we obtain(
∂

∂ẑA
, Êπ

)
=
(
− 1
|λ|2

ÊA, Êλ + xAα̇λα̇ÊA

)
,

(dẑA, êπ) =
(
−|λ|2êA + |λ|2xAα̇λα̇ê

λ, êλ
) (2.13a)

with

(ÊA, Êλ) :=
(
λα̇ ∂

∂xAα̇
, |λ|2λα̇

∂

∂λ̂α̇

)
,

(êA, êλ) :=
(
− λ̂α̇dxAα̇

|λ|2
,
λ̂α̇dλ̂α̇

|λ|4

)
.

(2.13b)

We also set
EA := ∂

∂zA
= 1

|λ|2
λ̂α̇ ∂

∂xAα̇
. (2.13c)

Holomorphic Chern-Simons theory. Let E → Z be a complex vector bundle over
Z with vanishing first Chern class. Furthermore, let ∇̄ = ∂̄ + A be a (0, 1)-connection
on E where A is a g-valued (0, 1)-form on Z. We also assume that there is a gauge in
which A has no anti-holomorphic fermionic directions dη̂i and depends holomorphically
on the fermionic coordinates ηi; this is sometimes called Witten gauge [40]. Then, the
N -extended supersymmetric SDYM equation on R4 is equivalent to the holomorphic
Chern-Simons equation

∂̄Aa + fbc
aAb ∧Ac = 0 (2.14)

on Z [39–42]; see e.g. [43] for a review. In the case of maximal (N = 4) supersymmetry, Z is
a Calabi-Yau supermanifold, and (2.14) follows from varying a holomorphic Chern-Simons
action on Z [40]. See also [44] for a similar Chern-Simons-type action in harmonic superspace
in this case.

This holomorphic Chern-Simons formulation manifests a gauge-invariant, off-shell
kinematic Lie algebra and CK duality directly at the level of the action and further extends
CK duality to the loop level as explained in [22]. For N < 4, the holomorphic Chern-Simons
form of the equation of motion still implies CK duality for the tree-level currents.

– 4 –
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Twistorial prepotential action. Given that we have both the Siegel action [38] as well
as the prepotential action (2.5) for SDYM theory on space-time, it is natural to ask if,
besides the holomorphic Chern-Simons action, there is also a twistorial prepotential action.

To derive such an action, we write the holomorphic Chern-Simons equation (2.14) for
A = dẑαAα + êπAπ as

∂

∂ẑα
Aa

β − ∂

∂ẑβ
Aa

α + fbc
aAb

αA
c
β = 0 ,

ÊπA
a
α − ∂

∂ẑα
Aa

π + fbc
aAb

πA
c
α = 0 .

(2.15)

Since we have assumed that E has vanishing first Chern class, we may work in the axial gauge

Aa
π = 0 . (2.16a)

In this gauge, the gauge potential has prepotentials ϕa and ψa, which are g-valued functions
of weight 2 and 0 on Z, respectively. In particular,

Aa
α = 1

4|λ|2 (Eαϕ
a + Êαψ

a) (2.16b)

with Eα and Êα defined in (2.13). This can be seen by regarding this equation as a
vector-valued differential equation. The determinant of the differential operator (Eα Êα) is
ÊαE

α = −1
4∂µ∂

µ = −1
4 □. After restricting to functions that do not blow up at infinity,

the kernel of □ consists of the constant functions, which are irrelevant in Aa
α. Hence, the

differential equation always has a solution.
Let us further restrict to solutions to the holomorphic Chern-Simons equations (2.15).

These are holomorphic in πα̇, and we can therefore impose Lorenz gauge along the fibres,

EαAa
α = 0 . (2.16c)

This further restricts the prepotential to ψa ∈ ker(□), and hence we can put ψa = 0.
Moreover, the fact that Aa

α is holomorphic in πα̇ allows us to demand that ϕa is holomorphic
in πα̇.

Altogether, we see that the solutions to the holomorphic Chern-Simons equations are
captured by a g-valued function of weight 2 on Z that depends holomorphically on the
fermionic coordinates ηi as well as πα̇. Substituting2

Aa
α = 1

4|λ|2Eαϕ
a (2.16d)

into (2.15), we obtain the remaining equation of motion

□ϕa + 1
2ε

αβfbc
a(Eαϕ

b)(Eβϕ
c) = 0 . (2.17)

For maximal (N = 4) supersymmetry, this equation follows from the variation of the action

SSDYM :=
∫

volSDYM
{

1
2gabϕ

a □ϕb + 1
3!fabcε

αβϕc(Eαϕ
a)(Eβϕ

b)
}
, (2.18a)

2Note that this expression is very reminiscent of the Woodhouse representative, cf. [45].
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Field Aa χia W ija χ̃a
i Ãa

Helicity 1 1
2 1 −1

2 −1
Multiplicity 1 4 6 4 1

Table 1. Space-time SDYM fields and their helicities and multiplicities.

where
volSDYM := d4x

λα̇dλα̇ λ̂
α̇dλ̂α̇

|λ|4
dη1 · · · dη4 . (2.18b)

This twistor action resembles the space-time action (2.6), but it is manifestly Lorentz-
invariant. As mentioned in the introduction, this twistor action appears to be new; we
have not found a description of a similar action in the literature, not even for harmonic
superspace. It could have been found from the single copy of the corresponding self-dual
supergravity action, which we describe in section 2.2.

Relation to space-time. The superfield expansion of ϕa reads as

ϕa = Aa + ηi χ
ia + 1

2ηiηj W
ija + 1

3!ε
ijklηiηjηk χ̃

a
l + η1η2η3η4 Ã

a , (2.19a)

and after performing the Penrose-Ward transform for the gauge potential Aa = 1
4|λ|2dẑ

αEαϕ
a,

we recover the expected degrees of freedom on R4 as displayed in table 1.
To relate the twistor action (2.18) to space-time, one can Kaluza-Klein-expand the

scalar field in terms of spherical harmonics on CP 1 and then integrate over the sphere.
As is often the case for CK-dual actions, there are infinitely many auxiliary fields in this
expansion that enforce the equations of motion. Holomorphy in πα̇ amounts to the equation
(Êλ + xαα̇λα̇Êα)ϕa = 0, which relates different terms in the Kaluza-Klein expansion. The
latter is of the form

ϕa = λα̇λβ̇ϕa
α̇β̇

+ λα̇λβ̇ λ
γ̇ λ̂δ̇

|λ|2
ϕa

α̇β̇γ̇δ̇
+ · · · , (2.20)

and setting ϕa
1̇1̇ = ϕa

space-time, ϕa
1̇2̇ = ϕa

2̇2̇ = 0, e.g., we recover equation (2.4) from (2.17).

2.2 Self-dual gravity

There is an analogous picture for self-dual gravity, which we describe in the following.

Supersymmetric self-dual gravity. Let (M, g) be a four-dimensional oriented Rieman-
nian manifold with metric g. The self-dual gravity equation is an equation on the curvature
for the Levi-Civita connection. In particular, for vanishing cosmological constant,3 the SDG
equation on a local patch U ∼= R4 of M reads as

Rµνκ
λ =

√
det(g)

2 εµν
ρσRρσκ

λ , (2.21a)

where
Rµνκ

λ := ∂µΓνκ
λ − ∂νΓµκ

λ + Γµκ
σΓνσ

λ − Γνκ
σΓµσ

λ (2.21b)
3In the case of non-zero cosmological constant, one may modify the self-duality condition [34].

– 6 –
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is the Riemann curvature tensor, and

Γµν
κ := 1

2g
κλ(∂µgνλ + ∂νgµλ − ∂κgµν) (2.21c)

are the Christoffel symbols. Suppose now that M also admits a spin structure. Then, we
can pick a vierbein eαα̇ = σαβ̇

a ea on U such that

g = 1
2εαβεα̇β̇e

αα̇ ⊗ eββ̇ . (2.22)

The Riemann curvature tensor decomposes as

Rαα̇ββ̇γγ̇
δδ̇ = Rαα̇ββ̇γ

δδγ̇
δ̇ +Rαα̇ββ̇γ̇

δ̇δγ
δ ,

Rαα̇ββ̇γ
δ = εαβRα̇β̇γ

δ + εα̇β̇Rαβγ
δ , Rαα̇ββ̇γ̇

δ̇ = εαβRα̇β̇γ̇
δ̇ + εα̇β̇Rαβγ̇

δ̇

Rαβγ
δ = Cαβγ

δ + Λεγ(αδβ)
δ , Rα̇β̇γ̇

δ̇ = Cα̇β̇γ̇
δ̇ + Λεγ̇(α̇δβ̇)

δ̇

(2.23a)

with

Rαβγ̇δ̇ = Rγ̇δ̇αβ , Rαβγ̇δ̇ = R(αβ)(γ̇δ̇) ,

Cαβγ
δ = C(αβγ)

δ , Cαβγ
γ = 0 , Cα̇β̇γ̇

δ̇ = C(α̇β̇γ̇)
δ̇ , Cα̇β̇γ̇

γ̇ = 0 .
(2.23b)

The components Cαβγ
δ and Cα̇β̇γ̇

δ̇ constitute the self-dual and anti-self-dual parts of the
Weyl tensor, and Λ is the cosmological constant. The Ricci tensor is

Rαα̇ββ̇ := Rγγ̇αα̇ββ̇
γγ̇ = −2Rαβα̇β̇ + 3Λεαβεα̇β̇ , (2.24)

and the curvature scalar is then given by

R := 2Rαα̇
αα̇ = 24Λ . (2.25)

The SDG equation (2.21) is now equivalent to requiring{
Rαα̇ββ̇γ̇

δ̇ = 0
}

⇔
{
Rαβγ̇

δ̇ = 0 , Cα̇β̇γ̇
δ̇ = 0 , and Λ = 0

}
, (2.26a)

and hence,
Rαα̇ββ̇γγ̇

δδ̇ = εα̇β̇Cαβγ
δδγ̇

δ̇ . (2.26b)

It was shown in [46] that (2.26) is equivalent to the existence of volume-preserving
vector fields Ea = σαα̇

a Eαα̇ whose Lie brackets satisfy[
Eα(α̇, Eββ̇)

]
= 0 . (2.27)

By Frobenius’ theorem, we may now choose local coordinates in which

Eα2̇ = ∂α2̇ , (2.28a)

and we may further fix a gauge such that

Eα1̇ = ∂α1̇ + 1
4ε

βγ(∂α2̇∂β2̇ϕ)∂γ2̇ (2.28b)

– 7 –
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for ϕ a real-valued function on U . Then, the SDG equation (2.27) reduces to

□ϕ+ 1
2ε

αβεγδ(∂α2̇∂γ2̇ϕ)(∂β2̇∂δ2̇ϕ) = 0 . (2.29)

This is Plebański’s second heavenly equation [47], and it resembles the SDYM equation (2.4)
in Leznov gauge.

The equation (2.29) generalises to N -extended supersymmetric SDG [48],

□ϕ+ 1
2ε

αβ(−1)|A|ΠAB(∂α2̇∂A2̇ϕ)(∂β2̇∂B2̇ϕ) = 0 , (2.30)

where ϕ now is a superfield on R4|2N independent of η1̇
i . In addition, (ΠAB) := diag(εαβ ,Πij)

with the rank of Πij depending on how much of the R-symmetry group SO(N ,C) is gauged:
in the ungauged case, Πij = 0. The equation (2.30) is variational, and follows from the
action [48]

SSP :=
∫

d4x dη2̇
1 · · · dη2̇

N

{
1
2ϕ□ϕ+ 1

3!ε
αβ(−1)|A|ΠAB(∂α2̇∂A2̇ϕ)(∂β2̇∂B2̇ϕ)

}
. (2.31)

Note that (2.27) also generalises to N -extended supersymmetric SDG [49], and so does
then the above derivation of (2.30).

Twistor description. Like N -extended supersymmetric SDYM theory, also N -extended
supersymmetric SDG enjoys a twistorial reformulation via Penrose’s non-linear graviton
construction [15, 49–56]. Below we follow the treatment in [15, 49].

By studying finite complex structure deformations on the twistor space Z, it was shown
in [15] that the N -extended supersymmetric SDG equation can be reformulated on Z as
a holomorphic Chern-Simons equation with the (infinite-dimensional) gauge group given
by the holomorphic Poisson transformations. Concretely, we introduce the holomorphic
Poisson structure

[f, g] := (−1)|A|(|f |+1)ΠAB ∂f

∂zA

∂g

∂zB
(2.32)

on Z, where ΠAB is the tensor that already appeared in (2.30). The N -extended supersym-
metric SDG equation is then equivalent to [15]

∂̄h+ 1
2 [h, h] = 0 , (2.33)

where h is a (0, 1)-form on Z of weight 2. Just as the holomorphic gauge potential in the
SDYM setting, also h is assumed to have no anti-holomorphic fermionic directions dη̂i and
to depend holomorphically on the fermionic coordinates ηi. Note that [15] also discusses
the more general case of non-vanishing cosmological constant. For maximal (N = 8)
supersymmetry, equation (2.33) follows from the variation of a holomorphic Chern-Simons
action [15]. It should be noted that in this case, however, the twistor space Z is not a
Calabi-Yau supermanifold; nevertheless, the weights of h cancel appropriately so as to
render the action well defined.

– 8 –
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Twistorial prepotential action. In order to connect (2.33) to (2.30), we follow the closely
our discussion of SDYM theory and write the holomorphic Chern-Simons equation (2.33) as

∂

∂ẑα
hβ − ∂

∂ẑβ
hα + [hα, hβ ] = 0 ,

Êπhα − ∂

∂ẑα
hπ + [hπ, hα] = 0 .

(2.34)

Considering the case of vanishing cosmological constant, we may impose the gauge

hπ = 0 , (2.35a)

just as for SDYM theory. We obtain prepotentials that, for solutions to (2.34), we can
further constrain by imposing Lorenz gauge along the fibres, Eαhα = 0, so that we arrive at

hα = 1
4|λ|2Eαϕ (2.35b)

for ϕ now a function of weight 4 on Z that depends holomorphically on the fermionic
coordinates ηi as well as on πα̇. Hence, (2.34) reduces to

□ϕ+ 1
2(−1)|A|ΠABεαβ(EAEαϕ)(EBEβϕ) = 0 , (2.36)

where we have again used (2.13) as well as ÊαE
α = −1

4 □. For maximal (N = 8) supersym-
metry, this equation arises from variation of the action [15]

SSDG :=
∫

volSDG
{

1
2ϕ□ϕ+ 1

3!(−1)|A|ΠABεαβ(EAEαϕ)(EBEβϕ)
}
, (2.37a)

where now
volSDG := d4x

λα̇dλα̇ λ̂
α̇dλ̂α̇

|λ|4
dη1 · · · dη8 . (2.37b)

This twistor action resembles the space-time action (2.31); however, again, it should be
noted that (2.37) is manifestly Lorentz invariant. A similar action (and the corresponding
equation of motion) exists also on harmonic superspace [57].

Relation to space-time. The superfield expansion of ϕ reads as

ϕ = g + ηiψ
i + ηijA

ij + ηijkχ
ijk + ηijklW

ijkl + ηijkχ̃ijk + ηijÃij + ηiψ̃i + ηg̃ , (2.38a)

where
ηi1···ik

:= 1
k!ηi1 · · · ηik

and ηi1···i8−k := 1
k!ε

i1···i8ηi9−k
· · · ηi8 . (2.38b)

The Penrose-Ward transform of the field h with this expansion substituted in then yields
the correspondence between the various components and the SDG fields on R4 displayed in
table 2.

3 Colour-kinematics duality of self-dual Yang-Mills theory

Let us now show that the action SSDYM defined in (2.18) features CK duality. Algebraically,
this is achieved by constructing a BV■-algebra, following the prescription of [1, 22].
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Field g ψi Aij χijk W ijkl χ̃ijk Ãij ψ̃i g̃

Helicity 2 3
2 1 1

2 0 −1
2 −1 −3

2 −2
Multiplicity 1 8 28 56 70 56 28 8 1

Table 2. Space-time SDG fields and their helicities and multiplicities.

Differential graded Lie algebra. Let S (m) denote the space of smooth functions of
weight m on Z that are holomorphic in the fermionic coordinates ηi as well as the bosonic
coordinates πα̇ and are bounded on Z. Recall that cubic actions correspond to metric
differential graded Lie algebras, see e.g. [58, 59]. In the case of the action (2.18), we have
the differential graded Lie algebra KSDYM ∼= KSDYM

1 ⊕KSDYM
2 concentrated in degrees 1 and

2 with the underlying cochain complex

Ch(KSDYM) :=
(
∗ g⊗ S (2)︸ ︷︷ ︸

:=KSDYM
1

g⊗ S (2)︸ ︷︷ ︸
:=KSDYM

2

∗µ1
)

(3.1)

and differential µ1|KSDYM
1

:= idg ⊗ □[−1], where [k] for k ∈ Z denotes an isomorphism
combined with a cochain degree shift by −k; it simply changes the cochain degree of an
element by −k. It comes equipped with an invariant inner product, whose components
vanish except between degrees 1 and 2, for which

⟨ϕ, χ⟩ :=
∫

volSDYM gabϕ
aχb (3.2)

for all ϕ ∈ KSDYM
1 and χ ∈ KSDYM

2 . The interactions are encoded in the Lie bracket
µ2 : KSDYM × KSDYM → KSDYM, which vanishes except between two elements of degree 1,
for which

µ2(ϕ1, ϕ2) := ec ⊗ fab
cεαβ(Eαϕ

a
1)(Eβϕ

b
2) (3.3)

for all ϕ1,2 ∈ KSDYM
1 .

Colour-stripping. The differential graded Lie algebra KSDYM naturally factorises as

KSDYM ∼= g⊗ CSDYM , (3.4)

where g is the gauge Lie algebra and CSDYM = (CSDYM, d,m2) is a differential graded
commutative algebra; see [60] for a generic description of this procedure, which is referred
to as colour-stripping in the physics literature. The cochain complex underlying CSDYM is
concentrated in degrees 1 and 2,

Ch(CSDYM) :=
(
∗ S (2)︸ ︷︷ ︸

:=CSDYM
1

S (2)︸ ︷︷ ︸
:=CSDYM

2

∗d
)

(3.5a)

with d|CSDYM
1

:= □[−1], i.e. the colour-stripped µ1|KSDYM
1

:= idg ⊗ □[−1]. Its associative
graded-commutative product m2 and inner product ⟨−,−⟩ are

m2(ϕ1, ϕ2) := εαβ(Eαϕ1)(Eβϕ2) and ⟨ϕ1, χ⟩ :=
∫

volSDYM ϕ1χ (3.5b)

for all ϕ1,2 ∈ CSDYM
1 and χ ∈ CSDYM

2 .
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From a physicist’s perspective, the decomposition (3.4) amounts to colour-stripping.
The differential and the product in the differential graded commutative algebra CSDYM

encode the kinematic contributions to the inverse propagator and the interaction vertex of
the theory.

BV■-algebra and colour-kinematics duality. The above differential graded commu-
tative algebra can now be enhanced to a BV■-algebra. Note that the propagator in this
theory is P = idg ⊗ b

□
, where b is given by the shift isomorphism

b : CSDYM
2

[1]−−→ CSDYM
1 (3.6)

(and b is necessarily trivial otherwise). The operator b satisfies

[d, b] = db + bd = □ and b2 = 0 , (3.7)

nd it is a second-order differential operator in the sense of [61], cf. [1, 62]. Hence,
(CSDYM, d,m2, b) forms a BV■-algebra [17], see also [1, 61].

The extension of CSDYM from a differential graded commutative algebra to a BV■-
algebra implies the existence of a kinematic Lie algebra K with Lie bracket given by

{Φ1,Φ2} := bm2(Φ1,Φ2)− m2(bΦ1,Φ2)− (−1)|Φ1|m2(Φ1, bΦ2) (3.8)

for all Φ1,2 ∈ CSDYM [17, 22, 63]. Explicitly, we have here

{ϕ1, ϕ2} = b(m2(ϕ1, ϕ2)) = εαβ(Eαϕ1)(Eβϕ2) ∈ CSDYM
1 ,

{ϕ1, ϕ
+
2 } = m2(ϕ1, bϕ+

2 ) = εαβ(Eαϕ1)(Eβϕ
+
2 ) = {ϕ+

2 , ϕ1} ∈ CSDYM
2

(3.9)

for all ϕ1,2 ∈ CSDYM
1 and ϕ+

2 ∈ CSDYM
2 .

In the Feynman diagram expansion, we can now either work with propagator b
□

and
vertex m2(−,−) or we choose to re-assign the operator b to the vertex, so that we are left
with a propagator 1

□
and the Lie bracket {−,−} as vertex, as explained in [63]. The latter

picture renders CK duality for both currents and amplitudes of SDYM theory manifest.
Altogether, we conclude that the tree-level currents of SDYM theory with an arbitrary

amount of supersymmetry exhibit CK duality.4

4 Double copy from self-dual Yang-Mills theory to self-dual gravity

We now further follow the formalism of [1] to construct a double copy of the N = 4
supersymmetric SDYM twistor action (2.18). The result will be the ungauged version of
the N = 8 supersymmetric SDG twistor action (2.37). In the following, we make this
connection algebraically rigorous to provide an explicit and easy-to-follow example of the
formalism developed in [1].

4The tree-level amplitudes therefore do so as well, but these are trivial.
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Hopf algebra. In the formalism of [1], we use a Hopf algebra in order to control the
momentum dependence of fields, which is crucial in the identification of the correct field
content of the double copy theory. An interesting new feature of the example at hand is
now that this Hopf algebra is non-commutative. To control the momentum dependence
on twistor space Z ∼= R4|2N × CP 1, we can use the usual bosonic momentum operators
∂µ on R4 as well as a generator of su(2) together with the quadratic Casimir operator
of su(2) to characterise the spherical harmonics on CP 1. The smallest Hopf algebra HZ

that contains these is the vector space of constant coefficient differential operators on R4

tensored with the universal enveloping algebra of su(2). Contrary to the examples discussed
before, e.g. in [17] or [1], this Hopf algebra is non-commutative.5

Free fields. The construction of the double-copied differential graded Lie algebra described
in [1] starts from the restricted tensor product of the colour-stripped differential graded
commutative algebras

Ĉ := CSDYM ⊗HZ CSDYM , (4.1)

which is spanned by elements ϕ1 ⊗ ϕ2 ∈ CSDYM ⊗ CSDYM, where ϕ1,2 ∈ CSDYM with

χ▷ ϕ1 = χ▷ ϕ2 . (4.2)

Here, χ ▷ ϕ denotes the action of Hopf algebra elements χ ∈ HZ on colour-stripped
(anti)fields ϕ ∈ CSDYM, where CSDYM is understood to be a HZ-module. The condition (4.2)
ensures that the double-copied fields all are fields on a single copy of space-time, instead of
producing a double-field-theory-like situation. As a result, the underlying chain complex
reads as

Ch(Ĉ) :=
(
∗ S (4)︸ ︷︷ ︸

:= Ĉ2

S (4) ⊕ S (4)︸ ︷︷ ︸
:= Ĉ3

S (4)︸ ︷︷ ︸
:= Ĉ4

∗
)
. (4.3)

This is clearly not the chain complex of a field theory: fields and anti-fields are usually
elements of degree 1 and 2. To remedy the situation, we will have to degree-shift the
complex and truncate it further to the kernel of the operator b̂−, where

b̂± := b ⊗ id ± id ⊗ b (4.4)

with the operator b defined in (3.6). This is akin to the familiar level-matching condition of
string theory. The result is the chain complex

Ch(KSDG) :=
(
∗ S (4)︸ ︷︷ ︸

:=KSDG
1

S (4)︸ ︷︷ ︸
:=KSDG

2

∗µ̂1
)
, (4.5a)

where
µ̂1 := d ⊗ id + id ⊗ d = □[−1] . (4.5b)

This complex has the expected double-copied fields in degree 1 and a further copy as
anti-fields in degree 2.

5The paper [17] discusses the possibility of using the universal enveloping algebra, but does not actually
use it in the main example.
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Interactions. The interaction terms in the equation of motion are given by the Lie
bracket of the kinematic Lie algebra of Ĉ, restricted to KSDG. Explicitly, the kinematic Lie
bracket is given by

[ϕ̂1[1], ϕ̂2[1]] = b̂+m̂2(ϕ̂1, ϕ̂2) = εαβεγδ(EαEγϕ̂1)(EβEδϕ̂2) , (4.6)

for all ϕ̂1,2[1] ∈ KSDG, where m̂2 := m2 ⊗ m2 is a graded commutative product on Ĉ. This
is evidently the expected vertex that is obtained by double-copying the colour-stripped
vertex (3.5b) of SDYM theory.

Differential graded Lie algebra. The differential graded Lie algebra KSDG that descibes
the double copy field theory is now given by the chain complex (4.5a), with the given differ-
ential µ̂1 together with the grade-shifted bracket (4.6), i.e. the graded antisymmetric product

µ̂2(ϕ̂1, ϕ̂2) := [ϕ̂1[1], ϕ̂2[1]][−1] . (4.7)

Hence, we obtain the equations of motion of SDG with none of the R-symmetry gauged.

Action. An ingredient mostly ignored e.g. in [17]6 and [20], is the metric on KSDG. This
additional datum is crucial for the discussion of an action principle and scattering amplitudes,
as without it, only the CK-duality of currents is ensured.

According to the prescription of [1], we define

⟨ϕ̂1[1], ϕ̂2[1]⟩KSDG := (−1)|ϕ̂1|⟨□−1(d ⊗ id − id ⊗ d)ϕ̂1, ϕ̂2⟩Ĉ (4.8)

for all ϕ̂1,2[1] ∈ KSDG. This provides a cyclic structure on KSDG, i.e. a metric invariant under
the differential µ̂1 and compatible with the bracket µ̂2 in the usual manner, cf. the familiar
Cartan-Killing form. The dressing by □−1(d⊗id−id⊗d) heuristically reflects the familiar fact
that in the double copy the numerator of the propagator is doubled, while the denominator
is not. It yields the correct length dimensions in the action principle and reproduces the
expected results in well-known examples. For a more detailed motivation, see [1].

In the case at hand, d = □[−1], and the operators in this inner product cancel to the
shift isomorphism

□−1(d ⊗ id − id ⊗ d) = [−1]⊗ id − id ⊗ [−1] (4.9)

with [−1] the shift isomorphism [−1] : CSDYM
1

∼=−−→ CSDYM
2 . For further details, compare

also the discussion of biadjoint scalar field theory in [1], for which propagator and metric
take very much the same form as in this case.

As also discussed in [1], the doubling of space-time yields an infinite volume factor
from the integral over the doubled bosonic directions that needs to be removed. Recall
from above that we restricted the fields to the bosonic diagonal of this doubled space-time,
and that the infinite volume factor originates from constancy of the Lagrangian along the
bosonic off-diagonal directions.

Schematically, we have∫
volSDYM ⊗ volSDYM −−→ vol(R4 × CP 1)

∫
volSDG . (4.10)

6The paper [17] mentions the need for the metric in the loop case but does not develop it further.
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Altogether, we are left with a metric uniquely characterised by

⟨ϕ̂1, ϕ̂
+
2 ⟩KSDG =

∫
volSDG ϕ̂1ϕ̂

+
2 , (4.11)

where volSDG was defined in (2.37b). Together with the differential (4.5a) and the Lie
bracket (4.6), we recover the metric differential graded Lie algebra whose corresponding
action is the scalar SDG action on twistor space (2.37).

Remarks. We note that the gauged version of the self-dual gravity twistor action (2.37)
may also be obtained as the double copy of self-dual Yang-Mills theory with another theory
whose action is

S̃SDYM :=
∫

volSDYM
{

1
2gabϕ

a □ϕb + 1
3!fabc(−1)|A|ΠABϕc(EAϕ

a)(EBϕ
b)
}
. (4.12)

Choosing appropriate ΠAB, we can obtain an action in which an arbitrary amount of
R-symmetry is gauged.

If we are content with CK duality and double copy at the level of currents, we can also
consider the corresponding non-maximally supersymmetric theories. All our constructions
bar that of the metric go through as described above. If one wishes to work with an action
for these and related theories, one can achieve this by replacing twistor space with a fattened
complex manifold, as in [64], or with a weighted projective space, as in [65].
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