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ABSTRACT Terahertz (THz) band is expected to be one of the key enabling technologies of the sixth
generation (6G) wireless networks because of its abundant available bandwidth and very narrow beamwidth.
Due to high frequency operations, electrically small array apertures are employed, and the signal wavefront
becomes spherical in the near-field. Therefore, near-field signal model should be considered for channel
acquisition in THz systems. Unlike prior works which mostly ignore the impact of near-field beam-squint
(NB) and consider either narrowband scenario or far-field models, this paper introduces both a model-based
and a model-free techniques for wideband THz channel estimation in the presence of NB. The model-based
approach is based on orthogonal matching pursuit (OMP) algorithm, for which we design an NB-aware
dictionary. The key idea is to exploit the angular and range deviations due to the NB. We then employ the
OMP algorithm, which accounts for the deviations thereby ipso facto mitigating the effect of NB. We further
introduce a federated learning (FL)-based approach as a model-free solution for channel estimation in a
multi-user scenario to achieve reduced complexity and training overhead. Through numerical simulations,
we demonstrate the effectiveness of the proposed channel estimation techniques for wideband THz systems
in comparison with the existing state-of-the-art techniques.

INDEX TERMS Beamsquint, channel estimation, federated learning, machine learning, near-field,
orthogonal matching pursuit, sparse recovery, terahertz.

I. INTRODUCTION
Terahertz (THz) band is expected to be a key compo-
nent of the sixth generation (6G) of wireless cellular
networks because of its abundant available bandwidth.
In particular, THz-empowered systems are envisioned to
demonstrate revolutionary enhancement under high data rate
(>100Gb/s), extremely low propagation latency (<1ms) and
ultra reliability (99.999%) [1], [2] and massive connectivity
(103 devices/100m2) [3].
Although demonstrating the aforementioned advantages,

signal processing in THz band faces several THz-specific
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challenges that should be taken into account accordingly.
These challenges include, among others, severe path loss
due to spreading loss and molecular absorption, extremely-
sparse path model, very short transmission distance and
beam-squint (see the full list in [4] and [5]). The path loss
for THz-band transmission for various transmission ranges is
illustrated in Fig. 1. In order to combat some of these chal-
lenges, e.g., path loss, analogues to massive multiple-input
multiple-output (MIMO) arrays in millimeter-wave (mm-
Wave) systems [6], [7], ultra-massive MIMO architectures
are envisioned, wherein subcarrier-independent (SI) analog
beamformers are employed. In wideband signal processing,
the weights of the analog beamformers are subject to a
single subcarrier frequency, i.e., carrier frequency [8], [9].
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FIGURE 1. Path loss (in dB) due to molecular absorption for various
transmission ranges.

Therefore, the directions of the generated beams at different
subcarriers differentiate and point to different directions
causing beam-squint phenomenon [4], [10]. The impact
of beam-squint in different frequency bands is presented
in Fig. 2.

A. RELATED WORKS
While wideband mm-Wave channel estimation has been
extensively studied in the literature [6], [11], [12], [13],
[14], wideband THz channel estimation, on the other hand
is relatively new [2]. Specifically, the existing solutions
are categorized into two classes, i.e., hardware-based tech-
niques [15] and algorithmic methods [16], [17]. The first
category of solutions consider employing time delayer (TD)
networks together with phase shifters so that true-time-delay
(TTD) of each subcarrier can be obtained for beamformer
design. The TD networks are used to realize virtual SD
analog beamformers so that the impact of beam-squint can
be mitigated for hybrid beamforming [18]. In particular, [15]
devises a generalized simultaneous orthogonal matching
pursuit (GSOMP) technique by exploiting the SD information
collected via TD network hence achieves close to minimum
mean-squared-error (MMSE) performance. However, these
solutions require additional hardware, i.e., each phase shifter
is connected to multiple TDs, each of which consumes
approximately 100 mW, which is more than that of a phase
shifter (40 mW) in THz [4]. The second category of solutions
do not employ additional hardware components. Instead,
advanced signal processing techniques have been proposed to
compensate beam-squint. Specifically, an OMP-based beam-
squint pattern detection (BSPD) approach was proposed
in [16] for the recovery of the support pattern among all
subcarriers in the beamspace and construct one-to-one match
between the physical and spatial (i.e., deviated due to beam-
squint in the beamspace) directions. Also, [19] proposed an
angular-delay rotation method, which suffers from coarse
beam-squint estimation and high training overhead due to

the use of complete discrete Fourier transform (DFT) matrix.
However, it suffers from inaccurate support detection and low
precision.

Besides the aforementioned model-based channel estima-
tion techniques, model-free approaches, such as machine
learning (ML), have also been suggested for THz channel
estimation [20], [21]. For instance, ML-based learning mod-
els such as deep convolutional neural network (DCNN) [21],
generative adversarial network (GAN) [22] and deep kernel
learning (DKL) [20], have been proposed to lower the
complexity involved during the channel inference as well
as the complexity arising from the usage of the ultra-
massive antenna elements. However, the works [20], [21]
only consider the narrowband THz systems, which do not
exploit wideband scenario, which is the main reason to
climb up to the THz-band to achieve better communication
performance. In [22], the wideband scenario is considered but
the effect of beam-squint is ignored. Federated learning (FL)-
based wideband THz channel estimation is studied in [17]
and [23], wherein the labels of the model are obtained via
beamspace support alignment (BSA) and sparse Bayesian
learning (SBL), respectively. Specifically, the BSA approach
suffers from inaccurate support detection for estimating the
physical directions, and the SBL has high computational
complexity as well as the requirement of the estimation of
noise variance. Furthermore, both methods are based on the
far-field assumption, which may not be satisfied in THz-band
scenario.

The aforementioned THz works [15], [16], [17], [18],
[19], [23] as well as the conventional wireless systems
operating at sub-6 GHz and mm-Wave bands [11], [12],
[13], [14] mostly incorporate far-field plane-wave model
whereas the transmission range is shorter in THz-band
such that the users are usually in the near-field region [5].
Specifically, the plane wavefront is spherical in the near-
field when the transmission range is shorter than the
Fraunhofer distance [24]. As a result, the channel acquisition
algorithms should take into account near-field model (see,
e.g., Fig. 3), which depends on both direction and range
information for accurate signal processing [4]. Among the
works investigating the near-field signal model, [25], [26],
[27], [28], [29] consider the near-field scenario while the
effect of beam-squint is ignored and only mm-Wave scenario
is investigated. In particular, [28] considers the wideband
mm-Wave channel estimation while the authors in [29] devise
a machine learning (ML)-based approach for narrowband
near-field channel estimation. In addition to near-field-
only model, hybrid (near- and far-field) models are also
present in the literature [25], [27], wherein only narrow-
band transceiver architectures are considered. On the other
hand, several methods have been proposed to compensate
the far-field beam-squint for both THz channel estima-
tion [15], [16], [17], [23] and beamforming [18], [30], [31]
applications. Nevertheless, THz channel estimation in the
presence of near-field beam-squint (NB) remains relatively
unexamined.
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FIGURE 2. Normalized array gain with respect to spatial direction at low, center and high end subcarriers for (left) 3.5 GHz,
B = 0.1 GHz; (middle) 28 GHz, B = 2 GHz; and (right) 300 GHz, 30 GHz, respectively.

B. CONTRIBUTIONS
In this work, we introduce both a model-based and a model-
free techniques for near-field THz channel estimation in the
presence of NB. In the model-based approach, we propose an
NB-aware (NBA) THz channel estimation technique based
on OMP, henceforth called NBA-OMP. For the model-free
approach, we devise a federated learning (FL) approach.
Compared to conventional centralized learning (CL)-based
approaches, FL is more communication-efficient since FL
does not involve the transmission of datasets between
the users and the server. Specifically, FL is particularly
helpful for very-large antenna arrays, e.g., ultra-massive
MIMO arrays which are envisioned to be employed in THz
systems [4], [5].

We design a novel NBA dictionary, whose columns are
composed of near-field subcarrier-dependent (SD) steering
vectors spanning the whole angular spectrum and the
transmission ranges up to the Fraunhofer distance. Then,
we introduce our proposed NBA-OMP approach for wide-
band THz channel estimation.

The key idea of the proposed approach is that the degree of
beam-squint is proportionally known prior to the direction-
of-arrival (DoA)/range estimation while it depends on the
unknown user location. For example, consider fm and fc
to be the frequencies for the m-th and center subcarriers,
respectively. When θ is the physical user direction, the spatial
direction corresponding to the m-th-subcarrier is shifted by
fc
fm

θ . Thus, we employ the OMP algorithm, which accounts
for this deviation thereby ipso facto compensating the effect
of NB. We have conducted several numerical experiments to
demonstrate the effectiveness of the proposed approach in
comparison with the existing THz channel-estimation-based
methods [16], [25].

C. OUTLINE AND NOTATION
1) OUTLINE
In the remainder of the paper, we first introduce the
signal model for multi-user wideband THz ultra-massive

MIMO system in Sec. II. Then, we present the proposed
NBA OMP technique for a model-based and a model-free
channel estimation in Sec. IV and Sec. V, respectively. The
complexity and overhead analysis of the proposed approaches
are discussed in Sec. VI. Sec. VII presents the numerical
simulations and we finalize the paper in Sec. VIII with
concluding remarks.

2) NOTATION
Throughout the paper, we denote the vector and matrices
via bold lowercase and uppercase letters, respectively. The
transpose and conjugate transpose operations are denoted by
(·)T and (·)H, respectively. We denote the n-th column of a
matrixA asAn andA† represents theMoore-Penrose pseudo-
inverse. For a vector a, the n-th element of a is represented
by [a]n. ⌈·⌉ is the ceiling operator, ∇ represents the gradient
operation.6(a) =

sinπab
b sinπa denotes the Dirichlet sinc function,

andE{·} stands for the expectation operation. ||·||2 and ||·||F
denote the l2 and Frobenius norms, respectively.

II. SYSTEM MODEL
Consider a wideband THz MIMO architecture with hybrid
analog/digital beamforming over M subcarriers. We assume
that the base station (BS) has N antennas and NRF radio-
frequency (RF) chains to serve K single-antenna users. Let
s[m] = [s1[m], · · · , sK [m]]T denote the data symbols, where
m ∈ M = {1, · · · ,M}, which are processed via a K ×K SD
baseband beamformer FBB[m] = [fBB1 [m], · · · , fBBK [m]].
In order to steer the generated beams toward users in
downlink, an N × NRF SI analog beamformer FRF (NRF =

K < N ) is employed. Since the analog beamformers are
realized with phase-shifters, they have constant-modulus
constraint, i.e., |[FRF]i,j| =

1
√
N
. Then, the N × 1 transmitted

signal becomes

x̃[m] = FRFFBB[m]s[m]. (1)

The transmitted signal is passed through the wireless
channel, and it is received by the k-th user at the m-th
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subcarrier as

yk [m] = hT
k [m]x̃[m] + wk [m]

= hT
k [m]

K∑
i=1

FRFfBBi [m]si[m] + wk [m], (2)

where wk [m] ∈ C represents the complex additive white
Gaussian noise with variance of σ 2

n , i.e.,wk [m] ∼ CN (0, σ 2
n ).

A. THz CHANNEL MODEL
Due to limited reflected path components and negligible
scattering, the THz channel is usually constructed as the
superposition of a single line-of-sight (LoS) path with a few
assisting non-LoS (NLoS) paths [5], [10], [30]. In addition,
multipath channel models are also widely used, especially for
indoor applications [5], [32]. Hence, we consider a general
scenario, wherein the N × 1 channel matrix for the k-th user
at the m-th subcarrier is represented by the combination of L
paths as [5]

hk [m] =

√
N
L

L∑
l=1

αk,m,la(φk,l, rk,l)e−j2πτk,l fm , (3)

where τk,l represents the time delay of the l-th path
corresponding to the array origin. a(φk,l, rk,l) ∈ CN denotes
the steering vector corresponding to the physical direction
φk,l and range rk,l . αk,m,l ∈ C denotes the complex path gain
and the expected value of its magnitude for the indoor THz
multipath model is given by

E{|αk,m,l |
2
} =

(
c0

4π fmrk,l

)2

e−kabs(fm)rk,l , (4)

where fm is the m-th subcarrier frequency, c0 is speed
of light, rk,l represents the distance from the k-th user
to the array origin and kabs(fm) is the SD medium
absorption coefficient [5], [33], [34]. Furthermore, fm =

fc +
B
M (m− 1 −

M−1
2 ), where fc and B are carrier frequency

and bandwidth, respectively.

B. NEAR-FIELD ARRAY MODEL
Due to high frequency operations as well as employing
extremely small wavelength, THz-band transmission is likely
to encounter near-field phenomenon for close-proximity
users. Specifically, the far-field model involves the reception
of the transmitted signal at the users as plane-wave. However,
the plane wavefront is spherical in the near-field if the
transmission range is shorter than the Fraunhofer distance
F =

2D2

λ
, where D is the array aperture and λ =

c0
fc

is
the wavelength [23], [24]. The illustration of beam-squint
for both far-field and near-field models is given in Fig. 3.
For a uniform linear array (ULA), the array aperture is
D = (N − 1)d , where d =

λ
2 is the element spacing. Thus,

for THz-band transmission, this distance becomes small such
that the near-field signal model should be employed since
rk,l < F . For instance, when fc = 300 GHz and N = 256,
the Fraunhofer distance is F = 32.76 m.

We define the near-field steering vector a(φk,l, rk,l) ∈ CN

corresponding to the physical DoA φk,l and range rk,l as

a(φk,l, rk,l) =
1

√
N
[e−j2π d

λ
r (1)k,l , · · · , e−j2π d

λ
r (N )
k,l ]T, (5)

where φk,l = sin φ̃k,l with φ̃k,l ∈ [−π
2 , π

2 ], and r
(n)
k,l is the

distance between the k-th user and the n-th antenna as

r (n)k,l =

(
r2k,l + 2(n− 1)2d2 − 2 rk,l(n− 1)dφk,l

) 1
2
. (6)

In (6), r (n)k,l involves complicated terms as a function of the
antenna index n, whichmakes it difficult to analyze spherical-
wave model. In order to simplify (6), Fresnel approximation
can be employed [24], [35], [36]. Specifically, the Fresnel
approximation provides modeling the received spherical-
wave as an approximated quadric surface [24], [36]. Thus,
(6) becomes

r (n)k,l ≈ rk,l − (n− 1)dφk,l + (n− 1)2d2ζk,l, (7)

where ζk,l =
1−φ2

k,l
2rk,l

. Rewrite (5) as

a(φk,l, rk,l) ≈ e
−j2π fc

c0
rk,l ã(φk,l, rk,l), (8)

where the n-th element of ã(φk,l, rk,l) ∈ CN is

[ã(φk,l, rk,l)]n =
1

√
N
e
j2π fc

c0

(
(n−1)dφk,l−(n−1)2d2ζk,l

)
. (9)

The steering vector in (8) corresponds to the physical
location (φk,l, rk,l), which deviates to the spatial location
(φ̄k,m,l, r̄k,m,l) in the beamspace arising from the absent of
SD analog beamformers. Then, the n-th entry of the deviated
steering vector in (9) for the spatial location is

[ã(φ̄k,m,l, r̄k,m,l)]n = e
j2π fm

c0

(
(n−1)d φ̄k,m,l−(n−1)2d2 ζ̄k,m,l

)
. (10)

C. PROBLEM FORMULATION
The aim of this work is to estimate the wideband THz channel
hk [m] in the presence of NB in downlink scenario.

1: For the proposed model-based technique, we assume
that the users are synchronized and they use the received pilot
signals transmitted by the BS. We also assume that all users
are in the near-field region of the BS, i.e., rk,l ≤ F .

2: For the proposed model-free technique, it is assumed
that the datasets of all users are collected prior to the model
training stage, and the labels of these datasets are determined
by the model-based technique introduced in Sec. IV.

In what follows, we first introduce the NB model, then
present the proposed approaches for model-based and model-
free channel estimation in the presence of NB.

III. NB MODEL
Compared to mm-Wave frequencies, in THz-band, the
bandwidth is so wide that a single-wavelength assumption
for beamforming cannot hold and it leads to the squint of
physical DoA/ranges {φk,l, rk,l} in the spatial domain. Hence,
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we define the relationship between the physical and spatial
DoA/ranges in the following theorem:
Theorem 1: Denote u ∈ CN and vm ∈ CN as the arbitrary

near-field steering vectors corresponding to the physical (i.e.,
{φk,l, rk,l}) and spatial (i.e., {φ̄k,m,l, r̄k,m,l}) locations given
in (9) and (10), respectively. Then, in spatial domain at
subcarrier frequency fm, the array gain achieved by uHvm is
maximized and the generated beam is focused at the location
{φ̄k,m,l, r̄k,m,l} such that

φ̄k,m,l = ηmφk,l, r̄k,m,l =
1 − η2mφ2

k,l

ηm(1 − φ2
k,l)

rk,l, (11)

where ηm =
fc
fm

represents the proportional deviation of
DoA/ranges.

Proof: Define the array gain achieved by vm on an
arbitrary user location {φk,l, rk,l} with steering vector u as

G(φk,l, rk,l,m) =
|uHvm|

2

N 2

=
1
N 2

∣∣∣∣∣
N−1∑
n=0

e
j 2πc0

[
nd(fmφ̄k,m,l−fcφk,l)−n2d2(fm ζ̄k,m,l−fcζk,l )

]∣∣∣∣∣
2

=
1
N 2

∣∣∣∣∣
N−1∑
n=0

e
j 2πnc0

(fmκm−fcκ)

∣∣∣∣∣
2

=
1
N 2

∣∣∣∣1 − e−j2πN (fmκm−fcκ)

1 − e−j2π (fmκm−fcκ)

∣∣∣∣2
=

1
N 2

∣∣∣∣ sin(πN (fmκm − fcκ))
sin(π (fmκm − fcκ))

∣∣∣∣2
= |6(fmκm − fcκ)|2. (12)

Furthermore, we define

ζ̄k,m,l = ηmζk,l =
1 − φ̄2

k,m,l

2r̄k,m,l
, (13)

κm = d(φ̄k,m,l−nd ζ̄k,m,l), (14)

κ = d(φk,l−ndζk,l). (15)

The array gain in (12) implies that most of the power is
focused only on a small portion of the beamspace due to
the power-focusing capability of 6(a), which substantially
reduces across the subcarriers as |fm − fc| increases.
Furthermore, |6(a)|2 gives peak when a = 0, i.e., fmφ̄k,m,l =

fcφk,l and fmζ̄k,m,l = fcζk,l . Therefore, we have

φ̄k,m,l = ηmφk,l . (16)

Then, by using ζ̄k,m,l = ηmζk,l , we get

r̄k,m,l =
1 − η2mφ2

k,l

ηm(1 − φ2
k,l)

rk,l . (17)

□

Finally, by combining (7), (11) and (17), we define the NB
in terms of DoAs and the ranges of the users as

1(φk,l,m) = φ̄k,m,l − φk,l = (ηm − 1)φk,l, (18)

1(rk,l,m) = r̄k,m,l − rk,l =

(
1 − η2mφ2

k,l

ηm(1 − φ2
k,l)

− 1

)
rk,l .

(19)

In Fig. 3, the array gain is computed for both far- and
near-field cases, wherein the coordinates with maximum
array gain are achieved at different locations for different
subcarriers because of beam-squint. Specifically, the physical
direction/range (φk,l, rk,l) is observed as (φ̄k,m,l, r̄k,m,l) at the
m-th subcarrier. While the relationship between the physical
and spatial directions are linear, i.e., φ̄k,m,l = ηmφk,l ,
the spatial range information deviates nonlinearly, i.e.,

r̄k,m,l =
1−η2mφ2

k,l

ηm(1−φ2
k,l )
rk,l .

IV. MODEL-BASED SOLUTION: NBA-OMP
We first introduce how the NBA dictionary is designed, then
present the implementation steps of the proposed NBA-OMP
technique.

A. NBA DICTIONARY DESIGN
The key idea of the proposed NBA dictionary design is to
utilize the prior knowledge of ηm to obtain beam-squint-
corrected steering vectors. In other words, for an arbitrary
physical DoA and range, we can readily find the spatial DoA
and ranges as φ̄ = ηmφ and r̄ =

1−η2mφ2

ηm(1−φ2)
r . Using this

observation, we design the NBA dictionary Cm composed of
steering vectors c(φm, rm) ∈ CN as

Cm = {c(φm, rm)|φm ∈ [−ηm, −ηm], rm ∈ R+
}, (20)

where the n-th element of c(φm, rm) is

[c(φm, rm)]n = e
j2π fm

c0

(
(n−1)dφm−(n−1)2d2ζm

)
, (21)

where ζm =
1−φ2

m
2rm

. It is worth noting that the NBA dictionary
design requires the approximated steering vector models in
order to easily define and compensate the beam-squint.

Using theNBAdictionary Cm, instead of SI steering vectors
a(φ, r), the SD virtual steering vectors c(φm, rm) can be
constructed for the OMP algorithm. Once the beamspace
spectra is computed via OMP, the sparse channel support
corresponding to the SD spatial DoA and ranges are obtained.
Then, one can readily find the physical DoAs and ranges as
φ = φm/ηm and r =

ηm(1−φ2)
1−η2mφ2 rm, ∀m ∈ M.

The proposed NBA dictionary Cm also holds spatial
orthogonality as

lim
N→+∞

|cH(φm,i, rm,i)c(φm,j, rm,j)| = 0, ∀i ̸= j. (22)

In the next section, we present the channel estimation
procedure with the proposed NBA dictionary.
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FIGURE 3. Array gains G(φ1,1, r1,1, m) in Cartesian coordinates for a single user (K = 1, L = 1) located in the far-field (45◦, 800m) (left) and near-field
(45◦, 6m) (right), respectively. Here, M = 3, fc = 300 GHz, and B = 30 GHz. The top panel shows the gain for different subcarriers which are summed up
to produce a composite array gain at the bottom for both far- and near-field cases clearly showing the beam-squint. The square represents the user
location while the triangles correspond to the spatial locations (where the maximum array gain is achieved) at different subcarriers. Whereas the far-field
beam-squint is only angular, the near-field beam-squint is across both range and angular domains.

B. NEAR-FIELD CHANNEL ESTIMATION
In downlink, the channel estimation stage is performed simul-
taneously during channel training by all the users, i.e., k ∈

K = {1, · · · ,K }. Since the BS employs hybrid beamforming
architecture, it activates only a single RF chain in each
channel use to transmit the pilot signals during channel
acquisition [6]. Denote S̃[m] = diag{s̃1[m], · · · , s̃P[m]} as
the P×P orthogonal pilot signal matrix, then the BS employs
P beamformer vectors as F̃ = [f̃1, · · · , f̃P] ∈ CN×P (|f̃p| =

1/
√
N ) to send P orthogonal pilots, which are collected by

the k-th user as

yk [m] = S̃[m]F̄[m]hk [m] + wk [m], (23)

where F̄[m] = F̃T[m] ∈ CP×N . Assume that F̄[m] =

F ∈ CP×N and S̃[m] = IP, ∀m ∈ M [11], [15], [16], we get

yk [m] = Fhk [m] + wk [m]. (24)

Note that the solution via traditional techniques, e.g., the
least squares (LS) and MMSE estimator can be readily given
respectively as

hLSk [m] = (FHF)−1FHyk [m], (25)

hMMSE
k [m] =

(
R−1
k [m] + FHR−1

k [m]F
)−1FHyk [m], (26)

where Rk [m] = E{hk [m]hH
k [m]} is the channel covariance

matrix. Nevertheless, thesemethods require either prior infor-
mation (e.g., MMSE) or have poor estimation performance
(e.g., LS) [14], [37]. Furthermore, these methods require at

least P ≥ N pilot signals, which can be heavy for channel
training while our proposed approach exhibits a much lower
channel training overhead (e.g, see Sec. VI).
By exploiting the THz channel sparsity, the THz channel

can be represented in a sparse domain via support vector
xk [m] ∈ CQ, which is an L-sparse vector, whose non-zero
elements corresponds to the set

{xk,l[m]|xk,l[m] ≜

√
N
L

αk,m,le−j2πτk,l fm}. (27)

Then, the received signal in (24) is rewritten in sparse domain
as

yk [m] = FCmxk [m] + wk [m], (28)

where F is an P×N fixed matrix corresponding to the hybrid
beamformer weights during data transmission, and the sparse
channel is represented as hk [m] = Cmxk [m], whereCm is the
N × Q NBA dictionary matrix covering the spatial domain
with φm,q ∈ [−ηm, ηm] (φ ∈ [−1, 1]) and rm,q ∈ [0,F] for
q = 1, · · · ,Q as

Cm = [c(φm,1, rm,1), · · · , c(φm,Q, rm,Q)]. (29)

By utilizing the NBA dictionary matrix Cm, we employ
the OMP algorithm to effectively recover the sparse channel
support. The proposed NBA-OMP technique is presented in
Algorithm 1, which accepts yk [m],Cm and ηm as inputs and it
yields the output as the estimated channel ĥk [m], and the near-
field beam-squint in terms of DoA and ranges, i.e., 1̂(φk,l,m)
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Algorithm 1 NBA-OMP
Input: Dictionary Cm, observation yk [m], F and ηm
Output: ĥk [m], 1̂(φk,l,m) and 1̂(rk,l,m).

1: for k ∈ K
2: l = 1, Il−1 = ∅, rl−1[m] = yk [m], ∀m ∈ M.
3: while l ≤ L do
4: q⋆

= argmaxq
∑M

m=1 |cH(φm,q, rm,q)FHrl−1[m]|.
5: Il = Il−1

⋃
{q⋆

}.
6: φ̂k,l =

φm,q⋆

ηm
.

7: r̂k,l =
ηm(1−φ2

m,q⋆ )

1−η2mφm,q⋆
rm,q⋆ .

8: 1̂(φk,l,m) = (ηm − 1)φ̂k,l , ∀m ∈ M.

9: 1̂(rk,l,m)=(ηm−1)
1−η2mφ̂2

k,l

ηm(1−φ̂2
k,l )
r̂k,l , ∀m ∈ M.

10: 9m(Il) = FCm(I1).
11: rl[m] =

(
IP − 9m(Il)9†

m(Il)
)
yk [m].

12: l = l + 1.
13: end while
14: 4k = [a(φ̂k,1, r̂k,1), · · · , a(φ̂k,L , r̂k,L)].
15: for m ∈ M
16: ûk [m] = 9

†
m(Il−1)yk [m].

ĥk [m] = 4k ûk [m].
17: end for
18: end for

and 1̂(rk,l,m), respectively. In steps 4−6 of Algorithm 1, the
orthogonality between the residual observation vector rl[m]
and the columns of the dictionary matrix is checked as

q⋆
= argmax

q

M∑
m=1

|cH(φm,q, rm,q)FHrl−1[m]|, (30)

where q⋆ denotes the support index for the lth path iteration.
Then, the DoA and range estimates can be found as

φ̂k,l =
φm,q⋆

ηm
and r̂k,l =

ηm(1−φ2
m,q⋆ )

1−η2mφm,q⋆
rm,q⋆ , respectively.

In a similar way, the corresponding beam-squint terms
are 1̂(φk,l,m) = (ηm − 1)φ̂k,l and 1̂(rk,l,m) =

(ηm − 1)
1−η2mφ̂2

k,l

ηm(1−φ̂2
k,l )
r̂k,l . Once the DoA and ranges are

obtained, the THz channel is constructed from the esti-
mated support as ĥk [m] = 4k ûk [m] where 4k =

[a(φ̂k,1, r̂k,1), · · · , a(φ̂k,L , r̂k,L)] and ûk [m] = 9
†
m(IL)yk [m],

wherein 9m(IL) = FCm(IL) and IL includes the estimated
support indices.

V. MODEL-FREE SOLUTION: NBA-OMP-FL
Due to operating at small wavelengths and severe path loss,
ultra-massive arrays are envisioned to be employed at THz
communications. This results in very large number of array
data to be processed. For instance, when employing learning-
based techniques, the size of the datasets is proportional to
the number of antennas. Thus, huge communication overhead
occurs due to the transmission of these datasets in CL-
based techniques [17], [38], [39]. To alleviate this overhead,

we present an FL-based near-field THz channel estimation
scheme in this section.

Denote θ ∈ RZ and Dk as the vector of learnable
parameters and the local dataset for the k-th user, respectively.
Then, we have the relationship f (θ ) between the input of
the learning model represented by θ and its prediction as
Y (i)
k = f (θ )X (i)

k . Here, the sample index for the local dataset
is i = 1, . . . , Dk , where Dk = |Dk | denotes the number
of samples in the k-th local dataset. Furthermore, we have
X (i)
k and Y (i)

k representing the input and output, respectively,
such that the input-output tuple of the local dataset is
D(i)
k = (X (i)

k ,Y (i)
k ).

The input data is the received pilots, i.e., yk [m]. For the out-
put (label) data, we consider the channel estimates obtained
via the proposed NBA-OMP approach in Algorithm 1. Then,
by using ĥk [m], the output data is constructed as

Yk =

[
Re{ĥk [m]}T, Im{ĥk [m]}T

]T
∈ R2N . (31)

When designing the input data, the real, imaginary and
angle information of yk [m] are incorporated in order to
improve the feature extraction performance of the learn-
ing model. Therefore, each input sample has a ‘‘three-
channel’’ structure with the size of NRF × 3 [38]. Thus,
we have [Xk ]1 = Re{yk [m]}, [Xk ]2 = Im{yk [m]} and
[Xk ]3 = ̸ {yk [m]}.

In order to provide all the users to participate in the training
in a distributed manner, each-user computes their model
parameters and aims to minimize an averageMSE cost. Thus,
the FL-based model training problem can be cast as

minimize
θ

1
K

K∑
k=1

Lk (θ )

subject to: f (X (i)
k |θ ) = Y (i)

k , (32)

where Lk (θ ) is the loss function for the learning model
computed at the k-th user, and it is defined as

Lk (θ ) =
1

Dk

Dk∑
i=1

||f (X (i)
k |θ ) − Y (i)

k ||
2
F , (33)

where f (X (i)
k |θ ) corresponds to the output of the learning

model once it is fed with X (i)
k . In order to efficiently

solve the optimization problem presented in (32), iterative
techniques can be conducted such that the learning model
parameters are computed at each iteration based on local
datasets. Specifically, first the learning model parameters are
computed at the users, and then they are transmitted to the
server, at which they are aggregated.

Prior to the transmission of the learning models to the
BS, E local updates are performed [39]. In particular,
define θ

(e)
t ∈ RZ and βk (θ

(e)
t ) = ∇Lk (θ (e)t ) as the

model parameter and gradient vectors computed at the e-
th local update, respectively. Then, after performing E local
updates, we denote the E-th computed gradient vector by
βk (θ t ) = βk (θ

(E)
t ) for notational convenience. Next, the
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TABLE 1. Computational complexity of Algorithm 1.

model parameter updates βk (θ t ) are transmitted to the BS,
at which they are received in a synchronous fashion. While
there are different user scheduling mechanisms, e.g., random,
round robin and proportional fair [40], [41], we assume
that the model updates {βk (θ t )}k∈K are aligned through a
synchronization procedure and they are received in the same
state. Thus, the model update rule for the t-th iteration is
described by

θ t+1 = θ t − ε
1
K

K∑
k=1

βk (θ t ), (34)

for t = 1, . . . ,T and ε is the learning rate.
During model training, each user simply transmits their

model update vector βk (θ t ) to the BS for k ∈ K. Assume
that the model βk (θ t ) is divided into U =

Z
M equal-length

blocks for each subcarrier as

βk (θ t ) = [x(t)
T

K [1], . . . , x(t)
T

K [M ]]T, (35)

where x(t)k [m] ∈ CU denotes data symbols (model updates)
of the k-th user, that are transmitted to the server to be
aggregated. The BS, then, receives the following N × U
uplink signal as

Y (t)[m] =

K∑
k=1

h(t)k [m]x(t)
T

k [m] + N[m], (36)

where h(t)k [m] ∈ CN represents the uplink channel during
model transmission and N[m] ∈ CN×U denotes the noise
term added onto the transmitted data.

VI. COMPLEXITY AND OVERHEAD
In this section, we analyze the computational complexity
of the proposed NBA-OMP approach, channel training
overhead as well as the communication-overhead of the
FL-based model training.

A. COMPLEXITY OF NBA-OMP
The computational complexity of NBA-OMP is the same as
traditional OMP techniques [6], and it is mainly due to the
matrix multiplications in step 4 (O(QMNP(NP+P))), step 10
(O(PNLL̄)), step 11 (O(P2LL̄ + P2)) and step 16 (O(L(P +

N ))), where L̄ = (L + 1)/2. Hence, the overall complexity is
O(QMNP(NP+P)+ (PLL̄+1)(N+P)). Table 1 summarizes
the complexity orders of Algorithm 1.

B. LEARNING MODEL COMPLEXITY
We examine the computational complexity of the proposed
CNN model comprised of convolutional and fully connected
layers given in Table 2. The time complexity of the
convolutional layers (i.e., l = 2, 4, 6) is

CCL = O

 ∑
l∈{2,4,6}

D(l)
x D

(l)
y W

(l)
x W (l)

y N (l−1)
F N (l)

F

 , (37)

where D(l)
x ,D(l)

y are the column and row sizes of each output
feature map of the convolutional layer, W (l)

x ,W (l)
y are the

2-D filter size of the l-th layer. N (l−1)
F and N (l)

F represent
the number of input and output feature maps for the l-th
layer, respectively. According to the parameters in Table 2,
we have D(l)

x = 1,D(l)
y = N and W (l)

x = W (l)
y = 3

for l = 2, 4, 6. Furthermore, the tuple (N (l−1)
F ,N (l)

F ) equals to
(3, 128), (128, 128), (128, 128) for l = 2, 4, 6, respectively.
As a result, the computational complexity order of the
convolutional layers in (37) is given approximately as

CCL = O
(
N · 32 · (3 · 128 + 1282 + 1282)

)
≈ O

(
N · 32 · 215

)
. (38)

Next, the complexity order for the fully connected layers
(i.e., l = 8, 10) is given by

CFCL = O
( ∑
l∈{8,10}

D(l)
x D

(l)
y ρN (l)

FCL

)
, (39)

where (D(l)
x ,D(l)

y ) equals to (128N , 1) and (1024, 1) for
l = 8, 10, respectively. Furthermore, we have N (l)

FCL = 1024
for l = 8, 10 and ρ = 0.5 is the dropout ratio. Then, (39)
becomes

CFCL = O
(
128 · N1024 · 0.5 + 1024 · 1024 · 0.5

)
= O

(
216(N + 23)

)
= O

(
215(2N + 24)

)
. (40)

Finally, combining (38) and (40) yields the total time
complexity of the CNN model approximately as

C = CCL + CFCL

≈ O
(
215(32N + 2 N + 24)

)
. (41)

C. CHANNEL TRAINING OVERHEAD
During channel training, the BS with K RF chains transmits
P pilot signals, which are received simultaneously by the
signal antenna users with a single RF chain. Therefore,
the channel training stage requires P channel usage. Since
the proposed approach relies on the sparsity of the THz
channel to reconstruct the channel vector hk [m], the NBA-
OMP approach does not require P ≥ N . Instead, much
fewer channel pilots can be used to reconstruct the channel
accurately. Specifically, the channel training overhead of the
NBA-OMP requires P ≪ N (8 times lower, see Sec. VII)

36416 VOLUME 11, 2023



A. M. Elbir et al.: Near-Field Terahertz Communications: Model-Based and Model-Free Channel Estimation

TABLE 2. Learning model parameters.

channel usage for pilot signaling while the traditional
approaches, e.g., LS and MMSE estimation, need at least N
channel usage.

D. MODEL TRAINING OVERHEAD
The communication overhead of a learning-based approach
can be measured in terms of amount of data symbols
transmitted during/for model training [17], [37], [39], [42],
[43]. Thus, the communication overhead (i.e., TCL) for the
CL involves the amount of dataset transmitted from the users
to the server whereas it can be computed for FL (i.e., TFL)
as the amount of model parameters exchanged between the
users and the server during training. Then, we have

TCL =

K∑
k=1

Dk (3NRF + ξ2N ), (42)

where Dk is the number of samples of the k-th dataset and
3NRF+2N is the number of symbols in each input-output (i.e.,
X (i)
k −Y (i)

k ) tuple. In (42), ξ denotes whether the labels are also
transmitted from the users to the server. Thus, if the labels are
computed at the users, they are transmitted to the server with
additional overhead, and we have ξ = 1. On the other hand,
ξ = 0 (labels are not computed at the user) if the received
inputs are transmitted to the server, at which the labeling
(channel estimation) is handled, thereby less communication
overhead is achieved. Next, we defined the communication
overhead for FL as

TFL = 2 ZTK , (43)

which involves a two-way (user ⇄ server) transmission of
the learnable parameters from K users to the server for T
consecutive iterations.

VII. NUMERICAL SIMULATIONS
We evaluate the performance of our proposed channel
estimation approaches, in comparison with the state-of-the-
art channel estimation techniques, e.g., far-field OMP (FF-
OMP) [44], near-field OMP (NF-OMP) [25], beam-squint
pattern detection (BSPD) [16] as well as LS and MMSE.
Note that, during the simulations, the MMSE estimator is

FIGURE 4. Near-field THz wideband channel estimation NMSE versus
SNR. N = 256, fc = 300 GHz, M = 128 and B = 30 GHz.

computed subcarrier-wise such that it has a beam-squint-free
benchmark performance.

Throughout the simulations, unless stated otherwise,
the signal model is constructed with fc = 300 GHz,
B = 30 GHz, M = 128, K = NRF = 8, L = 3,
P = 8 and N = 256, for which the Fraunhofer distance is
F = 32.76m. The NBA dictionary matrix is constructed with
Q = 10N , and the user directions and ranges are selected as
φ̃k,l ∈ unif[−π

2 , π
2 ], rk,l ∈ unif[5, 30] m, respectively.

A convolutional neural network (CNN) is designed with
parameters enlisted in Table 2 through a hyperparameter
optimization [39], [43]. The learning model is, then, trained
for E = 10 local updates and T = 100 iterations, which
involves the exchange of model parameter updates between
the users and the server. The learning rate is selected as
ε = 0.001. For dataset generation, we first generated
V = 1000 independent channel realizations. Then, synthetic
noise with AWGN is added onto the generated channel
data in order to resemble the characteristics related to
the imperfections/distortions in the wireless channels. This
synthetic noise level is obtained over pre-determined noise
level for three signal-to-noise ratio (SNR) levels, i.e.,
SNRTRAIN = {15, 20, 25} dB such that G = 1000 realiza-
tions of each channel data are obtained in order to improve
robustness [37]. During channel generation, we considered
the local datasets with non-identical distributions such that
the k-th user’s dataset is selected with the DoA information as
ϑk,l ∈ [−π

2 +
π
K (k − 1), −π

2 +
π
K k).

Fig. 4 shows the channel estimation normalized MSE
(NMSE) performance under various SNR levels. We can see
that the proposed NBA-OMP and NBA-OMP-FL techniques
outperform the competing methods and closely follows the
MMSE performance. The superior performance of NBA-
OMP can be attributed to accurately compensating the effect
of beam-squint over both direction and range parameters
via NBA dictionary, which is composed of SD steering
vectors. On the other hand, the remaining methods fail
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FIGURE 5. Near-field THz wideband channel estimation NMSE versus
bandwidth when SNR = 10 dB.

FIGURE 6. Channel estimation NMSE (a) and communication-efficiency
ratio (b) when SNR = 10 dB.

to exhibit such high precision in high SNR regime. This
is because these methods either fail to take into account
the NB [25] or only consider the far-field signal model
[8], [16]. Furthermore, the proposed approach does not

require an additional hardware components in order to realize
SD dictionary matrices steering vectors, hence it is hardware-
efficient. Compared to NBA-OMP, the FL-based approach
has slight performance loss due to model training with
unevenly distributed datasets. As a result, the performance
of NBA-OMP behaves like a yardstick for the FL approach
since the learning-based methods cannot perform better than
their labels [38].

Fig. 5 compares the NMSE performance with respect to
the bandwidth B ∈ [0, 100] GHz. We can see that the
proposed NBA-OMP approaches effectively compensate the
impact of beam-squint for a large portion of the bandwidth up
to B < 70 GHz.

Finally, we analyze the communication overhead of the
proposed FL approach. To this end, we first compute the
overhead for CL as TCL = 8 · Dk · (3 · 8) = 24.57 × 109

when ξ = 0 (note that TCL = 6.31 × 1012 when ξ = 1),
where the number of input-output tuples in the dataset is
Dk = 3MVG = 3 · 128 · 1000 · 1000 = 384 × 106.
On the other hand, the communication overhead for FL is
TFL = 2 · 1, 196, 928 · 100 · 8 = 1.91 × 109, which
exhibits approximately 12 (3300) times lower than that of
CL when ξ = 0 (ξ = 1). This observation shows the
effectiveness of the FL approach for channel estimation tasks,
especially when the number of antennas is very high. It is also
worthwhile mentioning that the gain achieved by employing
FL is huge if the labeling is handled at the server, i.e.,
ξ = 0. Based on this analysis, Fig. 6 demonstrates the channel
estimation NMSE and communication-efficiency ratio, i.e.,
R =

TCL
TFL with respect to the dataset size D =

∑K
k=1 Dk

when SNR = 10 dB. We can see that smaller datasets can be
used for training the learning model for faster convergence at
the cost of low NMSE performance. A satisfactory channel
estimation performance can be achieved (i.e., NMSE ≈

10−1) if D ≈ 3 × 108. As expected, larger datasets result in
longer training times aswe observed from the simulations that
the number of iterations is approximately T = 100 for such
settings. In this scenario, the communication-efficiency ratio
R is about 12 and 3300 when ξ = 0 and ξ = 1, respectively.

VIII. CONCLUSION
We considered the near-field wideband THz channel esti-
mation problem in the presence of near-field beam-squint.
We introduced both model-based and model-free approaches
to effectively estimate the channel with lower complexity
and overhead. The model-based approach is based on the
OMP technique, for which an NBA dictionary is designed
such that the SD DoA and range parameters are accurately
matched, hence, the beam-squint-corrected channel estimate
is obtained. The model-free approach is based on FL scheme
such that the data labels are obtained from the model-based
approach. The proposed approach has lower channel and
model training overhead as compared to existing techniques.
Specifically, the proposed model-based approach achieves
close-to-MMSE performance with 8 times less channel
usage than the conventional techniques whereas the proposed
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model-free technique enjoys 12 times less communication
overhead as compared to the centralized schemes. The
proposed NBA-OMP is particularly useful for THz-band
applications, wherein ultra-massive number of antennas are
used leading to high computational complexity, and the near-
field beam-squint may cause degradations in the system
performance.
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