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Germany; dPharmacy, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Wales, UK

ABSTRACT
Introduction: The renewed interest in considering a range of stimulants, psychedelics and dissociatives 
as therapeutics emphasizes the need to draft an updated overview of these drugs’ clinical and 
pharmacological issues.
Areas covered: The focus here was on: stimulants (e.g. amphetamines, methamphetamine, and 
pseudoephedrine; phenethylamines; synthetic cathinones; benzofurans; piperazines; aminoindanes; 
aminorex derivatives; phenmetrazine derivatives; phenidates); classical (e.g. ergolines; tryptamines; 
psychedelic phenethylamines), and atypical (e.g. PCP/ketamine-like dissociatives) psychedelics.

Stimulant and psychedelics are associated with: a) increased central DA levels (psychedelic phe-
nethylamines, synthetic cathinones and stimulants); b) 5-HT receptor subtypes’ activation (psychedelic 
phenethylamines; recent tryptamine and lysergamide derivatives); and c) antagonist activity at NMDA 
receptors, (phencyclidine-like dissociatives).
Expert opinion: Clinicians should be regularly informed about the range of NPS and their medical, 
psychobiological and psychopathological risks both in the acute and long term. Future research should 
focus on an integrative model in which pro-drug websites’ analyses are combined with advanced 
research approaches, including computational chemistry studies so that in vitro and in vivo preclinical 
studies of index novel psychoactives can be organized. The future of psychedelic research should focus 
on identifying robust study designs to convincingly assess the potential therapeutic benefits of 
psychedelics, molecules likely to present with limited dependence liability levels.
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1. Introduction

In today’s context, the widespread issues related to drug use 
span diverse regions, adding to the already complex policy 
challenges at a domestic level [1]. A significant development 
is the increasing prevalence of NPS within the drug market. 
These substances often come with misleading labels or combi-
nations that obscure their composition and pose health risks.

Various definitions of the term ‘novel’ or ‘new’ psychoactive 
substances (NPS) are being used. The term ‘new’ doesn’t 
necessarily mean entirely new inventions; rather, it refers to 
substances that have recently become available. Thus, ‘new’ 
could encompass a previously unsuccessful pharmaceutical or 
an old patent that has been ‘rediscovered’ and marketed for 
recreational use. Conversely, ‘novel’ could imply something 
newly created, a compound that has reentered the recrea-
tional drug scene after a period of absence, or a known NPS 
molecule used in an innovative or unusual way, presenting 
a sense of novelty [2]. Overall, the focus will be here on NPS 
being ingested mainly in the context of recreational use. It has 
to be specified, however, that recreational ‘street’ drugs are 
often ‘dirty;’ they may not contain significant amounts of the 
NPS and/or might be contaminated with other compounds [3].

Another distinction arises between NPS and Emerging 
Psychoactive Substances (EPS), where the latter term includes 
all NPS as well as drugs that may not be brand new but have 
recently experienced a resurgence or increase in use. This 
evolving trend introduces new complexities for law enforce-
ment and regulatory frameworks, as the market showcases 
a wide range of drugs, often with high potency and purity 
levels [4].

The increasing diversity in drug availability and usage 
brings forth multifaceted challenges in both health and policy 
domains. The accessibility of drugs exposes consumers to 
various psychoactive substances, including newly synthesized 
variants with poorly understood health effects [5].

Over the past decade, the proliferation of synthetic drugs 
has continued, but only a subset, such as amphetamine-type 
stimulants (ATS) like methamphetamine and MDMA, have 
established solid global markets [1]. Particularly concerning 
in the Near and Middle East is the prominence of ‘Captagon,’ 
containing a range of ATS [6], while South American markets 
have witnessed an increased distribution of synthetic drugs, 
including stimulants; hallucinogens; dissociative anesthetics 
like ketamine; and other NPS. The shift from ephedrine- 
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based synthesis to the use of different derivatives of phenyl- 
2-propanone (P2P), through tartaric acid refinement, in ATS 
chemical production has been reported, with similar shifts 
possibly occurring in South-East Asia [4,7] Notably, 
Afghanistan has emerged as a source of methamphetamine, 
involving the use of diverted precursors and industrial-grade 
formic acid [7].

1.1. The relative contributions of the different 
neurotransmitter pathways in addiction

To better understand the pharmacology of stimulant and 
psychedelic NPS, it may be of help to briefly summarize the 
relative contributions of dopamine (DA); noradrenaline (NA); 
and serotonin (5-HT); together with both adrenergic and trace 
amine-associated (TAAR1) receptors in their effects related to 
addiction.

It is felt that dopamine (DA) is mainly involved in mechan-
isms relating to reward and motivation [8,9]. In particular: 
dopamine D1 receptors expressed on GABA neurons may be 
involved in regulating opioid reward by mediating the dopa-
mine neuron activity in the ventral tegmental area (VTA) 
[10,11]; D2 receptors have been studied for their involvement 
in alcohol use disorder [12]; D3 receptors’ activation may be 
associated to nicotine reinforcement, conditioned stimuli, and 
withdrawal [13]; and the D4 receptor may be a target for 
attention-deficit hyperactivity disorder (ADHD) [14], 
a disorder frequently associated with addiction [15].

At the brain level, the serotonergic network regulates var-
ious functions like reward processing, satiety, and impulsivity 
[16,17]. Some 14 5-HT receptor subtypes have been identified 
[18]. In particular, recent findings have suggested a key role of 
5-HT2C receptors for treating cocaine use disorder and comor-
bid depression [19]; whilst 5-HT2A; 5-HT1A; 5-HT1B; and a few 
other receptor subtypes have been involved at various levels 

in the psychedelics’ pharmacodynamic [20–22]; for a better 
overview of the issue, see below the psychedelics’ section.

Noradrenergic regions play pivotal roles in cognitive func-
tions, memory consolidation, and arousal. It has been sug-
gested that some stimulant-related, putative [23], pro- 
cognitive effects may be due as well to NE transporter (NET) 
inhibition [24]. This perceived cognitive enhancement is an 
issue which may increase drug, including nicotine, reinforce-
ment levels [25]. Furthermore, noradrenergic systems exert 
potent arousal-enhancing actions, and the dysregulation of 
arousal-related neural systems is implicated in both relapse 
and addiction [26].

Adrenergic (as opposed to noradrenergic) receptors may 
have a role as well in addiction; indeed, drug reward memories 
contribute to both craving and increase relapse risks. 
Propranolol, a nonspecific β-adrenergic receptor antagonist, 
may be able to somehow delete maladaptive memories asso-
ciated with nicotine, cocaine and heroin in humans [27]. 
Furthermore, blockade of peripheral adrenergic β1 receptors 
by atenolol significantly reduces the cocaine-associated 
increased ghrelin levels, inhibiting cocaine intake [28].

Finally, TAAR1, which is broadly expressed in the monoami-
nergic system in the brain (e.g. ventral tegmental area (VTA), 
nucleus accumbens (NAc), dorsal raphe (DR) and substantia 
nigra (SN)), may play an important role in modulating DA 
transmission. Indeed, TAAR1 activation inhibits the rewarding 
and reinforcing effects of drugs from different classes includ-
ing psychostimulants, opioid and alcohol [29].

1.2. Aims

In this context, the present article aims to provide an updated 
review concerning emerging psychostimulants and psychedelics/ 
hallucinogens. The pharmacological effects of these molecules 
will be discussed, considering the evolving complexities and 
challenges arising from drug-related issues and market trends.

2. Methods

A narrative review was here carried out; the comprehensive 
search included case reports, research papers, reviews and 
systematic reviews identified from Medline/PubMed, utilizing 
a range of relevant keywords including, but not limited to: 
‘stimulants’, ‘cathinones’, meth/amphetamine”, ‘hallucino-
gens’, ‘psychedelics’, ‘dissociatives’, and ‘pharmacology’. The 
search parameters were refined to focus mainly on both the 
last 15 years’ studies and human subjects’ non-medical drug 
intake. Articles referring to legal stimulants like caffeine or 
nutritional ergogenic aids were excluded from this study. The 
categories of molecules here discussed will include: stimu-
lants (e.g. amphetamine-type stimulants (ATS): ampheta-
mines, methamphetamine, and pseudoephedrine; 
phenethylamines; synthetic cathinones; benzofurans; pipera-
zines; aminoindanes; aminorex derivatives; phenmetrazine 
derivatives; and phenidates); but also typical (e.g. ergolines; 
tryptamines), and atypical psychedelics (e.g. PCP/ketamine- 
like dissociatives).

Article highlights

● An updated overview of emerging psychostimulants and psychede-
lics/hallucinogens is here provided. Their pharmacological effects are 
discussed, in parallel with the rapidly evolving drug-related scenarios 
and market trends.

● Focus is here on the following stimulants: amphetamines; metham-
phetamine; pseudoephedrine; phenethylamines; synthetic cathi-
nones; benzofurans; piperazines; aminoindanes; aminorex 
derivatives; phenmetrazine derivatives; and phenidates. Ergolines 
and tryptamines (e.g. typical psychedelics), together with PCP/keta-
mine-like dissociatives (atypical psychedelics) are here discussed.

● The landscape of the stimulants’ and psychedelics’ market underwent 
a transformation in the early 2000s, with the introduction of numer-
ous, potent, and easily available synthetic derivatives of these mole-
cules (e.g. novel psychoactive substances; NPS). NPS gained 
prevalence within the recreational drug market.

● Healthcare professionals should receive ongoing education regarding 
the medical, psychobiological, and psychopathological risks asso-
ciated with the vast range of stimulant and psychedelic NPS. 
Prospective investigations into NPS long-term effects should be 
promoted.

● The interest in psychedelics has recently and significantly surged in 
therapeutic contexts. The future of psychedelic and psychopharma-
cological research should, and will, strive to employ more robust 
study designs.
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3. Stimulants

Amphetamine-type stimulants refer to substances such as 
amphetamines (AMPH) (street names: bennies, black beauties, 
crank, glass, ice, speed, pep pills, uppers), methamphetamine 
(METH) (street names: speed, meth, chalk, crystal, crystal meth, 
ice, crank, Tina) [30] and pseudoephedrine. They exhibit sym-
pathomimetic effects on both the central and peripheral ner-
vous systems mimicking the actions of both adrenaline and 
noradrenaline [31].

3.1. Stimulants; pharmacodynamics’ and related 
neurotoxicity issues

Functioning as an ATS, methamphetamine (METH) elicits 
potent indirect agonistic effects on noradrenaline, dopamine, 
and serotonin receptors, instigating the release of these 
monoamines in both the central (CNS) and peripheral ner-
vous system. This dynamic activity stems from a complex 
interplay of mechanisms that enhance neurotransmitter 
release. These mechanisms involve processes like the redis-
tribution of vesicular stores to the cytosol, intensified reverse 
transport from the cytosol to the synapse, suppression and 
reduced expression of membrane transporters, inhibition of 
monoamine oxidase, and increased tyrosine hydroxylase 
activity, ultimately leading to heightened dopamine produc-
tion [32].

Methamphetamine’s influence extends significantly across 
crucial CNS pathways, including dopaminergic, noradrenergic, 
serotonergic, and opiatergic systems, each intricately linked to 
specific physiological and cognitive functions [16]. Overall, 
stimulant variations in dopaminergic engagement contribute 
to heightened stimulant-like reinforcing effects and an 
increased potential for abuse [33]. Conversely, serotonergic 
activity aligns with an entactogenic response akin to MDMA, 
characterized by a reduced risk of abuse [34,35]. Furthermore, 
a high or low affinity for the modulation of noradrenergic 
systems might correlate with varying sympathetic nervous 
system activation, while the activation of 5-HT2A/1A receptors 
would likely predict hallucinogenic effects [20].

Stimulant NPS modulate monoaminergic neurotransmis-
sion through two primary mechanisms: the inhibition of 
monoamine transporters and the facilitation of non- 
exocytotic substrate efflux from these transporters [36]. 
Additionally, interactions with adrenergic, dopaminergic, ser-
otonergic, and TAAR1 receptors contribute to the mechanism 
of action of the diverse stimulant NPS [22,37]. Moreover, some 
stimulant NPS exhibit substrate properties at vesicular mono-
amine transporters (VMATs) and exert inhibitory effects on 
monoamine oxidases [36].

A range of studies have substantiated the impact of high 
ATS doses on dopamine (DA) and serotonin (5-HT) systems’ 
toxicity [38]. Potential contributors to stimulant NPS-induced 
neurotoxicity include cytotoxicity, mitochondrial dysfunction, 
oxidative stress, neuronal apoptosis and activation of glial cells 
in the brain [39–41]. In particular, METH-induced neurotoxicity 
may involve transcription factors, activation of apoptotic path-
ways stemming from mitochondria and endoplasmic reticu-
lum, and participation of neuroinflammatory mechanisms [42]. 

METH use has been associated with both stroke and 
Parkinson’s disease [43]. However, if all striatal DA neuronal 
markers are decreased in Parkinson’s disease, levels of only 
some (e.g. DA and DA transporters) are below normal in METH 
users [44].

Overall, it is important to distinguish acute versus chronic 
effects of ATS, although it is not clear how much exposure to 
either of these drugs is required for the toxicity to present [45]. 
Neurodegeneration involving decreased levels of dopamine 
(DA) and its metabolites, along with loss of dopamine trans-
porters (DAT) and serotonin transporters (5-HTT), have been 
observed in the brains of human, long-term, METH users 
[46,47]. Furthermore, METH users show substantial reduction 
in gray matter in cortical and hippocampal [48] brain regions, 
and changes in white matter integrity [47]. Chronic users of 
MDMA may display selective dysfunction of serotonergic neu-
rons, raising concerns about potential neurodegenerative 
changes [49]. Combination of MDMA with the legal stimulant 
caffeine may increase their respective neurotoxic effects [50].

3.2. ATS (amphetamine; methamphetamine; and 
pseudoephedrine)

These molecules exhibit chemical and functional resem-
blances to the monoamine neurotransmitters dopamine, nor-
adrenaline, and serotonin. Structurally, ATS are derivatives of 
phenethylamine, whilst MDMA/ecstasy and its analogues con-
tain a phenethylamine and a methylenedioxy ring, which 
make them similar to serotonin. On the other hand, cathi-
nones differ from AMPHs by incorporating a β-ketone group 
into the phenylethylamine structure (for an overview of these 
issues, see [33]).

ATS are found in various forms, including free bases or 
salts, tablets or powder, and crystalline forms, which are gen-
erally lacking in odor and possess a bitter taste. The methods 
of administration encompass intravenous injection (referred to 
as ‘slamming’), oral ingestion, smoking, inhalation, intrarectal 
administration (known as ‘booty bumping’), and intravaginal 
methods [33].

Generally, ATS are absorbed through the gastrointestinal 
tract and reach their highest plasma concentrations around 3– 
6 hours after non-injectable administration. Overall, for both 
amphetamine and methamphetamine, the bioavailability 
levels increase to approximately 90% when in a smokable 
formulation. ATS are associated with high distribution levels 
and, thanks to their lipid solubility, they can cross the blood- 
brain barrier, placenta, and enter breast milk. ATS are mainly 
metabolized by CYP2D6 and are then eliminated through 
urine [33].

Following immediate consumption of ATS, there are com-
monly observed sympathomimetic effects like increased alert-
ness, heightened blood pressure, bronchodilation, and 
elevated heart rate ([51], renal and hepatic impairment, 
arrhythmias [52], high body temperature, and loss of con-
sciousness. Notably, METH users exhibit signs and symptoms 
of Parkinsonism [53]. They can also lead to mydriasis, 
enhanced communicativeness, increased motivation, reduced 
appetite, and insomnia.

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 1111



Psychopathological issues such as feelings of euphoria, 
anxiety, and paranoia can be routinely observed as well. 
Conversely, with a high and/or chronic ATS intake, the related 
neurotoxic effects can result in cognitive impairments, wea-
kened memory and attention, and deficits in executive func-
tions like decision-making and information processing [42,54]. 
These can also lead to seizures [55], hemorrhagic strokes, 
psychosis [56], METH mouth bruxism [57], hypertension, cor-
onary artery disease, hyperthermia, hyperreflexia, and METH- 
related tactile hallucinations [58]. Extended ATS usage can 
foster addictive behavior [32].

The combined use of methamphetamine and potent 
opioids like heroin or fentanyl is commonly referred to as 
a ‘goofball.’ Although historically less common than the 
cocaine and heroin speedball, this combination appears to 
be increasing in prevalence [59,60] The convergence of 
synthetic opioids with stimulants has contributed to the 
current rise in mortality rates [61], termed as the ‘fourth 
wave’ [62].

3.3. Phenethylamines

Often grouped under MDMA/ecstasy derivatives [63,64], phe-
nethylamines form a diverse chemical class encompassing 
molecules with various activities such as stimulants, entacto-
gens, and psychedelics [41,65,66]. Phenethylamines are syn-
thetic compounds available in tablet, capsule, and powder 
forms.

Methylenedioxymethamphetamine (MDMA/ecstasy) shares 
structural similarities with mescaline and amphetamine. 
Commonly known as ‘ecstasy’ or ‘MD,’ remains a popular 
choice among young individuals and club-goers due to its 
stimulant effects. With a half-life of 4–6 hours, MDMA stimu-
lates the release of both 5HT and DA, with these effects being 
likely to underlie its abuse potential [67]. Furthermore, MDMA 
stimulates central and peripheral α- and β-adrenoceptors, and 
its actions are influenced by physical exertion, dehydration, 
and heat. Certain individuals, like poor metabolizers with the 
CYP450 2D6 polymorphism, can experience severe and fatal 
reactions, including hyperthermia, convulsions, coagulation 
issues, rhabdomyolysis, organ failure and even fatalities 
[49,68].

The phenethylamine category includes both: the 2C-series 
drugs like 2C-B, 2C-D, and 2C-E; the ‘fly;’ and the 
N-methoxybenzyl/NBOMe series drugs [69]. Compounds in 
the ‘fly’ series, particularly ‘Bromo-DragonFly’/‘B-fly,’ are potent 
and long-lasting, with adverse effects that can persist for up to 
three days [69]. The market for NBOMe compounds has grown 
alongside the decreased availability of lysergic acid diethyla-
mide (LSD). In recent times, a range of other psychedelic 
phenethylamines like 4-MTA, 6-APB, 4,4’-DMAR, and PMA 
have emerged [35]. The psychoactive effects of these com-
pounds vary with dosage, ranging from stimulant effects at 
lower doses to hallucinogenic and entactogenic effects at 
higher doses. Those compounds with high 5-HT/DA ratios, 
such as MDMA, 2C-series drugs, and benzofurans like 3C- 
bromo-dragonfly, are considered entactogenic substances. 
Conversely, high DA/5-HT ratios (e.g. MDA) are indicative of 
strong stimulant experiences [69,70]

The consumption of phenethylamines can lead to various 
effects including appetite loss, tachycardia, hypertension, anxi-
ety, nausea, headache, dizziness, skin irritation, hyperthermia, 
convulsions, respiratory problems, and even organ failure and 
death [69]. Psychotic symptoms are linked to high-dosage 
intake [20].

3.4. Pseudoephedrine and ephedrine

Pseudoephedrine and ephedrine are naturally occurring alka-
loids derived from various species of Ephedra spp. within the 
Ephedraceae family [71]. Pseudoephedrine indirectly stimu-
lates alpha-adrenergic receptors, leading to the release of 
endogenous noradrenaline from neuronal granules, and 
directly stimulates alpha, beta1-, and beta2- adrenergic 
receptors [72,73]. While its effects resemble those of ephe-
drine, they are slightly less pronounced. Moreover, pseudoe-
phedrine is less likely to induce tachycardia and elevate 
systolic blood pressure. In terms of central effects, it is milder 
than amphetamine, whereas its peripheral effects align more 
closely with epinephrine [74]. Pseudoephedrine takes about 
30 minutes to take effect, reaches its peak action within 1–4  
hours, has a duration of action of 4–12 hours, and a biological 
half-life of 3–16 hours [71]. The molecule is one of the differ-
ent cough/cold, over-the-counter (OTC) medicines with 
a potential of misuse [74], with ‘misuse’ (as opposed to 
‘dependence’) being the intentional and inappropriate use 
of a product other than as prescribed or not in accordance 
with the authorized product information [75]. ‘Russian 
Cocktail’ includes ephedrine consumed together with potas-
sium permanganate and acetylsalicylic acid diluted in water 
[76]. To address the potential utilization for the production of 
the controlled substance methylamphetamine, the United 
Kingdom has implemented measures to regulate products 
containing pseudoephedrine and ephedrine in order to miti-
gate associated risks.

3.5. Cathinones

The category of synthetic cathinones encompasses a range of 
more than 180 distinct molecules [75]. The first-generation 
synthetic cathinones, which are derivatives of the natural 
psychoactive compound found in khat leaves (cathinone), 
include methcathinone, 4-methylmethcathinone (known as 
mephedrone), 3,4-methylenedioxy-N-methylcathinone 
(methylone), and 3,4-methylenedioxypyrovalerone (MDPV). 
A subsequent generation features compounds like 4-fluoro-
methcathinone (referred to as flephedrone) and α-PVP (α- 
pyrrolidinopentiophenone). Structurally resembling ampheta-
mine-type stimulants, synthetic cathinones fall under the cate-
gory of β-ketone analogues. The dominant psychoactive 
pharmacophore group is phenethylamine, and its derivatives 
constitute a significant portion of the available NPS on the 
illegal drug market [3,66].

Synthetic cathinones are predominantly inhibitors of the 
serotonin (SERT), dopamine (DAT), and noradrenaline trans-
porter (NET) [3].

These molecules can be classified into three categories:
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● Compounds resembling cocaine/MDMA (3,4-methylene-
dioxy-N-alkylated cathinones, such as butylone), which 
function as inhibitors of serotonin, dopamine, and nor-
epinephrine reuptake transporters (SERT, DAT, and NET) 
and as agents that release serotonin.

● Compounds resembling methamphetamine (N-alkylated 
or ring-substituted cathinones, like buphedrone), which 
operate as inhibitors of SERT, DAT, and NET and as sub-
stances that release dopamine.

● Cathinones resembling pyrovalerone (N-pyrrolidine cath-
inones, e.g. MDPV), which exhibit high potency in inhi-
biting DAT and do not induce the release of monoamine 
substrates [3,77]; for an overview, see also [78].

The pharmacokinetic characteristics of cathinones depend on 
each specific analogue [31]. Cathinones such as MDPV display 
higher lipophilicity compared to other synthetic stimulants, 
facilitating substantial penetration of the blood-brain barrier 
and an increased volume of distribution. The incorporation of 
electrophilic elements like fluorine further enhances their lipo-
philic nature, contributing to their potency, which is asso-
ciated with an intensified and prolonged ‘party drug’ 
experience [79].

With mephedrone, the most well studied cathinone, 
reported effects include low mood, loss of appetite, sleep 
difficulties, paranoid ideation, cognitive impairment, altered 
perception, agitation, hallucinations, delusions, amnesia, con-
fusion, violence, and suicidal thoughts. Positive effects have 
also been reported, such as euphoria, improved psychomotor 
speed, alertness, and talkativeness (for an overview, see [80]).

Acute intoxication induced by cathinones can be asso-
ciated with the serotonin syndrome, marked by traits such as 
aggression, hyperthermia, psychotic conditions, catatonia, and 
excited delirium [69]. Additionally, acute intoxication may give 
rise to problems like dehydration, high blood pressure, rapid 
heartbeat, kidney and liver dysfunction, disturbances in elec-
trolyte levels, metabolic toxicity, cerebral edema, and even 
fatalities [63]. Instances of suicides by hanging and fatalities 
resulting from firearm injuries have been frequently documen-
ted along with deaths attributed to toxicity [81].

3.6. Piperazines

The primary compound within the piperazine group, known as 
N-benzylpiperazine (BZP) possesses a standard structure char-
acteristic of CNS stimulants. Structurally resembling ampheta-
mine and initially created for antidepressant purposes, BZP 
induces the release of DA and NE while concurrently blocking 
the reuptake of dopamine DA, NE, and 5-HT [35]. In the past, 
benzylpiperazine (BZP) was found in counterfeit MDMA/XTC 
tablets. BZP acts as a 5-HT2A receptor agonist, which accounts 
for its hallucinogenic effects at higher dosages. Its impact is 
akin to that of amphetamine but of a lesser intensity. 
Piperazine toxicity can lead to seizures, occurring in as many 
as one in five patients, and it has also been associated with 
hyponatremia, serotonin syndrome, and renal failure [69]. 
Other piperazines include: meta-chlorophenylpiperazine 
(mCPP), which is the primary metabolite of trazodone/ 

nefazodone; and trifluoromethylphenylpiperazine (TFMPP), 
which is at times identified in so called ‘ecstasy’ tablets and 
which interacts with the serotonin transporter [82]. Some 
countries have seen a recent rise in this molecule consump-
tion [83].

3.7. Benzofurans

‘Benzofury’ molecules (e.g. 5-and 6-APB; King, 2014) are typi-
cally consumed recreationally at parties and in polydrug abuse 
settings. Whilst mostly influencing the serotonergic pathways, 
and mildly the dopaminergic system, rewarding, entactogenic 
and stimulant effects are being reported (for a review, 
see [84]).

3.8. Aminoindanes; thiophenes

Although distinct from phenethylamines, compounds like the 
thiophene bioisosteres of amphetamine, as well as specific 
conformationally-restricted variants like aminoindanes [85], 
have been discovered in drug seizures [86]. Among these, 
the fully synthetic 5,6-methylenedioxy-2-aminoindane (MDAI) 
stands out as an analogue of 3,4-methylenedioxymethamphe-
tamine (MDMA). Despite its development dating back to the 
1990s, widespread misuse of MDAI didn’t emerge until around 
2010. In response to the ban on mephedrone in the UK in 
April 2010, MDAI quickly gained attention as an advertised 
alternative [87].

3.9. Aminorex derivatives

Aminorex analogues encompass compounds that were pre-
viously unsuccessful as pharmaceuticals but have resurfaced 
as substances of abuse, along with newly synthesized com-
pounds designed exclusively for recreational use by clandes-
tine chemists [88]. Consequently, these substances share both 
pharmacological and neurochemical similarities with amphe-
tamines and cocaine. One such derivative is 4,4’- 
dimethylaminorex (4,4’-DMAR, often referred to as ‘Serotoni’), 
which was linked to approximately 30 deaths in Europe 
between 2013 and 2014. Similar to amphetamine-type stimu-
lants, ‘Serotoni’ is a potent releaser of dopamine and noradre-
naline while also inhibiting the serotonin transporter. It can be 
administered through snorting or ingestion, producing effects 
like euphoria, increased alertness, and agitation that can last 
for several hours. Notably, cases of hyperthermia and cardior-
espiratory problems associated with its use have also been 
documented (for an overview, refer to [89]).

3.10. Phenmetrazine derivatives

In the realm of phenmetrazine derivatives, a compound called 
3-fluorophenmetrazine (3-FPM), derived from the anorectic 
agent phenmetrazine, has emerged in the recreational drug 
market [90,91]. Phenmetrazine is recognized for its ability to 
elevate extracellular monoamine levels via an amphetamine- 
like mechanism. Mayer et al. [92] conducted studies on 3-FPM 
and its positional isomers, namely 2-FPM and 4-FPM, to assess 
their interactions with DAT, NET, and SERT transporters. Their 
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findings demonstrated that 2-FPM, 3-FPM, and 4-FPM inhib-
ited uptake mediated by DAT and NET, showing potencies 
comparable to cocaine. However, their effects on SERT were 
less potent. Moreover, each of these FPM compounds induced 
the release of monoamines from rat brain synaptosomes in 
a concentration-dependent manner.

3.11. Phenidates; cognitive enhancers

In conjunction with modafinil, methylphenidate is being uti-
lized as a cognitive enhancer on a global scale. Notably, 
students frequently acquire prescription stimulants not for 
recreational purposes, as seen with substances like ampheta-
mine or methylphenidate, but rather to augment their aca-
demic performance [23]. Stimulants prescribed for ADHD 
treatment, even at doses relevant for clinical use, demonstrate 
cognitive enhancements linked to fronto-striatal pathways, 
both in individuals with ADHD and those without the condi-
tion [23].

Despite not being fully understood in humans, methylphe-
nidate is thought to inhibit dopamine reuptake in the striatum 
without inducing dopamine release. According to Carlier et al. 
[93], numerous analogues of methylphenidate have recently 
emerged in the illicit market as NPS stimulants. These include 
ethylphenidate, 3,4-dichloromethylphenidate, 3,4-dichlor-
oethylphenidate, 4-fluoromethylphenidate, 4-fluoroethylphe-
nidate, methylnaphthidate, ethylnaphthidate, 
isopropylphenidate, propylphenidate, 4-methylmethylpheni-
date, and N-benzylethylphenidate. Among these, ethylpheni-
date has been associated with 28 fatalities, although it was 
directly implicated as the cause of death in only 7 cases; 
3,4-dichloromethylphenidate was linked to 1 death (for 
a comprehensive review, refer to [93]).

4. Hallucinogens: classical and atypical (dissociative) 
psychedelics

4.1. Definitions and categorization issues

Psychedelics have lately been capturing significant attention 
because of their therapeutic potential, albeit still largely 
under investigation, for a range of neuropsychiatric disorders 
[94,95]. While the term ‘hallucinogen’ is used to describe 
a wide range of different types of psychoactive molecules 
[96], psychedelics (e.g. the subclass of hallucinogenic drugs 
whose primary effect is to trigger non-ordinary mental states 
and an apparent expansion of consciousness [97,98]) refer 
here specifically to tryptamines (e.g. psilocin, 5-Meo-DALT); 
ergolines/lysergamides; and the vast range of phenethyla-
mines (e.g. mescaline and 2C-B) [99], which have been dis-
cussed in the previous paragraphs. Overall, it has been 
suggested that psychedelic/entactogenic phenethylamines 
are weak reinforcers, as opposed to remaining hallucinogenic 
psychedelics which are non-reinforcers [100]. Atypical hallu-
cinogen compounds induce analogous effects through dif-
ferent mechanisms [66].

4.2. The psychonauts’ psychedelics

The landscape of the psychedelics market underwent 
a transformation in the early 2000s, marked by the introduc-
tion of numerous synthetic derivatives of LSD, tryptamines, 
and phenethylamines, classified as NPS [63,64,74,101–103]. 
These synthetic analogues, often significantly more potent 
than their natural counterparts, became available for purchase 
and gained prevalence within the recreational drug market.

Concurrently, alongside the emergence of these ‘modern’ 
psychedelic NPS, there has been a parallel surge and consoli-
dation of a contemporary form of shamanism [104]. This 
involves a new wave of drug experimentation carried out by 
enthusiasts of NPS, referred to as e-psychonauts [105,106]. 
These individuals define themselves as either ‘techno- 
shamans’ or ‘sailors of the mind/soul,’ since they aim at explor-
ing their inner realms using psychedelic NPS and sharing their 
experiences online [106]. Interestingly, the drug consumption 
patterns of these psychonauts exhibit striking similarities to 
ancient shamanic ritual plant usage [104]. In the era of NPS, 
these explorers of the mind have access to a diverse array of 
new psychedelic compounds, allegedly facilitating novel inner 
explorations and profound mental journeys into uncharted 
territories.

Against this background, Catalani et al. [99] embarked on 
a study to: categorize psychedelic molecules sourced from 
psychonaut websites and NPS online resources; and compare 
the findings from the NPSfinderⓇ tool with data from the 
European Monitoring Centre for Drug and Drug Addiction 
(EMCDDA) and United Nations Office for Drugs and Crime 
(UNODC) databases. NPSfinderⓇ, an automated crawling soft-
ware, was developed to continuously scan a list of URLs and 
extract pertinent information, such as chemical/street names 
and formulae, to aid in the identification of NPS. The out-
comes revealed a total of 1344 psychedelic NPS detected by 
NPSfinderⓇ between November 2017 and February 2020, 
almost 10 times greater than the combined figures reported 
by UNODC and EMCDDA. Significantly, 994 of these molecules, 
primarily phenethylamines but also including 65 tryptamines 
and 16 lysergamides, were identified as (potential) novel psy-
chedelics not previously recognized by the UNODC and 
EMCDDA. These findings underscore the enthusiastic interest 
of psychonauts, and potentially of a broader community of 
‘recreational’ drug users, in both classical and novel psyche-
delics, hinting at a substantial discord between online and 
real-world NPS scenarios.

More recently, Mallaroni et al. [107] delved into the pre-
valence of novel phenethylamines, tryptamines, and lyser-
gamides among users of Novel Psychedelics (NPs), 
comprising 1180 participants. They contrasted the occur-
rence and types of different psychedelic adverse events 
(AEs) through logistic regressions. Notably, novel phenethy-
lamines exhibited the highest usage prevalence at 61.5%, 
followed by tryptamines at 43.8%, and lysergamides at 
42.9%. In comparison to phenethylamines, users of trypta-
mines and lysergamides displayed significantly lower odds 
for overall physical AEs. Furthermore, Lea et al. [108] under-
took a content analysis of discussions about psychedelic 

1114 F. SCHIFANO ET AL.



microdosing on the online platform Reddit. Reported bene-
fits encompassed cognitive and creative enhancements, 
reduced depression and anxiety, and improved social inter-
actions. However, limitations were also identified, including 
concerns related to adverse physical effects, the use of 
illegal substances, increased anxiety, occasional ‘off’ days, 
short-term benefits, and apprehensions about dependence 
and drug-related risks.

4.3. Psychedelics; pharmacodynamic issues

A common thread across all psychedelics is their shared phar-
macodynamic activities, including agonism/partial agonism of 
the 5-HT2A, 5-HT2C (linked to anxiety and panic [109]), and 
5-HT1A receptors [22]. Furthermore, LSD exhibits 
a pronounced affinity for additional 5-HT receptor subtypes, 
such as 5-HT1B, 5-HT1D, 5-HT7, and 5-HT6 [21,22]; psilocin 
may exert its pharmacological action by enhancing neuroplas-
ticity and increasing the expression of neurotrophic factors 
such as BDNF; DMT may act on 5-HT1A, 5-HT1B, and 5-HT2A; 
and finally mescaline should be seen as an agonist of 5-HT2A; 
5-HT2C receptors, and α2A adrenergic receptor s(for thorough 
overview, see [110]).

Overall, the newer phenethylamines’ NBOMe derivatives 
demonstrate enhanced affinity for 5-HT2A and 5-HT2C recep-
tors, while tryptamine derivatives impact serotonin reuptake 
and release through 5-HT1A, 5-HT2A, and 5-HT2C receptors. 
The 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethyla-
mine (25I-NBOMe) hallucinatory activities seem to be related 
with the increase in extracellular glutamate level-mediated via 
cortical 5-HT2A receptors [111]. Furthermore, Miliano et al [112] 
demonstrated that administration of 25I-NBOMe may affect 
DA transmission in the nucleus accumbens (NAc) shell in 
rodents. Conversely, the chronic rats’ administration of the 
highly selective 5-HT2A receptor agonist 2-(4-Bromo- 
2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B- 
NBOMe) has been found to be associated with development 
of tolerance in both neurotransmitters release and hallucino-
genic activity [113].

Psychedelic compounds also interact with other receptors/ 
transporters, including vesicular monoamine transporter 2 
(VMAT2), sigma-1 receptors, SERT, and TAAR. Notably, mesca-
line’s hallucinogenic potency is comparatively lower, while 
LSD stands out with the highest potency [22].

Activation of 5-HT2AR plays a pivotal role in inducing visual 
hallucinations, ‘mystical’ subjective states, out-of-body experi-
ences (OBEs), and the modulation of fear circuits. Notably, 
hallucinogenic experiences induced by these substances 
tend to be ‘dream-like,’ with individuals retaining insight 
(‘meta-awareness’) that they are hallucinating. This insight 
stands in contrast to dopaminergic hallucinations, where 
such awareness is lost [109]. The selective 5-HT2AR inverse 
agonist, pimavanserin, has been considered for the treatment 
of specific perceptual disturbances [109]. Moreover, the role of 
5-HT2AR in the antidepressant-like effects of psychedelics has 
been debated. Qu et al. [114] demonstrated that the rapid 
antidepressant-like effects of lisuride, a non-hallucinogenic 
psychedelic analogue with 5-HT2AR and 5-HT1AR agonism, 
were not associated with 5-HT2AR-related psychedelic effects.

Serotonin receptors, in particular, 5-HT2A, play a pivotal 
role in mediating the effects of psychedelics by activating 
distinct signal transduction pathways within neurons. This 
cascade results in changes in gene expression, neural plasticity 
through synapse and dendrite remodeling, and alterations in 
spiking dynamics. At the network level, these effects manifest 
as shifts in regional activation and functional connectivity, 
often involving central hubs like the default-mode network 
[115,116].

Bedford et al. [117] employed regression dynamic causal 
modeling (rDCM) during resting-state functional magnetic 
resonance imaging (fMRI) to investigate the neural mechan-
isms of LSD. They analyzed data from randomized, double- 
blind, placebo-controlled trials involving 45 participants who 
received 100 μg LSD and placebo in two resting-state fMRI 
sessions. The results indicated enhanced interregional connec-
tivity and reduced self-inhibition under LSD, implying 
a perturbation of the brain’s excitation/inhibition balance.

Finally, microglia, the resident immune cells of the CNS, 
play a pivotal role in regulating neuroplasticity and the brain’s 
inflammatory environment. VanderZwaag et al. [118] revealed 
that psychedelics like psilocybin, LSD, ketamine, and propofol 
modulate microglial phagocytic activity and the release of 
inflammatory mediators through pathways involving sigma-1 
receptors, serotonergic and γ-aminobutyric acid signaling, and 
tryptophan metabolism. Moreover, serotonin, apart from its 
neurotransmitter role, serves as a hormone with vasoconstric-
tor, pro-inflammatory, and pro-nociceptive actions in various 
peripheral organs, tissues, and cells [119].

4.4. Psychedelics; tryptamines, LSD and lysergamides

Tryptamines feature an indole structure, with a benzene ring 
fused to a pyrrole ring along with an ethylamine chain at the 
C3 position. Variations in the ethylamine chain, such as methyl 
groups and functional groups at other positions, yield com-
pounds like psilocybin, psilocin (the active metabolite of psilocy-
bin), DMT, 5-MeO-DMT, 5-MeO-AMT, 5-MeO-DALT, 4-HO-DALT, 
5-MeO-DIPT and 5-MeO-DMT, 4-AcO-MET (4-acetoxy-N-methyl- 
N-ethyltryptamine) and many others which have appeared on 
the drug scene over the last few years [120].

Some tryptamines are found in nature, e.g. Delosperma 
species plants (containing dimethyltryptamine/DMT; 5-MeO- 
DMT); hallucinogenic fungi (psilocin; 4-OH-DMT) and amphi-
bians (bufotenin) [69]. Mescaline is a phenethylamine alkaloid 
from the Mexican peyote cactus, whilst psilocybin is derived 
from varieties of the fungus Psilocybe (‘magic mushrooms’) 
that grow in many countries. Experiences with mescaline and 
psilocybin are similar.

Tryptamines generally undergo metabolism by monoamine 
oxidase (MAO) enzymes, necessitating methods such as sniff-
ing, smoking, or injection for enhancing their bioavailability. 
Conversely, when ingested orally, DMT’s effects are enhanced 
by MAO inhibitors, and this is the case of Ayahuasca. This is 
a concoction made with the contribution of both the DMT- 
containing Psychotria viridis and Banisteriopsis caapi, rich in 
the MAO-inhibitors’ harmala alkaloids [121,122]. The primary 
clinical outcomes associated with tryptamines include visual 

EXPERT REVIEW OF CLINICAL PHARMACOLOGY 1115



hallucinations, changes in sensory perception, distortion of 
one’s body image, feelings of depersonalization, pronounced 
fluctuations in mood, and the presence of anxiety or panic. 
Adverse effects may encompass agitation, tachyarrhythmia, 
and significant rise in body temperature. Winstock et al. 
[123] analyzed data collected from the Global Drug Survey, 
an anonymous online questionnaire administered between 
November and December 2012, which received 22,289 
responses. The lifetime prevalence of DMT usage was 8.9% 
(n = 1980), with a past-year prevalence of 5.0% (n = 1123). DMT 
was most commonly administered via smoking and induced 
a potent, brief, and highly psychedelic experience, with rela-
tively few adverse effects or a noticeable ‘come down.’ 
Notably, it attracted a higher percentage of new users com-
pared to other psychedelics. Presently, tryptamine derivatives 
continue to emerge on the online drug market as NPS [107].

Ergolines, exemplified by the semi-synthetic compound 
LSD, are derived from the ergot fungus and subsequently 
subjected to chemical refinement. An effective LSD oral dose 
typically amounts to approximately 30 μg, and its half-life (t1/ 
2) stands at around 3 hours. Tachyphylaxis, characterized by 
acute tolerance, can develop in response to LSD use [78]. 
Recent analogues of LSD include 1-propionyl-D-lysergic acid 
diethylamide hemitartrate (1P-LSD), D-lysergic acid amide 
(LSA, also known as ‘Morning Glory seeds’), and 1-acetyl-N, 
N-diethyllysergamide (ALD-52, often referred to as ‘Orange 
Sunshine Acid’) [69]. Additional lysergamides introduced 
more recently encompass 1cP-AL-LAD, which has been identi-
fied in recreational ‘blotter’ samples available online [124]; N, 
N-diethyl-1-propanoyl-6-(prop-2-en-1-yl)-9,10- 
didehydroergoline-8β-carboxamide (1P-AL-LAD), a compound 
that converts to AL-LAD [125]; 1-Valeroyl-LSD (also known as 
1-valeryl-LSD, 1-pentanoyl-LSD, 1 V-LSD, or ‘Valerie’), poten-
tially serving as an analogue of ALD-52, 1P-LSD, and 1B-LSD, 
and potentially hydrolyzing to LSD as a prodrug [126]; 1-buta-
noyl-LSD (1B-LSD), a constitutional isomer of 1-propanoyl- 
6-ethyl-6-nor-lysergic acid diethylamide (1P-ETH-LAD) that 
could serve as a prodrug for LSD [127]; lysergic acid morpho-
lide (LSM-775), which may yield mild LSD-like effects [128]; N6- 
allyl-6-norlysergic acid diethylamide (AL-LAD) and (2’S,4’S)- 
lysergic acid 2,4-dimethylazetidide (LSZ), both exhibiting com-
parable potency to LSD [129]; and ETH-LAD and 1P-ETH-LAD, 
the latter of which might function as a prodrug [130].

These compounds induce hallucinations or illusions, where 
perception is disrupted and individuals seem to perceive sights, 
sounds, or odors that are not actually present [69,78]. Responses 
to these drugs can vary significantly based on expectations, 
existing mental state, personality, and environment (e.g. ‘set 
and setting’). Preparing individuals can influence the likelihood 
of a positive ‘trip’ versus a negative experience. Visual distortions 
and changes in object shapes and significance can occur. 
Auditory acuity can heighten, while time perception may become 
distorted, slowing down, or accelerating. The user might experi-
ence relaxation, elation, fear, or depression. Depersonalization 
and dream-like states might also manifest. The effects generally 
last for a few hours, contingent on the dose, followed by intervals 
of normality that extend progressively [78].

Somatic symptoms and signs encompass nausea, dizziness, 
paresthesias, weakness, drowsiness, tremors, dilated pupils, 

and ataxia. Effects on the cardiovascular and respiratory sys-
tems tend to fluctuate and likely correlate with varying levels 
of anxiety. Long-term effects could include the development 
of hallucinogen-persisting perception disorder (HPPD) [131].

4.5. Atypical psychedelics: dissociatives

The hallucinogenic effects attributed to PCP-like substances 
(such as ketamine, methoxetamine, and various others) are 
linked to their antagonistic activity on central NMDA recep-
tors, agonism of 5-HT2A receptors, and strong affinity for mu/ 
delta/sigma opioid receptors [69]. Notable subjective effects, 
often referred to as the ‘K-hole’ [132] encompass a sense of 
dissociation from both one’s surroundings and one’s own 
body, accompanied by auditory and visual hallucinations, unu-
sual thought patterns, euphoria, and visual distortions [81]. 
These experiences are accompanied by certain associated 
risks, including potential trauma, incidents of drowning, 
hypothermia-related fatalities, traffic accidents, and notable 
urinary dysfunction issues [81].

4.6. Phencyclidine (PCP)

Phencyclidine (PCP), commonly known as ‘angel dust,’ induces 
analgesia in humans without rendering them unconscious but 
with inducing amnesia, a phenomenon termed dissociative 
anesthesia. Its pharmacological action involves acting as an 
antagonist on NMDA glutamate receptors. PCP can be insuf-
flated in the form of a dry powder or smoked, with cigarettes 
sometimes dipped in a solution of phencyclidine dissolved in 
an organic solvent. An overdose of phencyclidine can trigger 
agitation, intense emotional releases, hallucinations, and psy-
chosis. In severe cases, it can lead to seizures, coma, 
hyperthermia, muscular rigidity, and rhabdomyolysis (for an 
overview, see [69]).

4.7. Ketamine

Ketamine (often referred to as K or special K) produces effects 
comparable to those of phencyclidine. It is utilized as a brief- 
acting general anesthetic and can be administered through 
injection as a liquid, inhalation as a powder, or ingestion as 
a tablet. Functioning as an NMDA antagonist, it induces per-
ceptual shifts and hallucinations akin to those caused by LSD. 
Additionally, it elicits dissociative analgesia, which poses a risk 
of significant harm. Inhalation of vomit can lead to nausea, 
vomiting, and even fatality. Ketamine has also been exploited 
as a substance for date rape. Mounting evidence indicates its 
potential to cause severe, lasting bladder damage [133].

Recent ketamine-like substances emerging from the NPS 
market include N-Ethyl-1,2-diphenylethanamine (ephenidine), 
a diarylethylamine that has gained popularity among recrea-
tional users seeking dissociative hallucinogenic effects [134]. 
Another example is 2-oxo-PCE, associated with a cluster of 
acute intoxications characterized by impaired consciousness 
(84%), confusion (60%), abnormal behavior (44%), hypertension 
(80%), tachycardia (40%), and seizures (16%) [135]. Additionally, 
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[2-(2-fluorophenyl)-2-(ethylamino)cyclohexan-1-one (2F- 
NENDCK)] has also emerged as a ketamine-like drug [136].

4.8. Methoxetamine (MXE)

Methoxetamine (MXE), a dissociative substance belonging to 
the arylcyclohexylamine class, has been present on the 
designer drug market as a substitute for ketamine since 2010 
[137]. Costa et al [138] were the first to provide a detailed 
characterization of the neurotoxic effects of methoxetamine in 
different brain regions in an experimental model; they found 
that repeated administration of MXE may be associated with 
persisting behavioral idiosyncrasies and neurotoxicity in rats.

Marti et al. [139] indicated that MXE shares ketamine-like 
discriminative and positive rewarding effects in rats, influences 
brain processes related to cognition and emotional responses, 
and could be linked to neurological, sensorimotor, and cardior-
espiratory alterations in mice. In vivo microdialysis study revealed 
that a single intravenous administration of MXE significantly 
impacted serotonin levels in the rat medial prefrontal cortex 
and nucleus accumbens. In vitro electrophysiological investiga-
tions also suggested the involvement of the GABAergic and 
glutamatergic systems in the central effects of MXE.

5. Discussion

This review offers an updated exploration of the pharmacolo-
gical effects associated with various novel recreational drugs, 
encompassing stimulants, psychedelics, and dissociatives. 
There is a pressing need for clinicians to stay informed about 
these substances, which continue to attract recreational use. 
Moreover, the renewed consideration of these compounds for 
therapeutic applications, coupled with the surge in clinical 
trials focusing on conditions such as depression, cluster head-
aches, migraines, anxiety, and obsessive-compulsive disorder, 
underscores the importance of comprehending the pharma-
codynamics of these drugs [95].

In essence, the actions of these drugs are centered on 
perturbations within diverse neurotransmitter pathways and 
receptors. This includes a) elevation of central dopamine levels, 
a hallmark of many of these substances such as novel psyche-
delic phenethylamines, synthetic cathinones, and other new 
stimulants; b) activation of various subtypes of 5-HT receptors, 
observed with novel psychedelic phenethylamines, recent tryp-
tamine and lysergamide derivatives, as well as hallucinogenic 
plants and fungi; and c) antagonistic effects on NMDA recep-
tors, characteristic of phencyclidine-like dissociatives [63].

5.1. Coping with a range of ‘unknown,’ drug-related, 
clinical and toxicity issues

Given the likely abundance of some 4,300 NPS (as indicated by 
Schifano et al [64], it proves challenging for both medical 
professionals in Accident and Emergency Departments and 
mental health practitioners to remain well-informed about 
the continuously expanding repertoire of NPS entering the 
dynamic drug landscape. This emerging trend raises legitimate 
concerns.

Traditional toxicology assessments can merely detect 
a limited subset of abused substances, and the comprehensive 
identification of the extensive array of NPS necessitates costly 
and time-consuming screening procedures conducted within 
specialized facilities [63,64,74]. Conversely, the utilization pat-
terns of these NPS often involve sporadic use, and potential 
somatic and mental side effects may act as deterrents against 
the establishment of addictive consumption habits; in many 
instances; because of the pronounced toxicity exhibited by 
specific psychedelic NPS, such as the NBOMes [22,99]; and 
overall hallucinogens’ limited abuse liability levels [140], indi-
viduals may be engaging in experimental use only [141]

Furthermore, the pharmacodynamic of psychedelics can 
elicit phenomena congruent with their effects. This includes 
the induction of paranoid and elaborate systematic delusions, 
shifts in mood toward hypomanic states, as well as episodes of 
suicidal ideation and depressive states [96]. In a study con-
ducted by Martinotti et al [142] involving 110 inpatients, 
a substantial majority (70%) acknowledged the use of multiple 
substances, with a third (33%) reporting the use of more than 
two substances. Among these, 44 individuals (40%) were sti-
mulant users, and 49 (45%) were users of psychodysleptics. 
Notably, a positive correlation was found with a lifetime diag-
nosis of bipolar disorder (p = 0.013).

In instances where the usage of these substances remains 
sporadic, any ensuing psychotic features tend to be reversible. 
However, when consumption becomes more frequent and 
involves higher doses, there is a heightened risk of developing 
enduring psychotic disorders [69]. Addressing this matter, 
Martinotti et al. [143] conducted an examination of the preva-
lence of prolonged psychiatric symptoms among individuals 
who reported substance use in Ibiza nightclubs. Of the 10,163 
subjects seeking medical assistance within the club’s medical- 
nursing facilities, 223 necessitated transfers to hospital emer-
gency rooms. Among these, 110 individuals eventually required 
psychiatric hospitalization. A notable majority of these patients 
(82.7%) had a history of previous mental health issue. For indivi-
duals without a positive psychiatric history, the odds of requiring 
hospitalization changed by a factor of 0.076. Once again, it 
appeared from here that the use of club drugs could potentially 
induce psychiatric consequences necessitating hospitalization, 
particularly in individuals who already exhibit vulnerability.

Emerging psychedelic substances might exhibit consider-
able levels of toxicity [22], thereby rendering their consump-
tion inherently unsafe [78]. Beyond the acute medical and 
psychopathological effects associated with psychedelics, 
recreational usage of certain molecules has, on numerous 
occasions, resulted in near misses and fatalities, even after 
prompt medical intervention [22]. Of particular note are inci-
dents linked to substances like NBOMes, synthetic tryptamines 
(such as alpha-methyltryptamine and ‘Foxy’ − 5-methoxy-N, 
N-diisopropyltryptamine), bromo-dragonFLY, and 
2,5-dimethoxy-4-bromoamphetamine (DOB) [69,144,145].

6. Conclusions

Healthcare professionals should receive ongoing education 
regarding various NPS, including their methods of consump-
tion, desired psychoactive effects, unique combinations with 
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other drugs, as well as the medical, psychobiological, and psy-
chopathological risks associated with them. Indeed, in line with 
Martinotti et al [142], future research should prioritize gaining 
a deeper comprehension of the psychopathological impacts 
associated with particular substances, defining specific signs 
and symptoms to aid in distinguishing diagnoses, and conduct-
ing prospective investigations into their long-term effects. To 
enhance precision and conduct a comprehensive examination 
of NPS pharmacology, our current research endeavors involve 
an integrative approach. This approach combines web-based 
analyses with more advanced research methods, including 
ongoing quantitative structure-activity relationship (QSAR) stu-
dies, molecular docking, and in silico investigations. These 
investigations aim to yield valuable insights regarding which 
NPS within specific categories (e.g. emerging stimulants or 
contemporary psychedelics) exhibit greater receptor affinities, 
potentially indicating higher clinical potency. Data gathered 
from selected molecules will subsequently inform the design 
of additional in vitro and in vivo/preclinical studies.

7. Expert opinion

Several noteworthy observations have surfaced in this paper, 
which may be of considerable interest to the reader when 
juxtaposed with findings from just approximately five years 
ago. These observations include:

a. The substantial increase in the availability of recrea-
tional psychedelics and stimulants within the recent 
time-frame;

b. The notable proliferation of research publications over 
the same period, focusing on the investigation of sti-
mulants and psychedelics for various medical and psy-
chopathological conditions.

From both clinical and psychopharmacological perspectives, 
these two phenomena (e.g. a and b) appear to be heading in 
distinct directions. As a result, it may be pertinent to first 
discuss each of these aspects separately before attempting 
to arrive at reasoned conclusions that can shed light on 
these differing trends.

7.1. Stimulant and psychedelics as recreational drugs of 
abuse

The recent study by Catalani et al. [99] has indicated that the 
number of psychedelic new psychoactive substances (NPS) 
identified through a web-based search conducted between 
2017 and 2020 may amount to approximately 1350 different 
molecules. Moreover, this same research group has identified 
approximately 950 of these compounds as potential novel 
psychedelics, which are currently under discussion and, argu-
ably, accessible to drug enthusiasts. Consequently, it is reason-
able to conclude that this particular segment of the 
recreational drug market holds significant appeal for consu-
mers who continually seek unique and uncharted hallucino-
genic experiences.

However, as discussed here, this situation raises genuine 
concerns from both medical and psychopathological perspec-
tives. For the vast majority of these substances, there is a lack 
of fundamental knowledge encompassing basic, pre-clinical, 
and clinical pharmacology, including acute treatment and 
management approaches. Additionally, there are evident 
apprehensions regarding the effectiveness of toxicological 
drug screening tests, as psychedelics and most stimulants 
are not typically detectable in acute treatment settings.

7.2. Stimulant and psychedelics as therapeutic 
psychopharmacological agents

Concurrently with the notable increase in the use of certain 
psychedelics and stimulants by recreational users, there has 
been a significant discussion surrounding the therapeutic 
potential of drugs belonging to these same classes. 
Following almost five decades of legal restrictions against 
their utilization, psychedelics have garnered attention from 
researchers seeking alternative treatments, primarily for neu-
ropsychiatric conditions [146] and pain-related disorders [147]. 
Psilocybin, for instance, is currently being investigated for its 
potential benefits in treating treatment-resistant depression 
[148], while the use of dissociative psychedelic substances 
like ketamine and esketamine has expanded treatment 
options for depressive disorders [149]. Moreover, Sarmanlu 
et al. [150] have emphasized the resurgence of clinical, scien-
tific, and public interest in treating posttraumatic stress dis-
order (PTSD) with the assistance of classical psychedelic 
phenethylamines, such as MDMA.

Despite the resurgence of interest in psychedelic com-
pounds, heralded as a significant development in the field of 
psychiatry in recent decades, several clinical, pharmacological, 
and methodological challenges remain in the early stages of 
exploration (for a comprehensive examination of this matter, 
refer to Munafo’ et al. [151]). Indeed, it is essential to critically 
assess the efficacy, safety, and tolerability data from published 
trials within the context of their inherent methodological 
limitations.

In this context, challenges related to placebo control and 
maintaining the integrity of blinding are particularly intricate 
and unique. This complexity arises because psychedelics are 
associated with vivid perceptual disturbances, and these 
effects are only discernible in individuals who have received 
the active compound. Additionally, conventional practice in 
psychedelic, dissociative, and phenethylamine trials has typi-
cally involved the exclusion of individuals with psychiatric 
comorbidities and those with a history of substance misuse. 
From this perspective, questions arise about the therapeutic 
outcomes of psychedelic interventions for individuals already 
using 5-HT2AR-blocking antipsychotic medications like quetia-
pine and olanzapine. Moreover, there are concerns regarding 
the potential psychopathological consequences associated 
with single or multiple administrations of psychedelics, such 
as self-harm, paranoid disturbances, persistent depersonaliza-
tion or derealization, excessive mood elevation, and the devel-
opment of enduring hallucinogen use disorders, as extensively 
discussed in this paper.
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7.3. . . . and what will happen over the next 5 years or 
so?

It has become evident that the interest in stimulants and psy-
chedelics has significantly surged in both recreational and ther-
apeutic contexts over the past five years. Could these seemingly 
distinct matters be interconnected in some way? Intriguingly, it 
has been proposed that the perception of relative safety asso-
ciated with psychedelic use [148] may have led the general 
public, especially vulnerable individuals, to consider self- 
administering either a standard dose or possibly a ‘microdose’ 
of psychedelics [151] for alleviating anxiety and mood-related 
concerns [91] as well as enhancing cognitive performance [23]

It is postulated here that the future of psychedelic and psy-
chopharmacological research over the next five years should, 
and will, strive to employ more robust study designs. This should 
involve incorporating, in addition to a placebo control, an active 
control condition, such as a genuinely psychoactive placebo or 
a non-hallucinogenic yet still effective substance capable of 
mimicking the subjective and acute effects of the psychoactive 
drug being investigated. In this context, the pharmacological 
insights here provided regarding stimulants and psychedelics 
can aid in identifying the appropriate drug comparator.

While the prospect of selecting the right molecule from 
a pool of thousands might seem challenging, preliminary in 
silico investigations can offer valuable insights into which new 
psychoactive substances within specific categories (e.g. emer-
ging stimulants or contemporary psychedelics) exhibit stron-
ger receptor affinities, potentially indicating greater clinical 
potency. Information gathered from these selected molecules 
will subsequently guide the design of additional in vitro, 
in vivo/preclinical, and clinical studies.
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